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ABSTRACT When a learned model has high accuracy under familiar settings (internal testing) and a big
drop in accuracy under slightly different circumstances (external testing) we suspect it is using shortcuts to
make decisions. This problem is known as shortcut learning. In medical imaging, shortcuts are undesired and
unintended features that the model relies on to perform diagnosis. Shortcut-based solutions using medical
images could lead to false diagnoses and have dangerous implications for patients. In the current COVID-19
era, a large set of papers have been published proposing the use of deep convolutional neural networks
to perform diagnosis or triage of COVID-19 from chest X-rays (CXRs). These studies are reporting high
accuracies which could be misleading and overestimated. To our knowledge, none of the currently published
papers with high performance reported testing on samples from truly unseen data sources. Studies which
did, have noticed a significant performance drop when testing on unseen sources indicating a failure to
generalize. In this paper, we elucidate the generalization challenge of deep learning based models trained for
disease diagnosis. We use the example of COVID-19 diagnosis from CXRs. Solutions that mitigate shortcut
learning are introduced and experimentally shown to be effective. Our proposed methods enable the models
to have a statistically significantly reduced performance drop-off on unseen data sources. Thus, lowering the
performance drop to only 9% instead of 20%. The issues with convolutional neural networks addressed here
generally apply to other imaging modalities and recognition problems, as shown.

INDEX TERMS Deep learning, CNN, shortcut learning, medical imaging, confounding features,
COVID-19, X-ray.

I. INTRODUCTION
Deep learning (DL) has emerged as the leading machine
learning tool in the domain of image analysis/understanding.
Deep neural networks are now the state-of-the-art machine
learning models across a variety of areas, from image anal-
ysis to natural language processing, and widely deployed in
academia and industry. The ability of convolutional layers,
for example, to extract features in an automated way has
accelerated their adoption. The medical imaging community
has begun a debate about whether deep learning would be
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applicable in medical imaging [1]. DL technology has been
recently applied to healthcare problems, including computer-
aided detection/diagnosis, disease prediction, image segmen-
tation, etc. However, translation of deep learning technology
from research to actual clinical use is highly challenging.
The use of machine learning in general and deep learning
in particular within healthcare is still in its infancy due to
several factors. Mainly, labeled training data, which is nec-
essary to train a deep learning model, is both expensive and
difficult to produce. Medical imaging data are acquired in
nonstandard ways and settings across sites. In addition, due
to patient privacy and other concerns, having a centralized
open source dataset of medical images is very rare and images
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are distributed among different hospitals and imaging centers.
Additionally, system robustness and generalization across
acquisition protocols, machines, and hospitals is another core
challenge, which is the focus of this paper. Prior work has
found that clinical deep learning models face significant
performance degradation when tested on external sites never
seen during model training for different imaging modalities
including chest X-rays [2]–[7].

Shortcut learning occurs when a deep learning model finds
and follows a ‘‘shortcut’’ strategy to achieve excellent results
under familiar circumstances but fails under slightly differ-
ent settings such as real-world scenarios [8]. For instance,
cows in familiar backgrounds (grass landscape) are detected
and classified correctly, while cows with uncommon back-
grounds (beach) are not detected or classified poorly [9].
Shortcuts are simple characteristics of a dataset that a model
relies on to solve a given problem instead of learning the
intended decision rules. Consequently the model suffers
from generalization failures under slightly different circum-
stances. In medical imaging, when a diagnosis model relies
on undesired shortcut features, it can fail even at the same
site, when tested on a slightly shifted data distribution (for
instance, a change of scanning equipment). To make sure
that a model is using intended medically relevant features for
disease diagnosis, it has to work well not only on internal
test sets, but also perform as intended on out-of-distribution
test sets (such as you get from unseen data sources). As con-
cluded by Geirhos et al. [8], performance on a dataset does
not necessarily indicate that the relevant concept has been
learned. Recently, multiple studies in medical imaging show
undesired model behavior relying on unintentional dataset
bias to make decisions. Authors in [2] demonstrated that
a model, trained for the purpose of identifying pneumonia
from X-rays, had instead unexpectedly learned to identify
particular hospital systems with near-perfect accuracy using
a hospital-specific metal token on the X-ray images and
other confounders. It achieved high performance on seen
sources (93%) without really learning much about pneumo-
nia. Similarly, a paper [10] studied shortcuts/confounders in
the ISIC dataset (widely used for skin cancer classification),
namely the presence of colored patches in benign skin images
whereas the malignant lesion images contain none. Authors
in [11] showed that 69.5% of the malignant images that were
initially correctly classified, after manually inserting colored
patches, were misclassified as benign. There is a correspond-
ing large drop in the classifier sensitivity from 0.886 to 0.191.

The SARS COV-2 viral infection (COVID-19) can have a
devastating impact on the respiratory system. It has caused
an enormous number of deaths since late 2019. Radiolo-
gist examination of chest X-rays has been argued to be
an effective way to screen for COVID-19, in case of lung
involvement, since machines are ubiquitous and their cost
and cleaning complexity is low. In our recent work [6],
we reviewed a large number of published papers claiming
the discovery of high performing deep neural network mod-
els capable of accurate diagnosis of COVID-19 from chest

X-rays. Many approaches show high accuracy (over 90%)
in differentiating from pneumonia or other non-COVID-19
classes. However, we identified multiple flaws in the sug-
gested solutionswhich lead us to question their clinical utility.
For instance, multiple papers used a pneumonia set whichwas
of children and studies [12] have shown that convolutional
neural networks can detect the size of an object. So models
will associate anatomical features of age with the diagnosis
(could tell pneumonia by smaller lungs). Additionally, other
studies ( [13], [14]) showed that CNNs can learn and rely
on age-related shortcuts to make a decision. Furthermore,
the majority of suggested works ( [15], [16]) were done
using cross validation or random splits (train/val/test) using
all data, as COVID-19 data was hard to get. Thus, no tests on
unseen sources were performed. In addition, some publicly
available large databases of COVID-19 CXRs are actually
a collection of other smaller open source data sources. For
example the Covid-19 Radiography database [17] includes
the Dr. Joseph Cohen Dataset [18]. Therefore, some papers
[19], [20] which claimed generalization to unseen data
sources did not realize that their training dataset is a subset
of the claimed unseen source. Our experimental results in [6]
showed that models which have achieved high internal testing
results (AUC = 1.00), in the worst case, only scored an
AUC of 0.38 externally. This suggests that generalization and
robustness assessment is necessary before such models can
be clinically adopted. To our knowledge, there has been no
success at creating a generalized model/solution capable of
performing well when tested using data from several external
data sites.

The contributions of this paper are as follows.
1) We draw attention to the spreading problem of over-

estimated performance results of CNN-based disease
diagnosis models that were only tested internally.

2) We emphasize the importance of the performance com-
parison between internal testing vs external testing to
detect if a model is suffering from shortcut learning.

3) Shortcuts exist in most data and rarely disappear by
addingmore data [8]. Hence, we demonstrate that mod-
ifying the training data to block specific shortcuts is a
potential solution.

4) We propose a pipeline to reduce a deep model’s perfor-
mance gap between internal and external sites.

The remaining sections are outlined as follows. Section II
describes details of the data sources used. Section III cov-
ers the methodology and overall workflow of this work.
Section IV presents the experimental setup and interprets
results. Section V discusses this work’s findings and com-
pares to other methods. Finally, Section VI concludes
the paper and Section VII suggests some future research
directions.

II. DATA SOURCES
In this section, we describe all the data sources used
and discussed in this paper for both COVID-19 positive
and negative classes. All data was deidentified. For the

VOLUME 10, 2022 78727



K. Ben Ahmed et al.: Achieving Multisite Generalization for CNN-Based Disease Diagnosis Models

FIGURE 1. The customized ResNet50 architecture deployed in the proposed approach. Each convolution block has 3 convolution layers and
each identity block also has 3 convolution layers.

COVID-19 positive class, the sources used in this
work are, BIMCV-COVID-19+ [21], COVID-19-AR [22],
CC-CXRI-P [23], V2-COV19-NII [24] and COVIDGR [25].

BIMCV COVID-19 is a large open-source dataset of
chest X-ray images CXR (Computed Radiography (CR),
Digital X-ray (DX) ) and Computed Tomography (CT)
images. It includes a subset of confirmed COVID-19 pos-
itive cases from the Valencian Region Medical ImageBank
(BIMCV COVID-19(+)) and another subset for negative
cases (BIMCV COVID-19(-)). Radiological reports are also
included along with Polymerase chain reaction (PCR) results
and other data. COVID-19-AR is a publicly available imag-
ing dataset of chest X-rays and CT scans of COVID-19
patients with positive PCR tests. This dataset is available
from The Cancer Imaging Archive (TCIA) and contains
images donated by the radiology department and other sites
at the University of Arkansas. CC-CXRI-P is a dataset of
the chest X-Ray images (CXRs) constructed from cohorts
from the China Consortium of Chest X-ray Image Investi-
gation (CC-CXRI). All CXRs are classified into COVID-19
pneumonia due to SARS-CoV-2 virus infection, other viral
pneumonia, bacterial pneumonia, other lung disorders, and
normal controls. V2-COV19-NII is a data repository con-
sisting of de-identified radiological imaging and clinical
data of positive COVID-19 patients published by the Insti-
tute for Diagnostic and Interventional Radiology, Hannover
Medical School, Hannover, Germany. X-ray images did not
undergo any pre-processing and were saved in Niftii format.
COVIDGR is a set of X-ray images to assist in the diagnosis
of the COVID-19 disease, built with the close collaboration
of expert radiologists in Spain. All the images were obtained
from the same equipment and under the same X-ray regime.
Only the PosteriorAnterior (PA) view is available.

The COVID-19 negative class includes cases with non-
COVID-19 lung diseases as well as normal cases. We used
data from 3 sources: the National Institutes of Health (NIH)
chest X-ray dataset [26], Chexpert [27] and Padchest [28].

TABLE 1. Details of data source used in this work.

Table 1 summarizes all the data sources used in this paper.
Note that ground truth labels were extracted from the meta-
data and radiology reports included with all of the datasets.

III. METHODS
A. BASELINE MODEL
Here, we used the built model in our previous work [6] as a
baseline. It consists of a ResNet50 pre-trained on ImageNet
as a base model. We removed the fully connected layers of
the base model. Then, we applied global average pooling
after the last convolutional layer of the base model and we
added a new fully connected layer of 64 units with random
weight initialization. Finally, we added an output layer with
Sigmoid activation. The resultant model was fine-tuned using
the X-ray imaging data. All the layers of the base model
were frozen and only the weights of the newly added layers
were learned. The total number of trainable parameters was
184K. Fig. 1 illustrates the architecture of the customized
Resnet-50 used as baseline model. In this experiment, the
model was trained using a cosine annealing cyclic learning
rate with a maximum learning rate of 10−4. Training was
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FIGURE 2. Overall workflow of suggested approach to mitigate shortcut learning.

done for 1000 epochs and model snapshots were saved at
the end of each of 20 cycles, which were 50 epochs long.
Hyper-parameter tuning was not needed in this scenario since
high internal performance results were obtained. As a first
step to prepare the data for training, we normalized all the
images to 8 bit PNG format in the [0-255] range. The images
were originally 1 grayscale channel, we duplicated them to
3 channels. The reason behind this is that Resnet50, our base
model, was pretrained on 8 bit color (3 channel) images of
the Imagenet corpus. To augment the relatively small train-
ing data we applied rotations of 2, 4, −2, and −4 degrees
and horizontal flipping. We chose a small rotation angle as
X-rays are typically not rotated much. The training data was
standardized by subtracting the mean of all data and dividing
by its standard deviation. Code and data are available on
Github.1

B. OVERALL WORKFLOW
The workflow starts with multiple sets of data coming from
separate sources. The first step is the visual inspection of
the images and the associated ground truth and metadata.
Data curation is explained in more detail in Section IV-A.
Then, we suggest lung field segmentation and cropping the
inputs as a first pre-processing step to get rid of noise signals
outside the lungs. Section IV-B provides more experimental
results of the impact of this step. Histogram equalization is
a second pre-processing step that we recommend and results
of this step can be found in Section IV-C. To augment the
size of the training set, we suggest using Gaussian noise aug-
mentation in addition to the other traditional augmentations
(rotation, flipping, etc.). Details of this type of augmentation
are experimentally studied in Section IV-D. Once training

1https://github.com/COVID-19-Diagnosis

FIGURE 3. Generalization test experiment.

data is prepared, we can send it as input to the CNN of
choice to perform training. In this study we used a modified
Resnet-50 architecture, but any CNN model can be used to
perform this task. Finally, a generalization test, similar to the
one we suggest in Section III-C, needs to be performed to
compare internal vs external source testing performance.

C. GENERALIZATION TEST
In order to investigate the generalization ability of deep
learned models (which is the main focus of this paper), eval-
uation was performed on external data sources from which
there were no examples in the training data. Experiments
were done with training data from just one source per class
(for instance, source A for COVID-19-positive class and
source B for COVID-19-negative class). To compare inter-
nal vs external testing, We split the data sources into seen
(internal) and unseen (external). A subset (80%) from the
seen data sources is used for model training. Then, we com-
paremodel testing performance using 1) the randomly chosen
held-out subset (20%) from the seen sources versus 2) testing
samples from unseen external data sources (see Fig. 3).
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D. METRICS
In the following sections we present the metrics: accuracy,
precision, recall (aka sensitivity), F1-score, and area under
the curve (AUC). The classes represent the binomial case,
COVID versus non-COVID. If we define a confusion matrix
with true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN), then we may derive the
following metrics:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1score =
2

precision−1 + recall−1
(4)

Specificity =
TN

FP+ TN
(5)

AUC =
recall + specificity

2
(6)

Additionally, as mentioned is Section III-C, we use the
difference between the model’s performance on seen sources
Pseen vs on unseen sources Punseen as a metric of generaliza-
tion. We call it a generalization drop-off.

DropOff = Pseen − Punseen (7)

IV. EXPERIMENTS AND RESULTS
A. DATA INSPECTION AND CURATION
One of the fundamental aspects to achieve a reliable con-
tribution of AI in detecting COVID-19 from CXRs is the
compilation of an adequate set of images in terms of both
quality and quantity. To assure the validity of the ground truth,
we made sure not to rely only on a positive RT-PCR but also,
when possible, the associated CXR report confirming and
supporting the test results. Visual assessment of the imaging
data allowed us to remove multiple cases with a lateral view
even though the corresponding metadata says it’s frontal.
Other metadata mistakes include X-ray projection and posi-
tion, for example an AP Portable X-ray can be mislabeled as
PA. AsDICOM information on the type of projectionmay not
always be included, some data sources [28] used pre-trained
models for automatic X-ray view determination. Thus, some
incorrect labeling can occur. Additionally, unlike the usual
negative X-raymode (‘‘bones white’’), some imageswere in a
positive mode (‘‘bones black’’). To avoid any problems these
images may cause to the model’s performance, we inverted
them to the conventional mode (‘‘bones white’’). To avoid
creating confounders based on the CXR view, we used frontal
view (from either AP or PA) CXRs in both classes.

Currently, due to data security and patient privacy, there
is a limited availability of open source datasets with the
desired quality and quantity to build a diagnostic system
with clinical value. Recently, researchers have begun to real-
ize that convolutional neural networks trained to identify

COVID-19 from CXRs may not be learning underlying diag-
nostic features, but also exploit confounding information.
For example, it was shown that CNNs were able to predict
where a radiograph was acquired (hospital system, hospi-
tal department) with extremely high accuracy [29]. In this
section, we show the impact of some situational dataset-
related shortcuts, we experimentally identified, to facilitate
risk analysis and enable mitigation strategies while preparing
training datasets.

1) X-RAY POSITION
the PA erect view is the preferred imaging view in general,
but if the patient is not able to stand up it is common to do an
AP Portable view image. Most of the open source COVID-19
datasets are in AP Portable X-ray view due to the severe
sickness of the patients which makes them unable to leave
the bed to perform an upright PA scan. The use of bedside
mobile CXR apparatus is frequently associated with more
severe disease (due to lack of patient mobility). If the training
data in the majority or all of the negative cases consist of
PA views (patient standing), the model can easily learn to
make the classification based on the patient’s position and use
apparatus portability labels as a signal indicating the disease
and its severity.

Results in [29] show that CNNs can ignore disease related
features and separate portable radiographs from the inpatient
wards and emergency department with 100% accuracy using
distinctive text indicating laterality and use of a portable
scanner.

TABLE 2. External testing results of the model trained on CC-CXRI-P
dataset.

2) DEVICES AND TUBES
Another confounding factor might be the presence of medical
devices like ventilation equipment or ECG cables. Many of
the positive images for COVID-19 present intubated patients,
with electrodes and their cables, pacemakers, among other
potential markers. If there is absence of medical devices in
most or all the training samples in the negative class, the
model can associate images with patient treatment instead
of disease status. Experimentally, we used the CC-CXRI-P
dataset [23] to train a model to differentiate COVID-19 cases
from normal cases. The model achieved an internal testing
accuracy of 99% on unseen samples from the same dataset.
The extremely high performance led us to further investigate.
A visual inspection of the subset of the CC-CXRI-P dataset
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FIGURE 4. Gradcam showing the model focusing on medical devices.

used for this experiment shows that all patients in the positive
class have medical devices visible and none of the patients in
the negative class have any tubes or devices. Thus, suggesting
a potential shortcut learning situation. To confirm the issue,
we tested the model on data from unseen sites with and
without presence of devices.

Table. 2 shows the external testing results of the model
by source. The results suggest that the model is associ-
ating COVID-19 positive infection with the presence of
medical devices. The accuracy was high on COVID-19 pos-
itive sources where the majority of its patients had devices
(V2-COV19-NII: 96% and COVID-19-AR: 94%). Whereas
the accuracy was very low on a source where the patient
had no visible devices (COVIDGR+: 38%). Similarly, it can
be seen that the model is associating COVID-19 negative
infection to the absence of devices. The accuracy was good
on negative sources that only had few or no devices visible
(NIH: 60% and COVIDGR-: 79%) but very low on sources
with devices (Chexpert: 23%).

To visually explain the decision of a CNN, Gradient-
weighted Class Activation Mapping (GradCAM) [30] can be
used. The GradCam visualization shown in Fig. 4 demon-
strates that the highly activated areas (redish and yellow) are
located around tubes and devices.

Datasets which provide additional annotations on the pres-
ence of medical devices are needed. Alternatively, novel
algorithms to automatically detect (and perhaps remove) the
devices are required.

3) RIB SUPPRESSION
In addition to the confounders discussed above, another
potential source of bias are the ribs. Ribs on some CXR
datasets can generally appear to be more prominent than in
other datasets. Therefore the appearance of the ribs can be
a potential confounder that the model can rely on to make
decisions. A study [31] shows that rib suppression improves
model generalization when identifying lung nodules from
X-rays. Thus, it may improve the COVID-19 classifier gen-
eralization as well.

FIGURE 5. Comparison of internal(seen) vs external(unseen) test results
when training with data where (a) both classes from same source vs
(b) from different sources.

4) BOTH CLASSES FROM THE SAME SOURCE
The heterogeneity of the images coming from different
sources makes the CNN learn characteristics that are not
themselves truly indicative of COVID-19. As a solution,
we suggest to design the training data using both the
COVID-19 positive and negative class from one single
source. In our attempt to experimentally demonstrate the
impact of this solution, we built two training sets that cor-
respond to two scenarios. The first is the case where both
classes are from the same source and the second is the sce-
nario where both classes come from different sources.

In the first scenario, we used the BIMCV-COVID-19 data
source. This source published both positive and negative
cases. We chose samples to include in the COVID-19 positive
class if both a confirmed PCR test and radiological findings
(visible in the X-ray and noted in the radiological report) are
present. Whereas samples in the negative class are ones with
a negative PCR test and no findings present in the CXR or
documented in the reports. Fig. 5a compares the internal vs
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external performance of a model trained with data where both
classes belong to the same source. Note that the performance
is decent and the testing results are consistent across sites,
both seen and unseen.

In the second scenario, for the positive class, we used
the same samples from the experiment above (BIMCV-
COVID-19+). Whereas for the negative class, we used sam-
ples from a different source (NIH). We picked images with
the ‘‘no findings’’ label, which refers to having no pulmonary
diseases, to be consistent with the negative class used in
the first scenario. Fig. 5b compares the internal vs external
performance of a model trained with data where both classes
belong to different sources. As seen in the figure, there is
a big accuracy gap when testing on data from seen sites vs
unseen ones. The model shows almost perfect performance
on data from seen sources while it fails at classifying data
from unseen sites. Thus, suggesting shortcut learning.

The results suggest that COVID-19 positive and
COVID-19 negative classes should be consistently sourced
and go through consistent image acquisition and
pre-processing pipelines. This will minimize systematic
structural differences between the classes. Thus, eliminate
bias. However, a shortcut could still be learned that will be
ineffective when a local acquisition protocol changes. For the
rest of this paper we focus on a typical case where having all
classes from the same source is not possible.

B. LUNG SEGMENTATION AND CROPPING
The first step to debiasing a deep learning model trained
to identify COVID-19 from CXR images is the process of
lung segmentation and cropping. The majority of the CXR
images available online have markers present at the edges
of the images (dates, projection labels, portability mark-
ers, arrows. . . etc). Deep learning models may easily rely
on those markers for learning and completely or partially
ignore the lung area, which contains the desired information
in this context. Thus, the learned model will be unreliable
for clinical decision support even though it can achieve very
high classification results. Therefore, we recommend lung
field segmentation and cropping as a first step in data pre-
processing and preparation. A model trained using cropped
CXRs will be forced to focus on information in the lungs,
rather than the burned-in annotations, when making deci-
sions. This will increase its generalization and reliability.
Fig. 6a shows aGradCam visualization of our baselinemodel,
trained using original uncropped images. Heatmaps that high-
light the regions or pixels which had the highest impact on
predicting the actual class are placed on top of the original
images. Higher intensity in the heat-map indicates higher
importance of the corresponding pixel in the decision. The
heatmaps suggest that the model is activated by the noise
areas and it is ignoring the lung field. Fig. 6b shows more
focus on the lung area andwill be discussed in the proceeding.

The utility of lung field segmentation and cropping in med-
ical image classification is supported in previous studies [32].

FIGURE 6. An example of an input CXR before vs after lung cropping.

FIGURE 7. An example of an input CXR before vs after lung cropping.

A comprehensive review of deep learning based medical
image segmentation techniques may be found in [33].

To assess the impact of lung segmentation and cropping we
compare the performance of a model trained using uncropped
images versus another model trained using cropped inputs.
For the cropped inputs, we used a U-NET model, pre-trained
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FIGURE 8. Performance comparison of models trained with cropped vs
uncropped images.

by [34] on a CXR dataset, to perform automatic lungs seg-
mentation. Then, we cropped the lungs area based on the
generated mask. Fig. 7 shows an example of an original CXR
before and after cropping.

For model training, BIMCV-COVID-19+ data was used
as the source for COVID-19 positive class and Padchest for
the COVID-19 negative class. A randomly chosen 20% of the
data was held out for internal testing. For external testing of
a model on unseen sites, we used samples from all the other
sources not used in training.

We tested the last model’s snapshot (20th or 1000th epoch).
Fig. 8a compares the internal performance of models trained
with uncropped vs cropped images. While Fig. 8b compares
the external performance of the two models.

The results suggest that themodel’s accuracy is statistically
significantly higher when images are cropped. Using the
McNemar’s test [35], we calculated a p-value of 0.02 which
provides 98% confidence the difference between the model’s
performance on unseen sources before and after cropping is
significant. Moreover, Fig. 6b shows GradCam results after
lung field cropping. It can be seen that the model shifts
focus to the lung area instead of the X-ray’s corners where
noise was present. However, the significant drop in AUC
shows that even after lung segmentation, a present shortcut
is still influencing the classification model. Thus, more ways
to avoid confounders must be evaluated to design a proper
COVID-19 diagnosis system using CXR images.

C. HISTOGRAM EQUALIZATION
Systematic differences in image contrast between the datasets
can result in biased model training and negatively impact

model generalization. As seen in Fig. 9, datasets are easily
distinguished from each other due to the obvious difference
in the brightness and contrast of the images. CXR images
can have variable contrast based on technical calibration of
the imaging acquisition equipment. Specifically, the energy
of the primary beam and the possible application of tech-
niques to reduce scatter radiation such as collimation, grids
or air gaps [36].

Histogram equalization processing has proven to be effec-
tive for normalization [37], [38]. Therefore, in this study
histogram equalization was used as a preprocessing step on
all CXR sources. In Fig. 10, the result of equalizing shows
consistent contrast between sources. All values above the
95%order statistic were clipped to 1.0 since some sources had
bright annotations and other sources did not. This technique
ensured that for every source the brightest CXR pixels were
normalized to the brightest white.

In order to experimentally see the impact of histogram
equalization, we compared training the baseline model with
histogram equalized preprocessed inputs vs unprocessed
images. We used the V2-COV19-NII for COVID-19 positive
class and Padchest for COVID-19 negative class.

We tested the last model’s snapshot (20th). Fig. 11a com-
pares the internal performance of models trained with his-
togram equalized images vs with unprocessed images. While
Fig. 11b compares the external performance of the two mod-
els. The results suggest that the model performs statistically
significantly better when trained with histogram equalized
images. Using the McNemar’s test [35], we calculated a
p-value of 1.7 × 10−4 which is lower than the significance
threshold, alpha = 0.01. There is a significant difference
between the model’s performance on unseen sources before
and after histogram equalization with 99% confidence.

However, a high testing accuracy gap between external and
internal sources still exists, which suggests the persistence of
shortcut learning.

Similar techniques such as quantile normalization, and
histogram matching were also explored, but determined to be
no more effective.

D. NOISE-BASED AUGMENTATION
In addition to image rotations, zero mean Gaussian noise
with a standard deviation of 0.01 was applied to the original
images. Over-fitting usually happens when the deep learning
model tries to learn high frequency features (patterns that
frequently occur) which may not be useful. Gaussian noise,
which has zero mean, essentially has data points in all fre-
quencies, effectively distorting the high frequency features
and helping the model to look past them.

We applied this technique as a data augmentation proce-
dure. This approach ensures that the DL network will be less
sensitive to source noise level. Samples were augmented prior
to training, while original fidelity images were also included
during training. In this way, the trained network needed to
classify across noisy and clean images.
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FIGURE 9. Before histogram equalization.

FIGURE 10. After histogram equalization.

The Euclidean distance between the original image and its
noisy augmentation was 0.014. Fig. 12 shows the comparison
of the performance gap between seen and unseen sources
before adding noise based augmentation (solid marker) and
after (dotted marker).

The test accuracy of the last snapshot (20th) when using
only rotation and flip augmentation for seen sources was 92%
and 72% for unseen sources. When adding Gaussian noise
based augmentation, the accuracy for seen was 90% and 81%
for unseen sources. After adding the Gaussian noise based
augmentation, the accuracy gap was improved to only 9%
instead of 20%.

The test accuracy on unseen sources is statistically sig-
nificantly higher when adding Gaussian noise augmentation
(81%) than when only using flip and rotate augmentation
(72%). Using the McNemar’s test [35], we calculated a
p-value of 8.13 × 10−5 which is lower than the significance
threshold, alpha = 0.01. There is a significant difference
between the model’s performance on unseen sources before

and after adding Gaussian noise based data augmentation
with 99% confidence.

The results suggest that making features that are not med-
ically relevant, but good discriminators, noisy can result in
less focus on them. Medically relevant features are naturally
expected to have some ‘‘noise’’ and be less affected. To fur-
ther assess the effect of the amount of noise added, we exper-
imented with multiple values of Gaussian noise standard
deviation {0.005, 0.01, 0.05}. Fig. 13 shows the results of
testing the 20th model snapshot for different values of Gaus-
sian noise standard deviation. Based on the obtained results,
it doesn’t seem to hurt the accuracymuch on testing data from
seen sources. However, it allowed significant improvement to
the performance on data from unseen sources. This suggests
that the model has learned to ignore confounding features and
focus on more medically meaningfully differences between
classes.

To answer the question of how much noise is good
enough, based on our experimental results, addingmore noise
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FIGURE 11. Performance comparison of models trained with histogram
equalized pre-processed images vs with unprocessed images.

FIGURE 12. Test accuracy of the saved snapshots on seen vs unseen data
sources after the Gaussian noise based training data augmentation.

FIGURE 13. Comparison of the performance gap when testing the 20th
snapshot on seen vs unseen data sources for multiple Gaussian noise
standard deviation values.

(std = 0.05) has little to no effect on the accuracy perfor-
mance for seen sources. However it makes the accuracy of
unseen sources slightly lower than a noise application of
std = 0.01. Less noise (std = 0.005) increased the accuracy
performance on both the seen and unseen sources at early
stages but at the end the performance gap becomes larger.
Generally, we noticed that the application of noise based data
augmentation had no effect (or a slight improvement) on the
performance for seen sources. However, it has significantly
improved the model’s performance on unseen sources.

TABLE 3. Testing accuracy performance of DeepCOVID-XR on unseen
COVID-19 sources.

V. DISCUSSION
As we mentioned before, in this study we used a customized
Resnet-50 as a CNNmodel. However, the problem of shortcut
learning is present in all deep learning based models and
our solution is applicable to any CNN regardless of the
architecture.

To experimentally show that shortcut learning exists in
other architectures, we tested a COVID-19 diagnosis system
called DeepCOVID-XR [39]. It is claimed that it is capable
of generalizing to a held-out test data set of 2214 images
(1192 positive for COVID-19) from a single institution that
the algorithm was not exposed to during model development.
Their method achieved a sensitivity of 75% (898 of 1192).
Authors claim that DeepCOVID-XR was trained and tested
on, to their knowledge, the largest clinical data set of chest
radiographs from the COVID-19 era of any published AI
solution to date. It included images from multiple institu-
tions across a large U.S. health care system (17,002 images
from 5,853 patients total). DeepCOVID-XR consists of
an ensemble of six CNN architectures (DenseNet-121,
ResNet-50, InceptionV3, Inception-ResNetV2, Xception,
and EfficientNet-B2). The CNNs in this ensemble were
pretrained on a large publicly available data set of chest
radiographs from the National Institutes of Health [26] and
were then fine-tuned on a private clinical training set of
patient’s chest radiographs from over 20 sites across the
NorthwesternMemorial Health Care Systemwho were tested
for COVID-19 from February 2020 to April 2020. Note that
the external testing was done on data from an institution that
is affiliated with the same health care system from which
the training data was obtained. Therefore, there is significant
likelihood that the testing data have a very similar distri-
bution and cover a very similar population as the training
data. Thus, their good testing results (sensitivity of 75%)
may not guarantee generalization. Their pretrained models
were made available on Github [40]. We tested their system
on some external sources of COVID-19 positive to assess
the robustness and generalization ability of their solution.
Table. 3 shows the testing results with some significant
drop-offs in accuracy. Overall the model had a sensitivity
of 58% (156 of 271).

This suggests that having large amount of training data
from multiple sources and an ensemble of several advanced
CNN architectures is not a complete solution to the problem
of generalization to unseen sources. It may be impractical to
have one set of data that covers the space of possible X-ray
data acquisition parameters and protocols.

Additionally, we compared the modified Resnet-50 pre-
sented here against other CNN architectures. Instead of
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FIGURE 14. Comparison of training accuracy/loss per epoch for
Resnet-50 vs Densenet-121 as base model.

Resnet-50 as a pretrained basemodel, we usedDenseNet-121.
Fig. 14 shows a comparison of the training accuracy/loss per
epoch of the compared models. For model training, as in
Section IV-B, BIMCV-COVID-19+ data was used as the
source for COVID-19 positive class and Padchest for the
COVID-19 negative class. It can be seen that both models
have similar training graph. Also, Densenet-121 was faster to
reach 100% training accuracy than Resnet-50. The internal
vs external testing results of Densenet-121 are presented in
Table 4. The results (drop-off= 0.37) suggest that Densenet-
121 suffers from shortcut learning as well. We can also notice
that when a model has higher training, it achieves higher
seen testing accuracy but has a larger drop-off when tested
externally.

TABLE 4. Comparison of internal vs external performance of Resnet-50 vs
Densenet-121 as base model.

In order to determine if our method helps with
DenseNet-121, we apply the proposed solution and com-
pare seen vs unseen testing performance before and after
application of the proposed method. Fig. 15 shows results.
It can be seen that the drop-off between internal and external
testing has been reduced with the application of our proposed
pipeline. Note for faster testing results, the unseen testing
set used in this experiment is small subset (232 positive and
232 negative cases) randomly chosen from the unseen testing
set used in Table 4 which consisted of 1200 positive and
1200 negative cases.

On the other hand, to our knowledge there are no similar
studies to compare with our approach. However, in a related
paper, a study on congestive heart failure [13] observed in
CXRs addressed shortcuts by pre-training a model originally
trained on Imagenet on a related problem without shortcuts
(pneumonia and other lung diseases which show up in CXR).
They found this approach reduced the likelihood of the final
tuning capturing shortcuts. However, the approach requires

FIGURE 15. Test accuracy of the saved densenet-121 snapshots on seen
vs unseen data sources after application of the proposed approach.

choosing one particular known bias to precisely target and it
needs careful data curation and extra steps in training. In our
case, we are thinking of unknown, ‘‘concealed’’ shortcuts.

VI. CONCLUSION
Deep learning based medical diagnostic systems cannot be
considered clinically mature until they are also shown to be
generalizable across source populations. The issues raised
here apply to other image modalities and other diseases for
which X-ray imaging is used. We point out biases to look-
out for while training models and suggest steps for training
data curation and preprocessing to avoid shortcut learning.
For lung diseases like variants of COVID-19, the use of lung
segmentation, histogram equalization, and added noise to
images significantly reduced the gap in performance between
cross validation results and unseen source predictions. While
overcoming shortcut learning entirelymay require new neural
network formulations, in this work we show important steps
towards mitigating it. Thus, leading to more fair, reliable,
robust and transparent deep learning based clinical decision
support systems. Our proposed methods enabled the mod-
els to perform statistically significantly higher on unseen
sources. Thus, lowering the performance drop to only 9%
instead of 20%.

VII. FUTURE WORK
Our work here is concerned with mitigating shortcuts on
the data level. In the future, we are planning to explore the
possibility of solving shortcut learning at themodel level. The
black-box nature of CNNs continues to be further explored.
More complex loss functionsmay be needed to avoid learning
simple functions which capture shortcuts.

In the context of clinical applications, an important step for
employing a DL approach for CXR support systems, will be
fine-tuning or calibration of the system to avoid the unique
artifacts and confounders at a source. Especially revealing is
the sensitivity of confounding factors, and each source will
have to be carefully analyzed to avoid issues like those found
in this research.Whenworkingwithmedical images, it is very
important to visually examine a significant sample from each
source.
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In the future, new approaches may alleviate the problems
encountered in cross-source generalization. Numerous alter-
nate state-of-the-art techniques may provide significant
improvements for medical imaging classification tasks on
unseen sources and deserve study such as: multi-task learn-
ing [41], few-shot learning [42], semi-supervised learn-
ing [43], attention models [44], data synthesis (especially of
confounders such as synthetic tubes/devices) [45], and feder-
ated learning [46]. Each of these approaches improve gener-
alization by ensuring that feature distillation is appropriately
abstract, while also ensuring that the system is focused on
classifying with the appropriate features. While federated
learning has become a hot topic for the medical industry,
it requires a high degree of coordination between facilities
and one may not be able to examine potential shortcuts at
non-local facilities. It must be noted that even if there is
a broad variety of data there can still be shortcuts learned.
Such as a high likelihood of a person with a device attached
having the disease to be found. While a device indicates a
suspected illness, no human doctor would diagnose based on
its presence.

The medical industry, as well as any mission critical appli-
cation, requires trust in an algorithm, but this trust need not be
implicit. Explainable AI (XAI) is another key factor for engi-
neers and developers to successfully transition technology
from the lab to the clinic. Decision support systems for the
medical community can be hugely beneficial to the radiomics
and pathology communities, but recommendations will need
to be evidence based. Technologies such as GradCAM are
helping researchers, but other more sophisticated XAI solu-
tions will be needed in the clinical space.
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