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ABSTRACT Field of medical imaging is scarce in terms of a dataset that is reliable and extensive enough
to train distinct supervised deep learning models. One way to tackle this problem is to use a Generative
Adversarial Network to synthesize DEEPFAKE images to augment the data. DEEPFAKE refers to the
transfer of important features from the source image (or video) to the target image (or video), such that
the target modality appears to animate the source almost close to reality. In the past decade, medical
image processing has made significant advances using the latest state-of-art-methods of deep learning
techniques. Supervised deep learning models produce super-human results with the help of huge amount
of dataset in a variety of medical image processing and deep learning applications. DEEPFAKE images can
be a useful in various applications like translating to different useful and sometimes malicious modalities,
unbalanced datasets or increasing the amount of datasets. In this paper the data scarcity has been addressed
by using Progressive Growing Generative Adversarial Networks (PGGAN). However, PGGAN consists
of convolution layer that suffers from the training-related issues. PGGAN requires a large number of
convolution layers in order to obtain high-resolution image training, which makes training a difficult task.
In this work, a subjective self-attention layer has been added before 256 x 256 convolution layer for efficient
feature learning and the use of spectral normalization in the discriminator and pixel normalization in the
generator for training stabilization - the two tasks resulting into what is referred to as Enhanced-GAN. The
performance of Enhanced-GAN is compared to PGGAN performance using the parameters of AM Score
and Mode Score. In addition, the strength of Enhanced-GAN and PGGAN synthesized data is evaluated
using the U-net supervised deep learning model for segmentation tasks. Dice Coefficient metrics show that
U-net trained on Enhanced-GAN DEEPFAKE data optimized with real data performs better than PGGAN
DEEPFAKE data with real data.

INDEX TERMS DEEPFAKE, PGGAN, self-attention layer, spectral normalization, unbalanced dataset.

I. INTRODUCTION

Recently we have seen a rise in DEEPFAKE data in every
domain. DEEPFAKE data are sometimes used for good but
can also be used for bad purposes that mostly impacts the
social aspect of life. What makes DEEPFAKE so impor-
tant today is their low barrier to entry, which means that
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readily available tools and models can be used by people
with moderate programming skills to create highly realistic
fake data. When this is taken into account in the context
of image processing domains like Segmentation, Detection
or Reconstruction, the impact of DEEPFAKE data could be
quite significant.

Existing supervised learning methods for image segmen-
tation rely heavily on a large amount of high-quality training
data. The problem becomes apparent with the resurgence
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of deep learning, whose training requires huge volume of
labelled data. To build-up large scale training datasets is a
daunting task for most image analysis researchers due to
the enormous financial costs and expert label time involved.
Meanwhile, traditional augmentation methods such as scal-
ing, rotating, flipping and elastic deformation, especially in
the case of medical image synthesis, fail to account for cap-
turing minute featured differences resulting from size, shape,
location and appearance of specific pathology [1].

With updates of the General Data Protection Regula-
tion (GDPR) regulations in the EU, the free flow of data has
been restricted to ensure patient privacy and anonymity [2].
Even anonymised or de-identified data must not be shared
between research groups in different countries, because of
the combination of some variables in an anonymized dataset
may allow for individual identification [3]. For example,
knowing the zip code, birthday and sex is enough to iden-
tify 87% of US citizens [4]. The European GDPR rules are
more strict than those in the US Health Insurance Portabil-
ity and Accountability Act (HIPAA) rules for health data
exchange [5]. EU demands that health data protection in a
third country is essentially equivalent to that in the EU, which
is not the case with the US HIPAA system [6]. All health data
transfers require to ensure that informed consent is received
from each individual, which makes most transatlantic collab-
oration impossible, if not planned in advance.

Generating realistic synthetic DEEPFAKE data is an alter-
native solution to the privacy issue. Synthetic DEEPFAKE
data should contain all the desired characteristics of a given
dataset, but without any sensitive content, which makes it
impossible to identify individuals. Therefore, properly man-
ufactured synthetic DEEPFAKE data is a solution to the pri-
vacy problem that allows data to be shared between research
groups.

The Generative Adversarial Network (GAN) [7] is a
robust and unsupervised training approach. GANs have made
remarkable progress in the domain of DEEPFAKE images [8]
and DEEPFAKE voice syntheses [9]. They learn the pattern
of the input samples and generate new DEEPFAKE based
on the basic structural information in the training data. As a
result, GANs are very useful for deep superimposing fake
images. Prospectively, DEEPFAKE synthetic image-based
augmentation provides a solution to the lack of manually
annotated data and the inflexibility of traditional augmenta-
tion.

In the past decades, the field of medical imaging has seen
improved in performance with a small dataset. This is made
possible due to the prevailing prior knowledge in Deep Neu-
ral Network [10]. The U-net architecture is appreciated for
bio-medical segmentation images that has shown how power-
ful the use of DEEPFAKE synthesized data is to overcome the
deficit of the small amount of quantity training data available
to train deep neural networks [11]. The authors in [12] have
used DCGAN as DEEPFAKE synthesized model making
64 x 64 liver lesion (or ulcer) Region of Interest (ROI) to
improve the classification performance of the model into
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three categories [13]. In [14], the authors have used DCGAN
to augment the data for segmentation purposes to synthesize
DEEPFAKE lung field data of cardiac images and their cor-
responding masks. The problem with using DCGAN is that
it can only synthesize low-resolution images, which makes
defining the region of interest very challenging. The authors
have proposed GAN for synthesizing DEEPFAKE high reso-
lution images of retinal fungi with their corresponding mask.
The authors have compared the performance of these DEEP-
FAKE synthesized dataset trained on segmentation model
dataset with that of real dataset trained on segmentation
model [15]. The authors have proposed in [16] the pix2pix
architecture which is the GAN architecture used for image-
to-image translation. They have used pix2pix for translating
simple brain MRI images into images of DEEPFAKE brain
tumor images for augmentation purposes [17]. The authors
have proposed PGGAN in [18] an architecture to synthesize
DEEPFAKE 256 x 256 brain MR images with and with-
out tumor for improving the detection task [19]. Beers et al.
have proposed PGGAN architecture for the synthesis of
DEEPFAKE MR images of reticulocytes and their vessel
maps [20]. Unlike Han et al. and Beers et al., in this paper we
have proposed adding the self-attention layer to the PGGAN
architecture along with spectral normalization [30] in the
PGGAN’s discriminator alongside with pixel normalization
in PGGAN’s generator to synthesize the 256 x 256 realistic
DEEPFAKE knee MR images. Zhang et al. have proposed
GAN architecture to which self-attention layer with spectral
normalization has been applied and has achieved state-of-the-
art results. This model aggregates images with a resolution
of 128 x 128 which is one of the limitations [21], and is
therefore not suitable to support the ROI. BIGGAN proposed
by Brock et al. is another model in which the self-attention
layer is imposed with convolution layers and have achieved
the best results using high-resolution images, but the only
problem with BIGGAN is that it is computationally very
expensive [22].

As illustrated in Figure 1, the structure of human knee
is composed of multiple types of musculoskeletal tissue,
consisting of three cartilage and corresponding bone compo-
nents that make up the overall structure of the knee. Their
anatomical geometry changes significantly across the image
slices [23]. An effective medical frame image synthesis that
can maintain training stability and capture the minute details
of irregular knee structure poses a major challenge that has
never been encountered before. Hence, a novel DEEPFAKE
image synthesis of the knee profile via hierarchical frame-
work has been designed and proposed. In summary, the main
contributions of this paper include:

1. To propose an Enhanced-GAN, which is capable to
generate DEEPFAKE knee images at 256 x 256 reso-
lution of realistic DEEPFAKE knee images. The use of
self-attention layer enables Enhanced-GAN to learn the
finest features and patterns from given data. Moreover,
spectral normalization is also used to further improve
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FIGURE 1. Knee structure with Patella (P), Femur (F), Tibia (T), Patellar cartilage (PC), Femoral cartilage (FC) and Tibial cartilage (TC) (a). Knee
structure components such as knee bone, cartilage, muscles and ligaments have changing anatomical geometry given in (b) to (i).

stability during training of high-resolution images with
Enhanced-GAN.

2. Instead of the Inception Score and Frechet Incep-
tion Distance applied to most assessment of natural
images, probability-based Mode Score and AM Score
are adopted to assess the performance of the proposed
Enhanced-GAN framework.

3. The DEEPFAKE data from Enhanced-GAN is used as
augmentation data for the knee cartilage segmentation
task using U-net and to compare its performance with
PGGAN DEEPFAKE synthesized data using the dice-
coefficient [24].

Il. MATERIALS AND METHODS

A. IMAGE DATASETS

The study has comprised of 75 normal knee image datasets.
MR image data has been acquired by using 3.0 Tesla
(T) MRI Scanner (Siemens Magnetom Trio, Erlangen, Ger-
many) with quadrature transmit-receive knee coil (USA
Instruments, Aurora, OH). Dual Echo Steady State (DESS)
with Water Excitation (WE) imaging sequence was selected.
All knee image datasets have been chosen randomly from
the Osteoarthritis Initiative (OAI) database. The images have
section thickness of 0.7 mm and an in-plane resolution of
0.365 x 0.365 mm? (field of view = 140 x 140 mm,
flip angle = 25°, TR/TE = 16.3/4.7 msec, matrix size =
384 x 384mm, bandwidth = 185 Hz/pixel). Additionally
these datasets were also annotated using Slicer Software [25]
in which FC, TC and PC were labeled.

B. ENHANCED-GAN

In order to improve the DEEPFAKE data synthesis task, this
paper suggests optimizing it as another variant of PGGAN.
The PGGAN is enhanced by adding a self-attention layer and
spectral normalization to improve stability during training by
capturing the finest and detailed features and patterns in high
resolution images. It defines to identify class preserving vari-
ations to generate valid and representative samples from knee
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images with its respective segmentation masks. These sam-
ples can be used by both academics and industrial researchers
to augment data from prospective medical imaging of the
knee. Thus, this improvement of PGGAN proves to be the
solution to the medical image data augmentation problem.

Initially, the discriminator of the PGGAN model is trained
at a relatively low resolution of 8 x 8 layers, which is then
gradually evolved with 2" which means resolution of each
layers will grow according to this formula 2" from 8 x 8 to
16 x 16 onward to 32 x 32 and so on, until it settles reaching
the 256 x 256 layer. The input data with fixed size low
resolution are centrally cropped to get the above mentioned
resolutions. This gradual expansion of the model makes it
easier for the layers to learn different variants, styles and
classes of an image. The model does not require the layers
to learn how to draw a linear vector of different size of the
images, either 256 x 256 or 512 x 512, and instead starts
learning gradually with lower resolution images starting at
8 x 8,16 x 16, 32 x 32 to reach a resolution of 256 x 256.

The fadeout block in the PGGAN helps to smooth out the
process of up-scaling across the image dimensions during
training at each resolution while using the WGAN loss func-
tion [26]. After scaling, a new layer is created by merging
the weights of the previous layer as input and grouping them
together using the weighted sum [27]. Then a self-attention
layer is added to capture the long-range dependencies of the
image to generate an accurate image with a large number
of categories. In addition, the training process is normal-
ized by adding spectral normalization in the discriminator to
improve the training stability and image generation quality of
PGGAN. An overview of PGGAN and Enhanced-GAN is as
shown in Figure 2 and Figure 3 respectively.

C. LEARNING FINEST FEATURE USING ATTENTION

In most of high resolution images research, PGGAN has been
used in medical image synthesis tasks [28]. They have used
convolution layers to create PGGAN model. Unfortunately,
there is a problem with the convolution layer architecture.
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FIGURE 2. Overview of PGGAN.
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FIGURE 3. Overview of Enhanced PGGAN.

Convolution layers process data in a local neighbourhood
which is a big drawback of convolution layers because
it makes the model learning difficult and computationally
expensive with images that contain long-range of classes.
Accordingly, we rely on adding the self-attention block by
the authors of [29] in PGGAN framework which enables the
generator to synthesize an image in which specific details
at different locations are carefully coordinated with similar
features in the far away portion of the image. Furthermore,
it allows the discriminator to distinguish those regions of the
image, and to filter the response of the feature to maintain
only the activation relevant to the specific task. Therefore,
in our Enhanced-GAN, details can be generated from the fea-
tures in the image. Besides this, the discriminator is capable
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to identify the highly detailed features in distinct and those
areas of the image that are consistent. Figure 4 illustrates the
architecture of self-attention layer or block.

Where we define x = {x}ﬁ1 as the feature maps obtained
in the previous convolution layer. The feature maps feed as
input is translated into two feature spaces f, g to compute the
attention, where f (x) = Wyx, g(x) = Wex

expsij
Bi= v 3
i1 e (s7)

where S(j, i) is an attention map that indicates the extent to
which the model attends to the jth location when synthesizing

the jth region. The output of the self-attention layer is defined
as:

{where sij = f(x) g(xp) (1)

N
0j=> H(x)Bji [where H(x;)= Wix; )

i=1
In the above equations, Wy, W, and W), are the weight
matrices of the 1 x 1 convolutional layer. To enable the
generator to learn the local dependency of the image as well
as the global long-range dependence, we multiply the output
of the self-attention layer o;, which is the weight coefficient y
and add it to the input feature map x; to obtain the final output
of the module of the self-attention y; as given in Equation (3).

Vi =Y0j + Xi 3)

D. TRAINING STABILITY VIA SPECTRAL NORMALIZATION
The Spectral Normalization has been adopted to stabi-
lize GAN training embedded in the discriminator block
of GAN [30]. Spectral Normalization takes advantage of
the spectral criterion on the discriminator block parame-
ter matrix. Thus, the network satisfies the Lipshitz con-
straints, therefore smoothing the Discrimator block parameter
to achieve stabilized training.

Spectral Normalization initializes random vector of real
values in the beginning. Then for each update and each layer,
it performs three tasks: first, it normalizes weights by apply-
ing the power iteration method; secondly, it computes the
spectral norm, and third, it updates the weight using stochas-
tic gradient descent on mini batch dataset. This enables to
train the model to be stable and smooth until it converges.

Ill. RESULTS
A. EXPERIMENTAL SETTINGS
In this experiment, the Enhanced-GAN framework is com-
pared with state-of-art PGGAN. A total of 30 dataset or
4800 training slices or images have been used. Enhanced-
GAN performance is evaluated with two performance metrics
as:

1) AM Score.

2) Mode Score

The AM Score is based on the idea to evaluate any sort of
GAN synthetic data on the classifier other than pre-trained
on Imagenet as proposed in [31]. The pre-trained Imagenet
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FIGURE 4. Diagram of attention mechanism within the Enhanced-GAN architecture. The attention feature convolution map is a result of matrix
multiplication between the attention map, g(j, /) and third feature space, h(x) and 1 x 1 convolution filter.

classifiers used by Inception Score for evaluation. Inception
Score works fine for natural images but fails on the evaluation
of medical images. Thus, we have trained the classifier on
30 knee images dataset in which each dataset containing
160 slices, and each slice represents a single class. Mathemat-
ically, the AM score can be represented as given in Equation

4):
KL(p(y)|Ip(») + ExH (y/x) “4)

where p(y*) is the empirical label distribution derived from
the training data, and p(y) represents marginal distribution,
and H(y/x) represents the entropy of the predicted class label
for sample image x. The AM score primarily calculates the
image quality value, and a low AM score value indicates that
the image is of good quality [32].

We have evaluated the same classifier features with mode
score computation. Mode score can quantify the difference
between real data and generated data using term Kullback—
Leibler (KL) [33]. Mode score calculates two aspects of sam-
ples, quality and diversified variety. Mathematically Mode
score can be expressed as given in Equation (5):

Exp(ExKL(p(y[0)|lp(»)) — KL (1)) &)

where p(ylx) is a classifier output trained on knee real images.
High Mode score indicates high quality of images and more
versatility in synthetic images.

B. EVALUATION OF SYNTHETIC IMAGE QUALITY

The assessment of realism between real knee images and
DEEPFAKE is presented in Table 1. The results suggested
both PGGAN and Enhanced-GAN have been improved via
training from 8 x 8 up to 256 x 256. Table 1 shows a
comparison after training for each layer with best mode and
AM scores recorded of every layer. In the 8 x 8 layer,
a low AM score of 1.4632 is recorded which reached to AM
score of 3.0349 for 128 x 128 layer image samples. The
deployment of self-attention layer after the 128 x 128 layer
reduced the AM score for the 256 x 256 layer to decrease

VOLUME 10, 2022

instead of increasing it because with increasing resolution, the
evaluation metrics evaluating synthetic quality also become
worse [34]. Thus, the self attention layer has made it possible
to obtain additional information in image that the convolution
layer in the PGGAN has missed.

The images AM score and Mode Score generated during
different iterations of training the 256 x 256 and 128 x
128 layers are given in Table 2 and Table 3. In these iterations,
the AM and Mode Score are recorded to help determine the
valuable information acquired by these images samples as
visible to human eye. In addition, the self-attention layer is
implemented between the 128 x 128 and 256 x 256 layers.
The use of self-attention layer in this position is due to its
better performance on the high resolution images. Using
Self-attention layer in low resolution layers gives almost
equal results like convolution layer. These AM and Mode
Score of the synthetic images are compared with PGGAN in
Table 2.

It can be noticed from the values in Table 3 that our model
performs better than PGGAN. For good synthetic images, the
AM score should be low and the Mode score should be high.
Our model has an AM score of 3.0100, and the Mode score
is 0.9950 while PGGAN has AM score of 3.2654 and Mode
score is 0.9843 for images with a resolution of 128 x 128 at
190K iteration, outperforming the PGGAN model. At 114K
our model tends towards mode collapse as its Mode Score
worsened compared to PGGAN. This means that the varieties
in generated samples are lower those at 114K iteration for
Enhanced-GAN than for the PGGAN model. However, at the
level of 152K iterations the Mode Score is recovered.

Table 3 shows the training results from our Enhanced-GAN
when compared with those of the PGGAN model using the
AM score and Mode Score for the 256 x 256 resolution
layer, and our proposed model clearly outperforms PGGAN
at different iteration levels. We have compared the AM Score
and Mode scores of the 256 x 256 layer of our model with
PGGAN at different iteration levels. To get good synthetic
images, the AM score should be low and the Mode score
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(w) ®)

FIGURE 5. Comparison of real MR image of knee (a) to (f) against synthetic knee image at 128 x 128 scale (g) to (I) and 256 x 256 scale (m) to (r).
Failure cases were indicated by red arrows in PGGAN (s) to (w) and by red box in Enhanced-GAN (x).

should be high, for our model at every iteration it outperforms
PGGAN, for example, the proposed model AM score is
3.0667 and Mode score is 0.9641 with 228K iterations which
is better than PGGAN results for 256 x 256 resolution images
at iteration of 228K.

Table 2 and Table 3 are utilizing AM and Mode Score
for different layers to compare with similar results for
the Enhanced-GAN and PGGAN during training while
Table 1 shows the comparison after training. It can be seen
clearly from Table 1, that AM score increases horizontally
layer by layer for the 8 x 8 layer images sample. In this
layer, a low AM score of 1.4632 is recorded which reaches
an AM score of 3.0349 for the 128 x 128 layer image
samples. The deployment of self-attention layer after 128 x
128 layer reduced the AM score of 256 x 256 layer instead
of increasing it. Thus, the self attention layer has made it
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possible to obtain additional information in the image that
were missed by the convolution layer in PGGAN [34].

On the other hand, the Mode Score depends not only on
the quality of the image but also dependent on its diversity of
variety. The score fluctuates strangely in Table 1 at different
layers. But the model at the desired layer of 256 x 256 layer
achieves higher value producing quality results with more
variety.

C. EFFECT OF DEEPFAKE ON SEGMENTATION MODEL

The U-net [35] is tuned to serve as a segmentation model
to simulate the diagnostic decision-making process on seg-
mentation of different cartilage boundaries of the selected

knee images. The U-net model is trained on our real dataset
and DEEPFAKE synthesized dataset of Enhanced-GAN and
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TABLE 1. Best AM scores and Mode Scores For every layer of Enhanced-GAN and PGGAN of synthetic images.

Models Layers 8x8 16x16 32x32 64x64 128x128  256x256

PGGAN AM 1.8005 1.8901 2.5456  2.9053 3.0357 3.0490
Mode Score  0.9545 09762  0.8125 0.8382 0.9220 1.1009

Enhanced-GAN AM 14632  1.7624  2.1915  2.6440 3.0349 3.0250
Mode Score  0.9769  1.0623  0.8566  0.8680 0.9540 1.1256

TABLE 2. Assessment of image quality between Enhanced-GAN and PGGAN synthetic DEEPFAKE knee images at 128 x 128 layer.

Models Iteration 38K 76K 114K 152K 190K 228K
PGGAN AM 3319062 3.3208 3.2891 3.3513 3.2654 2.6109
Mode Score  0.8832 0.9815 0.9678 0.8909 0.9843  1.0090
Enhanced-GAN AM 3.1794 3.0085 3.0741 3.0250 3.0100 2.4190
Mode Score  1.01123 1.0257 09904 1.1256 0.9950 1.3833

TABLE 3. Assessment of image quality between Enhanced-GAN and PGGAN synthetic DEEPFAKE knee images at 256 x 256 layer.

Models Iteration 38K 76K 114K 152K 190K 228K
PGGAN AM 3.2190  3.1998  3.1349 3.2047 3.2245 3.2041
Mode Score  0.7854  0.8417 0.8671 0.8086 0.7754  0.8234
Enhanced-GAN AM 3.1263  3.0391  3.1248 3.0937 3.0731 3.0667
Mode Score  0.8054 1.0188 0.8031 0.8266 0.9613  0.9641

TABLE 4. Average dice co-efficient Score of U-net model.

Schemas  Dice-Coefficient
A 0.8357
B 0.8249
C 0.8469

PGGAN, while Dice-Coefficient(DC) [24] is adopted as per-
formance metric.

The masks corresponding to the DEEPFAKE synthesized
knee images are generated by PGGAN and by Enhanced-
GAN. The DEEPFAKE synthesized knee image is concate-
nated with its mask channel by channel, resulting in 384 x
384 x 2 instead of 384 x 384 x 1 images. The generated knee
images and their corresponding mask samples are as shown in
Figure 6. The dice coefficient is applied as assessment metric
to evaluate performance of segmentation model as listed in
Table 4.

The U-net model has been trained three times, namely:
firstly it is trained on the original data denoted as Schema-A,
secondly, it is trained on the original data with PGGAN
DEEPFAKE synthesized data denoted as Schema-B, and
thirdly, it is trained on the original data with DEEPFAKE
Enhanced-GAN synthesized data denoted as Schema-C in
Table 4. It can be observed that the average dice-coefficient
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FIGURE 6. Synthesized knee image with its corresponding masks using
Enhanced-GAN. Upper Row consist of synthesized Knee image and lower
row consists of their Corresponding mask.

score of Schema-C is better when compared to other schemas.
The average dice-coefficient scores have been recorded for
unseen test 10 slices or images of knee datasets.

IV. DISCUSSION
This is a novel work on GAN-based DEEPFAKE image
synthesis framework as it helps in augmentation of data for
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supervised deep learning algorithms. The training perfor-
mance of Enhanced-GAN has been compared with state-of-
art PGGAN using relevant scales. Next, we have evaluated the
difference in data distribution between Enhanced-GAN and
PGGAN knee images using AM and Mode scores. Finally,
we have validated the efficacy of enhanced data using a super-
vised segmentation model and an image of the synthetic knee
with annotation at a resolution of 256 x 256. The knee image
synthesis is a challenging task due to its complex structure
and diverse anatomical geometry [36], [37]. The proposed
framework has succeeded in producing realistic DEEPFAKE
images through the use of spectral normalization technique.
Below, we describe the main lessons learned from this work.

First, synthetic DEEPFAKE knee images are useful for
segmentation tasks. One potential application involves diver-
sifying real training data with synthetic data to improve
robustness of a supervised deep learning model. Accordingly,
three training configurations of real data alone, synthetic
DEEPFAKE data only, and real-synthetic DEEPFAKE data
combined, have been used to augment the training data of the
U-net segmentation model [38]. The same configuration is
also present in our study but with slight change. In a single
configuration we have used PGGAN Real-synthetic DEEP-
FAKE images instead of only synthetic DEEPFAKE images
and it proves that Enhanced-GAN Real-synthetic DEEP-
FAKE training images configuration had reported superior
performance compared to previous two configurations. Given
the growing number of research works on medical image
segmentation using supervised deep learning models [39],
further investigations based on their findings will benefit the
supervised deep learning models.

Second, the optimization of GAN training remains an
active research topic with its attractive potential applica-
tions. The choice of normalization techniques has a profound
effect on the quality of image synthesis. For instance, the
use of standalone spectral (or pixel) in Discriminator and
spectral (or pixel) in Generator normalization have produced
low quality knee images with background blur or minimal
contrast as shown in Figure 7, which cannot be adopted
into subsequent deep learning segmentation models. Based
on the training data during different iterations recorded in
Table 2 and Table 3 in this study, it is evident that PGGAN
suffers from training instability as traditional GANSs tend to
experience mode collapse and fading gradient issues during
training process. After deploying the improvements to model
the training stability and salient feature of Enhanced-GAN
manages to successfully avoid mode collapse even at 128 x
128 layer between 114k and 152k iterations.

Third, StyleGAN [40] is an extension of PGGAN.
It has generated high-resolution features in natural images.
Recently, it has been extended to synthesize CT and MR
images [41]. However, the implementation of StyleGAN is
limited by its extremely heavy computation. It is useless
to apply it to common medical image synthesis. Attention
layer has been employed in our Enhanced-GAN framework
as alternative. Our quantitative results have suggested that the
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FIGURE 7. Synthetic knee images generated by HieGAN by using different
normalization technique configuration in generator (G) and discriminator
(D). (a) G: Spectral; D: Spectral, (b) G: Pixelwise; D: Pixelwise, (c) G:
Pixelwise; D: Spectral.

images have achieved a high degree of realism, especially at
256 x 256 resolution. The attention layer has successfully
guided the discriminator to pay more attention to the various
features of knee images in order to compel the generator
to create high resolution images with detailed information.
Specifically, the overall image brightness is preserved, the
boundaries of cartilage-bone interface are well-preserved, the
contrast between bone, cartilage and background is made
clear, and the anatomical shape and size of cartilage and bone
are conserved.

On the other hand, we have detected failure cases from
samples generated by PGGAN. As such, PGGAN have pro-
duced seriously deformed knee structures wherein the fea-
tures of the femur and tibia have been altered. Moreover, the
boundary between femur and surrounding musculoskeletal
tissues is excessively diffused in several samples. The fail-
ure samples with severe deformation can potentially mislead
the learning of deep learning models. Nonetheless, we also
have observed minor irregularity in one sample produced by
Enhanced-GAN. The proposed model failed to distinguish
between shrinking femur and tibia from the background mus-
culoskeletal tissues. The boundary between knee bones and
background is considered blur. These failure cases provide
us with valuable insights to improve the model in the future.

CelebA dataset which is the dataset consisting of various
celebrity faces as shown in Figure 8, is used as a second
dataset. It is also synthesized for DEEPFAKE images of
human faces at a resolution of 64 x 64 as shown in Figure 9,
and it has been observed that proposed model has synthe-
sized such images which are so real but deepfaked enough
that they do not belong to any body in the world and these
images can be used to abuse usage [42]. However, on the
other hand in medical image analysis these DEEPFAKE
images help in applications such as data augmentation [43],
reconstruction [44], inter-modalities translation [45]. These
deepfaked images have been synthesized by Enhanced-GAN
in such a way that it learns the feature from training data
or Celebrity dataset and synthesize DEEPFAKE data accord-
ingly. Besides, we have decided to generate the DEEPFAKE
human faces image up to 64 x 64 scale in order to better
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FIGURE 8. Various Celebrities Images from CELEBA dataset.

Mode score=5.40
AM score=0.81

Mode score=5.90
AM score=0.91

Mode score=5.53
AM score=0.84

(a)

AM score=0.91

Mode score=5.90

(b)

FIGURE 9. (a) Synthetic DEEPFAKE Face images generated by Enhanced-GAN from Different grids having different scores. (b) Each grid Synthetic
DEEPFAKE face images from Enhanced-GAN consists of 64 images with 64 x 64 resolution.

understand the balanced results considering the recognition
of salient features and acceptable image resolution. In future,
we will propose a deep learning model detection algorithm
which will help in detecting fake images that can be used for
misleading objectives in social life.

V. CONCLUSION

In this paper, a novel method Enhanced-GAN has been capa-
ble to generate real-looking and high resolution DEEPFAKE
images with perfect class recognition details (cartilage, bone,
background, etc) compared to the already available and a
widely used PGGAN architecture to generate high resolu-
tion images. Enhanced-GAN is developed by incorporating
self-attention layer with convolution layer alongside spectral
normalization in the discriminator and pixel normalization in
the generator. We then evaluate Enhanced-GAN by means of

VOLUME 10, 2022

two parameters AM and Mode scores, at 128 and 256 res-
olution images of Enhanced-GAN have shown to be higher
than PGGAN. With a resolution of 128 x 128 during 114K
iterations, Enhanced-GAN tends towards mode collapse as
its mode score has worsened compared to PGGAN which
affects training to some extent but later at 152K iteration
it is recovered. Lastly, DEEPFAKE synthesized data from
proposed Enhanced-GAN and PGGAN is then used as data
augmentation with real data for U-net segmentation model,
to prove its performance and evaluate U-net segmentation
model using Dice-Coefficient. The score at Schema-C in
which real and Enhanced-GAN DEEPFAKE synthesized data
has been mixed equally higher compared to Schema-B and
Schema-A. In future, generation of synthetic human face
images at higher resolution of 256 x 256 and 512 x 512 will
be attempted, we have achieved 64 x 64 resolution synthetic
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human face images as shown in figure 8 and figure 9 to see
how well it works on natural images with three channels.
We have already started working on generating high reso-
lution human face images and we will analyze these syn-
thetic DEEPFAKE natural image (Human face) and synthetic
DEEPFAKE medical images(Knee MR images) results using
DEEPFAKE detecting algorithms based on deep learning and
non-deep learning.
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