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ABSTRACT The discussion context of this paper is big data processing of MapReduce by volunteer
computing in dynamic and opportunistic environments. This paper conducts a series of simulations to explore
the relationship between the overall performance of volunteer overlays responding to different workload of
big data problems. The discovery from the simulations includes some optimization points in overlay size,
going over which by adding more volunteers brings little benefit for the overall performance. Based on the
discovery of optimization points, this paper proposes a bootstrapping protocol, which can adapt volunteers
into variable-sizes overlays, enabling workflow of single-round MapReduce or multiple-round MapReduce,
and a single ormultiple overlays for each round. The variable overlays aim to create adaptiveworkflowduring
MapReduce processing, so that the optimization points can be caught. As another benefit, the unnecessary
computing-capacities can be released during computing when the optimization points are reached. The case
study shows a few optimization workflows that are formed by the proposed bootstrapping protocol to process
the big data cases. Theworkflows lead to the optimization points and dynamically balance theworkload at the
same time. The experiment results have demonstrated that the optimization strategies have either achieved
36% or 71% higher performance than the plain MapReduce workflow and minimized the use of computing
resources by releasing 12.5% to 75% volunteers during computing, where the original plain MapReduce
must hold all the volunteers to the end of computing. The extensibility of the simulation parameterization to
more diverse real-world applications have been clarified.

INDEX TERMS Big data, optimization, MapReduce, volunteer computing, simulation.

I. INTRODUCTION
Volunteer Computing (VC) [1], that is, harnessing mil-
lions of commodity computing resources together to cope
with large scale compute-intensive or data-intensive prob-
lems, has been successfully applied to scientific projects
such as ATLAS@Home [2], Asteroids@Home [3] and
Einstein@Home [4]. The success of VC comes from the fact
that it is a practical and cheaper way of distributed comput-
ing. To support this statement, we need to check the needs
and conditions of data processing. Nowadays data, either of
scientific projects to produce answers to scientific hypotheses
or generated by business transactions or social events, have
become a big size. Furthermore, the generation of big data
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is also extended to the areas, where data are continuously
collected from sensors such as those used in horticulture and
farming fields or from cameras or telescopes such as those
used in the search for extraterrestrial intelligence. In short,
big data fusion and analysis has become the pillars to sup-
port scientific research and business operations or business
intelligence [5]. The condition of big data processing is a
high-performance computing environment. To compute the
global result, big data is too big to be processed by a single
commodity computer in a reasonable amount time. Ideally,
big data is to be processed by a dedicated data center, where
a high-performance cluster consists of reliable computing
nodes connected by fast networks, for real time data stream-
ing or data warehousing. Unfortunately, small or medium
business or scientific projects do not have the conditions
to satisfy the needs. They are unable to invest such a data
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center. Thus, we conclude that for many small or medium
business or scientific projects, they have to make use exist-
ing commodity computers to process big data in distributed
environments. When this situation is extended to the Inter-
net scale, the donated compute-cycles can be used to build
such distributed environments. Consequently, to make use
of commodity desktops or laptops or donated cycles from
the Internet, we have to face a challenge of dynamics and
opportunism, unreliability and heterogeneity rooted in such
distributed environments. In addition, for big data process-
ing in distributed environments, MapReduce [6] has been
a successful programming paradigm, which is used for the
discussions of this paper.

The first issue to make use of the volunteered computing-
capacities is to ensure the reliability of the whole volunteer
overlay though a volunteer can be unreliable as an indi-
vidual. In this area, Distributed Hash Table (DHT) ensures
the Internet-wide reliability of the overlay that is formed by
dynamic and opportunistic volunteers. However, the relia-
bility comes with the cost of stabilization when volunteers
join, leave or crash. In addition, looking up a data item on
the overlay incurs certain cost vs the size of an overlay.
For example, the lookup and stabilization of DHT protocol
Chord [7] are O(logn) and O(2logn) respectively, where n is the
number of volunteers on an overlay. The cost is meant that the
thought that the more volunteers, the faster computing is just
a misconception. The working cost will eventually consume
more computing-capacities than the real tasks consume on
a big-size overlay. Thus, increasing overlay size does not
always bring benefits.

The existing work has explored one or two of volun-
teer features or dynamics. The existing work has not well
explored the misconception that the more volunteers, the
faster computing. The existing work has not well explored
if a single round or multiple round MapReduce differs in
performance in a fully dynamic environment. Our work in
this paper places big data processing in a fully distributed,
dynamic and opportunistic environment. Our work explores
the working cost of big-size volunteer overlays and searches
for performance convergence points. To make full use of
the computing potentials of available volunteers, this work
proposes single roundwithmultiple overlaysMapReduce and
multiple round MapReduce to adapt and balance workload
to the dynamics of volunteers. A bootstrapping protocol has
been proposed to implement the adaptiveness. The evaluation
results have confirmed the effectiveness and adaptiveness of
the models and demonstrated the optimization in terms of
improved performance or using fewer computing resources.

To introduce more of our work in this paper, the goal of this
paper is optimal use of available volunteers to achieve high
performance of big data processing, avoiding over consuming
computing-capacities by the working cost (stabilization for
volunteer dynamics, replication to cope with data loss and
data integrity). For the goal, our research methodology is
firstly modelling the dynamics and opportunism of volun-
teers. The modelling needs to represent the heterogeneity,

unreliability, and randomness of volunteers. Accordingly, the
first contribution of this paper is the parameterization of
MapReduce features, volunteer dynamics and heterogeneity,
networking patterns, big data workload and volunteer over-
lay scalability strategies. Second, the research methodology
includes discovering the relationship between the workload
of big data problems and the working cost on the over-
lay. Accordingly, the second contribution of this paper is a
series of simulations. The analysis of simulation results is to
discover the optimal overlay size for a given workload by
a single plain and one-round MapReduce. Going over that
size, the growing of more volunteers for the overlay will
bring little benefit for the overall performance. Third, the
research methodology includes modelling of workflow for
multiple-round MapReduce and multiple-overlays MapRe-
duce. The workflows aim to catch the optimization points
during computing for achieving high performance. Accord-
ingly, the third contribution of this paper is to propose a
bootstrapping protocol. The protocol is to adapt volunteers
into overlays, which vary in response to the change of work-
load during computing. The protocol is to organize overlays
in series or in parallel or their combinations. The adaptive
workflow is to catch the optimization points and to release
compute-resources when they are no longer in need. The
contribution of this paper also includes a physical implemen-
tation of a big data processing platform, which is built on the
Open Chord APIs [8] and supports all the aforementioned
volunteer dynamics and the bootstrapping protocol.

The case study of this paper provides experimental results
to confirm that the proposed bootstrapping protocol can
form adaptive workflow for the given big data problem.
The workflows can either achieve a higher performance than
that of plain MapReduce workflow or release computing-
capacities during computing without affecting the perfor-
mance or achieve both of the above.

The organization of this paper is as follows: related work is
reviewed in Section II. The discussion context of this research
is presented in Section III. Section IV prepares the settings
of simulations and the measurement of performance. The
rationale of the extensibility of simulation parameterization to
more diverse real-world scenarios has been provided. In the
first part of Section V, the discovery of optimization points
is presented based on the simulation results. The second part
proposes the bootstrapping protocol for the construction of
adaptive workflow. A study case is detailed in Section VI
to demonstrate the effectiveness of bootstrapping protocol
to achieve the optimization points. Section VII concludes
that optimal use of volunteers can achieve high performance
without overusing resources.

II. RELATED WORK
The related work for optimizing MapReduce performance is
mainly data locality and tuning of Hadoop [9] parameters
in reliable and homogeneous cluster environments. Prabhu
et al [10] reported a simple way to find optimal values
for the three categories of 180 parameters: the core-related,
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MapReduce-related, and HDFS-related. The tuning was fully
based on trial and error. On a cluster of three homoge-
neous nodes and using the web log data of 2.1GB, they
reported that tuning some values of a certain number of
parameters improved about 32% for the performance com-
paring with the default settings of Hadoop. Targeting a real-
world application: big data analytics in smart electrical grid,
Khan et al. [11] proposed an enhanced parallel detrended
fluctuation analysis (EPDFA) algorithm. EPDFA was built
on Hadoop, which parameters were optimized by their pro-
posed Gene Expression Programming. A cluster of 8 VMs
was set as the testbed. The datasets consist of 8.6 million
to 86.4 million samples. The test results of EPDFA outper-
formed their previous work DFA and PDFA for 26 times
and 16 times in terms of speedup. Chen et al. [12] took
effort to classify what parameters of Hadoop were important
for overall performance. On a cluster of two nodes, they
used benchmarks Sort, Kmeans and Wordcount on a 16GB
dataset to identify what parameters were CPU-bound, I/O
bound or both. When testing a parameter, other parameters’
values were kept constant. The metrics of test was execution
time, and the importance of a parameter was quantified as
root mean square of several test results deviated from the
average result. If the quantified importance was greater than a
user-set threshold, it was treated as important. The drawback
of the method was that the setting of a threshold was sub-
jective. Consequently, the applicability of the experimental
results was not generic. Pattanshetti and Attar [13] selected
three Apache big data platforms: Hadoop [9], Spark [14] and
Storm [15] to study performance improvement by tuning hun-
dreds of configurable parameters. The goal was to identify
the optimal values for the parameters. The metrics was the
drop of execution time for Hadoop and Spark and the gain
of processed tuples for Storm. While tuning a parameter,
other parameters were kept constant at their default values.
The testbed consisted of a cluster of 4 nodes and a dataset
of 100GB for Wordcount and Terasort applications, and
the experimental results showed significant improvement.
They concluded that heuristic optimal values brought critical
improvement to the overall performance. However, how the
fine tuning was conducted or what parameters were critical
was not described in their paper. The research focus of Htay
and Phyu [16] was the tuning of Hadoop parameters as well.
Their effort was to find optimal concurrent containers per
node to improve performance in terms of Map Stage Elapsed
Time (MSET). The following three parameters were selected
because HDFS block size determined the number of map
tasks, which subsequently determined the optimal concurrent
containers per node. Experimental studies were conducted
with a CPU-bound benchmark Wordcount, and I/O bound
benchmarks Sort and Terasort. The dataset was 15GB, and the
testbed was a single VM. The optimal number of concurrent
containers per node was 1 for both Sort and Terasort and 4 for
Wordcount. Correspondingly, TeraSort improved 52% and
59%, Sort improved 47% and 64% and Wordcount improved
47% and 64% in terms of MSET for HDFS block size of

128MB and 256MB respectively. The method of Htay and
Phyu [16] were very specific to a particular application and
not effective to apply to other applications without case-by-
case trial and error.

Lee et al. [17] termed the traditional map-only locality of
Hadoop as shallow data locality. Then they proposed Deep
Data Locality (DDL) to all stages of MapReduce. As a part of
DDL, block-based locality was replicating data blocks to the
mapper node, which would become reducer nodes. The other
part, key based DDL, made use of ETL (extract, transform
and load) operations that must be done before MapReduce
starts to create files for different keys. The results of ETL
were the data blocks that have homogeneous keys loaded
to the same mappers. The proposed methods were tested on
cloud, by a simulator and on a hardware implementation. The
dataset was up to 120GB, the benchmark was Wordcount
and Terasort, and the cluster was up to 10 slave nodes in
homogeneous architecture. The experimental results showed
performance improvement up to 34% comparing with the
default Hadoop data locality. Eldouh et al. [18] had a simi-
lar goal of improving MapReduce performance by reducing
the overhead caused by the shuffle stage of MapReduce.
The application scenario of their work was SQL queries.
To achieve the goal, they proposed to use TF-IDF (Term
Frequency-Inverse Document Frequency) algorithm to cal-
culate queries similarities. They used K-means algorithm to
partition the related queries into clusters. An enhancement
to HDFS was to co-locate the related data files in the same
nodes. The TPC-H benchmark was used with up to 800M
records for a test on a cluster of 6 homogeneous nodes.
They declared the experimental results of an improvement of
27% in data locality and 40% in execution time comparing
with the Hadoop default. The dynamics and heterogeneity
of computing nodes in larger networks were not discussed
by their paper. Gandomi et al. [19] combined two existing
techniques: dynamic job prioritizing and data localization to
form a hybrid scheduling algorithm, aiming at increasing data
locality rate, and decreasing completion time. The proposed
schedulers were evaluated on a Hadoop cluster of one master
node and 20 slave nodes, which had homogeneous architec-
ture with stable and fast network connections. The dataset of
the evaluation was 6.4GB in 64MB blocks. Using Wordcount
benchmark, the proposed scheduler outperformed Hadoop
FIFO scheduler but was similar to Hadoop Fair scheduler
in both data locality rate and completion time; using Tera-
sort benchmark, the proposed scheduler outperformed both
Hadoop FIFO scheduler and Hadoop Fair scheduler in both
data locality rate and completion time. The proposed sched-
ulers were not evaluated in either dynamic or heterogeneous
environments. Alanazi et al. [20] proposed to give priority to
the jobs with the minimum data size and response time for
job scheduling. To achieve that, they proposed an artificial
neural network to predict resource usage and running jobs
by Hadoop data nodes. They added an aggregator node to
the HDFS of Hadoop to assign jobs among the data nodes,
making the name node for tracking the aggregator nodes
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only. They used a virtual cluster on Amazon EC2 and S3
for evaluations. The proposed model was compared with
native Hadoop and other two approaches DGNS and iShufe
using the Terasort benchmark for 1TB dataset. The evaluation
results showed better performance of the proposed method
than the compared ones in both throughput and response time.
The proposed model was not used for either heterogeneous or
dynamic computing environments.

There exist a few related works of optimizing MapReduce
performance in either dynamic or heterogeneous environ-
ments. Zhang et al. [21] treated heterogeneous nodes dif-
ferently: fast nodes or straggler nodes. Their model allowed
faster nodes to steal some work from the stragglers, which
could slow down the completion of map step, preventing the
reduce step from starting. Their study was used for heteroge-
neous environments but not applied to dynamic or unreliable
environments. Yildiz et al. [22] coped with failure recovery
by prioritizing tasks and allowing the tasks to pre-empt other
tasks. The key idea was to alleviate the impact of node failure
and achieve a reduction in overall completion time. In a small
cluster of 19 nodes of 8-core Intel Xeon CPUs connected by
a 10Gbps Ethernet network, they demonstrated the effective-
ness of the model. Their work just focused on node failure
without touching heterogeneity. Shu and Wu [23] proposed a
set of models to classify VM types, to form workflow, and to
represent resource requirements and time and financial cost
of jobs. The goal was to minimize workflow makespan under
a given budget constraint when the big data was processing
in the public clouds. The evaluations were performed on
a cluster of 20 VMs that were classified into 5 categories
with homogeneous VMs in the same categories but heteroge-
neous VMs between categories. The workload was between
0.06 × 1015 and 2.16 × 1015 CPU cycles. The scheduler
partitioned each MapReduce jobs into a certain number of
homogeneous tasks and executed then on a selected set of
VMs. The performance superiority of the proposed approach
was demonstrated in terms of makespan, financial budget,
workflow size, heterogeneity of VMs and workflow struc-
ture comparing with other existing algorithms GGB, GR,
CPG. The heterogeneity was considered in terms of VM
classification and corresponding scheduling, but dynamics of
computing nodes was not modelled by their work.

The following three articles are the latest work related to
this paper. J. C. S. Dos Anjos et al [24] developed a hybrid
model of cloud as the task management (data distribution and
resource allocation etc.) center and volunteer computers as
the edge computing resources only. The goal of the hybrid
model is to reduce the budget of big data processing using
volunteer computing at a free monetary cost. Their mod-
els explored the relationship between workload, number of
machines and load balancing for the optimized use of com-
puting and storage resources and minimizing data transfer.
A similarity of their model to our model of this paper is that
their model deals with volunteers’ crash, which is one of the
dynamic factors that our model optimizes performance for.
Another similarity is that both their and our models used

generic tasks abstracted by data size, chunk size, number of
tasks and computing intensity of tasks. The strength of their
paper is to use cloud environments hosted in the Grid’5000
data center, simulating the cloud and volatile volunteer com-
puters for the model evaluation. The test results showed a
cost decrease down to 57.14% compared to cloud comput-
ing only. Our model of this paper differs with their models
from three aspects. First, our models are fully distributed and
self-adaptive solution to task management without needing to
use centralized task managers. Second, our models explore
wider and stronger dynamics of volunteers such as different
bandwidths for volunteers and not only crash but also join and
leave of volunteers. Third, our models optimize performance
using multiple round MapReduce, single round MapReduce
with multiple map overlays with/without load balancing. The
same research group [25] explored using the edge comput-
ing power of the IoT to improve the network latency in
real-time big data streaming and processing. Their model
accumulated micro-batches, which sizes were dynamically
adjusted, to send instead of sending a single data item in each
message. That reduced a set of data items to a single network
latency. Their model introduced an adaptive method to dis-
tribute incoming streams to the stream processing framework.
The micro-batches received at the stream processing frame-
work were assigned to the machines based on dynamically
updated CPU and memory states. In terms of the two ways of
big data processing, our work in this paper is more related
to [24] as both optimize batch processing. Readers would
read the original paper [25] for dynamic micro-batch size
adjusting and adaptive data partition if they work on stream
processing.

The similarity between Gonzalo et al. [26] and our work
of this paper is that both believe that the working cost (stabi-
lization of volunteer dynamics, replication to cope with data
loss and data integrity) on volunteer overlays prevents the
overall performance from continuously improving but makes
it converge. Thus, both believe continuously increasing vol-
unteers to an already big-size overlay brings little benefit.
However, the ways of optimizing the overall performance of
a volunteer cluster are different between [26] and ours in this
paper. Gonzalo et al. [26] tried to predict volunteer behaviors
and then classify volunteers as high availability and low
availability nodes. The high availability nodes were always
allocated with tasks. However, the low availability nodes
were not fully ignored but used as the complimentary com-
puting resources to avoid overcrowding the high availability
nodes. Their methods were quantitatively confirmed for the
effectiveness by comparing to related work. When predicting
volunteer availability is not always accurate or practical in
a dynamic environment, our work of this paper allows any
volunteers to participate a computing. In our model, the
low availability nodes are always allowed to contribute to
the overall performance. However, once the low availability
nodes leave or crash, they are automatically bypassed as their
unfinished tasks are checkpointed and picked up by other
volunteers. In addition, our work avoids to use of big-size
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overlays, where the working cost is comparable with the real
task computing.

Our previous works [27], [28] researched on the clar-
ification of the misconceptions of big data processing in
dynamic and opportunistic environments [27] and the impor-
tant insights to the impact factors and their strength of vol-
unteer dynamics on big data processing [28]. Our previous
works aim at paving a way to future optimization or avoid-
ance of potential bottlenecks for big data processing, which
is the work of this paper.

As reviewed of the existing work in this section, optimizing
performance of MapReduce big data processing has not been
well explored for decentralized or fully distributed environ-
ments to minimize monetary cost and maximize computing
potential of volunteers. To deal with the gap, our work of
this paper contributes to the field research in the following
aspects.

1. Model a fully dynamic and opportunistic volunteer
computing environment for big data processing.

2. Parameterize an extensible simulation framework to
adapt the current application scenarios and be ready for
future more diverse scenarios.

3. Explore the relationship between the working cost (sta-
bilization for volunteer dynamics, replication to cope
with data loss and data integrity) and peer overlay
scalability to find the optimal overlay size for a given
big data problem.

4. Propose a bootstrapping protocol to adapt volun-
teers into single round MapReduce or multiple round
MapReduce to catch the optimization points.

5. Evaluate the performance of the proposed models and
analyze the evaluation results to guide volunteer com-
puting for big data processing in different scenarios.

III. THE DISCUSSION CONTEXT
This section presents the discussion context including the
workflow of single-round or multiple-round MapReduce
paradigm and result locality and globality. The dynamics of
volunteers and the cost for guaranteeing the reliability of vol-
unteer overlays are discussed. The integration of MapReduce
paradigm and DTH paradigm is also discussed in the context
of volunteer dynamics.

A. MAPREDUCE: PARADIGM AND WORKFLOW OF SINGLE
OR MULTIPLE ROUNDS
MapReduce paradigm consists of a big number of map tasks
and reduce tasks. The original big data, which must be for-
matted in the form of <key, value> pairs, are divided into
a big number of datasets and assigned to the map tasks as
input. That is, each map task just processes a few subsets of
the original big dataset. The local result of each map task
will be shuffled into the reduce tasks as input. Depending
on shuffling, the MapReduce workflow could be one-round
or may incur multiple-rounds of map and reduce steps. Only
when the condition, a round of shuffling ensures that all the

<key, value> pairs with the same key are assigned to the
same reduce task, is satisfied, the results that are produced by
the reduce tasks are global. If one-round of shuffling makes
the condition satisfied, it results in a one-round MapReduce
workflow as shown in Figure 1 (a) and (b). If multiple-
rounds of shuffling together make the condition satisfied,
it incurs a multiple-round MapReduce workflow as shown
in Figure 1 (c). Furthermore, only when global results are
produced, the MapReduce computing workflow ends. More
formal modelling of MapReduce computing on volunteer
overlays can be found in our previous work [27].

In MapReduce paradigm, multiple map or reduce tasks
are to make use of the parallel computing capacity of an
overlay in distributed environments. In the paradigm, map
tasks or reduce tasks are computed in parallel on distributed
computing nodes. The only synchronization happens when
the results of map step need to be shuffled into the reduce
tasks at the end of map step. The reduce tasks can start only
when they are filled with data at the end of shuffling step.
When a single-round MapReduce is the simplest way of the
paradigm, it can be extended tomultiple rounds in the sense of
making usemultiple small overlays to lower theworking cost:
for example, O(logn) for lookup or O(2logn) for stabilization
on a single large overlay, where the cost is logarithmically
proportional to the number of volunteers n on the overlay [7].

B. OVERLAY: VOLUNTEER DYNAMICS AND GUARANTEE
OF RELIABILITY
This paper is to use volunteers to form overlays to commit to
MapReduce tasks. Thus, the dedicated part is minimized to
start from a list of dedicated bootstrap nodes only. A bootstrap
node is a reliable computing node, which is responsible for
two duties. First, a bootstrap node traps volunteers to form an
overlay. Second, a bootstrap node needs to upload the original
map or reduce tasks to the overlay. Apart from the bootstrap
nodes, all others are volunteers on the overlay. On the dynam-
ics and opportunism of volunteers, a volunteer may leave
before finishing a task or may crash while computing. Thus,
the guarantee of reliability of the entire overlay is essentially
necessary when the volunteers behave dynamics individually.
For this concern, DHT protocols such as Chord [7] satisfy this
requirement.

In addition, DHT has a natural match for MapReduce
because both use the data format of <key, value> pairs.
Integrating the properties of MapReduce and DHT, a single-
round MapReduce paradigm workflow is proposed as fol-
lows. Multiple-round MapReduce workflow is just a merger
of multiple single-round MapReduce workflow as shown in
Figure 1 (c).

In map step, a volunteer looks up a map task <mki0,
mti> on the overlay, where mki0 is the key to task
mti, i ∈{1, 2, . . . , m} and m is the number of map tasks. The
map task needs to be changed to <mki1, mti, mtsi>, where
mtsi is the timestamp of the task. The volunteer downloads
and executes mti. When the map task is in execution, the
volunteer will need to update the timestamp mtsi in a regular
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FIGURE 1. Single-round and multiple-rounds of MapReduce workflow vs result locality and globality. (a) one-round MapReduce with
one map overlay and one reduce overlay, (b) one-round MapReduce with multiple map overlays and one reduce overlay, and
(c) multiple-round MapReduce with multiple map overlays and multiple reduce overlays for the result locality and globality.

time interval ui. If the volunteer leaves during computing, the
task mti is checkpointed and changed back to <mki0, mti>.
If a task cannot be found by mki0, the volunteer looks up a
map task <mki1, mti, mtsi> that satisfies the condition: (the
current time - mtsi)> ui, where mki1 is the key. Such a map
task was in execution by another volunteer that is treated as
crashed already.

The shuffle step redistributes the result set of eachmap task
into several reduce tasks. The shuffling procedure ensures all
the <key, value> pairs with the same key in the result set
will be merged in the form of <key, a list of values> and
distributed into a single reduce task. The shuffling procedure
is performed using a hash function so that the pairs emitted by
different map tasks but with the same key can be distributed
into the same reduce task. If the map step covers all the
original data, the shuffling ensures that the reduce step will
produce the global results.

In reduce step, a volunteer looks up a reduce task <rkj0,
rtj> on the overlay, where rkj0 is the key to task rtj, j ∈{1,
2, . . . , r} and r is the number of reduce tasks. The reduce
task needs to be changed to <rkj1, rtj, rtsj>, where rtsj is the
timestamp of the task. The volunteer downloads and executes
rtj. When the reduce task is in execution, the volunteer will
need to update the timestamp rtsj in a regular time interval
ui. If the volunteer leaves during computing, the task rtj is
checkpointed and changed back to<rkj0, rtj>. If a task cannot
be found by rkj0, the volunteer looks up a reduce task <rkj1,
rtj, rtsj> that satisfies the condition: (the current time - rtsi)>
ui, where rkj1 is the key. Such a reduce task was in execution
by another volunteer that is treated as crashed already.

Based on the integration of DHT and MapReduce
paradigm as proposed as above, the dynamics of volunteers
are tolerated in terms of the uncompleted tasks of dynamic
(left or crashed) volunteers can be collected by other active
volunteers. Thus, the MapReduce is guaranteed to finish as
long as there are active volunteers on the overlay.

IV. THE EXTENSIBILITY OF SIMULATION SCENARIOS
This section formalizes the settings of volunteer dynamics,
workload of big data problems, networking cost and MapRe-
duce paradigm features into several simulation parameters
and patterns. The quantitative measurement of overall per-
formance of big data processing is defined in this section.
This section describes how the parameterization of the impact
factors produces extensibility for the application scenarios
of big data processing, and how the extensibility could be
achieved through two ways. An example setting is used to
support the rationale behind the extensibility.

A. SETTINGS AND MEASUREMENT OF SIMULATION
The volunteer dynamics and opportunism can be simulated by
discrete and random events rather than mathematically mod-
elled [29]. The modelling of volunteer dynamics is to inject
random events for volunteer join, leave and crash. Dynamics
injection is to form a random pattern for volunteers to join
an overlay and leave or crash on the overlay. A volunteer vi
joins an overlay at time jti=random [i×C1, (i+1)×C1-1],
where C1 is a constant, representing the injection interval,
i ∈{0, 1, 2, . . . , n-1} and n is the total number of volunteers.
For example, if n=40,000 and C1=20, the first volunteer
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joins randomly between 0 and 19, the second volunteer joins
randomly between 20 and 39 and so on.

The leave or crash of volunteers is determined by several
factors. First, the number of churn volunteers cv=n×CR,
where n is the total number of volunteers, is determined by
a dynamic factor CR, representing churn rate. For example,
if n=40,000 and CR=30%, there will be 12,000 volunteers to
commit churn (leave or crash) during computing. To evenly
distribute the churn among all volunteers, the volunteers can
be divided into cv domains, of which each domain con-
tains D=1/CR volunteers including a single churn volunteer.
The churn volunteer vk in domain j can be determined by
k=random[j×D, (j+1)×D-1], where j ∈{0, 1, 2, . . . , cv-1}.
If we define other two dynamic factors, we can fully simulate
a churn window for each volunteer.

1. Start Position (SP) is a factor to reflect how long a
volunteer has been working on the overlay before com-
mitting dynamics.

2. Occurrence Interval (OI) is a factor to reflect the
time-window inwhich a volunteer could commit churn.

Based on the factors, the leave or crash time of a churn
volunteer vk will be lctk=random[jtk+SP, jtk+SP+OI]. That
is, after joining the overlay at jtk , the volunteer needs to stay
on the overlay for SP long and then can commit churn ran-
domly in the time-window of a width ofOI. Furthermore, if k
is an odd number, the volunteer commits leave. Otherwise,
it commits crash. Visually jti and lctk will behave dynamics as
shown in Figure 2, where the ascending line represents joins
(jti); the descending line represents leaves or crashes(lctk ).

The other factors that reflect the features of big data pro-
cessing on volunteer overlays include:

1. Heterogeneity(H) is a factor to reflect the comput-
ing capacity of volunteers. For evaluation purposes,
we assume the base capacity as tier-1. Thus, a tier-2
volunteer is 2-times slower.

2. Download/Upload Speed (DUS) is a factor to reflect
the internet speed of a volunteer. If we use a moderate
internet speed of 25/10 Mbps as an example, the DUS
is 20/51 seconds for download/upload of a 64MB data.

3. Round Trip Time (RTT) is a factor to reflect the time
to establish/close an internet connection between two
volunteers. An RTT of 8 time-unit is a conservative
setting for a moderate internet speed.

4. Map-to-Reduce Ratio (MRR) is a factor to reflect
data compression/expansion features of a MapReduce
application. For example, a MRR of 20% decreases
the workload and data scale of reduce tasks to 20%
of map tasks. When data aggregation (input>output)
and data summary (input�output) are the most com-
mon MapReduce applications, data transformation
(input≈output) and data expansion (input<output) are
still some applications [30].

5. Redistribution Factor (RF) is a factor to reflect the
difference between the keys of the result set that is
emitted by a map task. For example, a RF of 200means

FIGURE 2. The simulation of dynamics of volunteers.

the<key, value> pairs of a result set produced by amap
task has 200 different keys. The result set needs to be
redistributed into 200 reduce tasks in the shuffle step so
that the globalization of results can be achieved by the
reduce step.

Integrating the above impact factors, the overlay setting
(6-tiers, 20/51, 8, 30%, 250K, 30, 20%, 200) in the format of
(H, DUS, RTT, CR, SP, OI, MRR, RF) is to reflect a very gen-
eral situation. The overlay scales are set to start from 5,000
volunteers with 5,000 more volunteers each time growing up
to 120,000 volunteers. To simulate other scenarios, we only
need to change the values in the pattern (H, DUS, RTT, CR,
SP, OI, MRR, RF).

To reflect a big data problem, the workload setting is
randomly choosing e.g., 1,400,000 (1.4M) map tasks. With
an MRR of 20%, the number of reduce tasks are 280,000.
The computing load of each map or reduce task is random
set e.g., 8,000. Thus, the total computing workload is 13.44G.
The unit of computing load is omitted because this setting is
contrasting the competence between different strategies. The
unit can be seconds, hours, or days.

The 64MB is very common for a dataset of a map or a
reduce task or a result set [24]. Based on the number of map
and reduce tasks, the data setting is about 108TB (1,400,000×
64MB=89.6TB of map plus 17.92TB of reduce if 20% MRR
is assumed) to be processed.
The two measurements that are used to make quantitative
investigations of the overall performance and how the overall
performance changes are Speedup and Speedup Growth Rate.
Speedup is used to measure the overall performance of a
volunteer overlay on the given workload of a problem and
the given dynamics of volunteers. Speedup Growth Rate is
to measure how the speedup changes between two overlays,
which have different values on the impact factors.

When both reflect the overall performance of overlays, the
speedup growth rate is finer than the speedup. The speedup
growth rate can check what factors have a stronger impact
or whether performance scalability converges to a specific
value.

B. THE EXTENSIBILITY OF SIMULATION SCENARIOS
It is shown in Figure 3 how the impact factors/parameters
determine simulation scenarios. The big data analysis is pro-
cessing key-value pairs if it is MapReduce-based. Depending
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on the application scenarios, the map to reduce relationship
could be data aggregation (input>output), data summary
(input�output), data transformation (input≈output) and data
expansion (input<output) [30]. Among them, the first two
are the most common cases. To reflect the feature, a fac-
tor/parameter named Map-to-Reduce Ratio (MRR) is suffi-
cient to represent all the above four application scenarios.
MapReduce is also featured by the globality of a map result
set. The lists of key-value pairs in a map result set should be
by the shuffle step to redistribute into a few of reduce tasks so
that the key-value pairs with the same keys can aggregate into
a single reduce task. Thus, the result set of each reduce task
will be globalized. To reflect this feature, a factor/parameter
named Redistribution Factor (RF) is sufficient to represent
the number of reduce tasks that the result set of a map task
should be redistributed for the globalization of results in the
next step.

Many dynamic volunteers behave randomly and freely on
leaving and crashing on the volunteer overlay. On the other
hand, there should bemany volunteers, whowould stay on the
overlay till the entire big data processing completes. Thus,
a Churn Rate (CR) factor/parameter is used to reflect the
volunteers who behave dynamics gracefully or ungracefully.
Furthermore, the random leave or crash of dynamic vol-
unteers are supposed to happen in a time window since a
volunteer starts working on the overlay. Thus, a volunteer
commits leave or crash randomly in a time window that can
be represented by the factors/parameters Start Position (SP)
and Occurrence Interval (OI).
Volunteers’ computers are different inmemory and compu-

tational power. If we assume that an operating system would
not crash for a big job on a small memory machine but does
it slowly because of data exchange between the memory and
the external storage, we can generalize a volunteer’s multi-
factor computing power to a single factor/parameter named
Computing Capacity (CC) in this paper. To reflect the hetero-
geneity of volunteers, the computing capacities of volunteers
are tiered. That is, if we assume that the base capacity is 1,
a volunteer’s computing capacity will be a times (>, = or
< 1) of the base capacity. Furthermore, the download/upload
speed are different for volunteers’ networks. Thus, a factor
Download/Upload Speed (DUS) is used to reflect the down-
load or upload time for a certain Size of Data Set (SDS). The
64MB or 128MB data sets are the commonly used sizes for
big data processing.

For Chord-based communication [7], [8], each volunteer
sees the overlay rather than individual peers. A volunteer
needs to download data sets and upload result sets. Thus, the
aforementioned DUS is an impact factor on communication.

FIGURE 3. The relationship between the impact factors and simulation
scenarios.

The open and close of connections before or after communi-
cation constitutes a Round Trip Time (RTT), which is also a
factor/parameter to reflect communication. In addition, the
aforementioned redistribution factor RF has an impact on
the communication because the bigger a RF is, the more
communication links are needed, and more data packets are
sent.

When a big data is divided into many data sets, theNumber
of Data Sets (NDS) is a factor to have impact on the workload.
Once the size of a data set is certain, the Computing Load of
a Data Set (CLDS) can be determined on a base-capacity vol-
unteer, and thus on any volunteers. Furthermore, the number
of map result sets equals the number of map data sets, and
the number of reduce data sets equals NDS×MRR. Thus, the
entire workload of the big data processing is determined.

As the last scenario-related matter, the overlay scalability
is determined by the Number of Volunteers (NV) and how the
volunteers are organized into overlays, that is, the Overlay
Strategies.

The above parameterization of simulation impact factors
has covered a variety of aspects of big data processing, includ-
ing MapReduce features, volunteer dynamics, volunteer het-
erogeneity, communication, big data workload and overlay
scalability. The parameterization is ready for extending the
application scenarios in two ways.

Speedup =
The total time to complete the entire problem by a volunteer overlay

The total time to complete the entire problem by a single volunteer of tier − 1
(1)

Speedup Growth Rate =
The speedup of value2− The speedup of value1

The speedupof value1
× 100% (2)
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FIGURE 4. An example of application scenario determined by the impact
factors.

1. To extend the simulation scenarios for a newer
factor, the developer needs to include an xml
<factor/> tag in the Application Scenario Proper-
ties (ASP) file. Accordingly, a newer function mod-
ule is to be implemented and added to the simulator
framework.

2. To hold the existing factors but to extend to another
scenario with different parameter values, the end user
would reset the settings of the factors/parameters. For
example, to simulate an application scenario for pro-
cessing a big data, the scenario part of the ASP file is
set as shown in Figure 4.

The parameter settings in Figure 4 represent a simulation
scenario that processes an original data set of 89.6TB. The
big data is divided into 1.4 million data sets of 64MB per
data set. Each data set needs 8,000 time-units of comput-
ing load. The big data will be processed by 120,000 vol-
unteers, who form overlays based on Strategy-1 (detailed
in Section VI-A) for the processing. There are 30% volun-
teers committing churn during the computing, and the churn
happens randomly in a time window with the start position
250k (since a volunteer joins the overlay) for an occurrence
interval of 30. The volunteers’ computing power is 6 tiers
and the upload/download speed of a 64MB data set is 20/51
time-units. This is a data summary application with 20%
map-to-reduce ratio. Each local map result set will be redis-
tributed into 200 reduce tasks for the final computing and
globalization.

V. OPTIMISATION STRATEGIES
We have implemented a simulator to support adaptive
MapReduce workflow on the Open Chord APIs [8]. On the
basis of the simulations as given in the settings of Section IV,
this section presents a detailed analysis of the overall perfor-
mance of volunteer overlays in different sizes responding to
different workload. The analysis aims discovering possible
optimization points, over which growing overlay size will
bring little benefit. A bootstrapping protocol is proposed in
this section to form adaptive workflow, which can catch the
optimization points to achieve high performance and not to
overuse volunteers at the same time.

A. SEARCH FOR POSSIBLE OPTIMISATION POINTS
Based on the settings in Section IV, the sample results have
been produced to demonstrate the performance scalability in
terms of speedup and speedup growth rate vs the number
of volunteers as shown in Figure 5 and Figure 6. To clarify
the results, we choose a typical point: overlay of 55K vol-
unteers. To contrast speedup with speedup growth rate, the
overlay with 55K volunteers achieves 5,004 times speedup
with speedup growth rate of 4.8% higher than the overlay of
50K volunteers. Before this point, the speedup is smaller than
5,004 but the speedup growth rate is greater than 4.8%; after
this point, the speedup is greater than 5,004 but the speedup
growth rate is smaller than 4.8%. This contrast of scalability
vs number of volunteers has demonstrated that for the given
workload and volunteer dynamics, simply increasing volun-
teers more than a certain number, e.g., 55K in this evaluation,
brings little benefit, e.g., less than 4.8% speedup growth rate
for every 5,000more volunteers in this evaluation. The reason
is that the working cost (stabilization for volunteer dynam-
ics, replication to cope with data loss and data integrity)
on an overlay is proportional to the number of volunteers
on the overlay, which behave dynamics. This result is also
supported by the computational complexity of performance
and stabilization of Chord protocol [7], which the lookup
cost is O(logn) and the stabilization of overlay on volunteer
dynamics is O(2logn), where n is number of volunteers on the
overlay. Thus, the working cost of a larger overlay will finally
cancel/weaken the computing-capacity it brings real tasks.

To scrutinize the relationship between performance scal-
ability and other impact factors, we extend the evaluations
to explore the relationship between performance and varying
workload or varying overlay sizes. On the basis of the settings
in Section IV, we introduce the following variables as shown
in Table 1, where W represents the workload of 1.4M tasks
as in the settings in Section IV. The settings explore how the
performance varies on a varying workload (such as 0.02W
to 0.2W) on an overlay (such as 5K volunteers) or on a
workload (such as 0.2W) on varying overlays (such as 5K to
20K volunteers).
Based on the settings, the sample results have been pro-

duced to demonstrate the impact on performance scala-
bility that is caused by the potential relationship between
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FIGURE 5. The performance scalability (speedup) vs the number of volunteers.

FIGURE 6. The performance scalability (speedup growth rate) vs volunteer number growing.

TABLE 1. The relationship settings between varying workload and varying overlay size.

workload and overlay size. The performance scalability in
terms of speedup and speedup growth rate are shown in
Figure 7 and Figure 8. Finding the optimization points needs
to contrast the results in the four figures of Figure 5 to
Figure 8.

1) SPEEDUP GROWTH RATE CONVERGENCE
For a certain workload, continuingly increasing overlay size
is not continuingly beneficial as much as proportional to
the overlay growing size. That feature can be observed on
Figure 5 and Figure 6, where the workload is a singleW and
the overlay size is from 5K growing to 120K. The speedup
is climbing slowly for the same size of overlay growing and
the speedup growth rate keeps dropping and finally converges
to about 1.2%. When this observation is double-checked by

varying workload vs varying overlay sizes, the second and
fourth part (counting from left to right) of Figure 7 and
Figure 8, where overlay sizes grow for the same workload,
show the same feature. Thus, depending on satisfaction,
the first optimization point can be found if a single-round
MapReduce is required. This point is in the scalability of the
full workload for the satisfaction. For example, for the work-
load of W and the satisfaction is 4.8% (Figure 6) speedup
growth rate, the optimization point will be 55K (Figure 5)
volunteers overlay, which can achieve a speedup of 5,004
times (Figure 5). As another example, for the workload of
2W and the satisfaction is 3% speedup growth rate, the opti-
mization point will be 70K volunteers overlay (Point-1 in
Figure 7), which can achieve a speedup of 6,312 times. For
overlays more than 70K, they can achieve a higher speedup.
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However, they can only achieve a lower speedup growth rate
(i.e., satisfaction).

2) MULTIPLE OVERLAYS
There are three observations with the relationship evaluations
in Figure 7 and Figure 8. First, for a given overlay size, there
is an optimal workload in terms of satisfaction. For example,
if the satisfaction is not less than 10% speedup growth rate
and the overlay size is 5K, the optimal workload is 0.16W
(Point-4 in Figure 7). As another example, if the satisfaction
is not less than 3% speedup growth rate and the overlay size is
40K, the optimal workload isW (Point-2 in Figure 7). Second,
for a given workload, there is an optimal overlay size in terms
of satisfaction. For example, if the satisfaction is not less than
13% and the workload is 0.2W, the optimal overlay size is
25K (Point-3 in Figure 7). As another example, if the satisfac-
tion is not less than 3% and the workload is 2W, the optimal
overlay size is 70K (Point-1 in Figure 7). Third, for a given
workload, increasing overlay size makes speedup growth rate
bounce high as shown by Point-1, Point-2 and Point-3 in
Figure 8 and then drops again. In addition, the bounce height
is greater for a smaller overlay than a larger overlay. For
example, the bounce heights in descending order are 10K,
40K and 50K volunteer overlays as shown by Point-1, Point-2,
and Point-3 in Figure 8. It implies that increasing the same
number of volunteers on a larger overlay brings less benefit
than on a smaller overlay in terms of speedup growth rate.
All the above three observations have demonstrated possi-
ble optimization points if splitting workload and overlays.
Splitting workload and using smaller multiple overlays can
result in:

• A multiple-round MapReduce.
• A single-round MapReduce with multiple map overlays
and a single reduce overlay.

• A combination of the above.

3) COMPUTING-CAPACITY SELECTIVITY
Using multiple smaller overlays can bring an incidental bene-
fit: providing selectivity of volunteers in terms of computing-
capacity. This situation is particularly suitable for data
aggregation and data summary application [30], where data
input>data output or data input�data output. In the situa-
tions, the optimal overlay size for reduce step could be much
smaller than the overlay size of map step. As a result, the
volunteers of higher computing-capacity can be selected from
a large pool of available volunteers. For example, based on the
simulation results in Figure 7 and 8, for a workload ofW and
the number of map tasks is 1,400,000, the optimal overlay
size of map step will be 40K volunteers if a single round
MapReduce is used. IfMRR is 20%, the workload is 280,000
for reduce tasks. For such as a workload, the optimal overlay
size for reduce step will be 20K. Thus, if the original pool
of volunteers is of 40K with computing-capacity of tier-1 to
tier-6 evenly, the volunteers of tier-1 to tier-3 can be selected

for the reduce step, and the volunteers of tier-4 to tier-6 can
be released once the map step finishes.

B. BOOTSTRAPPING PROTOCOL
The proposed architecture of big data processing is formed by
decentralized multiple overlays. The only dedicated require-
ment is a few of dedicated computing nodes as the bootstrap-
ping nodes to form the overlays. In addition, the dedicated
nodes are responsible for uploading the original map tasks
(computing logic filled with data) and reduce tasks (only
computing logic without data). Otherwise, all of others are
volunteers, who behaves dynamics or opportunism during
computing. An overlay is guaranteed reliable by Chord [7]
DHT protocol although individual volunteers are dynamic
or unreliable. The multiple overlays are interconnected by
the bootstrapping protocol to enable an adaptive structure for
MapReduce as follows.

1. MapReduce paradigm can be a single-round or
multiple-rounds processing in a self-organizing way
without any centralized control.

2. A round ofMapReduce can use the same overlay or two
different overlays for the map step or reduce step.

3. A round of MapReduce can use multiple overlays for
map step but a single overlay for reduce step.

4. The life-cycle listeners can monitor the start, progress
and completion of the map step or reduce step.

5. The number of volunteers on an overlay is adapted
without impacting the MapReduce paradigm.

The bootstrapping protocol works in a fully distributed mode
as proposed as follows.

When a volunteer vi joins, it retrieves a list of bootstrap
nodes: bsi,1, bsi,2, . . . , bsi,m, where i ∈{1, 2, . . . , n} and n is the
number of bootstrap nodes. The following are the constraints
on a bootstrap list.

1. The number of bootstrap nodes on a list must be a
positive even number, i.e., m=2k and k ∈ N1.

2. Each bootstrap node bs is a dedicated computing node,
representing a volunteer overlay that is formed by boot-
strapping volunteers from it.

3. The bootstrap nodes bsi,1, bsi,2, . . . , bsi,m are m dedi-
cated computing nodes. The node bsi,1 is responsible
for uploading the original map tasks on its overlay. The
uploading pace depends on the number of volunteers
on the current overlay. The rule is to balance task
availability and fault tolerance of storage. For example:
• Uploading tasks of the double number of volun-
teers on the overlay if the number of volunteers is
less than 100.

• Uploading tasks of the triple number of volun-
teers on the overlay if the number of volunteers is
between 100 and 1,000.

• Uploading all tasks if the number of volunteers is
greater than 1,000.

4. For any two contiguous nodes bsi,j and bsi,j+1 on the
list and j ∈{1, 3, . . . , m-1}, they represent a round of
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FIGURE 7. The performance scalability (speedup) vs varying workload or varying volunteer numbers.

FIGURE 8. The performance scalability (speedup growth rate) vs varying workload or varying volunteer numbers.

MapReduce, where bsi,j represents an overlay for map
tasks and bsi,j+1 represents an overlay for reduce tasks.

5. For any two contiguous node bsi,j and bsi,j+1 on the list
and j ∈{1, 2, . . . , m-1}, if bsi,j =bsi,j+1, the map step
and reduce step use the same overlay. If bsi,j 6=bsi,j+1,
the map and reduce step use different overlays.

6. Node vi always downloads map tasks from bsi,j overlay
to perform and shuffles the reults to bsi,j+1 if j ∈{1, 3,
. . . , m-1}.

7. Node vi always downloads reduce tasks from bsi,j over-
lay to perform and simply uploads results to bsi,j+1 if
j ∈{2, 4, . . . , m-2}.

8. Node vi downloads reduce tasks from bsi,m to perform
and simply uploads the results to8bsi,m as well.

Some overlay examples that can be formed by the boot-
strapping protocol are given as follows.
If a list of {bs1, bs2} returns to every volunteer, this is a

typical single-round MapReduce. In this structure as shown

in Figure 9 (a), normally bs1=bs2, that is, a single overlay for
both map (including shuffle) step and reduce step.
If a volunteer retrieves one of the two lists: {bs11, bs12, bs3,

bs4}, {bs21, bs22, bs3, bs4}, this is a two-round MapReduce.
In this structure as shown in Figure 9 (b), normally bs11=bs12,
bs21=bs22 and bs3=bs4. That is, there are three overlays; two
overlays are for the first-round MapReduce and one overlay
is for the second-round MapReduce.
If a volunteer retrieves one of the following lists: {bs11,

bs12, bs3, bs4, bs5, bs6}, {bs21, bs22, bs3, bs4, bs5, bs6}, {bs31,
bs32, bs5, bs6}, this is a three-roundMapReduce. In this struc-
ture as shown in Figure 9 (c), normally bs11=bs12, bs21=bs22,
bs31=bs32, bs3=bs4 and bs5=bs6. That is, there are five
overlays; three overlays are for the first-round MapReduce,
one overlay is for the second-round MapReduce and one
overlay is for the third-round MapReduce.

If a volunteer retrieves one of the following lists: {bs11,
bs2}, {bs21, bs2}, . . . , {bsi1, bs2}, where i ∈{1, 2, . . . }, this
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FIGURE 9. Examples of overlay structure for single or multiple rounds of MapReduce. (a) a
single overlay for both map step and reduce step, (b) two overlays for the first-round
MapReduce and one overlay for the second-round MapReduce, (c) three overlays for the
first-round MapReduce, one overlay for the second-round MapReduce and one overlay for the
third-round MapReduce, and (d) multiple overlays for map tasks and a single overlay for reduce
tasks in a single round MapReduce.

a single-round MapReduce. In this structure as shown in
Figure 9 (d), there are i+1 overlays. When i ≥2, multiple
(i) overlays are for map tasks and a single overlay is for
reduce tasks.

To facilitate monitoring the progress of a map step or a
reduce step on an overlay, a progress marker pm is attached
to a bootstrap node bs, denoted as <bs, pm> as a global
object synchronized and shared between all volunteers who
bootstrap at bs. The initial value of pm is the total number
of tasks (either for map or reduce step) on the overlay. Once
a volunteer completes a task and the result has been success-
fully uploaded to the overlay of bs, the value of pm is counted
1 less.When pm>0, there are tasks available or running on the
overlay of bs. If pm=0, the map step or reduce step performed
on the overlay of bs is completed.
Depending on varying workload in different steps of a

MapReduce round or in different rounds of MapReduce,
a volunteer may be necessary for an overlay but unnecessary
for another overlay in terms of computing the correspond-
ing workload. Because a volunteer can upload results to an
overlay only where it stays on, the volunteer must be on
the overlay of next step computing. If the volunteer is not
necessarily to involve next step computing, it will need to
leave after uploading all the results it has produced and before
the start of next computing.

The control of volunteer numbers on an overlay bs can be
achieved by registering a listener lnr() to the progress marker
pm of the overlay bs. The use of listener lnr() is as follows.
First, a volunteer vi needs to join every overly identified by
the bootstraps: bsi,1, bsi,2, . . . , bsi,m on the given list. Assume
that vi is computing on bsi,j and uploading results onto bsi,j+1,
where j ∈{1, 2, . . . , m-1}. The lnr() will be triggered on the
event that pm of bsi,j is 0. Depending on each volunteer vi,
the logic of lnr() is:
if (leave) exit bsi,j+1
else {stop any actions on bsi,j; start actions on bsi,j+1}

C. SUMMARY
First in Section V-A, the thought that the more volunteer
the faster computing is clarified as a misconception. For a
certain big data problem, a simulation is necessary before real
computing to determine an optimal overlay size, where the
performance converges. Furthermore, given satisfaction (e.g.,
a speedup growth rate), it is confirmed that for a certain prob-
lem scale, there is an optimal overlay size; for a certain over-
lay size, there is an optimal problem scale. That confirmation
suggests that group volunteers into multiple volunteer over-
lays instead of using the entire available volunteers as a single
overlay would benefit more for performance. To group volun-
teers, the traditional single roundMapReduce is remodeled as
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adaptive multiple round MapReduce or multiple overlays for
map step. Based on the discoveries, a fully distributed boot-
strapping protocol is proposed in Section V-B. The protocol
can adapt the available volunteers to the given problem scale
by trapping them into multiple round MapReduce, which can
catch the optimal performance points.

VI. THE CASE STUDY OF OPTIMIZATION
In this section, we use the adaptiveness that the bootstrapping
protocol provides to form some optimization strategies and
compare their competence.

We set a reference workload of 1,400,000 map tasks,
an MRR of 20% and each task of 8,000 compute-intensity
as stated in Section IV. This reference workload is denoted
asW . To compare the competence of the optimization strate-
gies, we first set a non-optimized case of workload of 2W and
overlay size 80K as shown in Figure 10. The simulation result
of such an overlay is 6,502 times speedup.

A. STRATEGY 1
This strategy is two-round MapReduce. In the first round, the
workload of 2W is assigned to two overlays, of which each
has a size of 40K volunteers with a workload of W as shown
in Figure 11. In the second round, the map task is 0.4W and
reduce task is 0.16W. Thus, the overlay size has changed to
20K (tier-1 and tier-2) and 10K (tier-1 only) respectively. The
design motivation of this strategy is based on the analytical
results as stated in Section V-A and includes:

1. Using small overlays to lower the working cost
2. Using volunteers of high tier computing-capacity for

the small overlays

The benefit of this strategy includes:

1. Not holding the 80K volunteers all the time; releasing
volunteers (40K, 20K and 10K gradually) during com-
puting.

2. Maintaining a similar speedup of the full-size over-
lay of 80K volunteers though multiple-round incurs a
greater overall workload than 2W.

B. STRATEGY 2
This strategy is one-round MapReduce with multiple map
overlays and a single reduce overlay. The workload of 2W
is divided into 64 small units, of which each is of W/32
workload. Each unit is assigned to one of the 64map overlays,
of which each has 1.25K (tier-1 to tier-6) volunteers. The
single reduce overlay is 20K (tier-1 and tier-2) volunteers.
This strategy is shown in Figure 12. The design motivation
of this strategy is based on the analytical results as stated in
Section 5-A and includes:

1. Using small overlays to lower the working cost
2. Using volunteers of high tier computing-capacity for

the small overlays
3. Using the highest growth rate of small overlays

The benefit of this strategy includes:

FIGURE 10. The workflow of a plain one-round MapReduce.

1. Not holding the 80K volunteers all the time; releasing
volunteers (60K) during computing.

2. Producing a higher speedup than the full-size overlay
of 80K volunteers.

C. STRATEGY 3
This strategy is an improvement of one-round MapRe-
duce of Strategy 2 in terms of multiple map overlays and
a single reduce overlay. First, the volunteers are grouped
by computing-capacities into 6 groups so that a volunteer
belongs to a single group only. For example, a tier-2 volunteer
belongs to Group-2 only. The overall computing-capacity of
the 6 tiers is 1 + 1

2 +
1
3 +

1
4 +

1
5 +

1
6 =

147
60 . So, the

ratios of the computing-capacity of each tier vs the overall
computing-capacity are: 60

147 ,
30
147 ,

20
147 ,

15
147 ,

12
147 ,

10
147 . Based

on the ratios, the entire workload 2W assigned to each tier is:
0.82W, 0.41W, 0.27W, 0.2W, 0.16W and 0.14W. The 6 group
volunteers are divided into 60 map overlays, of which each
group is evenly divided into 10 overlays. Thus, for each map
overlay of 1.34K volunteers inGroup-1, it is assigned 0.082W
workload. Similarly, 0.041W, 0.027W, 0.02W, 0.016W and
0.014W are assigned to each map overlay in Group-2 to
Group-6 respectively.

The single reduce overlay is 20K (tier-1 and tier-2). This
strategy is shown in Figure 13. The design motivation of
this strategy is based on the analytical results as stated in
Section V-A and includes:

1. Using small overlays to lower the working cost
2. Using volunteers of high tier computing-capacity for

the small overlays
3. Using the highest growth rate of small overlays
4. Workload balancing in accordance with the computing-

capacity of volunteers.
The benefit of this strategy includes:

1. Not holding the 80K volunteers all the time; releasing
volunteers (60K) during computing.

2. Producing a higher speedup than the flat map overlays
as used in Strategy-2.

The original plain MapReduce and the three optimization
strategies are compared in Table 2 by the simulation results.
The plain single-round MapReduce workflow has achieved a
speedup of 6,502 times without releasing any volunteers dur-
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FIGURE 11. The workflow of Strategy-1 of a multi-round MapReduce.

FIGURE 12. The workflow of Strategy-2 of multiple map overlays and a single reduce overlay.

TABLE 2. The performance comparison of different strategies.

ing computing. Comparing with the plain workflow, the two-
round workflow (Strategy-1) has achieved a similar speedup
of 6,500 times to the plain workflow. The strategy has
gradually released a total of 70K volunteers at three differ-
ent steps: 2,615,921 (overall progress 63%) and 28,69,923
(overall progress 69%) and 3,970,334 (overall progress 96%)

during computing. The Strategy-2 of 64 map overlays and
a single reduce overlay has achieved a higher speedup of
8,846 times, and a growth rate 36% higher than the plain
workflow. The strategy has released a total of 60K volunteers
at step 2,495,490 (overall progress 82%) during computing.
The Strategy-3 of 60map overlays and a single reduce overlay
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FIGURE 13. The workflow of Strategy-3 with workload balancing among multiple map overlays.

with workload balancing has achieved a higher speedup of
11,152 times, and a growth rate 71% higher than the plain
workflow.

The strategy has released a total of 60K volun-
teers at step 1,867,293 (overall progress 77%) during
computing. Although Strategy-2 and Strategy-3 are sim-
ilar in overlay structure, the embedded workload bal-
ancing makes Strategy-3 achieve a higher speedup than
Strategy-2.

VII. CONCLUSION
Ourwork in this paper placesMapReduce big data processing
in a fully dynamic and opportunistic environment, where
volunteers are of heterogeneous computing power and subject
to join, leave and crash freely. The first discovery of this
work is that for a certain workload, there are an optimal
overlay size to achieve a satisfactory performance. Grow-
ing over that size, the performance improvement is little,
e.g., the performance growth rate is less than 3% for each
more 5K volunteers. The second discovery of this work is
that for the same growing size of overlay, e.g., 5K more
volunteers, the performance improvement is higher, e.g.,
20% for small overlays, e.g., 15K volunteers than that e.g.,
5% of large overlays, e.g., 50K volunteers. Based on the
discoveries, the first optimization is to use multiple small
overlays instead of a single large overlay to lower overlay
maintaining/stabilizing cost when computing local and inter-

mediate results (Map step). The second optimization is to
use fewer selected volunteers of higher computing power
to achieve higher performance when computing the global
results (Reduce step) with lighter workload. At the same
time, it can release certain computing resources for other
computing. A bootstrapping protocol has been proposed and
implemented to achieve the optimization goals by trapping
volunteers to compute single round MapReduce or multiple
round MapReduce through sequential overlays or parallel
overlays or any combinations of them. The case study uses the
bootstrapping protocol to construct three optimization strate-
gies for computing 2,800,000 tasks using 80K volunteers.
The first strategy is a multiple round MapReduce, which
produces similar speedup to the original plain MapReduce,
but releases 50%, 25% and 12.5% volunteers at the overall
progress of 63%, 69% and 96%. The second strategy is a
single round MapReduce with multiple map overlays and a
single reduce overlay, which produces a 36% speedup growth
higher than the original plain MapReduce, and releases 75%
volunteers at the overall progress of 82%. The third strategy is
the workload balanced version of the second strategy, which
produces a 71% speedup growth higher than the original
plain MapReduce, and releases 75% volunteers at the overall
progress of 77%. An important advantage of the simulation
parameterization is the extensibility for more diverse real-
world scenarios, existing or newer in the future. The nearest
future work is to develop the optimization API library into
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a visual and automatic tool and share the relevant test data
sets. The software kit can guide volunteer computing for big
data processing by producing optimization strategies when
workload, dataset scale, and volunteers’ features are given as
parameters.
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