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ABSTRACT Urbanization is bringing together various modes of transport, and with that, there are challenges
to maintaining the safety of all road users, especially vulnerable road users (VRUs). There is a need for street
designs that encourages cooperation between road users. Shared space is a street design approach that softens
the demarcation of vehicles and pedestrian traffic by reducing traffic rules, traffic signals, road marking, and
regulations. Understanding the interactions and trajectory formations of various VRUs will facilitate the
design of safer shared spaces. In line with this goal, this paper aims to develop a methodology for generating
VRUs trajectories that accounts for behaviors and social interactions. We develop a receding horizon
optimization-based pedestrian trajectory planning algorithm capable of modeling pedestrian trajectories in a
variety of shared space scenarios. Focusing on three scenarios-group interactions, unidirectional interaction,
and fixed obstacle interaction-case studies are performed to demonstrate the strengths of the resulting
generative model. Additionally, generated trajectories are validated using two benchmark datasets — DUT
and TrajNet4-+. The three case studies are shown to yield low or near-zero Mean Euclidean Distance and
Final Displacement Error values supporting the performance validity of the models. We also analyze gait
parameters (step length and step frequency) to further demonstrate the model’s capability at generating
realistic pedestrian trajectories.

INDEX TERMS Optimization, mixed integer linear programming, shared space, social interaction rules,

trajectory-planning, vulnerable road users, urban design and planning.

I. INTRODUCTION

The last few decades have witnessed an unprecedented
growth of cities; one recent report [1] indicates that by 2050
70% of the world’s population will be living in metropoli-
tan regions. Questions regarding sustainability and evolving
community demands have prompted the need for transporta-
tion policy and urban planning to transition from a narrow
automobile-centric perspective to one that recognizes and
accounts for alternative forms of active mobility [2]. Vulnera-
ble road users (VRUs), namely (but not limited to) pedestrians
and cyclists, are active traffic agents who are unprotected by
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an outside shield [3]. In the August 2021 research note [4]
the National Highway Traffic Safety Administration indi-
cated an increasing trend in VRU fatalities, both in abso-
lute number and proportion, since 2000. Meanwhile, on a
per-capita basis and per-vehicle-mile traveled, motor-vehicle
deaths have decreased by almost 25% and 30% between
2000 and 2019 [5].

As the increasing trend in VRU fatalities is concerning,
urban planners are also motivated to redesign roadways and
traffic infrastructure to provide more equitable access to
users, which has led to the introduction of shared spaces or
‘woonerf’-a Dutch term meaning living streets. As depicted
in Figure 1, shared spaces provide for VRUs and cars to make
use of a common physical space without the conventional
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safety systems of traffic lights, curbs, stop signs, and traffic
rules [6]. When operating in shared spaces all road-users
must remain alert, attentive, communicative, and responsive
to each other. Such urban street design concepts aim to pro-
mote active mobility, alleviate congestion, and optimize the
efficient utilization of intelligent transportation systems [7].
However, with the transformation of city streets into shared
spaces, it becomes essential to identify the traffic safety
challenges in shared spaces.

Among all VRUs and active mobility options, pedestrian s
are the most common and vulnerable. In fact, recent reports
state there has been an increase of 53% in pedestrian fatal-
ities during the last ten years [8], [9]. Hence, it becomes
imperative to study pedestrian mobility in shared space and
identify the safety challenges, which primarily depends on the
understanding of pedestrian behavior when interacting with
and amongst mixed traffic.

FIGURE 1. A Shared space concept-Woonerf-where the distinction
between various modes of transportation is blurred. There is absence of
sidewalks, curbs, lanes. Woonerf is a living street with improved safety
for VRUs.

Pedestrian trajectories are the result of a closed-loop
decision-making process that accounts for several fac-
tors such as physical, mental, psychological, and static
and dynamic environmental conditions. Since the last two
decades of twentieth century, significant effort has been
placed into understanding and modeling pedestrian behav-
iors [10], [11], movements [12], and trajectories [13]. For
an extensive survey focusing on pedestrian motion analysis
one can refer to [14]-[17]. Effective modeling of pedestrian
behaviors and their motions requires large observational data
to capture minute intricacies. Recent advances in sensing
and communication have led to an increased availability of
pedestrian motion data which is assisting in the understanding
pedestrian behaviors [18].

One common approach for studying pedestrian traf-
fic is through simulation. There are sustained efforts by
researchers and traffic agencies to develop realistic and prac-
tical pedestrian simulation models [19]-[24]. Developing
pedestrian simulation models span many approaches, with
noteworthy efforts making use of agent-based modeling tech-
niques [25] and cellular automaton-based techniques [26],
[27]. The availability of reliable datasets [28] has also enabled
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machine learning algorithms to learn and predict pedestrian
trajectories [29].

A realistic pedestrian generative and simulation model
requires consideration of human behavior and interaction
rules. However, a careful investigation of the above men-
tioned literature reveals that there are two critical gaps in
the existing pedestrian trajectory modeling and simulation
approaches that limit their application to the previously dis-
cussed needs. First, current approaches do not effectively
consider scenario specific pedestrian walking behavior, the
nature of interactions, group interactions, and route opti-
mization. Secondly, there is a lack of a well-defined yet
flexible parameterized model that requires minimal training
data while remaining transferable amongst broad classes of
environments and scenarios.

In this paper, we report on the development of a gener-
ative pedestrian trajectory planning model within an opti-
mization framework that considers human walking behaviors.
The resulting approach uses mixed-integer linear program-
ming (MILP) coupled with receding horizon control (RHC)
for trajectory generation while computing dynamically feasi-
ble state and control actions. The proposed generative pedes-
trian trajectory model is a white-box model, whereby the
cost function and constraints for a given scenario are not
only observable, but can also be easily modified to reflect
different scenarios of pedestrian movements and interac-
tions. Moreover, the resulting model is designed to incorpo-
rate realistic pedestrian interaction traits by considering how
pedestrians (agents) interact within a group and with their
surrounding environment-e.g., during the group movement
and interaction with a fixed obstacle. When evaluated against
the Dalian University of Technology (DUT) and TrajNet++
benchmark datasets, we demonstrate that generated trajecto-
ries maintain near-zero Mean Euclidean Distance and Final
Displacement Error with actual trajectories, thereby support-
ing and indicating validity of the model.

A. CONTRIBUTIONS

Trajectory control and modeling based on MILP optimiza-
tion provides fast computational speed, which explains its
successful application in robotics motion planning. To the
best knowledge of authors, this is the first research effort to
utilize mixed-integer linear programming embedded within
RHC optimization for pedestrian-centric modeling. Through
our research we are bringing together the domain of oper-
ations research, urban transportation, and pedestrian behav-
ioral studies. The corresponding contributions are as follows:

o The proposed methodology successfully predicts time-
efficient, dynamically-feasible, and realistic pedestrian
group trajectories for given scenarios.

e When considering pedestrian trajectories within
obstacle-free environments, the problem formulation is
convex, and hence, global optimality of solutions is
guaranteed.

« The methodology involves few parameters (all of which
are adjustable according to need) that can be estimated
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even with limited data availability or drawn from distri-
butions to create randomly generated scenarios.

o The proposed methodology is robust and generic-
meaning that the parameters estimated for one location
serve well for others as well.

o A variety of group walking behavioral traits and colli-
sion avoidance scenarios are considered.

« The proposed receding horizon optimization-based tra-
jectory planning approach can adapt to the uncertainties
in the environment as the model plans the trajectory
and the interactions among agents at the current time as
well over a next few time-steps (i.e. over the planning
horizon).

B. APPLICATION

The pedestrian trajectory planning model serves as a strong
simulation model due to its white-box design while main-
taining validity. Given the formulation and ability of the
model, it is expected to be utilized by urban planners to test
and evaluate various traffic scenarios and designs related to
shared spaces with the goal of enabling efficient transporta-
tion management supporting active mobility.

The remainder of this paper is divided into six sections.
Section 2 presents a literature review of the existing research
in pedestrian modeling and highlights key research gaps.
Section 3 includes the basic introduction to the mathematical
concepts of convex-optimization, MILP, and RHC. Also, the
problem formulation details and proposed methodology are
explained in Section 3. Section 4 discusses implementation
details. Section 5 covers the model calibration and model val-
idation by performing three case studies using the dataset col-
lected at a university campus [30]. Section 6 presents the case
studies and the model’s cross-validation on TrajNet++ [31].
Finally, the work’s significance, impact, and key findings,
along with future work are summarized in Section 7.

Il. LITERATURE REVIEW

There are several important aspects of pedestrian mobility to
consider when designing a modeling approach, they include:
individual walking behaviors, group behaviors, crowd inter-
actions, interaction with other traffic agents (e.g. cyclists
and scooters), and interaction with the environment. Over-
all, understanding and modeling pedestrian motion requires
consideration of both the macro and micro-movement char-
acteristics [32], [33].

A. EVOLUTION OF PEDESTRIAN MODELS

Many pedestrian trajectory simulation models rely on the
physics-based and the cellular automata-based modeling
approaches [34]. Physics-based modeling approaches treat
pedestrians as particles, and their interactions with other ele-
ments are estimated by considering different exerted phys-
ical forces. The updates to pedestrian trajectories depend
on the direction and magnitude of the resulting force. The
Social Force Model, developed by Helbing and Molnar in
1995 [35] was the first physics-based modeling approach
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considered to design a pedestrian mobility model. The social
forces-attractive and repulsive forces-reflected the pedestrian
interaction with the environment.

The cellular automata method employs a discrete spatial
representation of the environment, whereby the environment
is divided into cells of fixed size that can only be occupied
by one pedestrian at a time. The pedestrian moves from one
cell to another depending on pre-defined transitional rules
(primarily dependent on a probability of choosing the target
cell). The cellular automata modeling approach was applied
by Blue and Adler [36] to build pedestrian simulation models
for unidirectional flow, bidirectional flow, and extended the
work to four-directional pedestrian flows [13], [37].

Other modeling approaches utilize concepts such as fuzzy
logic, gas-kinetic model, control methods, and utility maxi-
mization (Hoogendoorn and Bovy’s Nomas Model) [38]. The
corresponding simulation models provided an excellent plat-
form for performing evacuation studies and understanding
large-scale crowd behavior; however, applications requiring
a detailed understanding of pedestrian behavior and precise
outputs cannot be tested. These limitations were originally
associated with the limited availability of pedestrian datasets.
At the start of the twenty-first century computer vision, along
with pattern recognition techniques, has helped to create
databases [28], [39] which support understanding and char-
acterizing human interaction behavior [18], [40], [41]. That
said, simulation or recreation of realistic pedestrian walking
behavior is not a trivial task, as pedestrian walking behavior
depends on the context, spatial configuration, obstacle avoid-
ance, and group interactions [42], [43].

Application of agent-based modeling (ABM) techniques
have been used to develop pedestrian trajectory simula-
tions [25], [44]. Agent-based modeling supports simulation
models capable of including pedestrian walking behavior
rules while interacting with the environment, thereby result-
ing in better realizations [45]. One of the first attempts
to apply ABM techniques was the STREETS model [46].
The STREETS model demonstrated that every agent could
be represented as having unique behavioral characteristics,
like speed, direction, and visual range, allowing for real-
istic simulations. The research by Helbing in 2012 [25]
highlighted the ability of agent-based modeling in handling
heterogeneous pedestrian systems, specifically when analyz-
ing different agent types and different pedestrian behaviors,
and when performing both microscopic and macroscopic
studies of various traffic scenarios. However, in ABM, each
agent takes the instantaneous information of the traffic
social forces, and respond to that at that instant. There is
no planning for the next few time-steps involved in ABM
approaches.

Other studies have performed detailed pedestrian behav-
ioral studies [47], [48] and estimated pedestrian gait param-
eters [49]. These studies have considered case scenarios
at signalized and non-signalized crosswalks, and at rail-
way stations, along with behavioral changes with group
size, age, and gender. Defining the environment and its key
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contextual factors are required to effectively study and ana-
lyze scenarios of interest. An agent’s inherent characteristics
and behaviors towards the considered environment has to
be carefully embedded in any model to achieve the model
objectives [50], [51].

B. HUMAN TRAJECTORY PREDICTION

Predicting the future positions of pedestrians, along with tra-
jectory planning, has become increasingly important to stud-
ies related to autonomous vehicles, robotics, and advanced
surveillance systems. The papers [29] and [52] provides
a detailed survey of research works based on human
motion planning and prediction. Examples include trajec-
tory forecasting frameworks that predict trajectories based on
observed partial trajectories or from observed agents’ states
such as position, velocity [53], [54]. There are also recent
works based on deep learning-based algorithms [55], [56]
for pedestrian trajectory prediction, this includes [31] which
presents a detailed analysis of existing deep learning-based
human trajectory forecasting models. The aforementioned
paper also proposes two new models that effectively consider
social interactions and forecast trajectories.

C. RESEARCH GAPS

The Social Force Model and cellular automata modeling
has been successfully applied to existing pedestrian simu-
lation models, many of which are still being used today
in their design and decision-making process. However, a
key shortcoming of many existing models is that they lack
sufficient consideration of pedestrian interactions, and there-
fore they are not capable of capturing critical and common-
place behaviors, especially in shared spaces. On the other
hand, ABM approaches incorporate behavior and interaction
rules. However, ABM is often times overly complicated as
it involves numerous parameters that make them difficult
to extend to diverse agent-types and environments without
significant hand-tuning. Alternatively, models require a con-
siderable amount of data for training and parameter esti-
mation, making machine learning-based algorithms highly
data-dependent.

In summary, current approaches often have one or many of

the following limitations:

« Location specific and /or requires extensive calibration
for proper transferability.

e Make use of non-parametric (machine learning)
approaches that are black boxes in nature, relying on
large dataset. Meanwhile, parametric approaches (such
as ABM) often require large number of parameters, often
resulting in a complex, unintuitive model.

o ABM approaches lack the planning, i.e, how agents plan
for the trajectory for the next few time steps in the
presence of various social interactions.

o Learning-based models require a vast amount of data for
training or parameter estimation purposes. This can be
challenging when collected pedestrian data for training
is limited.
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lll. PROBLEM FORMULATION

In this section, the adopted receding horizon control
based (RHC) modeling framework is explained. The pedes-
trian trajectory planning and trajectory execution is devel-
oped at the foundation of RHC that incorporate pedestrian
behavioral rules and environment interaction rules. Next, the
MILP trajectory optimization embedded within a receding
horizon control loop is explained which serves as the primary
component by which pedestrian decision-making is modeled,
the detailed formulation of decision variables, constraints,
and private and common objective function is given.

A. MODELING FRAMEWORK

Our simulation framework begins by considering the general-
ized problem of multiple agents or pedestrians in the set &7,
traversing an environment with a set of obstacles &. When
moving about the environment, the pedestrians are further
sub-divided into groups of pedestrians or individual pedestri-
ans. That is to say, some of the pedestrians are walking alone,
while others might be walking together in groups. Consistent
with existing research on pedestrian behaviors, when walking
together, a group of pedestrians will naturally self-organize
into a moving cluster in which each person maintains a
relative separation between themselves and others in their
group. As depicted in Figure 2a, such a self-organized group
of pedestrians can be mathematically modeled as a moving
graph structure ¢ = (¥, &) where each node v; in the
vertex set 7 corresponds to the i pedestrian in the pedestrian
set &2. Meanwhile, the edge set & contains linkages (i, j)
between any two pedestrians i and j walking in the same
group that seeks to maintain fixed proximity with each other.
Accordingly, associated with each group of pedestrians are
desired separations, dl.‘ffs = (dilffes, dlfjd”) e R2, con-
sisting the lateral and longitudinal separation, between any
two pedestrians i and j, along the group’s direction of travel.
A pictorial representation of the induced graph structure
and desired separation distance between agents is illustrated
in Figure 2.

2 °
ﬁ 4 Way-points ﬁ °
A - &
.n® Dil‘ection le_IdES L 4
e of travel ' [l des
v di,j

(b) Desired separation be-

(a) Pedestrians walking in a group. ~ tween pedestrians.

FIGURE 2. Pedestrian groups walk towards a common way-point while
maintaining a desired separation from each other.

Within this framework, each pedestrian is associated with
a final destination. However, by means of reaching their
destination, the pedestrian will move through a series of
segments defined by an ordered set of way-points. For the
case of pedestrian i, the next desired way-point is given by w;.
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When located at position x;; in a global coordinate frame
at time-step 7, the direction of travel for the pedestrian is
given by the angle 6; = Z(w; — x; ;). When walking together
in a group, it is assumed that all pedestrians maintain the
same way-point goal. However, the goal is sufficiently far
away so that small angle approximations are permissible
when modeling the pedestrian dynamics. That is to say,
||9i — 9j|| < €, where € is small, for all pedestrians i and j
walking in the same group.

Consider the lower half of Figure 3 that considers a group
of pedestrians in the set &7, traversing an environment, with
a set of obstacles ¢, where each static obstacle o is located
at the position coordinates (p(?ff, pg};s) so that p(?b“ e R?vV
0o € O. When walking from one way-point to the next,
we assume pedestrians will become aware of changes in
their environment (e.g., the appearance of obstacles) or adjust
their path according to others in their walking group. In this
context, we focus our attention on the tasks of trajectory
planning and trajectory execution as each pedestrian moves
between way-points; that is to say, the broader path planning
problem of how pedestrians select way-points to arrive at their
final destination is not addressed. Nonetheless, the modeling
analogue of such a dynamic trajectory planning and execution

Receding Horizon Control
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FIGURE 3. Modeling of the trajectory planning and trajectory execution
process using a receding horizon control framework.
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process can be represented using a receding horizon control
framework.

The receding horizon control framework, as depicted in
Figure 3 begins with each pedestrian maintaining an aware-
ness of their next desired way-point, the local environment
(i.e., the obstacles), and the other pedestrians they are walking
with, if any. Based on these factors, the pedestrian will be
modeled to generate a path looking H), seconds into the
future, thereby establishing a planning-horizon. The pedes-
trian will begin to implement their planned path for a fixed
control-horizon of H. seconds, where H. <« H,. After
H. seconds, the process of planning ahead for H) seconds
is repeated, followed by executing the resulting plan. This
planning and execution process occurs ad infinitum until
the pedestrian has cleared the environment; again, at each
iteration, the pedestrian updates their estimate of the envi-
ronment and the location of other pedestrians in their group.
As the pedestrian reaches their desired way-point a new way-
point is set, and the process begins again. A summary of
the relevant parameters describing the receding horizon con-
trol framework for modeling pedestrian motion is provided
in Table 1.

TABLE 1. Relevant parameters describing the pedestrian simulation
model.

Symbol Meaning
I Set of pedestrians
o Set of obstacles
F Set of facets associated with obstacle o.
G =(V,8) Graph structure defining pedestrian
groups.
H, Planning horizon [seconds]
H, Control horizon [seconds]
Xit € R? X-Y position of the i pedestrian at time-
step £.
w; € R? Next way-point of the i pedestrian.
6; = Z(wi —xiy) Direction of travel of i pedestrian at
time-step 7.
dffjx = (d!;les,di{-j"”) € R? | The desired longitudinal and lateral sepa-
ration between pedestrians i and j along
their common direction of travel.

Within this paper, the goal is to develop and describe the
trajectory planning and trajectory execution processes at the
foundation of the receding horizon control framework used
to model pedestrians. And more specifically, to provide a
flexible representation that can be easily adapted to consider
other types of active mobility agents. Here, the planning
proces is modeled and solved using Mixed-Integer Linear
Programming (MILP). As part of the trajectory planning
process, the underlying MILP optimization model assumes
that each pedestrian maintains an accurate representation of
the world (i.e., knows the location of obstacles and their group
members); this information is encoded through constraint
equations that model pedestrian dynamics and obstacle con-
straints. As pedestrians walk within a group, we assume they
maintain private and common objectives. In this case, private
objectives can include or consider: walking speeds, distance
to obstacles, and time-to-arrival or distance-from-destination.
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Common objectives are associated with maintaining the mov-
ing graph structure discussed above, which is accomplished
by maintaining the desired separation distance between other
pedestrians in their group.

B. TRAJECTORY OPTIMIZATION

Within the receding horizon control framework introduced
in Section III-A is the MILP optimization, which serves as
the primary component by which pedestrian decision-making
is modeled. The MILP optimization seeks to represent the
private and common objectives and the dynamic and static
constraints associated with pedestrians as they move within
their environment. By clearly defining the objective functions
(and associated coefficients) along with any constraints, the
formulation, when solved, provides an optimal trajectory
representative of the goals and objectives of each individual
pedestrian. In this sub-section, details of the optimization for-
mulation is provided, beginning with introducing important
decision variables, followed by detailing of the constraint
equations, and finally, describing the private and common
objective functions for the pedestrians.

1) DECISION VARIABLES

For a given instantiation of the trajectory planning and exe-
cution cycle, each pedestrian i in the pedestrian set & is first
described according to their current x-y position x; s, € R? at
time-step 7y and their desired next way-point, w; € RZ2.
When optimizing the trajectories for H, seconds over the
planning horizon it is necessary to introduce new decision
variables representing the planned position and velocity of
each pedestrian. To distinguish between the actual position
of the pedestrians, x; ;, and the planned position of the pedes-
trians is denoted, z;xVk € {1,..., H,}, representing the
position of pedestrian i over H), seconds when using 1-second
increments. We also introduce the decision variables related
to the position, velocity, and acceleration of each pedestrian
relative to their direction of travel; for clarity, all decision
variables described according to the coordinate frame in
the direction of travel are indicted by the harpoon accent

(e.g. zix). Accordingly, the decision variables for the posi-
tion, velocity, and acceleration of pedestrian i in the rotated
coordinate frame along the direction of travel are given by

N NN NN N

Zik =J_ (Zi,k’ Zi,k)’ Vik = (vl»lyk, vi’k) and u;; =
(ﬁl.',k, 1, ), all defined over R2 Vk € {0, ..., H, — 1}; each
term inside the vectors corresponds to the longitudinal and
lateral values along the nominal direction of travel.

The distinction between the position of pedestrians in a
global coordinate frame versus a local coordination frame
assists in establishing constraints and objective costs related
to the position of pedestrians relative to obstacles and other
pedestrians in their group. When constructing optimization
constraints associated with obstacle avoidance, it is easiest
to describe these obstacle constraints using a common global
coordinate frame. Meanwhile, because the desired separation
between pedestrians walking in a group is described in a
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TABLE 2. Relevant decision variables for the pedestrian trajectory
planning optimization model.

Symbol
Zik € R?

Meaning
Planned position of pedestrian i at time-
step & in global X-Y coordinate frame

Xik= (?z“l\v?zk) €R? | Planned position of pedestrian i at time-
step k in rotated coordinate frame in di-
rection of travel

7\;1/( = (?l‘k?f—k) €R? | Planned velocity of pedestrian i at time-
' step k in rotated coordinate frame in di-

rection of travel

7,—,;{ = (7[” o 7},() €R? | Planned acceleration of pedestrian i at
' ' time-step k in rotated coordinate frame in
direction of travel

Binary variable used to indicated that
pedestrian i is outside of the boundary of
obstacle o, in reference to facet f of the

obstacle, at time-step k

bosik €{0,1}

relative frame, using a coordinate system aligned with this
relative coordinate frame is preferred. Similarly, velocity
and acceleration constraints for each pedestrian are easily
described in the local coordinate frame. Translation of the
pedestrian position at any time-step between the global and
a rotated local coordinate frame is possible using the linear
transformation

Zik =R(—=6)zix YkefO0,... ,H), — 1} (1)

where R(6;) is the standard rotation matrix

—sin6;
R®:) = [ c0]s€- l]
1

parameterized by the direction of travel 6;.
Based on the descriptions above a complete list of
decision-variables is provided in Table 2.

cos 0;
sin 9,'

2) DYNAMIC CONSTRAINT EQUATIONS

A portion of the constraint equations seek to represent the
dynamic constraints describing pedestrian motion. For the
i pedestrian the second-order discrete-time update equation
for their position relative to their direction of travel is given
by the set of constraints

N

<ik+1

N

Vik+l = Vik + Ui AT
and kef0,....H,— 1) )

= Zig+ Vik AT + 1/2u;  AT?

The discrete-time update equation in Equation (2) assumes a
regularly updating process that occurs at a regular time-step
of AT seconds (e.g. 1 sec, 5 sec), during which in between
time-stamps, the acceleration is asserted to be constant.

The motion of each pedestrian can also be constrained
according to their minimum and maximum walking velocity,
denoted by v;, ;, and their minimum and maximum accel-
eration. Applying the small angle approximation, whereby
it is assumed that the lateral velocity of pedestrians is small
compared to their longitudinal velocity, it is sufficient to write

N

ViS Vi =Vi

Vie 2. 3)
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In many cases, pedestrians can be restricted to only walk
forward so that v; > 0. In the case when the small angle
approximation is likely to be violated, it is possible to replace
the velocity constraint in Equation (3) with

N 2
” v,-,kﬂz <¥ Vie . @)

which corresponds to a convex quadratic constraint that can
be represented in CPLEX, CVX, or other commonly used
optimization solvers. The limitation of the constraint in Equa-
tion (4) is that non-zero minimum bounds on the magnitude
of the velocity (e.g. v; < H Vik ||§ < v;) cannot be enforced
without converting the constraint to be non-convex — thereby
making it unsolvable in CVX without significant approxima-
tions, or expansion and manipulation of the constraint. That
said, Equation (4) can be approximated using the £, or £g
norms, or can be approximated with a convex polygon.

Similar constraints on the acceleration rate of pedestrians
is also possible using similar representations. That is to say,
it is possible to include the acceleration constraint

”7“‘ Hz < Vie 2. )

3) OBSTACLE CONSTRAINT EQUATIONS

The potential presence of obstacles within the environment
requires pedestrians to plan their trajectories accordingly.
In contrast to the pedestrian constraints and cost equations,
the obstacle avoidance constraints are inherently non-convex.
Essentially, obstacle avoidance generates binary variables
and a set of constraints that correspond to moving left or right
around any obstacle relative to any given side or facet of the
obstacle. For a convex obstacle o that can be approximated
by a polygon with a set of facets, .%, = {l,..., F,}, it is
possible to define a set of linear constraints

hl vy < gy Vfe€F (6)

representing half-spaces that can be used to define the set of
points y € R? that are blocked by the obstacle.

For obstacle avoidance, the planned position of a pedes-
trian at any point in time, z; x, must be outside of the convex
polygon. In relation to a single facet f € %, of the polygon
representing obstacle o, the i’ pedestrian is outside of the
obstacle if their position at time-step k satisfies the constraint

8of — b ;xik <0 ™)

Accordingly, to avoid obstacle o, Equation (7) must hold true
for at least one of the facets f to ensure that the pedestrian is
located outside of the obstacle. The representation of such a
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constraint is written as
T
8o,1 —hy Xk, =0

or

or
Sof —hi Xik, <0 ®)
or

or

T
8o,F — hO’Fxl‘,ks <0.

Implementation of the constraint in Equation (8) can be
achieved using Big-M notation within a MILP solver after
introducing binary variables b, ¢ ; x € {0, 1} Vf € .# and k €
{1,..., Hp}; the binary logical condition b, ;x = 1 indi-
cates that pedestrian i is avoiding obstacle o at time-step
k relative to facet f. Within a MILP formulation, this is
implemented for all pedestrians and all obstacles using the
following constraint equations:

8of —hppXix S M —bosir) Vf € Fp0€0
ie?, kell,....Hy)
D bosik=1 YoeO.ie P

feZ,
ke{l,..., Hy) )

where M is sufficiently large such that the f™ constraint
holds when b,y = 0 regardless of the position of the pedes-
trian. For practical purposes, the value of M can be set based
on the dimensions of the environment. Alternatively, when
implementing the constraints in Equation (8) in CVX, instead
of using Big-M notation, it is suggested that readers make use
of indicator constraints.

While not explicitly stated, a buffer distance can be added
around each obstacle. If it is assumed that any extra buffer dis-
tance, ¢, ;, depends on the specific obstacle o and pedestrian i
then each obstacle constraint from Equation (7) is adjusted to

Sof — hfﬂi,k < — | hos| eo.i- (10)

4) PRIVATE AND COMMON OBJECTIVE FUNCTIONS
Research suggests that pedestrians pursue personal objec-
tives (e.g., minimization of their individual effort, reaching
the desired destination) as well as global objectives shared
with other agents (e.g., maintaining desired separations when
walking in formation) [57]-[60]. Accordingly, we have for-
mulated a generalizable objective function that takes into
account all these factors.

Beginning with personal objectives, the objective func-
tion can account for the regulation of walking speeds,
as well as running costs and the terminal cost of reaching
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a desired way-point.

Hp
35 st
k=1ije?
+kl:vpeed Vik — v;_ies + kirun ”xi,k —w; ”)
+ K s, a
i€

In the private objective costs above, each norm can be
adjusted according to desired modeling (i.e., £1, £2, or £so).
Additionally, each weighting can be adjusted to reflect the
relative value.

When walking as part of a group, pedestrians can optimize
their planned trajectories in order to maintain a desired for-
mation. This is accomplished by penalizing any deviations
between the actual and desired separation. This can be accom-
plished using the following objective equation:

HI’
>k

k=1 (i,j)e&

- d
ik — Zjk —di}’

’

12)

The summation over the edge-set & in the graph structure
% provides for significant flexibility. For example, it is not
necessary to ensure consistency in the desired separation
between pedestrians. So for any three pedestrians A, i, and
Jj in the same pedestrian group there is no requirement that
di‘ffs + dﬁzs = l-‘fff. In fact, it is not even necessary that
pedestrians in the same group seek to maintain a desired
separation.

In specific cases (e.g. a parent and small child walking
together), it may be more appropriate to represent separation
distances within constraints instead of within objective costs.
For the case in which two pedestrians must remain within
a specified range r;; of each other, the equivalent convex
constraint is expressed as

H?i,k—?,-,kH <rj Vke(l,....H) (13)

5) MODEL SUMMARY

A summary of the complete formulation is provided below.
Due to space constraints, a short-hand notation listed in
Table 3 is used to indicate the ranges for which each the
constraints hold. For example, all equations that hold true
overi € £,k e {l,..., H)} are indicted by the * symbol.
As written below, all decision variables are assumed to be
unrestricted, except for any binary variables. Furthermore,
in summary below, we refrain from specifying which norm
is used in the objective function and constraints. While in
many cases, the £> norm is appropriate, representations using
the 1 or £, are permissible as well. Also, as noted in
Section III-B2, ¢, norms that restrict walking velocities and
accelerations can be approximated through a series of linear
convex constraints. The advantage of using an alternative to
the £, norm is that a broader array of optimization solvers can
be used since the problem can be represented using a linear
objective function and constraints.
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TABLE 3. Short-hand markers indicating the ranges over which
constraints apply.

Sets Short-hand notation
i€ Zke{l,... Hy} *
ic #,kef{0,...,H,—1} .
ic ?ke{0,... H,) o
ieZke{l,....H},o0el0, fecF A
ic P kef{l,....Hy},0cl T
H,
min Z Z (kl-acc Uik — u;z’es
k=1ie?
d o5
4 kiSPee ‘Vi,k _ v;l'u
0S5
+ K ik = wi])
term
+ DK |xin, —wil
i€
H)p,
sep || - des
DI IR BRI
k=1 (i,j)e&

St Zik+1 = Zik + Vik AT + 1/2ui,kAT2 .
Vik+1 = Vik + ui AT o
[vik| =5 .
[uin| = .
Zik = R(=6) Zix ©

T
8o — hysxik <M —boy,ik) A
Z bof,ik =1 T
fe,
boy.ik €10, 1} A

C. IMPLEMENTATION

Implementation of the receding-horizon control framework
with the embedded MILP is completed in MATLAB using the
CVX optimization library. While the CVX library is primar-
ily targeted at solving convex optimization problems, it has
recently gained support for both Mixed-Integer Linear Pro-
grams and Mixed-Integer Quadratic Programs. The proposed
framework is applicable to a broad range of traffic scenar-
ios. In our research, the three traffic scenarios manifesting
a large portion of pedestrians’ walking behavior and social
interaction rules are identified. The traffic scenarios where a
group of two agents walks together, a group of three agents
walks together, and an agent avoids a stationery obstacle
are considered. They are developed as three case studies,
discussed in Sections IV and V. While experimenting with
the case studies, we made a few adjustments-the terminal cost
of reaching the desired waypoint is used while the running
cost weight kf.’ ° = 0; the factor for speed regulation to
have desired speed is made k;” ¢ed _ 0, the minimization
of acceleration is included but the objective to maintain the
desired acceleration is not implemented (u?es = 0). Each
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norm in the private objective cost is adjusted to the £; norm.
The common objective cost (Equation 12) is adjusted to
£1 norm. The velocity and acceleration are constrained to an
average minimum and maximum values, each in the lateral
and longitudinal direction. They are adjusted as £, norm.
The idea is to adjust the weights and the norm in the proposed
generalized model as it results in a good Mixed-Integer Linear
Programming problem.

Despite being the same here, within the receding-horizon
control framework, the actual dynamics of the pedestrians are
distinguished from the modeled dynamics contained in the
trajectory planning optimization described in Section III-B,
see Figure 3. Real-world differences emerge due to
uncertainty in an environment (e.g., approximate location of
obstacles) or perturbations in dynamics (e.g., a pedestrian
tripping). Within a simulated environment, we assumed that
the pedestrians’ knowledge of the environment is perfect; that
is to say, pedestrians are aware of the exact position and loca-
tion of all obstacles and other pedestrians. The benefit of the
proposed receding-horizon control modeling of uncertainties,
and pedestrian response to the uncertainties can be modeled.
Specifically, the capability of distinguishing between dynam-
ics of pedestrians as different from the modeled dynamics of
pedestrians contained in the trajectory planning optimization
is particularly beneficial when modeling pedestrians with
vision limitations, as well as pedestrians and active mobility
users that become distracted or lose awareness of their envi-
ronment.

IV. CALIBRATION AND VALIDATION

The next step to model development is calibrating the
model parameters and validating the model outputs. This
section will describe the model parameters, the dataset used,
calibration process, performance metrics, and validation pro-
cess of the developed pedestrian trajectory generating algo-
rithm. The validation process compares the generated agent
(i.e., pedestrian) trajectories with the ground truth for a traffic
scenario. The proposed framework is generalizable to many
pedestrian traffic scenarios. However, to show the validity of
the proposed model, we have identified three case studies.
Three case studies are performed-Case study 1 (Two agents
walk together), Case study 2 (Three agents walk together),
and Case study 3 (An agent avoids an obstacle).

A. KEY MODEL PARAMETERS
The key parameters of the developed pedestrian trajectory
planning model are as follows:
« Total time-steps to run a simulation (T)
e The desired longitudinal separation
pedestrians i and j (dil’lj‘.ies)
o The desired lateral separation between pedestrians i
and j (d,%jd”)
o Control Horizon (H,)
« Planning Horizon (H,)
+ Maximum and Minimum mean velocity

between
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« Maximum and Minimum mean acceleration
« Buffer zone: The gap that the pedestrian tries to keep
while passing the stationary obstacle

B. DATA DESCRIPTION

We considered data from the dataset of paper [30] which
was collected at the campus of Dalian University of Tech-
nology (DUT) in China. The dataset is one of the crowd
interaction benchmark datasets. The scenario includes an
area of pedestrian crosswalks at an intersection. Figure 4
shows the data collection location and Figure 5 shows the
sample of extracted trajectories. A DJI Mavic Pro Drone
with a down-facing camera was used as the recording
gear. The video resolution was 1920 x 1080 with an fps
of 23.98. Pedestrians in the data are mainly college students.
The trajectories were extracted from the recorded data using
video stabilization, pedestrian tracking, coordinate transfor-
mation, and Kalman filtering techniques.

FIGURE 4. Data collection location.

FIGURE 5. Sample extracted trajectories.

C. MODEL CALIBRATION

1) METHODOLOGY

Firstly, we identified traffic scenarios in the dataset where
pedestrians are moving as a group of two, as a group of
three, and as individual agents avoiding stationary obstacles.
For each case study, maximum and minimum velocity, max-
imum and minimum acceleration, dl{-.d“ and dl.l"’.ies values
are extracted, and the average values are calculated. Also,
sampling time and pedestrian’s initial and final destination
values are determined from the dataset.
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We have extracted forty samples for two agents group,
thirty samples for three agents group, and twenty samples for
individuals avoiding the obstacles. Considering the case study
of two agents group, we divided the forty collected samples
into thirty samples for training the model and ten samples
for testing the developed model. We have used the normal
distribution method to dynamically calibrate the dl%'jd” and

d;; Ides values. The initial location values of the agent are

updated at every control horizon time (H,) based on receding
horizon control.

2) CALIBRATED MODEL PARAMETERS
Table 4 shows the calibrated values of parameters for Case
Study 1 (two agents walk together). We extracted the d; .J-.d”

and dH

samples for this case study. The values of d;; Ldes and d”deA
aligned well with the normal distribution, further Verrfred by
the chi-square test(h = 0). The chi-square goodness-of-fit
test was done which returns the 7 = 0 value meaning the data
comes from a normal distribution. In the Case Study 1, the
planning horizon (H,) was considered as 2 sec, and control
horizon (H,) was taken as 1 sec. Similarly parameters were
computed for Case Study 2 and 3, shown in Tables 5 and 6
respectively.

' values and calculated the average values for all the

TABLE 4. Model calibration for case study 1.

Parameters Calibrated Values
d;e u=052,06=0.15
d”"“ 1 =0.097, 0 = 0.046
Average minimum velocity 0.97 m/sec

Average maximum velocity 1.70 m/sec

Average minimum acceleration | -0.3 m/sec?

Average maximum acceleration | 0.3 m/sec’

TABLE 5. Model calibration for case study 2.

Parameters Calibrated Values
dl-%«d” between agent 1 and agent2 | u =0.612,0 =0.194
d,”;lm between agent 1 and agent2 | u =0.294,0 =0.237
dﬁ«des between agent 2 and agent 3 | u =0.241,0 =0.178
d,”;l” between agent 2 and agent 3 n=0.719,0 =0.221
Average minimum velocity 0.97 m/sec

Average maximum velocity 1.48 m/sec

Average minimum acceleration -0.3 m/sec”

Average maximum acceleration 0.3 m/sec?

TABLE 6. Model calibration for case study 3.

Parameters Calibrated Values
Average minimum velocity 0.82 m/sec
Average maximum velocity 1.75 m/sec
Average minimum acceleration -0.3 m/sec?
Average maximum acceleration 0.4 m/sec”

Gap between the agent and obstacle | 0.55 m

D. PERFORMANCE METRICS

To evaluate the results, we use the following performance
metrics.
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« MED: Mean Euclidean Distance is the average
Euclidean distance between the model predicted coor-
dinates and the actual coordinates of the pedestrian at
every instant. Lower is better.

« FDE: Final Displacement Error is the Euclidean distance
between the model predicted final destination and the
actual final destination at the corresponding time instant.

. rmse_dl.)J;.: It is the root mean square error of the lateral

distance between the two agents’ actual and the gener-
ated trajectories.

e rmse d I+ It is the root mean square error of the longi-

tudinal dlstance between the two agents’ actual and the
generated trajectories.

o Gait parameters: Analysis of basic gait parameters (step
length, step frequency, and walking speed) helps under-
stand a person’s walking style. The step length and
step frequency are affected by many attributes such
as gender, age, group size, commonalities between
agents [61], [62]. Step length is defined as the dis-
tance from the initial contact point of one foot to the
initial contact point of the other foot. Step frequency
is measured by the number of steps taken per minute.
Following equation shows the relationship between the
three determinant gait parameters [63], [64]:

walking speed = step frequency x step length.
To further validate our research work, we have compared
the gait parameters estimated in the case studies with the
ones mentioned in [49].

E. VALIDATION PROCESS

We have performed an extensive validation on a unidirec-
tional pedestrian movement-group movement of two to three
pedestrians, interaction with a stationary obstacle. The devel-
oped trajectory planning model is tested on the case stud-
ies obtained from the DUT crowd interaction dataset [30].
The case studies are where two agents walk together, three
walk together, and an agent avoids a stationary obstacle. The
generated trajectories are compared with the actual trajec-
tories of agents for the particular traffic scenarios, and the
proposed performance metrics will help to inspect the model
performance. The details and results of three case studies are
discussed in the following sections.

V. EXPERIMENTAL RESULTS

This section provides the experimental results form the cho-
sen case studies. Note that the developed modeling frame-
work is generalizable making it applicable across a broad
range of pedestrian scenarios. To demonstrate this, we high-
light three case studies that account for a large portion of
pedestrian scenarios.

A. CASE STUDY 1: TWO AGENTS WALK TOGETHER
1) DESCRIPTION

We consider the scenario where two agents walk together.
To perform the calibration and validation, we divided the
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forty collected samples into thirty samples for training the
model and ten samples for testing the developed model. The
calibrated values are provided in the Table 4. The sample
screenshots in Table 8 are from actual video data. In the
sample screenshots, we can observe that the two agents are
walking together, and they always maintain a certain separa-
tion between them. This behavior is expected from humans
when they walk in a group.

2) RESULT

Once the model was calibrated, we performed the validation
on the testing data. The trajectories are shown in Table 8. The
first column shows the screenshots from the real dataset. The
second column shows the corresponding model-generated
trajectories. These are MATLAB-generated plots showing
the generated trajectories and respective real trajectories of
the same set of agents. In each graph, the marked lines are
real trajectories, and non-marked lines are the corresponding
model generated trajectories. For the given scenario’s initial
and final destination, the model generates the pedestrian tra-
jectories by evaluating the environment and maintaining the
human-human group behavior.

TABLE 7. Case study 1 performance metrics average values for DUT
dataset.

Performance metrics | Average values
MED 0.28

FDE 0.45

rmse_difj 0.36

rmseﬁdj! j 0.007

The plots in Table 8 show the accuracy of the generated
trajectories. The lower values of performance metrics validate
the good performance of the algorithm. Table 7 provides the
average values of the performance metrics, MED and FDE.
A zero value would indicate that the predicted and actual data
are almost identical. However, the value of zero is almost not
possible practically; therefore, the closer the average values
are to zero, the better fit the data has achieved. The error
metrics values are quite low, with MED = 0.28, FDE =
0.45, rmse dL = 0.36, rmse_ dH = 0.007. Values confirm
what we can Vlsuahze from the model generated results in
Table 8. Table 10 illustrates the obtained gait parameters
in case study 1. It can be noted that step length remains in
the 0.6 to 0.7 meter range. On the other hand, pedestrians
increase their step frequency to attain a higher speed to cross
the pedestrian crossing in time. The obtained gait parameters
are within the range as mentioned in [49]. The step length
and step frequency define the walking speed as described in
section IV-D. Those parameters also characterize the person
walking style, which changes depending on the scenario,
age, gender, and level of group commonalities. For example,
the instantaneous value of a gait parameter is influenced by
activities such as the walking behavior in a group and obstacle
avoidance.
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Table 9 summarizes the results for the testing dataset. The
table shows the average values of root mean square error
between the ground truth and the generated trajectory for
X-position, y-position, longitudinal velocity of each agent at
every instant. The values are near-zero, validating the high
accuracy of the proposed model.

B. CASE STUDY 2: THREE AGENTS WALK TOGETHER

1) DESCRIPTION

We study the case scenarios where three pedestrian walks
in a group, the left column in Table 12 shows some sample
screenshots from real video data. The model is calibrated, and
parameters values are listed in Table 5. The sample figures are
from the actual data. To perform the calibration and validation
of the case study of three agents’ group behavior, we divided
the thirty collected samples into twenty-three samples for
training the model and seven samples for testing the devel-
oped model.

2) RESULT

Once the model was calibrated, we performed the valida-
tion on the testing data. The results are shown in Table 12.
The results show the graphs which compare the actual and
predicted trajectories. The left column in the table shows
the sample scene from the video dataset, and the right
column shows the model generated trajectories and their
comparison with the actual trajectories. The plots demon-
strate the model’s accuracy and illustrate the group for-
mation, as explained in Figure 2 when three agents walk
together.

Table 11 shows the average euclidean values and root mean
square error values for the test samples. The average values
indicate good results as almost all values are less than one,
with MED = 0.38 and FDE = 0.16. An RMSE value of
zero would tell that the predicted and actual data are almost
identical. The closer the RMSE values and euclidean distance
are to zero, the better the model performance. The lower
values of lateral and longitudinal separation (dlf} and diI!j)
between two agents demonstrate the capability of the model-
generated trajectories to emulate the actual trajectories, even
when subjects are walking in groups.

Table 10 shows the walking gait variations in instances
of Case Study 2. In general, the step length remains in the
0.6 to 0.75-meter range, the default step length range in group
behavior. The measured gait parameters reflect the underly-
ing strategies that govern the behavioral rules. The variation
in gait parameters shows how an individual maintains their
step length and step frequency to maintain a group walking
behavior. In Table 10, we can see that Agent 2 and Agent 3’s
step length are almost the same and less than Agent 1, and
Agent 2 and Agent 3 have more step frequency, ultimately
all three agents in a group maintain similar speed. The results
prove humans’ innate ability to adapt their gait parameters to
maintain a group movement.
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TABLE 8. Case study 1 sample results.

Trajectory Screenshot Generated Trajectories

Agent1 generated Trajectory = == Agent1 Original Trajectory
Agent2 generated Trajectory === Agent2 Original Trajectory

trajectory y-coordinates (meters)
1
I
I
)
al
i

\ \
5 6 7 8 9 10 1 12 13 14 15
1 (a) trajectory x-coordinates (meters)

1 (b)

Agent1 generated Trajectory ~ == Agent1 Original Trajectory
Agent2 generated Trajectory ===#== Agent2 Original Trajectory T

"r

trajectory y-coordinates (meters)
N

I I
4 4.5 5 55 6 6.5 7 7.5 8 8.5 9

2(2) trajectory x-coordinates (meters)
2 (b)
T T T T
Agent1 generated Trajectory = == Agent1 Original Trajectory

Agent2 generated Trajectory === Agent2 Original Trajectory

trajectory y-coordinates (meters)

3 (a) 16 18 20 22 24 26 28
trajectory x-coordinates (meters)

3(b)

TABLE 9. Table shows detailed performance metric values of case study 1. The average value of the root mean Square Error (rmse) is between the agents’
generated coordinates and ground truth coordinates.

?gelétsl’ Pair X p(;zigtf:ri ! poYSIE((:ls-lition X p(jzi%ie(?rtl I pcﬁlgggition Agent I vﬂc\J.city Agent J ve_l\o-city Lateral sep;iation Longitudinal scﬁpa.ration
Ll (mse_x1) | (mmse_yl) | (msex2) | (rmse_y2) (rmse_v ;) G v ) (rmse_d; ;) (tmse_d; ;)
94 and 95 0.51 0.15 0.45 0.15 0.43 0.45 0.12 0.005

101 and 102 | 0.07 0.03 0.22 0.02 0.25 0.41 0.52 0.004

22 and 23 0.9 0.61 0.84 0.67 0.41 0.44 0.21 2.88E-05

53 and 54 0.28 0.4 0.47 0.84 0.26 0.33 0.57 3.55E-05

56 and 57 0.39 0.59 0.37 0.67 0.29 0.31 0.09 6.33E-04

2 and 3 0.09 0.09 0.13 0.4 0.34 0.32 0.04 0.015

7 and 8 0.39 0.29 0.18 0.37 0.46 0.33 0.83 0.0065

16 and 17 0.45 0.15 0.06 0.12 0.36 0.3 0.8 0.003

18 and 19 0.07 0.19 0.43 0.12 0.26 0.4 0.6 0.05

30 and 31 0.6 0.3 0.62 0.2 0.32 0.3 0.06 9.41E-06

32 and 33 0.53 0.33 0.43 0.39 0.33 0.31 0.08 7.66E-06
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TABLE 10. (a) Step length (b) Step frequency of agents 101 and 102.

[N
T
I

o
o
T
\

Step Length (m)

Agent1 Step Length
Agent2 Step Length
| |

\ \ |
0 0.5 1 1.5 2 2.5 3 35 4
Time (seconds)

(a)

TABLE 11. Case study 2 performance metrics average values for DUT
dataset.

Performance metrics | Average values
MED 0.38

FDE 0.16

rmse_dﬁ2 0.87

rmse_d) 0.005

rmse_dzi‘3 0.32

rmse_d) 0.002

C. CASE STUDY 3: AN AGENT AVOIDS AN OBSTACLE

1) DESCRIPTION

The third study demonstrates how individuals avoid sta-
tionery obstacles. We study the scenarios where the pedes-
trian passes the stationery obstacle (in our case, it is a standing
car represented as a square obstacle). The average buffer zone
that pedestrians keep having a safe pass by the obstacle is
calculated using data. The estimated buffer zone is approx
0.55 meters. The model is calibrated, and parameters val-
ues are listed in Table 6. Twenty case study 3 samples are
collected from the dataset, divided the fifteen samples for
training the model and five samples for testing the devel-
oped model. In the Table 15, the left column has the sample
screenshots from actual video data. The right column has the
corresponding model-generated pedestrian trajectories.

2) RESULT
Once the model was calibrated, we validated the testing
data. The results are shown in Table 15. The table shows
the graph which is comparing the actual and predicted
trajectories.

The Table 14 shows the average Euclidean distance values.
The closer the euclidean distance values are to zero, the
better fit the data has achieved. The average values indi-
cate good results as almost all values are under one, with
MED = 0.66 and FDE = 0.35.

Table 16 illustrates the obtained gait parameters in Case
study 3. The proposed algorithm plans the trajectories based
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on RHC, which generates the trajectories for a series of
short-horizon using the current state values for every horizon
calculation. Therefore, while avoiding the stationery obsta-
cle, the algorithm considers the buffer zone around the obsta-
cle and generates a trajectory where the agent maintains the
walking speed while adjusting the gait parameters. The step
length and step frequency results validate that the agent tries
to maintain a constant walking speed by adjusting the gait
parameters.

D. CROSS-VALIDATION WITH TrajNet++

TrajNet++ is an interaction-centric trajectory dataset [31].
The data is sampled based on various interaction scenarios.
There are leader-follower interactions, group interactions and
obstacle avoidance interactions. The TrajNet++ is a current
benchmark, and many trajectory forecasting models are using
it to validate their efficacy. We have used TrajNet++ to
cross-validate our trajectory planning algorithm. The idea is
to validate the robustness of the developed algorithm; such
the algorithm can be successfully applied to urban traffic
scenarios in LA as well as in NYC urban shared space traffic
scenarios just by providing the agent’s initial and final desti-
nation coordinates.

A group interaction scenario of two agents walking
together is Case study 1. The calibrated values are provided
in the Table 4. We extracted twenty sample trajectories to
perform the cross-validation and calculate the performance
metrics. Table 17 illustrates the result of two agents walking
together. The trajectories with markers are the actual tra-
jectories of two pedestrians, and the non-marker trajectories
are model-generated trajectories. The calculated performance
metrics are shown below in Table 18. The evaluation metrics
in the table have values less than one, which demonstrates the
good performance of the approach.

A group interaction scenario of three agents walking
together is Case study 2. The calibrated values are pro-
vided in Table 5. We extracted fifteen sample trajectories to
perform the cross-validation and calculate the performance
metrics. The calculated performance metrics are shown in
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TABLE 12. Case study 2 sample resuilts.

Trajectory Screenshot

Generated Trajectories

1 (a)

2(@a)

TABLE 13. (a) Step length (b) Step frequency of agents 22, 23, and 24.

251 N

2 i

E 15¢ .
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2 A OO RN LA D RO OAARS, LR

S os5¢ i
aQ

g of 1
n

-05r Agent1 Step Length B

Agent2 Step Length
-1r Agent3 Step Length 7
. . . . . . .
0 1 2 3 4 5 6 7 8

Time (seconds)

(a)

TABLE 14. Case study 3 performance metrics average values for DUT
dataset.

Performance metrics

Average values

MED

0.66

FDE

0.35

Table 19. Almost all error metrics values are less than one,
except root mean square error in the lateral separation value
between two agents, which is close to one. The pedestrian
group interaction is very complex and involves multiple
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behavioral factors. There are in-group interactions and group-
surrounding interactions that affect the trajectories; which
justifies the observed results. The algorithm performance
for Case study 3, where the pedestrian passes the stationery
obstacle (in our case, a standing car represented as a square),
is also cross-validated. Refer the Table 6 for model cali-
brated values. We extracted ten sample trajectories to per-
form the cross-validation and calculate the performance met-
rics. The performance metrics are shown in Table 20. The
MED = 0.78 and FDE = 0.45, again reassures the algorithms’
performance.
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TABLE 15. Case study 3: sample results.

Trajectory Screenshot

Generated Trajectories

1 (a)

2 (a)

TABLE 16. (a) Step length (b) Step frequency of an agent avoiding an obstacle.
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E. BASELINE COMPARISON

In this section, we provide a comparative summary of the
performance of our approach with existing machine learning
algorithms for trajectory generation. However, it is important
to note that a direct comprehensive comparison is not possible
given the ‘“black box” nature of the algorithms. Also, the
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role of the machine learning models is different from the
generative approach adopted in our paper. Mostly, machine
learning models are prediction models. It means that a model
predicts the pedestrians’ spatial coordinates in the near future
(let’s say for 4-5 seconds) using some historical observations.
The predictive models are also trained on large datasets.
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TABLE 17. Cross validation with TrajNet++ (showing trajectory

generation for case study 1: Two agents walking together).

TABLE 18. Case study 1 performance metrics average values in

TABLE 21. Performance metrics comparison chart for different
pedestrian trajectory forecasting models based on TrajNet++ dataset .

trajectory x-coordinates (meters)

TrajNet++ dataset.

TABLE 19. Case study 2 performance metrics average values in

Performance metrics | Average values
MED 0.32
FDE 0.41
rmse_dl%j 0.40
rmse_dl-‘!j 0.01

TrajNet++ dataset.

TABLE 20. Case study 3 performance metrics average values in

Performance metrics | Average values
MED 0.39

FDE 0.18

rmse,dﬁ2 1.05

rmse_d) , 0.01

rmse,dzl_3 0.9

rmse_d) 0.04

TrajNet++ dataset.

Performance metrics
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MED

0.78
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The training prepares the model to capture the underlying
social norms and generalize the models for the various sce-
narios. However, this is very challenging as the training data
often only contains examples from safe surroundings with
very few occurrences of dangerous scenarios. On the other
hand, our generative approach is fully defined, parameterized
and can be tuned as needed. It does not require prior training
and once the model parameters are calibrated, the model is fit
to generate trajectories for various scenarios. Table 21 com-
pares the MED and FED for state of the art models and for
our algorithm in the three case studies using the TrajNet++
dataset. Note that the proposed approach has comparable
(or even better) error metrics. However, the comparison table
should be interpreted subjectively since, as we stated earlier,
the model objectives are not aligned.
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Performance Metrics
Experimental Results for TrajNet++ dataset

MED | FDE
PecNet [65][66] 0.57 1.18
AIN [67] [66] 0.62 1.24
Social NCE [68] [66] 0.53 1.14
AMENet [69] [66] 0.62 1.30
Proposed Approach - Case Study1 0.32 0.41
Proposed Approach - Case Study?2 0.39 0.18
Proposed Approach - Case Study3 0.78 0.45

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel methodology to generate pedes-
trian trajectories while interacting with other pedestrians and
stationary obstacles (infrastructure obstacles or other types of
road users). The model can generate pedestrian trajectories
for traffic scenarios based on the road users’ behavior and
interaction rules. The methodology utilized mixed-integer
linear programming embedded in the receding horizon con-
trol framework for trajectory generation. Validation was per-
formed on two publicly available real datasets. The evaluation
metrics, mean euclidean distance, and final displacement
error yielded near-zero values, demonstrating the promising
performance of the proposed generative trajectory planning
model. The obtained gait parameters are also consistent with
the previous studies on how pedestrians adjust their gait in
different scenarios. Cross-validation with TrajNet++ was
also performed to validate the algorithm’s robustness.

The proposed approach is flexible to adapt to the need of
various traffic scenarios. The generative pedestrian trajectory
model can simulate a broad range of pedestrian traffic scenar-
i0s. A case-specific pedestrian behavior can be directly incor-
porated into the cost function or constraints to customize the
proposed model further. One can perform parameter tuning to
test the behavior and trajectory generation in various traffic
scenarios. One can also input the commonality attribute to
permit the distinction of a pedestrian group. The proposed
algorithm lies between the two sets of modeling paradigms —
the black-box algorithms (such as machine learning), which
are hard to interpret and parameterize, and the analytical mod-
eling with a set of parametrized equations. In summary, the
proposed model is fully defined and parametrized with pedes-
trians’ behavioral rules, and gait parameters can serve as a
basis for exploring pedestrian behavior in different scenarios.
The benefit of the receding-horizon control framework is the
capability of modeling traffic uncertainties and pedestrian
response to the uncertainties.

The developed pedestrian trajectory planning model,
expanded as a simulation framework, will provide a more
realistic demonstration of how pedestrians use traffic facil-
ities and interact with their environment. The traffic simu-
lation tool results will help propose traffic rules to optimize
the traffic flows and infrastructure and plan ideas suitable
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for shared spaces. Moreover, the model’s applicability is
not limited to road traffic and shared spaces. It can find
broader applications such as the emergency evacuation of
buildings, large events, airports, and railway stations. Note
that the developed model also supports encounter model-
ing which is essential in air traffic control to develop and
test collision avoidance systems [70]. This paper focused
on the pedestrians’ primary behavior and social interaction
scenarios. In future work, we will expand the research to
include the more complex social interaction traffic scenarios
and varying degrees of density. The developed model will
be extended to consider pedestrian behavioral and social
interaction rules while interacting with moving obstacles and
varying uncertainties in the traffic environment. We will also
model the pedestrian dynamics by considering attributes like
age, gender, and distractions that impact the walking gait
characteristics. We will also expand the work to model other
VRUs like cyclists and scooter users.
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