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ABSTRACT In the process of production, automobile steel forgings are prone to various cracks, which
affect the product quality. At present, forgings defects are mainly detected by fluorescent magnetic particle
inspection and manual inspection. Aiming at the problems of low detection accuracy and efficiency in this
method, an improved convolutional neural network model is proposed. The fluorescent magnetic particle
inspection images of two typical forgings were intelligently inspected. Firstly, a deep learning model with
EfficientNet as the backbone and Feature Pyramid Network (FPN) as the fusion layer is constructed.
Secondly, in order to improve the convergence speed and detection accuracy, the calculation method of
intersection over union is improved, and the network is improved by using the Attention Mechanism.
Finally, Particle Swarm Optimization algorithm (PSO) with adaptive parameters is introduced to optimize
the hyperparameters of neural network, and a fluorescent magnetic particle inspection image acquisition
platform is built for verification. The mean Average Precision (mAP) of the best model of EfficientNet-PSO
on the validation set is 95.69%. F1 score is 0.94 and FLOPs is 1.86B. Compared with other five deep learning
neural network models, this method effectively improves the defect detection efficiency and accuracy of
flange plate and cylinder head, which can meet the defect detection requirements.

INDEX TERMS Machine learning, industry applications, object detection.

I. INTRODUCTION
Automobile steel die forgings are widely used in automo-
tive gearboxes, transmission systems, steering systems, front
and rear axles, and engine interiors. Due to improper pro-
cesses such as quenching, overheating, and overturning in the
production process, there may be defects in the production
process of forgings. In order to ensure the high quality of
forgings produced by enterprises, it is necessary to carry out
nondestructive testing on forgings. Currently, the fluorescent

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

magnetic particle inspection method is used by company
[1], [2] to detect defects by observingmagnetic traceswith the
manual inspection. But this detection method is inefficient,
expensive, and prone to errors when workers are overworked.
Therefore, the computer vision technique to replace manual
inspection in detection is one of the important trends in the
current of industry [3], [4]. This technique is called object
detection [5].

Object detection technology is mainly divided into two
categories: traditional vision [6], [7] and deep learning
[8]–[10]. The traditional machine vision method usually
designs the corresponding feature template according to the
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characteristics of defects, which has good accuracy and
robustness, but the traditional machine vision is difficult
to deal with scenarios with complex and changeable tex-
ture background. In addition, industrial production scenarios
often need generalization models to cope with the adjustment
of production demand. In this regard, traditional visual meth-
ods have natural disadvantages. Compared with traditional
visual technology, there is more powerful feature extrac-
tion ability in deep learning-based detection. In particular,
convolutional neural networks [11], [12] (CNN) are more
suitable for object recognition in defect problem. CNN has
a high level of fault tolerance, parallel processing, and self-
learning ability, as well as the ability to operate with complex
environmental data, ambiguous background knowledge, and
ambiguous reasoning principles. Therefore, computer vision
based on deep learning are more and more used in industry.

However, deep learning model training is difficult. Due to
CNN network is called black box model, manual parameter
adjustment can only be done by professionals, and the time
cost of trial and error is high. In order to solve this prob-
lem, the use of hyperparameter optimization to improve deep
learning is increasingly recognized [13], [14]. The optimiza-
tion problem has the characteristics of ambiguous expression,
nonconvex and high evaluation cost. Memetic algorithm is an
effective global optimization algorithm [15]–[17].

An intelligent detection approach for forgings magnetic
particle defect detection based on memetic computing is
proposed in this paper to improve the CNN model. The main
contributions of this paper are as following:

1) The real scene of forging production is simulated, the
fluorescent magnetic particle image detection platform is
built, and the defect sample data set is collected.

2) A CNN model based on improving EffficientNet back-
bone is proposed. There is a powerful feature extraction
capability for complex high-level semantic features. For the
application scenario of the model, Complete Intersection over
Union (CIoU) and Attention Mechanism (AM) are innova-
tively introduced to improve the detection accuracy of the
model. In order to improve the robustness of the model, the
activation function is improved and Dropconncet is used.

3) Aiming at the difficulty of model parameter tuning,
memetic computing is used to adjust parameters automati-
cally. Based on the above dataset to validate the performance
of six different deep learning models.

The rest of this paper is organized as following. In Sect.2.
We review the literature closely related. In Sect.3 the details
of model design are described. The details and parameters of
the experiment is described in Sect.4. The performance of the
model is analyzed in Sect.5. And some concluding remarks
and future work are outlined in Sect.6.

II. LITERATURE REVIEW
To the best of our knowledge, since there exist a large
number of existing works using convolutional networks for
defect detection, but based on deep learning methods, there
is few relevant literature for the research of magnetic particle

inspection of forgings defect detection, so we review the
closely related contributions.

A. DEFECT DETECTION BASED ON CNN
In recent years, CNN has been more and more widely
used in the field of defect detection. Compared with tradi-
tional machine vision, CNN has the key advantage of auto-
matically learning defect features. In the literature, Deep
Learning-based industrial product defects, Park et al. [18]
suggested a system for inspecting surface parts for dirties,
scratches, burrs, and wears automatically. CNN is used to
analyze sample images. Compared with traditional machine
learning methods, it has better generalization performance.
The technology outperforms manual detection in terms of
both cost and efficiency, according to the findings of the
experiments. Dai et al. [19] adopted an improved RCNN
method for detecting surface defects in precision workpieces.
The backbone of the system is ResNet101. The technique
includes an object network extrusion and excitation (SENet)
module, a channel feature fusion module, a feature pyra-
mid network (FPN) module, and a ROI network module,
which dramatically improves defect detection performance
of CNN. A network model for PCB detection was presented
by Shen et al. [20]. This model is named LD-PCB, the tradi-
tional model is difficult to handle complex components and a
wide variety of problems are solved by LD-PCB. Therefore,
the advantages of deep learning methods are highlighted.
Tong et al. [21] proposed an integration of a fully convo-
lutional network with a Gaussian-conditional random field
(G-CRF), an uncertainty framework, and used for road defect
detection, extraction of road location, type and other related
information. This approach offered good accuracy and gen-
eralization capabilities, according to the test findings. And
overcomes the shortcomings of traditional detectionmethods.
Feng et al. [22] discussed a new object detection technique
for detecting rail problems. The proposed network design
of algorithm incorporates a MobileNet backbone network
and numerous novel detection layers with multi-scale feature
mappings. The results of the experiments reveal that the
method has a fast inference speed, high precision, and a wide
range of applications in industry.

Yu et al. [23] proposed a damage identification and loca-
tion method of building structure based on deep convolution
neural network. A variety of convolution kernels of different
sizes are used to improve the performance of the detector, and
LReLU and Dropout are used to improve the generalization
ability of the detector, which will ultimately affect other
machine learning methods. In conclusion, the effectiveness
of CNN in defect detection has been widely proved. CNN
training needs a large number of samples, but in the pro-
duction detection process, the defect sample data is less, the
image acquisition is time-consuming, and the labeling cost is
high. When facing this problem, the most intuitive solution
is to data augmentation. Du et al. [24] discussed the impact
of data augmentation on network performance when trying to
solve the problem of defect detection of automobile casting

79554 VOLUME 10, 2022



T. Yu et al.: Intelligent Detection Method of Forgings Defects Detection

aluminum parts. Using a single data augmentation method
to improve the network performance is limited. When the
data increases to a certain amount, the network performance
will decline. This means that we cannot blindly rely on
data augmentation to solve the problem of small samples.
Di et al. [25] proposed a semi-supervised deep learning-
based steel surface fault classification system. The classi-
fication rate for hot rolled plates is increased by roughly
16 percent using the newCAE-SGANmethod, which is based
on Convolutional Autoencoder (CAE) and semi-supervised
Generative Adversarial Networks (SGAN). CAE-SGAN can
make full use of sample images of steel surface (labeled and
unlabeled images), which improves the accuracy of defect
classification with limited training samples. The deep learn-
ing model used for industrial detection is often aimed at a
specific application scenario, while Ren et al. [26] proposed
a new surface detection algorithm, which has certain uni-
versality in surface inspection tasks. In the small sample
segmentation task, this method only needs 5 images for train-
ing, and the detection result reaches 0.0% error escape rate.
In addition, it has the ability to automatically adapt to the
complex industrial production scenarios with small samples
and strong noise. This achievement brings some inspiration
for the research of industrial detection model. In addition to
the problem of the number of samples mentioned above, the
small defect size is also a very difficult problem in industrial
detection. To solve this problem, Hu andWang [27] proposed
a new method based on object-level attention mechanism,
which not only reduces the dependence of the machine on
accurate annotation, but also has a good effect in small object.
Experiments show that this method can effectively realize
real-time defect detection of castings in complex scenarios.

However, the above experience is mostly CNN networks
with manual design and parameter adjustment. This method
requires professionals to pay a lot of time cost.

B. NEURAL NETWORK HYPERPARAMETER
OPTIMIZATION
In computer vision and object detection, with the improve-
ment of production process and image complexity,
evolutionary algorithms have been widely used in neural
network structure optimization, image classification, and
evolutionary multi-task image feature learning and other
applications. By decreasing the connection parameters in
deep networks, a model with greater generalization ability
can be obtained. For feature selection and classification in
data mining, Nekkaa and Boughaci [28] suggested a memetic
method paired with support vector machine (SVM).The sug-
gested strategy aims to identify the subset of features that
improve SVM classification accuracy the most. Then SVM,
as a shallow model, is far inferior to the deep learning model
in feature extraction performance. However, combining the
idea of optimizing SVM with meme algorithms also brings
us some inspiration. Jia et al. [29] proposed a multi-objective
optimization-based layerwise structure learning approach.
This method can optimize each layer to find the structure

with good generalization ability and high expression ability.
Finally, an improved multi-objective memetic algorithm is
designed to solve the model. Martin et al. [30] presented
a new evolutionary technique called EvoDeep to modify
the parameters and architecture of CNNs in order to maxi-
mize classification accuracy and preserved an efficient layer
sequence. It was put to the test against a commonly used
dataset of handwritten digit pictures, and it came out with
a score of 98.83 percent accuracy. From the perspective of
multi-objective evolution, an effective deep network com-
pression method is proposed by Huang et al. [31]. A multi-
objective compression deep learning model is built, as well as
an approximate compression model generation mechanism,
to reduce the high model training costs associated with the
optimization process. Finally, the number of network param-
eters will be reduced, and the network evaluation process will
be greatly accelerated. Atila et al. [32] Applied Efficientnet
to plant leaf disease classification model and compared it
with other deep learning models. The experimental results
show that the performance of Efficientnet model achieves the
highest value in plantvillage dataset. This work also implies
that Efficientnet model has excellent feature extraction abil-
ity. Liu et al. [15] adopted aMulti-Object Evolutionary Algo-
rithmAssisted Stacked Autoencoder (SAEMOEA/D), which
can adaptively optimize the weights, activation functions and
parameters such as balance factors and hyperparameters. Kim
and Cho [33] suggested a PSO-based technique for CNN-
LSTMNeural network optimization. PSO iteratively searches
and optimizes CNN-complicated hyperparameters space of
LSTM. Finally, the results show that the PSO optimized
model outperforms other deep learning and machine learning
models. Yu et al. [34] proposed a concrete crack detection
method based on depth convolution neural network, and used
the enhanced chicken swarm algorithm to optimize the super
parameters of the network. After training and testing, good
results are obtained.

As can be seen from the brief review above, object
detection based on memetic algorithm optimization and
deep learning has become an active research area in recent
years. However, with the increasing complexity and real-time
requirements of object detection tasks, how to further opti-
mize the network performance of the deep learningmodel and
how to use the memetic algorithm to improve the accuracy
and efficiency of object detection to meet the actual detection
needs of production requires further in-deep research.

III. ANALTSIS AND MODELING
A. ANALTSIS OF DATA SET
Forgings detection in this paper is cylinder head and flange
plate, and the location of defects is determined. Based on
practical experience, defects of cylinder head forgings are
often on the edge of the bottom surface of the cylinder head,
and the defects of flange forgings are near the bottom of the
flange and the shaft hole, as showed in Fig.1. 450 original
defect images were collected. First, 80% of the images are
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randomly selected as the training set, 10% as the test set,
and 10% as the verification set. Then, the training set, test
set and validation set are augmented independently. Using
8 different data augmentation methods including vertical
flipping and adding noise, 1200 training sets, 150 test sets
and 150 validation sets are finally obtained. In the actual
production inspection process, it is only necessary to judge
whether there is a defect in the forgings, and there is no
need to distinguish the defect type. Therefore, all defects are
classified as ‘‘crack’’ in the notes. Features of data set defects
are as following:

1) There is different sizes and complex morphological
features in forgings defects.

2) The defect background and defect distribution of differ-
ent forgings is complex.

3) Poor light conditions lead to poor image quality.

FIGURE 1. Schematic diagram of forgings defects.

B. MODEL AND DESIGN
According to the requirements of object detection algorithm,
a new EfficientNet-PSO model is proposed in this paper. The
highlight is as following, and its structure is shown in Fig.2

1) For problems with complex defect features, an improved
EfficientNet [35] is used as the backbone.

2) Using FPN [36] as the feature fusion layer to improve
the multi-scale object detection ability of the algorithm.

3) CIoU [37] is introduced to optimize the convergence
speed and accuracy of the anchor box.

4) Aiming at the difficulty of model parameter adjustment,
PSO [38] is used for automatic parameter search.

1) IMPROVED EFFICIENTNET
EfficientNet is a group of CNN based backbone released
by Tan M et al. In 2019, there are 8 different models in
this series (EfficientNet-B0 to EefficientNet-B7). The faster
the model detection speed of this series, the lower the
detection accuracy. According to the actual detection beats
(20 to 26 piece/min), EfficientNet-B2 can both detection
accuracy and efficiency, more suitable for the production of

the enterprise. With the improved EfficientNet-B2, the model
has stronger feature extraction ability and adapts to the dark
magnetic particle flaw detection environment.

1) Efficientnet-B2 model includes Mobile Inverted Bottle-
neck Convolution module (MBConv) [39], and the Squeeze-
and-Excitation Network module (SENet) [40] in MBConv
adopts attention mechanism. The attention mechanism of
model allows it to pay greater attention to the channel features
that contain the most information while suppressing the less
important channel features. MBConv has a structure that is
similar to the residual connection. When the network depth
is large, the gradient of MBConv is not easy to disappear, and
the robustness of the model is better.

2) The original SENet uses the ReLU activation function,
but forced sparse processing of ReLU will reduce the effec-
tive information received by the model. The negative gradient
leads to the zeroing of ReLU, which may cause neuronal
necrosis. In order to alleviate this problem, the Swish [41]
activation functions is applied in the SEnet module. Swish
activation function is a deformation of Sigmoid activation
function. Formula 1 and Formula 2 are expressions of Sig-
moid and Swish respectively, where x represent input.

Sigmoid (x) =
1

1+ e−x
(1)

Swish (x) = x · Sigmoid (x) (2)

Swish function has no upper bound, so there will be no
gradient saturation. It has a lower boundary and has a strong
regularization effect, but it is less prone to neuronal necrosis
than ReLU. Therefore, swish is more appropriative for the
model. The function graph is shown in Fig.3

3) DropConnect [42] is applied in model to increase the
generalization of model ability and mitigate the overfit-
ting condition. The difference between DropConnect and
DropOut is that DropConnect does not randomly discard
the output of the hidden layer, but the input to the hidden
layer. Both dropconnect and dropout can prevent overfitting
and enhance the robustness of the network, but dropconnect
is better in comparison. In addition, with the addition of
scale parameters in EfficientNet model family, the model is
easier to over fit and the drop rate of DropConnect gradually
increases.

Efficientnet-B2 model is divided into 9 stages according
to modules. Take Step 4, Step 6 and Step 9 as the effective
layers, and its feature mAPwill be connected to the FPN. The
adjusted EfficientNet-B2model structure is shown in Table 1.

2) FEATURE PYRAMID NETWORK
Although the position of the defect on the forgings is fixed,
the position of the forgings on the image is not fixed and the
size is different. Recognizing object with large size differ-
ences is one of the basic challenges faced by computer vision.
The common solution is to use FPN as the multi-scale feature
fusion layer. Different from the conventional CNN model,
FPN integrates the feature maps of multiple prediction layers.
It can be detected according to the characteristics of different
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FIGURE 2. Model structure diagram.

TABLE 1. Structure of improved EfficientNet-B2 backbone.

FIGURE 3. Three activation functions.

scale defects of flange plate and cylinder heads. If only
the top-level features are used for regression prediction, the
objects with small scale and weak features will be lost.

Therefore, in order to deal with the multi-scale prediction
task, FPN is used to predict in multiple independent feature
layers. FPN combines high-resolution shallow feature layer
and rich semantic information deep feature layer to realize
multi-scale feature fusion.

In EfficientNet-PSO, FPN extracts three feature layers of
EfficientNet: Step 4, Step 6 and Step 9. The corresponding
feature mAP resolutions are 52 × 52, 26 × 26 and 13 × 13.
After multiple convolution operations, one component of
each of the three feature layers is utilized to output the feature
related findings of layer, while the other is deconvoluted and
fused with other feature layers.

3) COMPLETE INTERSECTION OVER UNION
In order to improve the accuracy of the loss function of the
object position and speed up the convergence speed during
training, CIoU is used as the intersection over union of
the loss function in EfficientNet-PSO. The intersection over
union can used to measure the loss between the predicted
bounding box and the ground truth. The commonly used loss
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functions of intersection over union include IoU, Generalized
Intersection Over Union (GIoU) [43] and Distance Intersec-
tion Over Union (DIoU). IoU converges slowly in training,
and when there is no intersection between prediction box
and real box, IoU is always zero and loses its affect as a
loss function GIoU can reflect the relationship between the
ground truth and the prediction bounding box when there
is no intersection between the prediction bounding box and
the ground truth, however the convergence speed of GIoU
is not beneficial; DIoU is better than the first two kinds of
intersection over union, but its disadvantage is that it does not
consider the aspect ratio of the bounding box in the process
of reasoning. CIoU overcomes the shortcomings of the above
functions and takes into account the fast convergence speed
while ensuring the accuracy and the convergence effect is
better. The formula of CIoU is as following:

LCIoU = 1− IoU +
ρ2

(
b, bgt

)
c2

+ αv (3)

The formula of IoU is as follows:

IoU =
A ∩ B
A ∪ B

(4)

The formula of α is as follows:

α =
v

(1− IoU + v)
(5)

The formula of v is as follows:

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)
2

(6)

where, ρ2(b, bgt ) is the Euclidean distance, c is the diagonal
length of the minimum area, v is the consistency measure-
ment parameter of aspect ratio, w and h is thewidth and height
of the predicted bounding box, w^gt and h^gt is the width and
height of the ground truth respectively.

4) MEMETIC ALGORITHM OPTIMIZTION AND PARAMETER
AUTOMATIC SEARCH
In order to enhance the performance of EfficientNet-PSO
model, some tricks such as Weight Decay [44], Mosaic
Data Augmentation [45], Cosine Annealing Learning Rate
Decay [46] and Loss Normalization are introduced. The
model itself and the five tricks contain eight key parameters,
which are the decisive factors determining the performance
of the model. It shows in Table 2. How to choose a faster
and more accurate model from many parameters is the key
problem to be solved. Therefore, it is necessary to use PSO
algorithm for parameter automatic search. The particle posi-
tion is determined by the 8 key parameters, and the fitness
is determined by the loss of model on the validation set.
The inertia factor W and learning factors C1 and C2 of PSO
change dynamically according to the number of iterations.
In order to enhance the robustness of PSO, a parameter
dynamic increase strategy based on the number of iterations
is used. At the beginning of the iteration, the individual
diversity of particles is enhanced to avoid falling into local

optimization, and at the end of the iteration, the group shar-
ing of particles is enhanced to speed up the convergence
speed.

FIGURE 4. Model flow chart.

IV. EXPERIMENT
A. THE DESIGN OF INTELLIGENT DETECTION PLATFORM
In the traditional forgings defect detection process, firstly,
magnetizing equipment will be used to magnetize the forg-
ings, and then the magnetized forgings will be sent to the
dark detection room. Finally, inspectors will carry out man-
ual detection in the detection room and manually sort the
defective forgings. In order to realize intelligent detection
of forgings defects and simulate the actual production situ-
ation, an intelligent detection platform for forgings defects
was designed and built. In order to obtain a better effect of
black light illumination, in the case of high indoor bright-
ness, a hood is usually added to the outside. According
to actual production experience, the defect size of cylinder
head and flange plate is less than 70mm usually. There-
fore, the experiments mainly use the following devices.
S4560-6K floating LED black light, UV(Light)-FLUX ≥
6 000µW/cm2; The industrial camera FLIR BFS-U3-89S6M
with a resolution of 4096 × 2160, and the imaging range
is 207.8mm × 106.4mm.The detection process is shown
in Fig.5.

B. MODEL TRAINING
The models trained and tested by EfficientNet-PSO run on
the workstation of Ubuntu20.0 operating system. The hard-
ware of the workstation is Inter3. 10 GHz 64 core CPU,
128 GB memory, two NVIDIA Titan XP GPUs. The soft-
ware environment is Ubuntu20.0 operating system based
on 64 bit, pytorch1.7.1 framework, CUDA11.0, OpenCV2
and Visual Studio Code integrated development environment.
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FIGURE 5. Schematic diagram of detection process.

TABLE 2. Key parameters of EfficientNet-PSO.

FIGURE 6. Change of optimal fitness with the number of iterations.

TABLE 3. Parameters of particle swarm optimization.

The parameters of PSO algorithm are shown in Table 3.
The optimal parameters of the CNN model obtained through

FIGURE 7. Schematic diagram of detection results.

TABLE 4. Optimal parameters of CNN model.

iterative calculation are shown in Table 4. Detection results
of a single picture are shown in Fig.7. The iterative curve of
PSO algorithm is shown in Fig.6.

V. MODEL PERFORMANCES
In this section, comparative experiments will be carried out
from two aspects: the performance of CNN model and the
performance of HPO algorithm.

A. COMPARATIVE EXPERIMENT OF CNN MODEL
The accuracy average value of rate under various recall rates
is AP; the average value of different categories of AP is mAP;
the combined value of recall rate and accuracy rate is F1; the
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FIGURE 8. PR diagram of six models.

FIGURE 9. F1 diagram of six models.

total parameters of the model scale are represented by total
params. Model complexity and detection speed is expressed
by floating-point operation FLOPs. The above evaluation
indicators can accurately evaluate the trained model.

EfficientNet-PSO was compared with the following five
models: YOLOv4, YOLOv3 [47], CenterNet [48], YOLOv4
Tiny and faster RCNN [49]. Using the same dataset, after
100 generations of training, the optimal results of model
validation set test results. Figure 8 is a PR comparison chart
of the 6 models. The larger the area enclosed by the curve
in the figure, the higher the accuracy of the model; the more

stable the curve, the better the performance of themodel when
the positive and negative samples are uneven. EfficientNet-
PSO is the best of the six models. Figure 9 shows the F1
curve, the closer the F1 curve is to 1 and the more stable it
is, the better the detection performance is. EfficientNet-PSO
is the best of the six models. Figure10 shows the comparison
of EfficientNet-PSO with the mAP and FLOPs of the other
five models, and the closer to the lower right corner in the
figure, the better the performance. Among the six models, the
mAP and FLOPs of EfficientNet-PSO are the best; it boasts
the fastest detection speed and the highest detection accuracy.
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TABLE 5. Comparison of experimental results of six models.

FIGURE 10. Scatter plot of mAP FLOPs in six models.

FIGURE 11. Scatter plot of computing time and best fitness in six
algorithms.

B. COMPARATIVE EXPERIMENT OF HPO ALGORITHM
PSO was compared with the following five algorithms:
Anneal, Evolution [50], Hyperband [51], PBT [52], and
TPE [13]. The above five algorithms include heuristic

algorithm and Bayesian algorithm. Fig.11 shows the
comparison of PSO with the computing time and best fitness
of the other five algorithms. In the figure, the closer to the
bottom, the better the fitness, and the closer to the left, the less
the computing time. The computing time of PSO application
in HPO is not dominant, because PSO requires a certain scale
of population, whichwill produce a large computational over-
head. But the best fitness of PSO is obviously better than other
algorithms. Compared with other algorithms, using PSO
algorithm is a method that uses computing time to exchange
the optimization effect. Considering that the absolute value
of PSO computing time is only a few hours higher than other
algorithms, this is an acceptable cost. Therefore, we believe
that PSO is more suitable than other algorithms to solve the
problem.

TABLE 6. Parameters of particle swarm optimization.

VI. CONCLUSION
This paper proposes a new intelligent detection model for
automobile steel die forgings defects. Taking the cylinder
head and flange plate as the detection object, the EfficientNet
deep learning network model is constructed as the main body,
FPN is the feature fusion layer, and the parameters are auto-
matically searched through the CIoU and PSO algorithms,
which improves the defect detection accuracy of the model.
EfficientNet-PSO model is not only high precision, but also
an efficient, which avoids the complex image processing pro-
cess in traditional object detection. It can realize end-to-end
real-time detection. The main conclusions are as following:

1. For the efficient extraction of complex high-level seman-
tic features, the EfficientNet-PSO model proposed in this
paper introduces the Swish activation function and combines

VOLUME 10, 2022 79561



T. Yu et al.: Intelligent Detection Method of Forgings Defects Detection

the SENet self-attention module to effectively improve the
detection performance of the model.

2. The high-level semantic features are introduced into
the FPN feature fusion layer, which effectively enhances the
multi-scale object detection ability of the model.

3. The description of the object frame overlaps is more
accurate than traditional calculation methods, and effectively
optimizes the convergence speed and accuracy of the bound-
ing box by introducing CIoU.

4. PSO algorithm is used to solve the problem that it
is difficult to adjust the parameters of the CNN model.
It is proved that memetic computing is not only effective
in dealing with the problems of computer vision and image
processing. But also plays a practical role in engineering
application.However, in the experimental results, it is found
that very few samples have to overlap two predicted bound-
ing box, which may be due to unreasonable optimization of
IoU threshold of non-maximum Suppression module, which
needs further research. In addition, despite the fact that the
PSO technique is utilized in this paper, is PSO the best
memetic algorithm? How to choose the appropriate memetic
algorithm for different CNNmodels? These problems need to
be further studied in order to better serve the actual forgings
inspection need.

In the future work, it is planned to use neural architecture
search technology (NAS) to improve the universality and
performance of detection. If NAS is combined with HPO, the
detector will be completely computer-generated rather than
designed by professionals.
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