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ABSTRACT Attribute reduction comes from machine learning and is an important component of rough set
theory. Research on attribute reduction has produced many important achievements. The aim of attribute
reduction is to reduce the complexity of data while retaining its original characteristics to the greatest
extent. The concept of attribute reduction is of great significance in machine learning research. In previous
studies, a variety of attribute reduction definitions have been proposed according to different rules. Based
on the binary relations among objects and local decision rules, this paper describes a local indiscernibility
relation reduction for information tables. The discernibility matrix for the proposed reduction is established,
and examples for single- and multi-decision classes are presented to illustrate that the proposed local
indiscernibility relation reduction can be applied to decision tables. According to the reduction concept
developed in this paper, and considering a heuristic algorithm for calculating the significance of attributes
and a binary integer programming algorithm based on the discernibility matrix, three reduction algorithms
are proposed. Experiments are conducted using four classifiers and a number of publicly available datasets.
A comparison of the experimental results presented in this paper demonstrates the feasibility of the proposed
algorithms.

INDEX TERMS Discernibility matrix, information table, attribute reduction, indiscernibility relation,
reduction algorithm.

I. INTRODUCTION
Rough set theory [1], [2] is a data analysis tool for handling
uncertainty and inconsistency. At present, a hot topic of
research in rough set theory is attribute reduction. The aim
of attribute reduction is to delete redundant attributes accord-
ing to some specific rules while retaining an unchanged
object classification in the universe. To date, many attribute
reduction methods [3]–[6] have been studied, such as pos-
itive region reduction [7]–[9], variable precision reduction
[10]–[12], assignment reduction [13], covering reduction
[14], [15], and knowledge granularity reduction [16]–[19].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

Existing reduction algorithms include discernibility matrix-
based algorithms and heuristic algorithms. Skowron and
Rauszer [20]–[22] proposed reduction algorithms based on
the discernibility matrix. Once the discernibility matrix
has been constructed, the discernibility function can be
derived and then transformed from the conjunctive normal
form (CNF) to the disjunctive normal form (DNF), thus
obtaining all reducts. However, the computational complexity
of this approach is relatively high. Liu et al. [23] proposed a
unified reduction algorithm based on invariant matrices for
three kinds of reduction. To reduce the computational com-
plexity of the discernibility matrix-based algorithm, a binary
integer programming problem [24] can be established after
the discernibility matrix has been constructed. In the process
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of constructing the discernibility matrix, the core attributes
are obtained by finding the minimum element in the discerni-
bility matrix and identifying the reducts [25]. Heuristic algo-
rithms [26]–[28] typically calculate the attribute dependency
to determine the reducts. Examples include test-cost-sensitive
attribute reduction [29] and attribute reduction based on the
conditional information entropy [30].

Obtaining all rules in a decision table is computationally
intensive. Sometimes, only local rules need to be obtained,
in which case it is not necessary to calculate all decision
classes simultaneously. Liu et al. [31] considered how the
local decision rules in a decision table could be best obtained,
and proposed the concept of lth decision class reduction.
They then proved the relationship between positive region
reduction and lth decision class reduction. By again con-
sidering the local decision class, Liu et al. [32] proposed
X-upper approximation reduction and X-lower approxima-
tion reduction for decision tables, and gave the corresponding
proofs. Yao [33] showed that classification-based reduction
does not work equally well for each decision class. How-
ever, class-specific attribute reduction provides a special form
of classification-based reduction. Chen [34] obtained more
optimized local rules by using a local reduction algorithm
in a decision table. Considering the decision-making subset,
the binary relation has been extended to a fuzzy relation
on the discernibility matrix-based reduction algorithm, and
the X-lower and X-upper approximation reductions have
been derived in the fuzzy relation decision system [35].
Additionally, the concept of local reduction has been intro-
duced to fuzzy rough sets [36], [37]. Discernibility and
indiscernibility relation reductions have been proposed for
information tables [38], leading to relative discernibility
and relative indiscernibility relation reductions for decision
tables [39]–[41].

Based on the local decision set [31]–[34], [42], [43], this
paper analyzes the discernibility relation of any objects in the
decision subset. This concept is applicable to communication
and consultation [44] in the fields of labor arbitration, diplo-
matic negotiation, and so on. Considering the local set, and
from the point of view of the binary relation between any
objects, this study provides a new perspective for reduction
research.

The remainder of this paper is structured as follows.
Section II introduces the concept of rough sets and reviews
some reduction definitions. In Section III, the concepts of
a binary relation set and reduction are proposed, and the
corresponding discernibilitymatrix is constructed. Section IV
introduces the local indiscernibility relation reduction (LIRR)
for single- and multi-decision classes, and illustrates the use
of LIRR through several examples. In Section V, according
to the definition of LIRR, three reduction algorithms are
proposed, and the corresponding algorithms are discussed.
To illustrate the effectiveness of the proposed algorithms,
the results before and after reduction are compared exper-
imentally in Section VI using selected classifiers. Finally,
Section VII concludes the paper.

II. PRELIMINARIES
The tuple S = (U ,A T , {Va | a ∈ AT } , {Ia | a ∈ AT }) repre-
sents an information table, where U is the universe set, AT
is a finite nonempty set of attributes, Va is a nonempty set
of values for a ∈ AT , and Ia : U → AT is a function in
which Ia(x) takes a value on a, ∀x ∈ U . If AT = C ∪ D,
C ∩ D = ∅, where C is the condition attribute set and D is
the decision attribute set, then the tuple S is called a decision
table, written as (U ,C ∪ D).
Given a subset of the attribute set A ⊆ AT , an equivalence

relation is defined by,

RA = {(x, y) | (x, y) ∈ U × U , Ia(x) = Ia(y),∀a ∈ A} . (1)

The equivalence class of an attribute set A is denoted by
[x]A = {y | (x, y) ∈ RA}.
Definition 1: Let (U ,C ∪ D) be a decision table with the

equivalence relations RC and RD on U . If [x]C ⊆ [x]D for
each x ∈ U , whereRC = ∩R∈CR,RD = ∩d∈Dd , then (U ,C∪
D) is said to be consistent; otherwise, (U ,C ∪ D) is said to
be inconsistent.
Definition 2: Let (U ,AT ) be an information table, X be

a subset of U , B ⊆ AT . The lower and upper approxima-
tions [1], [2] of X are characterized as

RB(X ) = {x|[x]B ⊆ X} (2)

RB(X ) = {x|[x]B ∩ X 6= ∅} (3)

Definition 3: Let (U ,C ∪D) be a decision table, where C
is the condition attribute set and D is the decision attribute
set. If B 6= ∅ and B ⊆ C , B is called the positive region
reduction [1] of C if it satisfies the following conditions:

PosC D = PosB D (4)
For anyB′ 6= ∅ and B′ ⊂ B,PosC D 6= PosB′ D (5)

where PosC D is the positive region in the decision table
(U ,C ∪ D).
Definition 4: Let (U ,C ∪ D) be a decision table.

If B 6= ∅ and B ⊆ C , B is called the variable precision reduc-
tion [10], [45] of C if B satisfies the following conditions:

∀x ∈ U , (µCD(x))β = (µBD(x))β (6)

∃x ∈ U , for any ∅ 6= B′ ⊂ B,

(µCD(x))β 6= (µB′D(x))β (7)

where

(µCD(x))β

=

(
|[x]C ∩ D1|

|[x]C |
,
|[x]C ∩ D2|

|[x]C |
, . . . ,

|[x]C ∩ Dl |
|[x]C |

)
β

,

with U/RD = {D1,D2, . . . ,Dl} .
Definition 5: Let (U ,C ∪ D) be a decision table with

U/RD = {D1,D2, . . . ,Dl}. If ∅ 6= B ⊆ C , for a given
Dj
(
Dj ∈ U/RD

)
, if B satisfies the following conditions:

∀x ∈ U ,
(
P
(
Dj | [x]C

))
β
=
(
P
(
Dj | [x]B

))
β

(8)

∃x ∈ U , for any ∅ 6= B′ ⊂ B,
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TABLE 1. An information table.

(
P
(
Dj | [x]C

))
β
6=
(
P
(
Dj | [x]B′

))
β

(9)

then B is called the local attribute reduction [31] of C .
The concepts of attribute reduction introduced above are

more common in decision tables. In addition, there are many
types of reduction definitions.

III. LOCAL INDISCERNIBILITY RELATION REDUCTION
FOR INFORMATION TABLES
Several concepts of local reduction [31]–[34] have been pro-
posed, but they study attribute reduction from the perspective
of equivalence classes. To date, there has been a lack of
analysis from the perspective of the relation between any two
objects. Based on this, the local indiscernibility relation is
studied in this paper.

We now consider the local decision set, which is a subset
of the decision set, to analyze the indiscernibility relation
between any two objects. The definition of the local indis-
cernibility relation and its corresponding reduction concept
are proposed in this section. Note that the local decision set
is different from the decision equivalence class (or multi-
decision equivalence classes).
Definition 6: Let (U ,C) be an information table, where C

is the attribute set. Given X ⊆ U , the local indiscernibility
relation is defined as

IndC X = {(x, y) | [x]C ⊆ X ⇔ [y]C ⊆ X} (10)

A simple example is given to illustrate the above definition.
Example 1: Consider the information table (U ,C)

in Table1, where U = {x1, x2, x3, x4, x5}, C =

{a1, a2, a3}. The set of all equivalence classes in U
with respect to an equivalence relation RC is denoted
as U/RC = {{x1, x2}, {x3}, {x4}, {x5}}. Given X1 =

{x1, x2, a4}, IndC X1 = RC (X1) × RC (X1) = {(x1, x1),
(x1, x2), (x1, x4), (x2, x1), (x2, x2), (x2, x4), (x4, x1), (x4, x2),
(x4, x4)}, where the cardinality | IndC X1| = 9. Given X2 =
{x1, x5}, Ind CX2 = Rc(X2) × RC (X2) = {(x5, x5)}, with
| Ind dCX2| = 1.
Definition 7: Let (U ,C) be an information table, where C

is the attribute set. Given X ⊆ U and A ⊆ C , the significance
of attribute a is defined as

Sig(a,A,X ) =
|IndA X | −

∣∣IndA−{a} X ∣∣
|IndC X |

(11)

where |·| is the cardinality of the set.

In Table 1, given X2 = {x1, x2, x3, x4}, for attribute a1,
Definition 6 gives |IndC X2| = 16,

∣∣IndC−{a1} X2∣∣ = 16, and
so Sig (a1,C,X2) = 0. For attribute a2,

∣∣IndC−{a2} X2∣∣ = 4,
and so Sig (a2,C,X2) = 0.75. Given an attribute subset A =
{a1, a2}, for attribute a1, |IndA X2| = 9,

∣∣IndA−{a1} X2∣∣ = 9,
and Sig (a1,A,X2) = 0. For attribute a2,

∣∣IndA−{a2} X2∣∣ =
0 and Sig (a2,A,X2) = 0.56.

According to Definition 6, because B ⊆ C , we have that
IndB X ⊆ IndC X , |IndB X | ≤ |IndC X |.

For each a ∈ C , if Sig(a,C,X ) = 0, then a is a dispensable
attribute for the local indiscernibility relation; otherwise, a is
an indispensable attribute.
Definition 8: Let (U ,C) be an information table, where C

is the attribute set. B 6= ∅ and B ⊆ C , B is called the local
indiscernibility relation reduction (LIRR) of C if it satisfies
the following two conditions:

IndC X = IndB X (12)

For anyB′ ⊂ B, IndC X 6= IndB′ X (13)

According to Definition 8, to obtain the reduction result,
the corresponding discernibility matrix M =

(
mij
)
n×n is

defined as follows, where n is the number of elements in the
universe set: mij ={{

a |
(
xi, xj

)
/∈ Ra

}
, xi ∈ RC (X ) and xj /∈ RC (X )

∅, otherwise
(14)

This leads to the following lemma.
Lemma 1: Let (U ,C) be an information table. If xi ∈

RC (X ) and xj /∈ RC (X ) for xi, xj ∈ U , then mij 6= ∅.
Proof: Suppose that xi ∈ RC (X ), xj /∈ RC (X ).

We assume the contrapositive: if mij = ∅, then
(
xi, xj

)
∈ RC .

This means that xj ∈ RC (X ), and so xj ∈ RC (X ) and xj /∈
RC (X ), which is a contradiction.
We can now state the following theorem.
Theorem 1: Let (U ,C) be an information table and let B

be the LIRR ofC , ∅ 6= B ⊆ C . Then, the following conditions
are equivalent:

IndC X = IndB X (15)

If mij 6= ∅, then mij ∩ B 6= ∅ (16)

If (x, y) ∈ RB, then (x, y) ∈ IndC X (17)

Proof: (15) ⇒ (16) If mij 6= ∅, then xi ∈ RC (X ) and
xj /∈ RC (X ). Suppose that mij ∩ B = ∅,

(
xi, xj

)
∈ RB. Then,(

xi, xj
)
∈ IndB X . Hence,

(
xi, xj

)
∈ IndC X by condition (15).

Now, xi ∈ RC (X ) and xj ∈ RC (X ), which is a contradiction.
(16)⇒ (17) If (x, y) ∈ RB, suppose that (x, y) /∈ IndC X .

Then, xi ∈ RC (X ), xj /∈ RC (X ), and so mij 6= ∅. Therefore,
mij ∩ B 6= ∅ by condition (16). This means that ∃a ∈ B such
that (x, y) /∈ Ra, which is a contradiction.

(17) ⇒ (15) Because B ⊆ C , we have that IndB X ⊆
IndC X . Now, we have to show that IndCX ⊆ IndB X .
If (x, y) ∈ IndC X , for (x, y) ∈ RB, y ∈ RC (X ) by condi-
tion (17), which means that [y]C ⊆ X , and so y ∈ X . Thus,
[x]B ⊆ X , so (x, y) ∈ IndB X .
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TABLE 2. Another information table.

The theorem leads to the following corollary.
Corollary 1: Let (U ,C) be an information table. Then,

B(∅ 6= B ⊆ C) is an LIRR of C if and only if it is a minimal
subset satisfying mij ∩ B 6= ∅ for any mij 6= ∅.
According to Corollary 1, the LIRR algorithm based on

the discernibility matrix for an information table (U ,C) is as
follows:

Algorithm The LIRR Algorithm Based on the Discernibility
Matrix
Input: An information table (U ,C) and X ⊆ U
Output: All results B for the LIRR
1: Calculate RC (X );
2: mij← mij ∪ a for i, j ∈

{
1, 2, . . . ,

∣∣RC (X )∣∣} ; //a ∈ C
3: According to the matrix M =

(
mij
)
n×n, the discernibility

function f =
∏(∑

mij6=∅ mij
)
in the CNF;

4: Transform the discernibility function to f =∑S
i=1

(∏
Bi
)
in the CNF;

5: Return Bi,which is the result of attribute reduction.

Example 2: In Table2, if X = {x1, x4, x5}, IndC X =
{(x1, x1), (x1, x4), (x4, x1), (x4, x4)}. The discernibility matrix
M , as shown at the bottom of the page.

According to the discernibility matrix M , the CNF of
the discernibility function is f = a2 (a1 + a3) (a1 + a4)
(a3 + a4), and then the DNF of the discernibility func-
tion is f = a1a2a3 + a1a2a4 + a2a3a4. Thus,
{a1, a2, a3} , {a1, a2, a4}, and {a2, a3, a4} are the reduction
results of C .

IV. APPLICATION OF LIRR ALGORITHM TO SINGLE- OR
MULTI-DECISION CLASSES
In decision tables, the local decision set is a subset of
the decision set, and single- or multi-decision classes are

TABLE 3. A decision table.

a special form of the local decision set. In this section,
we illustrate the LIRR algorithm through examples of single-
and multi-decision classes in decision tables.
Example 3: In Table3, the quotient set given by C is

U/RC = {{x1}, {x2}, {x3}, {x4}, {x5, x6}} and the quotient set
given by D is U/RD = {D1,D2,D3}, with D1 = {x1},D2 =

{x2, x3, x6},D3 = {x4, x5}. Given the single-decision
class D2, IndC (D2) = {(x2, x2), (x2, x3), (x3, x2), (x3, x3)}.
To obtain all LIRR results, the LIRR algorithm is used.
The discernibility matrix M is constructed as follows,

M=


∅ ∅ ∅ ∅ ∅ ∅

{a2, a3, a4} ∅ ∅ {a1, a4} {a1, a3} {a1, a3}
{a2} ∅ ∅ {a1, a3} {a1, a4} {a1, a4}
∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅


According to the discernibility matrix M , the discerni-

bility function in the CNF is f = a2 (a1 + a3) (a1 + a4),
whereas the discernibility function in the DNF is f = a1a2+
a2a3a4. Thus, {a1, a2} , {a2, a3, a4} are the two results for the
LIRR of C .

In Example 3, a decision equivalence class D2 takes the
same value of Ia(x) = 1(Table3), i.e., the local decision set is
a single-decision class. In Example 4, the local decision set X
is a multi-decision class, which takes values of Ia(x) = 0 or
Ia(x) = 1( Table 3).
Example 4: In Table3, given a set X = D1 ∪ D2,

IndC (X ) = {(x1, x1), (x1, x2), (x1, x3), (x2, x1),

(x2, x2), (x2, x3), (x3, x1), (x3, x2), (x3, x3)}

M =


∅ {a2, a3, a4} {a2} ∅ {a1, a2, a4} {a1, a2, a4}
∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ {a1, a4} {a1, a3} ∅ {a3, a4} {a3, a4}
∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅
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To obtain all LIRR results using the LIRR algorithm, the
discernibility matrix M is constructed as follows:

M=


∅ ∅ ∅ {a1, a2, a3} {a1, a2, a4} {a1, a2, a4}
∅ ∅ ∅ {a1, a4} {a1, a3} {a1, a3}
∅ ∅ ∅ {a1, a3} {a1, a4} {a1, a4}
∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅


According to M , the discernibility function in the CNF is

f = (a1 + a3)(a1 + a4) and the discernibility function in the
DNF is f = a1+a3a4. Thus, {a1}, {a3, a4} are the two results
for the LIRR of C .

As this is an NP-hard problem, reduction algorithms based
on discernibility matrices are very time-consuming, espe-
cially when the number of attributes or objects is large. Thus,
the LIRR algorithm requires a lot of time to transform from
the CNF to the DNF, and we often cannot obtain the required
results. To improve the efficiency of the algorithm, we can
simply calculate one or a few LIRR results.

V. THREE ALGORITHMS FOR LIRR IN INFORMATION
TABLES
Based on Definition 8, three algorithms are proposed in this
section. The addition-deletion strategy and deletion strategy
are common methods for obtaining the optimal attribute sub-
set, and are widely used heuristic approaches for identify-
ing the reduction results. Algorithm 1 obtains the reduction
through the addition-deletion strategy, whereas Algorithm 2
obtains the reduction through the deletion strategy. Comput-
ing the core attribute set is the key operation in Algorithm 1,
and the significance of the attributes is an important basis for
Algorithms 1 and 2. Therefore, the core attributes and core
attribute sets of LIRR are defined in this section. Algorithm 3
constructs the discernibility matrix according to the method
proposed in Section 3, and then uses binary integer program-
ming [24] to obtain the reduction results.
Definition 9: Let (U ,C) be an information table. Given

X ⊆ U , the set of core attributes of the local indiscernibility
relation is defined as follows: COREC (X ) =

⋂s
i=1 Bi.

where Bi is the result of attribute reduction.
In Section 4, the local decision set X given the deci-

sion table in Table 3 is D2 = {X2,X3,X6}, because
{a1, a2} , {a2, a3, a4} are the two reduction results for
IndC (D2) in Example 3. Thus, {a2} is the core set for LIRR
with respect to IndC (D2).
Theorem 2: Let (U ,C) be an information table, where C

is a condition set. Then, ∀a ∈ C, a ∈ COREC (X ) if and only
if IndC−{a} X 6= IndC X .

Proof: (⇒) Suppose that IndC−{a} X = IndC X . It is
easy to show that attribute a is dispensable for each a ∈ C ,
This contradicts the statement that attribute a ∈ COREC (X ),
so it holds. (⇐) If IndC−{a} X 6= IndC X , then attribute a is
indispensable for a ∈ C . Thus, a is an element in all LIRR
results.

Using Definition 9 and Theorem 2, we state the following
definition.
Definition 10: Let (U ,C) be an information table. Given

X ⊆ U , the set of core attributes of the local indis-
cernibility relation are defined as follows: COREC (X ) ={
a | a ∈ C, IndC−{a} X 6= IndC X

}
.

Algorithms 1 and 2 mainly calculate the reduction results
according to Definitions 7 and 10. The addition-deletion
strategy for the LIRR result, i.e., Algorithm 1, is as follows.

Algorithm 1 The LIRR Algorithm for the Addition-Deletion
Strategy
Input: An information table (U ,C) and X ⊆ U
Output: An LIRR result R
1: Set B = ∅; //( i.e., initialize B, a reduction result);
2: Calculate Sig(a,C,X ) for each a ∈ C ;
3: Add a to B whenever Sig(a,C,X ) > 0;
4: COREInd (C)← B;
5: While IndC X 6= IndB X , repeat step 6;
6: Add a to B for a satisfying Sig(a,B ∪ {a},X ) =

maxa′∈C−B Sig
(
a′,B ∪

{
a′
}
,X
)

7: End while
8: Update B by deleting a from B whenever Sig(a,B,X ) =

0;
9: R = B;
10: Return R.

Algorithm 1 calculates the core attributes and adds them
to set B. Among the remaining attributes in the condition
attribute set, those with the greatest significance according
to Definition 7 are added to B one by one in order of sig-
nificance. These two main steps are called the add strategy.
We then iterate through all elements in set B to remove redun-
dant attributes. The deletion strategy for the LIRR result,
i.e., Algorithm 2, is as follows.

Algorithm 2 The LIRR Algorithm for the Deletion Strategy
Input: An information table (U ,C) and X ⊆ U
Output: An LIRR result R
1: Let R = C,C D = C ;
2: Calculate Sig(a,R,X ) for each a ∈ CD;
3: Sort attributes in CD in an ascending order of signifi-

cance;
4: While CD 6= ∅ do
5: CD ← CD − {a} for a ∈ CD satisfying

Sig (a,C D, IndC X) = 0;
6: If IndR−{a} X = IndC X ;
7: R← R− {a};
8: End while
9: Return R.

According to Definitions 7 and 8, Algorithm 2 first sorts
all attributes in C in an ascending order of significance. The
redundant attributes continue to be deleted for any a ∈ R until
IndC X 6= IndR X .
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Because of the large amount of computation involved in
the transformation of the CNF to the DNF, a binary integer
programming model can be used. The binary integer pro-
gramming model for the LIRR result, i.e., Algorithm 3, is as
follows.

Algorithm 3 The LIRR Algorithm by Applying Binary Inte-
ger Programming
Input: An information table (U ,C) and X ⊆ U
Output: An LIRR result R
1: Calculate RC (X );
2: mij← mij ∪ a for i, j ∈

{
1, 2, . . . ,

∣∣RC (X )∣∣} ; //a ∈ C ;
3: Construct the corresponding discernibility matrix M =(

mij
)
n×n, where n is the number of elements in the uni-

verse set;
4: Calculate the minimal element set Lmin for the matrix

M =
(
mij
)
n×n;

5: Minimize
∑

a∈mij a > 0 such that mij ∈ Tmin, where
each attribute a ∈ mij in Tmin is labeled 1; otherwise,
it is labeled 0;

6: R = B;
7: Return R.

To better explain the application of Algorithm 3 to the
discernibility matrix, we illustrate its application through
Example 5.
Example 5: Consider the decision table (U ,C ∪ D) in

Table 2 and the discernibility matrix M in Example 2,
in which the minimum subsets are {a2} {a1, a3} , {a1, a4} ,
{a3, a4}. Each ai ∈ C is considered as the binary decision
variable. The binary integer programming model is,

Min a1 + a2 + a3 + a4,

s.t. a2 > 0

a1 + a3 > 0

a1 + a4 > 0

a3 + a4 > 0

where ai = 1 or ai = 0 for ai ∈ C .
The solutions to the model are a1 = a2 = a3 = 1 and

a4 = 0; a1 = a2 = a4 = 1 and a3 = 0; or a2 = a3 = a4 = 1
and a1 = 0. Thus, the results are {a1, a2, a3} , {a1, a2, a4},
and {a2, a3, a4}.
In obtaining all the results, the reduction method based

on the discernibility matrix is relatively inefficient. However,
in most cases, we only need to find one or a few results.
Algorithm 3 obtains the reduction results by applying binary
integer programming to the discernibility matrix. Compared
with Algorithms 1 and 2, the calculation of Algorithm 3
is relatively complex. However, for the reduction algorithm
based on the discernibility matrix, this method[24] offers
improved operational efficiency.

VI. EXPERIMENTAL ANALYSIS
To demonstrate the effectiveness of the algorithms proposed
in this paper, we compare Algorithms 1–3 with the existing

TABLE 4. Dataset information.

algorithms LVP-AR[31], PAR-DM[32] and LR-DM[36]. The
LVP-AR algorithm is a reduction method based on preci-
sion, whereas algorithms PAR-DM and LR-DM are reduction
methods for local decision sets. Fourteen UCI datasets [46]
were used in the experiments; these datasets are briefly sum-
marized in Table 4, where |U | and |C| denote the number
of objects and condition attributes, respectively, and |U/D|
denotes the number of classes. All experiments were coded
in Python 3.8 and were tested on a personal computer run-
ning 64-bit Windows10 Pro with an Intel( R) Core i7 −
10750HCPU2.60GHz and 16.0 GB RAM. The glass identifi-
cation, statlog (vehicle silhouettes), thoracic surgery, statlog
(heart), tic-tac-toe endgame, solar flare, chess (king-rook
vs. king-pawn), and breast cancer Wisconsin (diagnostic)
datasets are denoted as GI, Vehicle, T.S., Heart, T.T.T., S.F.,
Chess, and B.C., respectively.

Four classifiers are used to evaluate the accuracy of the
reduction results—kernel naive Bayes (NB), C5 decision tree
(DT), fine Gaussian support vector machine (SVM), and
fine K-nearest neighbors (KNN). In obtaining the results,
10-fold cross-validation was used. The experimental results
are shown in Figs.1-10, in which the X-axis represents the
different datasets and the Y-axis represents the runtime or
the classification accuracy. Fig.1 shows the runtime of all
six algorithms on the different datasets. The reduction length
of the above algorithms is compared in Fig. 2. Figs.4, 6, 8,
and 10 compare the classification accuracy using the kernel
NB, C5 DT, fine Gaussian SVM, and fine KNN classifiers,
respectively.

For convenience, the dataset before reduction is called the
original dataset. Because Algorithms 3, LVP-AR, PAR-DM
and LR-DM build discernibility matrices, their runtimes
are relatively high in Fig.1. Fig.2 shows the reduction

VOLUME 10, 2022 78593



X. Li et al.: Local Indiscernibility Relation Reduction for Information Tables

FIGURE 1. Runtime results.

FIGURE 2. Length comparison of six algorithms.

FIGURE 3. Runtime results based on kernel NB.

performance achieved on the different datasets. The algo-
rithms involved in the experiments have no obvious differ-
ences in performance.

Figs. 3 and 4 compare the runtime and accuracy before and
after reduction when using the kernel NB classifier. The run-
time after applying the six algorithms is obviously better than
with the original data (Fig.3). The Algorithm LVP-AR has
relatively low classification accuracy comparedwith the other
algorithms. On most datasets, the classification accuracy
using the reduction obtained by Algorithm 3 is higher than
that obtained by Algorithms 1 and 2. Although the accuracies
are slightly lower than for the original dataset, the datasets
obtained by the reduction algorithms have significantly lower
runtimes, indicating that the fitting effect is ideal.

Figs. 5 and 6 compare the runtime and accuracy before and
after reduction when using the C5 DT classifier. Again, the

FIGURE 4. Comparison of accuracy based on kernel NB.

FIGURE 5. Runtime results based on C5 DT.

FIGURE 6. Comparison of accuracy based on C5 DT.

runtime of the reduced datasets is significantly better than that
of the original dataset (Fig. 5). On most datasets, the classi-
fication accuracy of the reduction obtained by Algorithm 3
is slightly higher than that obtained by the other algorithms.
Note that the classification accuracy of the reduction obtained
by Algorithm 3 is relatively high on the Abalone and Chess
datasets. For example, on the Abalone dataset, the accura-
cies of the reductions obtained by Algorithms 1–3, LVP-AR,
PAR-DMandLR-DMare 68.98%, 67.59%, 88.82%, 68.65%,
74.22%, and 76.19%, compared with 80.89% for the original
data.

Figs. 7 and 8 compare the runtime and accuracy before and
after reduction when using the fine Gaussian SVM classi-
fier. The classification accuracy of the datasets obtained by
Algorithms 1-3, PAR-DM and the original datasets fluctu-
ates slightly (Fig. 8). The LVP-AR and LR-DM algorithms
have relatively low classification accuracy. The reduced
datasets obtained by the proposed algorithms have very
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FIGURE 7. Runtime results based on fine Gaussian SVM.

FIGURE 8. Comparison of accuracy based on fine Gaussian SVM.

FIGURE 9. Runtime results based on fine KNN.

FIGURE 10. Comparison of accuracy based on fine KNN.

similar runtimes, but are generally faster than with the origi-
nal data(Fig. 7).

Figs. 9 and 10 compare the runtime and accuracy before
and after reduction when using the fine KNN classifier.
The runtime of the reduced datasets is lower than that of
the original datasets. The training accuracy is slightly dif-
ferent before and after reduction. For example, in the S.F.
dataset, the runtimes of Algorithms 1–3, LVP-AR, PAR-DM,

and LR-DM are 217.01, 222.53, 252.38, 332.73, 294.4, and
223.82 ms, respectively, compared with 415.37 ms for the
original dataset. The corresponding training accuracies are
85.26%, 84.99%, 87.22%, 77.18%, 85.16%, and 82.74% for
Algorithms 1–3, LVP-AR, PAR-DM, and LR-DM, compared
with 94.28% for the original dataset.

With the four classifiers, there is a slight difference in
training accuracy before and after reduction. However, the
runtime of the reduced datasets is better than that of the
original datasets, which means that the fitting effect is ideal.

VII. CONCLUSION
Considering the local decision set and the discernibility rela-
tion, this paper has proposed the concept of the local indis-
cernibility relation reduction. In view of the proposed LIRR,
the construction of the discernibility matrix has been estab-
lished and verified. To improve the operational efficiency
of LIRR, three algorithms based on add-deletion, deletion,
and binary integer programming strategies, respectively, were
proposed. Finally, the effectiveness of the proposed algo-
rithmswas verified using 14UCI datasets and four classifiers.
The proposed LIRR not only provides a new method for
reduction, but also makes it possible to study local reduction
under non-equivalent relations.
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