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ABSTRACT To overcome the problem of fewer sample and uneven distribution of defect type in defect
detection of adhesive structure parts, a defect identification approach based on DCGAN and YOLOv5 is
proposed. The above problems are solved by fine-tuning the structure and loss function of DCGAN, the
generated high-quality defect images and the extended defect dataset are the basis for accurate identification
with YOLOv5. The EIOU loss function is utilized in the YOLOv5 network, the mAP value and recall
increase by 3.9% and 10.5% comparedwith the GIOU loss function, but the precision decreases. To solve this
problem, the feature extraction capability of the network is enhanced by incorporating the CBAM after the
C3 module in the YOLOv5 network. The mAP, precision, and recall of the optimized YOLOv5 algorithm are
improved to 78.6%, 77.2%, and 76%, respectively, the precision compared to the original model improved
by 10.6%. The results demonstrate that the improved YOLOv5 model can effectively identify defects of
adhesive structure.

INDEX TERMS CBAM, DCGAN, defect identification, EIOU, YOLOv5.

I. INTRODUCTION
Due to the technological limitations and complexity of the
environment, there are many defects in the production of
adhesive structure, such as debonding, cracking, and delam-
ination. The ability to appropriately identify these defects is
critical for optimizing production techniques and improving
quality.

At present, the adhesive structure defect detection method
based on X-ray imaging, which is completed by manual par-
ticipation in defect types identification, is not only difficult
to ensure the accuracy of judgment due to certain subjec-
tivity but also time-consuming and labor-intensive In recent
years, additional image defect type identification methods
have been adopted, including Threshold segmentation [1],
Support VectorMachine (SVM) [2]–[4], andArtificial Neural
Network(ANN) [5]. However, the above method is difficult
to be applied to the recognition of multi-type defect feature
images with no obvious difference in grey level, and the loca-
tion information of defects cannot be detected. In addition,
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since adhesive structure defect images may contain multi-
ple defects, each image cannot be simply classified into a
certain category for those images with two or more defects
simultaneously, but a target detection algorithm similar to the
YOLO network should be used to find all the defects in each
image and give the location information of the detect area.
Compared with previous algorithms, YOLOv5 is faster and
lighter, which to some extent is the best performing algorithm
in the YOLO family. Although the YOLO network has fast
a detection speed, the detection effect for small targets is
poor. Multiple scholars [6]–[8] have developed an improved
YOLOv5 network, which promotes the recall rate, accuracy,
and mAP. Therefore, the defect identification method based
on the YOLOv5 network can be used as an effective method
to identify the defect of adhesive structure. However, there is
still room for further optimization structure and adjustment
parameters of the YOLOv5 model to achieve specialized and
efficient detection of small targets such as adhesive structure
defects.

Due to the improvement of the production process, the
increase in yield and the decrease in defective sample images
emerge. The dataset established on this basis will lead to
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overfitting of the deep learning network, resulting in the
inability to achieve efficient defect detection. However, data
enhancement methods can expand the dataset and solve the
problem of small sample quantity. The in-depth research
has brought forth an endless variety of image data enhance-
ment techniques, which can be mainly divided into two
categories: non-generative and generative data enhancement
methods [9]. In detail, non-generative data enhancement
methods, such as rotation and color enhancement, only
expand the number of data sets, and cannot greatly improve
the generalization ability of the network model. Generative
data enhancementmethods, such asDeepConvolutional Gen-
erative Adversarial Network (DCGAN) [10]–[12], can not
only increase volume of dataset, but also increase the diver-
sity of images, thereby improving the generalization ability of
the trainedmodel. Based on the above, the improvedDCGAN
network can be used to increase the dataset in view of the
problem of fewer defect samples and the unbalanced distri-
bution of adhesive structure. On the one hand, the problem
of small number of samples may be overcome; on the other
hand, the problem of overfitting can be easily solved in the
network due to the single kind of dataset.

Based on the above background, this study proposes
an adhesive structure defect recognition method based on
DCGAN and YOLOv5, which the improved DCGAN net-
work expanding the dataset and the optimized YOLOv5 net-
work training and testing the expanded defect dataset. The
following are the primary contributions of our work:

(1) In order to obtain high-quality generated images, the
structure of DCGAN network has been upgraded, including
the network layer, convolution kernel parameters, activation
function, and loss function.

(2) Optimize YOLOv5’s structure as follows: the CBAM
mechanism is introduced after the C3 module to fuse the
features. The YOLOv5 network’s GIOU loss function is
replaced with the EIOU loss function. As a result, the position
information of the defect can still be obtained efficiently and
the convergence be accelerated.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
A. IMPROVE THE DCGAN NETWORK
DCGAN is a deep convolutional generative adversarial net-
work, which is composed of generative network and a dis-
criminant network [13]. Compared with the GAN model,
DCGAN optimizes network structure using the concept of a
deep convolution network, to improve the quality of sample
generation and convergence speed. Specific improvement
measures include: in the generative network, using transpose
convolution instead of pooling layer to achieve up-sampling,
using BN to solve the training problem caused by poor ini-
tialization, and using Tanh activation function in the output
layer and ReLU activation function in other layers to reduce
the risk of vanishing gradient. In the discriminant network,
with step-size convolution instead of pooling layer for down-
sampling, using BN to stable training, using sigmoid function

FIGURE 1. Generated image for 4500 iterations.

for output layer and LeakyReLU activation function for other
layers to alleviate the problem of gradient loss.

Nevertheless, there are still some images with poor quality
that are difficult to distinguish in the generated samples when
DCGAN generates new defect images, as shown in Fig.1.
These images are seriously blurred and blurred. Using these
images for network training not only reduces the generaliza-
tion ability of the network, but also reduces the accuracy of
target detection. Therefore, DCGAN must be optimized to
obtain high-quality generated images.

Based on DCGAN, the network layers of generative net-
work and discriminant network are added, and the output
image resolution is increased to 256 × 256. In order to
address the problem of parameter oscillation, it is proposed
that each layer of the convolutional network be joined by GN
(GroupNorm). The transpose convolution kernel in the gener-
ative network is set as 4× 4 convolution with a step size of 2,
and the number of convolution kernels is set as [512, 512, 512,
256, 128, 64] to improve feature extraction and reduce calcu-
lation difficulties. Taking Block5 of the generative network
as an example, DCGAN performs convolution operation of
input features with kernel size of 5×5 and step size of 2, and
the number of parameters is 5 × 5 × 128 × 64 = 204800,
whereas this paper is 4× 4× 128× 64 = 131072. It can be
seen that the parameters of the convolution module designed
in this paper have been considerably lowered, which aids in
improving the calculation efficiency. ReLU activation func-
tion is utilized in all layers except Tanh activation function in
the output layer on the basis of BN normalization to overcome
the problem of gradient disappearance and accelerate the
model convergence. The discriminant network’s convolution
operation corresponds to the generative network’s transpose
convolution operation one by one, and all but the last layer

79914 VOLUME 10, 2022



Y. Jin et al.: Defect Identification of Adhesive Structure Based on DCGAN and YOLOv5

FIGURE 2. The structure of DCGAN.

employ the LeakyReLU activation function based on GN
normalization. The specific network is shown in Fig.2.

B. IMPROVED DCGAN LOSS FUNCTION
Real data x obeys Pdata(x) , and noise z obeys noise distribution
Pz(z) . Formula (1) shows the loss function of the DCGAN
generative network, whereas Formula (2) shows the loss
function of the discriminant network, which contains the
discrimination error of the real and generated image [14]:

LossG = Ez∼Pz(z) [log (1− D (G (z)))] (1)

LossD = Ex∼Pdata(x)
[
logD (x)

]
+Ez∼Pz(z)

[
log (1− D(G(z)))

]
(2)

where G is the generative network, D is the discriminant
network,G(z) is the image obtained by the generator,D(G(z))
is the discrimination probability of the generated image, and
D (x) is the discrimination probability of the real image [15].
The DCGAN network solution is a process of maximizing

the discriminant network and minimizing the generative net-
work. The optimization objective of the training process is
shown in formula (3):

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[
logD (x)

]
+Ez∼Pz(z)

[
log (1− D(G(z)))

]
(3)

where V (D,G) is cross entropy loss. The purpose of the
generative network G is to make the generated image as close
to the real image as possible, that is, D (G (z)) should reach
the maximum value as possible, at which point V (D,G)
should reach the minimum value, corresponding to min

G
of

the formula; The purpose of the discriminant network D is to
judge the authenticity of the input imagemore accurately, that
is, D (x) should be as large as possible and D (G (z)) should
be as small as possible, corresponding to of the formula.

The training discriminant network calculates the JS dis-
tance between the generated and real sample distribution,
whereas the training generator minimizes the JS distance
[16]. JS divergence becomes constant when there is no over-
lap between the two samples. At this point, the generator’s
loss function becomes constant, causing the gradient of the

generator to vanish and the network parameters cannot be
updated. The improvedmethod is to employ the cross entropy
loss function with gradient penalty term, perform random
number interpolation x̂ between real and generated data, and
construct gradient penalty term GP using the weight coeffi-
cient λ and interpolation x̂, as shown in formula (4):

LossGP = Ex̂∼Px̂

[
(
∥∥∇x̂D (x̂)∥∥2 − 1)2

]
(4)

where Px̂ represents the random sample data distribution in
the generated sample set region, the real sample set region,
and the intermediate region. x̂ = αx+(1− α) z, α ∼ µ(0, 1).
x follows the real data distribution and z follows the generated
data distribution.
At this point, the discriminant network loss function can be

expressed as:

LGPD = LossD + λLossGP (5)

where λ is the coefficient of gradient penalty term, and the
value of λ in this paper is 10.

C. DCGAN IMAGE GENERATION EXPERIMENT
1) EXPERIMENTAL DESCRIPTION
The purpose of this experiment is to verify the effectiveness of
the improved DCGAN network. This experiment is run in the
GPU environment, with Python as the experiment platform’s
programming language and the PyTorch framework as its
basis. The optimizer of the model is Adam. The hyperpa-
rameters are set as follows: The initial learning rate of the
model is set to 0.0002. The epoch for training is 450. The
batch size of each training is set to sixteen times to improve
the training speed. The resolution size of the input image is
set at 256×256 pixels according to the common size, and the
default parameters are utilized for other parameters.

2) EFFECT ANALYSIS OF DCGAN IMPROVEMENT
Fig.3 shows the images obtained when the number of iter-
ations is 100, 1000, 2500, and 4500 during the training of
the improved DCGAN model. At the beginning of training
(Fig.3(a)), the generated images are noisy, vague, and without
any form. With the training to the 1000th (Fig.3(b)), the
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FIGURE 3. Generated images of improved DCGAN.

general outline is already available and the basic structure of
the image can be seen, but there are still unclear problems.
At the 2500th iteration (Fig.3(c)), the images become clearer,
and a clearer result is attained after the 4500th iteration. The
observation shows that the general trend of its generation
effect becomes clearer and clearer with the increase of iter-
ations.

In addition to the generated images reflecting the effect of
improved DCGAN training, the training process of improved
DCGAN can also be dynamically observed through the
loss function curve. The DCGAN training process not only
reduces the loss of the generation network and discriminant
network but also balances the process. Tensorboard is used
to draw the curves of two networks, as shown in Fig.4. The
horizontal coordinate in the diagram represents the itera-
tion times(iter), the vertical coordinate D_loss represents the
discriminator loss, g_loss represents the generator loss, gp
represents the gradient penalty term, x_real_d_loss repre-
sents the loss function obtained from the real image input
into the discriminant network, and x_fake_d_loss represents
the loss function obtained from the generated image input
discriminant network. The loss curve of x_real_d_loss and
x_fake_d_loss tends to be stable and hovers around 0.5 after
1000 iterations, indicating the discriminator’s discriminant
ability and the generator’s generating ability have reached
a certain degree, and the discriminator can no longer distin-
guish the real image from the generated image. In the early
stage of training, both g_loss and d_loss decline steadily,
indicating that the two networks have losses that can be opti-
mized for each other, and the generated image quality is also
improving consistently. With the increase in the number of
iterations, the values of both no longer change significantly,
and the model gradually tends to be stable and convergent.

III. IMPROVED YOLOv5s MODEL
YOLO is a target detection algorithm that is based on regres-
sion [17]. To save storage cost and improve inference speed,
the YOLOv5s model with the minimum network depth and
width is adopted as the reference model for adhesive structure
defect identification. As illustrated in Fig.5, the YOLOv5s
network model is divided into four parts: Input, Backbone,
Neck, and Prediction [18]. The inputmodulemainly performs

Mosaic data enhancement, adaptive image scaling, and adap-
tive anchor box calculation. Mosaic data enhancement uses
a combination of four images to enrich data diversity, and
the use of adaptive anchor box calculation is beneficial to
improve the detection speed, and the preprocessing results
are shown in Fig.6. The Backbone includes the structures of
Focus, C3, and Spatial Pyramid Pooling(SPP). It is used to
extract image features, in which the Focus module carries
out sampling operations on the image and stacks the sampled
slices to ensure that feature extraction is sufficient. The C3
structures are designed in the YOLOv5 network, with the
C3_1 structure in the Backbone and the C3_2 structure in the
Neck. The SPP module uses the maximum pooling layer with
four convolution kernels of varying sizes (k = {1× 1, 5× 5,
9× 9, 13× 13}) to achieve feature fusion at multiple scales.
The Neck consists of Feature Pyramid Network(FPN) and
Path Aggregation Network(PAN). FPN up-samples the image
from top to bottom, fusing the extracted features with the
backbone network, whereas PAN down-samples the image
from bottom to top, fusing the extracted features with the
FPN. Prediction includes the bounding box loss function and
Non Max Suppression(NMS). Feature Maps of three scales
are included in the output exports, which are used to detect
large, medium, and small targets. The NMS eliminates redun-
dant prediction boxes, and the information of the prediction
boxes with the highest confidence is retained to complete the
target detection process.

Although YOLOv5s has a good performance in precision
and accuracy, it still has a bottleneck when it comes to detect-
ing adhesive structure defects. The following are specific
improvement measures:

(1) CBAM attention mechanism
The YOLOv5s model is improved by introducing an

attention mechanism to better deal with defect information.
The Attention mechanism mainly acts on the feature graph
and enhances the feature expression ability of the network.
A large number of experiments have proved that using chan-
nel attention first and then using spatial attention can achieve
the best effect for network learning. The Convolutional Block
Attention Module (CBAM) [19], combined the channel and
spatial attention mechanism, retaining more useful feature
information. Fig.7 depicts the CBAM structure.
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FIGURE 4. Loss function curve.

FIGURE 5. Overall architecture of YOLOv5s algorithm.

In CBAM, the input H ×W × C feature graph F is max-
pooled andmean-pooled respectively to produce two 1×1×C
feature graphs, which are then sent to the multi-layer per-
ceptron(MPL). The one-dimensional channel attention graph

Mc(F) is obtained by sum and Sigmoid activation function,
and Mc(F) is multiplied by input feature graph F to obtain
the channel attention adjusted feature graph F1. Then, F1
is performed max-pooling and mean-pooling to obtain two
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FIGURE 6. Mosaic data enhancement.

FIGURE 7. The structure of CBAM.

FIGURE 8. The C3 structure.

H × W × 1 feature graphs, and the two two-dimensional
vectors generated after pooling are spliced and convolved to
finally generate the two-dimensional spatial attention graph
Ms(F1), which is then multiplied with the feature graph F1.

C3 is a structure designed based on the ideas of CSP-
Net, as shown in Fig.8. C3-1 is located in the Backbone
of YOLOv5s, and its residual component is designed based
on Resnet. By adding shortcut between convolutional layers,
the computation of the network model is reduced and the
operation efficiency of the network is accelerated. C3-2 is
located in the Neck of YOLOv5s without shortcut. It mainly
carries out convolution operation on the input featuremap and
fuses the extracted feature information.

As shown in Fig.9, the CBAM attention mechanism is
added after the C3 module in this research.

(2) Loss function

FIGURE 9. The C3 structure of adding attention mechanism.

The development process of the regression loss function in
recent years is as follows: IOU_Loss→GIOU_Loss→
DIOU_Loss→CIOU_Loss→EIOU_Loss.

IOU_Loss is shown in formula (6), when the prediction
box and the real box do not intersect, that is A∩B = 0, the
loss function is no gradient back at this time. Furthermore,
when the size of the prediction box and the real box are the
same, IOU may be different, as illustrated in Fig.10, and the
IOU_Loss function is unable to distinguish between the two
cases.

GIOU_Loss is shown in formula (7), if the prediction box
and real box are part of a containment relationship, GIOUwill
still degenerate into IOU. Meanwhile, the GIOU continues to
have problems, such as the unstable target box regression and
the easy divergence during training.

DIOU_Loss, as shown in formula (8), ignores the aspect
ratio of the prediction box and the real box, focusing instead
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FIGURE 10. The special status of IOU_Loss.

on the overlapping area of the bounding box and the center
point distance of b and bgt .
CIOU_Loss adds a penalty term on the basis of

DIOU_Loss, as shown in formula (9). It takes into account
the aspect ratio of the predicted box to fit the target box,
resulting in faster network convergence and higher regression
positioning accuracy during training.

EIOU_Loss, which is shown in formula (12), is obtained
on the basis of CIOU_Loss, and it not only takes into account
the central point distance and the aspect ratio, but also the
true discrepancies in the target and anchor boxes’ widths and
heights. The EIOU_Loss function directly minimizes these
discrepancies and accelerates model convergence.

IOU_Loss = 1− IOU = 1−
A ∩ B
A ∪ B

(6)

GIOU_Loss = 1− GIOU

= 1− (IOU−
|C − A ∪ B|
|C|

) (7)

DIOU_Loss = 1− DIOU

= 1− (IOU−
ρ2
(
b, bgt

)
c2

) (8)

CIOU_Loss = 1− CIOU

= 1− (IOU−
ρ2
(
b, bgt

)
c2

− αγ ) (9)

α =
γ

1− IOU+ γ
(10)

γ =
4
π2 (arctan

ωgt

hgt
− arctan

ω

h
)
2

(11)

EIOU_Loss = 1− EIOU = 1− (IOU−
ρ2
(
b, bgt

)
c2

−
ρ2
(
ω,ωgt

)
c2ω

−
ρ2
(
h, hgt

)
c2h

(12)

where A is the prediction box and B is the real box; C is
the area of the smallest enclosing rectangle of the real box
and the prediction box; b and bgt represents the center points
of the prediction and the real boxes, respectively; ρ2 (•)
represents the Euclidean distance; c is the diagonal distance
of C; ωgt , hgt and ω, h represent the width and height of the
real and prediction boxes, respectively; cω and ch represent

FIGURE 11. Defect image of adhesive structure.

the width and height, respectively, of the smallest enclosing
box covering the two boxes.

IV. YOLOv5s DEFECT IDENTIFICATION EXPERIMENT
A. PREPARATION OF ADHESIVE STRUCTURES DEFECT
DATASET
The data set used in this experiment comes from the X-ray
test samples of multi-layer metal and non-metal bonded tubu-
lar specimens in the past two years. The adhesive structure
defects of the sample mainly include: debonding, cracking,
and delamination, as shown in Fig.11. Among them, debond-
ing refers to poor bonding between layers, and it can be seen
from the figure that there are obvious black images between
inner and outer layers. Cracking is the outer or inner layer of
cracking defects, the image is black dendritic. Delamination
is the outer or inner layers that are poorly bonded inside,
showing multiple vertical stripes. The annotation software
called MAKE SENSE labels the images in the experiment
according to the defect information. Label boxes are added,
and the corresponding label files are generated for the areas
with defects in images. A total of 223 original images have
been acquired, and a total of 442 enhanced images are used
in this experiment after the improved DCGAN is used to
expand the image. The dataset images are then randomly
divided into two groups: 80% of the dataset is used for
parameter learning and network training, whereas the other
20% is used to test the generalization and recognition abil-
ity of the model, and the two datasets do not intersect
each other.

B. EXPERIMENTAL ENVIRONMENT
The operating system of this experiment is Ubuntu 18.04.5
LTS, the GPU is GeForce RTX 2080 Ti, and the CPU is
Intel(R) Xeon(R) CPU E5-2690 V3@ 2.60ghz. This exper-
iment is improved on the basis of the YOLOv5s model.
The framework is Pytorch, the number of training threads
is 8, the batch size is 16, and the number of training epochs
is 450. The sizes of nine groups of anchor boxes obtained
by k-means algorithm clustering in this study are (15,30),
(13,48), (19,38), (17,59), (14,81), (17,75), (24,55), (19,100),
(14,144). The distribution is shown in Table 2.
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TABLE 1. The table of defects number.

TABLE 2. The distribution of anchor boxes.

FIGURE 12. The trend of precision-recall curves.

C. EXPERIMENTAL ENVIRONMENT
In order to measure the robustness and accuracy of defect
recognition, Precision, Recall, Average Precision (AP) at an
IoU threshold of 0.5, and Mean Average Precision (mAP) are
employed as the main evaluation indicators in this experi-
ment.

Precision: measures the check accuracy of the model, that
is, the probability of YOLOv5s predicts a certain category,
and the precision is the proportion of correct detections in all
prediction boxes.

Recall: measures the check-all rate of the model, that is, the
probability that YOLOv5s is correctly classified into a certain
category.

Precision and Recall are defined as follows, respectively:

Precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

where TP is the number of IoU > 0.5 between the predicted
and truth boxes, FP is the number of IoU < 0.5 between the
predicted and truth boxes, and FN is the number of missed
real boxes.

AP: the area enclosed by the Precision-Recall curve and
coordinate axes, which represents the effectiveness of the
YOLOv5s network in detecting a certain category under dif-
ferent thresholds. Generally speaking, the higher theAP value

indicates the better target detection. The AP can be calculated
by equation (15), where P(r) denotes the Precision-Recall
curve.

AP =
∫ 1

0
P(r)dr (15)

mAP: the average of AP for different categories, which is
used to measure the detection effect of YOLOv5s network on
all defect categories.

mAP =
1
|C|

(16)

D. RESULTS AND DISCUSSION
1) COMPARISON EXPERIMENT OF DATA ENHANCEMENT
The image recognition effect of improved DCGAN for data
enhancement is verified on the YOLOv5s model. Fig.12
shows the trend of Precision-Recall curves before and after
data enhancement. Without any data enhancement method,
the AP values of debonding, cracking, and delamination
is 69.1%, 9.28%, and 65.2%, respectively. After using the
improved DCGAN data enhancement method, the AP values
are increased to 73%, 59.3%, and 87.9%, respectively, and
the mAP value is increased by 25.5%.

As can be seen from Fig.13, the precision and recall of
the YOLOv5 network are greatly increased after the dataset
expansion, which fully indicates that the expansion of the
dataset has a very important impact on the prediction of the
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FIGURE 13. Comparison results before and after data expansion.

network. The YOLOv5s model has a significant improve-
ment effect when using data enhancement method com-
pared with no data enhancement method, indicating that data
enhancement can effectively solve the problem of small and
unbalanced number of images in the dataset and improve
the generalization ability and robustness of the classification
model.

2) COMPARISON EXPERIMENT OF LOSS FUNCTIONS
Analysis of Table 3, YOLOv5s has the best precision per-
formance on GIOU, and has the best recall and mAP
performance on EIOU. For mAP of different models, EIOU
performs the best, followed by CIOU and DIOU, and
GIOU has the worst performance. Although DIOU takes
into account the shortcomings of GIOU, the aspect ratio of
the bounding box is not considered in the regression pro-
cess, and its precision is lower than that of GIOU. Since
CIOU increases the loss of the detection box, the regression
precision is improved on the basis of DIOU, and the predic-
tion box is closer to the truth box. EIOU divides the loss
term into the difference between the predicted width and
height and the minimum width and height of the outer box
on the basis of CIOU, which accelerates convergence and
improves regression accuracy, and mAP and the recall rate
reached maximum values. So our next aim is to improve the
precision of YOLOv5s+ EIOU through the CBAM attention
mechanism.

3) EXPERIMENT ON CBAM ATTENTION MECHANISM
The four network models are compared and analyzed, and
the corresponding training curve is drawn by tensorboard,
as shown in Fig.14.

In the Fig.14, C3_1_CBAM and C3_2_CBAM indicate
that CBAM is added after the C3 module of the backbone
module and the neck module respectively, and C3_CBAM
indicates that CBAM is added after all the C3 modules in the
YOLOv5s network. During the network training process, the
Box_Loss indicates whether an algorithm can locate the cen-
ter point of an object well and whether the detection target is
covered by the predicted bounding box. The smaller the loss

function value, the more accurate the prediction frame. The
Cls_Loss represents the ability of the algorithm to correctly
predict a given object category. The smaller the loss value, the
more accurate the classification. The Obj_Loss is essentially
a measure of the probability that the detection target exists
in the region of interest. The smaller the value of the loss
function, the higher the accuracy.

As shown in Fig.14, the loss function value has a downward
trend during the training process, the Stochastic Gradient
Descent algorithm optimizes the network, and the network
weight and other parameters are constantly updated. Before
the training epoch reached 300, the loss function value drops
rapidly, and the precision, recall rate, and mAP rapidly
improve. When the training epoch reaches approximately
300, the decrease in the loss function value gradually slowed.
Similarly, the increases in the precision, recall rate and
mAP also slowed. When the training epoch reached 430,
the loss curves of the training showed almost no downward
trends, and other index values also tend to have stabilized.
The network model basically reached the convergence state,
and the optimal network weight was obtained at the end
of training. Fig.14(a) shows that after about 300 epochs
of the YOLOv5s + EIOU + C3_CBAM model, the mAP
reaches about 90%, and has gradually stabilized, reaching a
maximum of 93.85%, indicating that the improved YOLOv5
model has an average precision rate for defect detection.
Fig.14(b) shows that the precision reaches 83.09% when
the YOLOv5s + EIOU + C3_CBAM model is trained to
300 rounds and continues to grow up to 87.93%. Fig.14(c)
shows that the recall of the YOLOv5s+ EIOU+ C3_CBAM
model is the first to slowly decline and then continue to
grow to the highest value of 90.11%. The overall model
performance has met and even exceeded expectations. The
loss function can intuitively reflect whether the network
model can converge stably as the number of iterations
increases. The specific loss function of the model is shown in
Fig.14(d), (e), (f) below. From the figure, it is found that as
the number of epochs gradually increases, the YOLOv5s +
EIOU + C3_CBAM algorithm curve gradually converges,
and the loss value becomes smaller and smaller. When the
model is iterated 430 times, the loss value is basically stable
and has dropped to near 0, and the network basically con-
verges. Compared with the other models, the YOLOv5s +
EIOU+ C3_CBAMmodel has better detection performance
and recognition effect for adhesive structure defects, and
the regression is faster and more accurate, which proves the
validity and effectiveness of the model.

The above trainingmodel is used for testing, and the results
are shown in Table 4.

The CBAM attention mechanism aims to improve the net-
work’s ability to extract important features, which is reflected
in the result of an improvement of precision. As can be
seen from the table, YOLOv5s + EIOU + C3_CBAM has
the highest precision, followed by YOLOv5s + EIOU +
C3_1_CBAM and YOLOv5s + EIOU + C3_2_CBAM, and
YOLOv5s + EIOU is the lowest. Table 3 reveals the mAP
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TABLE 3. Experimental results of different loss functions.

TABLE 4. Comparison table of experimental test results.

FIGURE 14. Training curves of different model.

FIGURE 15. AP values for various defects.

and recall of YOLOv5s+ EIOUwere relatively good, but the
precision had a bad advantage in the comparison experiment.
Although YOLOv5s + EIOU + C3_1_CBAM’s training
time cost was higher than that of the YOLOv5s + EIOU

model, its mAP and precision were greatly improved com-
pared with the original model. The mAP, precision, and
recall rate of YOLOv5s + EIOU + C3_2_CBAM are lower
than YOLOv5s + EIOU + C3_1_CBAM. Compared with
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TABLE 5. Feature maps of the network model.

YOLOv5s + EIOU, the precision of YOLOv5s + EIOU +
C3_ CBAM was increased by 10.6% and map by 4.6%, and
the recall rate decreased slightly. Meanwhile, its detection
precision, map, and recall rate were relatively balanced, and
the detailed evaluation metrics are shown in Fig.15. However,
the addition of CBAMmechanisms increased the depth of the
network models, which sacrificed a certain speed advantage
to improve the effect of detecting defects. The experimental
results show that the in terms of the precision, recall rate, and
map, the network improved based on YOLOv5s greatly out-
performed the original YOLOv5s model, they are improved
to 77.2%, 76%, and 78.6% respectively, thus capable of
extracting features of defect adhesive structure images more
accurately.

In order to better observe the output of each detection layer
and the feature extraction effect of each layer of the model,
the output layer feature maps of the above four models were
visualized, as shown in Table 5.

The detection layer outputs feature maps of three scales,
32 × 32, 16 × 16, and 8 × 8, which are used to detect
small, medium, and large objects. Among them, the 32 ×
32 grid has a higher resolution and contains more location
information, which is conducive to the location of defects,

and the 8 × 8 grid is obtained through a deeper network
and contains more semantic information, which is conducive
to defect classification. From the small target feature map
(32×32), it can be seen that YOLOv5s+EIOU+C3_CBAM
has a better visualization effect than other models, has a
spatial correspondence with the original image, and has richer
contour information. At this time, the receptive field is the
smallest, which can improve the detection effect on small
targets.

V. CONCLUSION
In this paper, the adhesive structure defect recognition
method based on DCGAN and YOLOv5 is proposed. The
DCGAN network is designed to expand the defect images
and make the defect dataset, which solves the problem of
few sample images and unbalanced distribution. According
to the characteristics of adhesive structure defect image and
YOLOv5 network, an improved YOLOv5s algorithm is pro-
posed. It mainly focuses on the overall architecture design
and optimization of the network, as well as the improvement
of the loss function. The optimized YOLOv5s algorithm is
then used to recognize the defect images. The comparison
experiments show that the optimizedYOLOv5s algorithm has
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a better recognition effect than the pre-optimized YOLOv5s
algorithm.

In practical industrial production, the use of deep learning
often faces the problem of a small amount of raw data and
the unbalanced distribution of defect samples in the dataset.
To address this problem, we use the method of extending
the dataset and optimizing the network model to make deep
learning effective in practical applications. On this basis, it is
worthwhile to further improve the precision and recall of the
model, which is the direction of in-depth research.
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