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ABSTRACT Fault detection and classification are fundamental requirements of multilevel inverters (MLIs)
to ensure constant operation and improved reliability. Nowadays, the machine learning (ML) technique is
utilized for fault diagnosis in MLIs due to its inherent features such as high accuracy, reduced computation
time, and complexity. However, the rich availability of parts and classifiers in ML techniques demands a
tedious investigation of every combination to design an optimal fault classifier. To overcome this problem,
a combined optimiser is proposed to automate the ML-based classifier design, which involves selecting
optimal features and classifier. Mean, total harmonic distortion, root mean square, and different harmonic
orders (upto 12th order) of the output voltage of MLI are considered as features and four different ML tech-
niques like K-nearest neighborhood, decision tree, Naive Bayesian classifier, and support vector machines
are considered. Ant Colony Optimization (ACO) is used to formulate a combinatorial optimization routine
to maximize classification accuracy by optimal selection of features and classifier. The proposed technique
is used to design a fault classifier for two different MLIs, such as Cascaded H-bridge MLI (CHBMLI)
and Packed U cell inverter (PUC), during the fault conditions (open circuit and short circuit) to check the
feasibility. Simulation results illustrate classification accuracy of 97.84% and 98.61% for CHBMLI and
PUC, respectively. Experimental validation of the designed classifier on the inverter prototype is also carried
out and illustrates 95.56% and 94.28% classification accuracy for CHBMLI and PUC, respectively.

INDEX TERMS Ant colony optimization, combined optimizer, fault classification, inverters, machine
learning, multiple signal classification.

I. INTRODUCTION
Multilevel inverters (MLIs) have been utilized in high-power
renewable energy sources [1] like windmills, photo-
voltaic [2]–[4] and fuel cells. Easy integration and fewer har-
monics encourage their applications in many industries [5].
Among several topologies of MLIs, the cascaded H-bridge
Multilevel inverter (CHBMLI) exhibits reliable performance
in variable speed applications [6], [7] and renewable energy
source integration [8]. Harmonic reduction in CHBMLI is
achieved by increasing the levels, which leads to an increase
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in power semiconductor switches [9]. It increases the com-
plexity and reduces reliability [10].

In CHBMLI, 38% of faults are occurred due to the mal-
function of power semiconductor devices like IGBTs or
MOSFETs [11]. Open circuits, short circuits, and gate mis-
fires are common failures in power semiconductor devices
that occur due to excess thermal and electric stress. Continu-
ous operation of CHBMLI under such failure conditions leads
to additional failures and causes serious effects [12].

For instance, failures in switching devices of CHBMLI
supplying a traction motor in a hybrid electric vehicle will
affect the speed control operation [13]. Downtime associ-
ated with inverter failures in industries affects the production
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cycle and causes a massive loss of cost per hour. Shield-
ing circuits have been used in inverters to safeguard and
decrease the impact of power semiconductor device failures.
However, they may fail due to abnormal use, complicated
circuit arrangement, disturbance in load, power system dis-
turbance, and electromagnetic interference [14]. In recent
times, a Packed U-Cell (PUC) type inverter has been pre-
ferred [15], which integrates the merits of a flying capacitor
(F.C.) and CHBMLI inverter. PUC topology contains themin-
imum number of switches compared to the CHBMLI, making
the system compact, more efficient, and cost-effective [16].
The compact PUC inverters have been utilized in critical
applications like motor control, grid interfaces, and Flexible
A.C. transmission system (FACTS). In variable speed drive,
the fault occurs often owing to power semiconductor device
failure. Therefore, the detection and classification of faults
are essential. Reduction in switching components demands
more reliability [17], and it necessitates fault diagnosis and
tolerant strategies. Hence, a combined optimizer is developed
in the proposed work to automate the design of ML-based
classifier by selecting the optimal features and classification
technique for both CHBMLI and PUC inverters.

Fault diagnosis technique based on output voltage or cur-
rent is widely used and reliable for inverters. It enables the
detection of fault location and identification of fault type [18].
Type of faults and its location are essential to plan mitiga-
tion procedures to overcome the failure [19]. Three types of
fault diagnostics techniques, namely (i) model-based [20],
(ii) knowledge-based [21], and (iii) data-driven based, have
been discussed in the literature. An exact mathematical model
has been required for defining the fault mechanisms in
a model-based approach. Developing such a mathematical
model for the complex structured inverter circuit is a tedious
task. Moreover, these mathematical models are limited in
solving particular fault problems [22].

Unlike the model-based method, the knowledge-based
approach is widely applied in complex inverters, which does
not depend on a precise mathematical model. It needs a
complete knowledge (fault type and location) and interfer-
ence engine. This method depends highly on the practical
knowledge of the professionals, and the diagnosis accuracy
relies on the significant amount of professional expertise
available in the knowledge base [23]. Fuzzy-based support
vector machine (SVM) has been reported [24] for higher
accuracy than other approaches. However, this method takes
more computing time to diagnose the fault and requires expert
knowledge to tune the rules manually.

The availability of rich data encourages the usage of
data-driven methods like machine learning (ML) approaches.
Predominant of the ML techniques, namely Support vector
machine (SVM) [8], Artificial Neural Network (ANN) [25],
and K-nearest neighbor (KNN) [26], belong to the data-
driven approach. Fault diagnosis using intelligent data-driven
algorithms has turned out to be a research hotspot in
recent years [27], [28]. Fault diagnosis technique funda-
mentally demands in-depth knowledge about the operations

of the inverters to understand its working under normal
conditions. Any deviations from its normal operations have
to be analyzed to determine the fault type and severity.
Hence, the inverter design-specific nature of fault detection
systems demands significant effort and expert knowledge.
ML technique emerges as the mitigation strategy to automat-
ically learn the correlation between the features and faults.
ML tends to eliminate the need for expert knowledge on
inverter operations.

These ML techniques have been incorporated into fea-
ture extraction procedures to increase fault diagnosis per-
formances. Statistical techniques, Fast Fourier Transform
(FFT),wavelet transforms [29], [30], and Principal Compo-
nent Analysis (PCA) has been used to extract the features
for fault detection. The number of fault classes may increase
depending on the number of switches utilized in developed
multilevel inverter for generating the required output voltage
level. Due to the increase in fault classes, more features may
require for fault classification.

A complex neural network with 40 input (features) neurons
has been utilized to detect open circuit fault inMLI using FFT
signals [31]. Genetic algorithm (GA) and PCA has been used
to reduce the required features and complexity of the clas-
sifiers. A fault diagnosis approach based on the FFT-PCA-
multiclass relevance vector machine has been developed to
diagnose the open circuit faults in CHBMLI [32]. Operator
knowledge has also been used to select the required features
using PCA [31], [32]. Limiting the number of fault classes
is another approach to reducing the classifier complexity.
Open and short circuit faults were classified using FFT-based
features [33].

The availability of vast features and classifiers in ML
enables a large number of combinations which need to be
investigated to design the best fault classifier. Though tech-
niques likeGA., PCA, and random forest algorithm have been
used for optimal feature selection, the choice of classifiers
remains biased. The lesser training time of shallowML-based
classifiers like SVM, KNN, NBC, and decision trees allows
the use of an optimization routine for the combined selection
of features and classifier. Hence, a combined optimizer is pro-
posed in this work to simultaneously select both the features
and classifier, which is required to design a fault classification
method for CHBMLI and PUC. A search space comprising
static and harmonic features extracted from the output voltage
along with several ML-based classifiers is formulated. Ant
colony optimization (ACO) is also used to select the unique
combination of features and classifier from the search space
to maximize the classification accuracy.

Major contributions of the proposed work are as follows
(i) Design of combined optimizer using ACO to select the

optimal features and classifier without manual interventions.
(ii) Formulate the cost function to provide better

classification accuracy.
(iii) The proposed method is suitable for fault diagnosis

in open circuit and short circuit fault conditions to any MLI
configuration.
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(iv) Simulation has been carried out during healthy and
faulty conditions (open circuit and short circuit) of CHBMLI
and PUC.

(v) Experimental validation of the proposed design proce-
dure to design a classifier for fault classification in CHBMLI
and PUC type inverter.

The rest of the paper is organized as follows: Section 2
describes the related background required for problem for-
mulation. It explains the operation and fault characteristics
of CHBMLI and PUC inverters. Section 3 provides a brief
introduction to feature extraction and the classifier consid-
ered in this study. Section 4 explains the proposed design
of an ACO-based combined optimizer for selecting features
and classifiers. Section 5 shows the experimental results and
comparative analysis, and Section 6 concludes this work with
future direction.

II. RELATED BACKGROUND
Multilevel inverters are widely used in A.C. drives, non-
pollutant renewable energy integration, and active power
filters. In Multilevel inverter families, cascaded H-bridge
Multilevel inverters have gained significant attention because
they satisfy themedium voltage and high-power requirements
in industries but require more semiconductor devices. This
drawback is overcome in the PUC inverter. PUC inverters
need lesser semiconductor switches to attain the same voltage
level as CHBMLI. CHBMLI and PUC inverters are chosen in
the proposed work due to their distinct features.

A. ARCHITECTURE OF CHBMLI
A single-phase CHBMLI is connected to the motor load,
as illustrated in Figure 1. It generates a five-level output
voltage by combining the two H-bridge inverter modules in
series with the separate D.C. source in symmetric condi-
tions. Each H-bridge inverter module consists of 4 IGBT
switches marked as T1, T2, T3, T4, and T5, T6, T7, and T8.
The output voltage of CHBMLI is produced by the combina-
tion of voltage generated in the two modules.

The switching pulses necessary for IGBT switches are
generated by using the Alternative Phase Opposition Disposi-
tion (APOD) technique, as shown in Figure 2. The carrier fre-
quency and modulation index of a sinusoidal signal are set as
3 kHz and 0.8, respectively. In this technique, each triangular
waveform is out of phase by 180o with its alternate waveform,
and a sinusoidal signal is kept as a reference. To generate an
output voltage with x levels, the MLI uses x − 1 triangular
waveforms. The switching scheme of the CHBMLI is shown
in Table 1. The number of H-bridge (NH ) used in the MLI
determines the output voltage level (Lv) as in (1), which in
turn describes the smoothness of the generated A.C. voltage.
The increase in the number of H-bridge and their associated
switching components necessitates the need for fault-tolerant
systems in MLI.

Lv = 2NH + 1 (1)

FIGURE 1. Structure of single-phase 5-level CHBMLI.

FIGURE 2. APOD PWM scheme.

TABLE 1. Switching scheme for the proposed topology.

The operatingmodes of the CHBMLI are discussed in [34].
Initially, switches T1, T2, T5, and T6 are turned ON and
the other four switches T3, T4, T7, and T8 are turned OFF,
to get an output voltage level of +2Vdc. To get the +Vdc
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level at output voltage, the switches T1, T2, T8, and T6 are
turned ON and the other switches namely T3, T4, T7, and
T5 are set to OFF. Finally, switches T2,T4, T6, and T8 are
turned ON and all the other switches are turned OFF. So that
no current will flow in the power circuit creating a level of
zero output voltage. Thus, all the switches in the CHBMLI
play a vital role in determining the waveshape of the output
voltage. It necessitates a need to diagnose and ensure the
health of these switches for reliable power delivery using the
CHBMLI.

B. ARCHITECTURE OF PUC INVERTER
The main merits of the PUC inverter are the minimum
number of active switches and the minimum requirement
of gate drivers. The component count of the PUC inverter
is compared with other popular inverters like CHB, NPC,
and F.C., and the component count comparison is shown
in Table 2 [35].

A single-phase 5-level PUC inverter is shown in figure 3.
It consists of two dc sources in symmetric condition and
6 power semiconductor switches. It is worth mentioning that
T4, T5 and T6 are the complementary switches of T1, T2 and
T3, respectively. The operating modes and the advantage of
this topology are discussed in [36]. The switching states of
this topology for generating the five-level output voltage are
shown in table 3.

FIGURE 3. Structure of the PUC5 level inverter.

TABLE 2. Components counts of single-phase multilevel inverter.

PUC inverter turns ON the switches T1, T5, and T6, and
switches T2, T3, T4, and T8 are turned OFF to get an output

voltage level of +2Vdc. A +Vdc is obtained by turning ON
the switches T1, T5, and T3, and all the other switches like
T2, T4, and T6 are set to be OFF. The current in the power
circuit is made as zero by turning ON switches T1, T2, and,
T3, and all the other switches T4,T5, and T6 are turned OFF.
It enables to have the output voltage at level zero.

TABLE 3. Switching states of puc 5 level inverter.

The structure of the generalized fault diagnosis
approach [32] for inverters is illustrated in Figure 4. MLI
tends to provide a smooth sinusoidal waveform using mul-
tiple D.C. sources by generating a periodic switching pattern.
In a fault diagnosis approach, the output voltage signal of
MLI is measured because these signals consist of reliable
information and are independent of load variations. The
measured signals are preprocessed and the required features
are extracted. Statistical features like % THD, RMS, Mean,
and frequency domain features like harmonic distortions are
extracted from the measured voltage signal. These features
are extracted from MLI and given as input to the fault
classifier. A fault classifier uses these extracted features to
determine the fault class.

FIGURE 4. Structure of the generalized Fault diagnosis approach.

III. METHODOLOGY
The design of an ML-based fault classifier involves various
steps, as described in Figure 5. The ML-based classifier
requires a data set describing various fault conditions in the
inverter. Hence, various faults are induced into the inverter,
and the corresponding output voltages are acquired. Features
are extracted from the acquired output voltage signal, and
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the data set is prepared with the corresponding fault class.
A training dataset is used to train the ML-classifier, and
another set of datasets are used to test the trained classifier.
The testing performance is evaluated using standard perfor-
mance metrics and deployed. The choice of features and
classifier plays a vital role in designing an efficient fault
classifier, which has been investigated in this work.

A. DATASET PREPARATION
The output voltage waveform is considered a diagnostic
parameter to diagnose the fault in the proposed technique,
whereas the output current changes with respect to the
different loads. Faults are induced in each switch of the
inverter and its corresponding output voltage waveform is
acquired.

FIGURE 5. Design process for ML-based fault classifier.

Healthy condition, open-circuit, and short-circuit faults are
induced with varying modulation indexes. For instance, at
a certain value of modulation index (m = 0.8), the output
voltage waveforms for healthy conditions, open-circuit faults
of switches T1 to T4 and short-circuit faults of T5 to T8 in
CHBMLI are observed as in Figure 6. A distinctive pattern of
the output voltage waveforms is observed for different switch
fault conditions, which serve as a reliable marker for fault
classification. Similarly, the open-circuit and short circuit
faults are created in each switch of the PUC topology, and the
corresponding output voltage waveforms are observed as in
Figure 7. The voltagewaveforms observed during healthy and
faulty conditions of each switch have unique characteristics
that provide a reliable marker for fault classification. It is
observed that the positive half cycle and the negative half
cycle are completely diminished due to the open circuit fault
of T1 and T3 respectively. Hence the failure in these switches
greatly affects the performance of the PUC which needs to be
diagnosed quickly to avoid serious failures.

FIGURE 6. Output voltage waveforms of CHBMLI: (a) Healthy state
(b) Open circuit fault in T1 (c) Open circuit fault in T2 (d) Open circuit
fault in T3 (e) Open circuit fault in T4 (f) Short circuit fault in T5 (g) Short
circuit fault in T6 (h) Short circuit fault in T7 (i) Short circuit fault in T8.

FIGURE 7. Output voltage waveforms of PUC: (a) Healthy state (b) Open
circuit fault in T1 (c) Open circuit fault in T2 (d) Open circuit fault in T3
(e) Open circuit fault in T4 (f) Open circuit fault in T5 (g) Open circuit fault
in T6 (h) Short circuit fault in T1.

B. FAULT CLASS DESCRIPTION
This section describes the various faults considered in this
study. Themain reason for malfunction in CHBMLI and PUC
is the failure of the power semiconductor devices.
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It may lead to open or short circuit faults. Hence, both
open circuit and short circuit faults in CHBMLI and PUC
are analyzed. The current supplied to the load is interrupted
during open-circuit (O.C.) faults and leads to significant dis-
tortion in the output load waveforms. A high current flow
is induced with a short-circuit (S.C.) fault by making zero
voltage drop across the switch. Unlike open circuit faults,
short circuit faults cause catastrophic failure in the inverter
even in a shorter time.

All the switches in the CHBMLI (8 switches) and
PUC (6 switches) are considered in the proposed work. Each
switch is subjected to O.C. and S.C. conditions to simulate
various fault classes along with normal operating conditions
as one class, as in Table 4 for CHBMLI and Table 5 for PUC.

TABLE 4. Ault and category labels of CHBMLI.

TABLE 5. Fault and category labels of PUC.

C. FEATURE EXTRACTION
Any ML-based classification consists of two steps, namely,
feature extraction and classification. In the feature extrac-
tion step, the feature required for classification is extracted
from the measurement signal. Features define the abstraction
of the measurement signal and convey reliable information
used for classification. A unique combination of features for

a particular class is often preferred, which enables an accurate
classification. Hence, the choice of features plays a vital
role in determining the classification performance of the
ML-based fault classifier.

In this work, three static features (Mean, % THD, VRMS)
and eleven harmonic features (individual harmonic order
up to 12th order) are extracted from the output voltage as
described in Table 6. These features have a higher degree of
detectable variations during the faulty conditions and contain
reliable markers on the fault type.Mean value provides a D.C.
shift encountered and loss of symmetrical pattern during the
faulty conditions of MLI.

TABLE 6. Features used for fault classification.

The RMS value detects the peak value of distortions in
the output voltage. Noise introduced by the switching faults
provides significant variations in % THD. The first 11 har-
monic orders (H2−12) of the output voltage are also extracted
using FFT analysis and used as features. If the dominant
harmonics are present in the lower order, it affects the system
performance and also, the designing of filters is difficult.
Therefore, the individual harmonic orders up to the 12th order
are considered in this work.

D. ML-BASED CLASSIFIER
In the proposed work, four different classifiers, namely, deci-
sion tree (D.T.), K-nearest neighbor (KNN), Naive Bayesian
classifier (NBC), and support vector machines (SVM) are
considered in this work. The choice of these classifiers is
strongly encouraged by the literature for fault classification
applications.

KNN is a supervised learning algorithm widely used for
regression and classification applications. This algorithm
tends to cluster the identical data that are near in proximity.
During learning, the rule for partition of the whole training
data is carried out and allots a particular label for the cluster.
For unknown data, the distance between the unknown and the
training data set is computed. The unknown data is classified
using the minimum distance criterion. KNN exhibits a higher
level of accuracy and excellent stability [37]. It is used to
identify the O.C. faults in a cascaded Multilevel inverter [26].
It tends to select features that are close neighbors and forms
a cluster corresponding to the fault type. Its non-parametric
approachmakes it a preferred choice for data-driven classifier
design.
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The decision tree (D.T.) algorithm has a top to bottom
approach that searches the features to decide on the fault type.
It has a tree-like structure, where the features of the data set
are represented by an internal node, decision rules are repre-
sented by branches, and the outcome is represented by a leaf
node. This tree is mainly preferred for resolving classification
problems. D.T. has a successive model that unites a sequence
of the basic test proficiently and cohesively [38]. An optimal
classification tree is constructed to detect and diagnose the
fault. It is similar to a flowchart but has a tree-like structure.

SVM uses statistical learning theory to construct clas-
sifiers. It tends to divide the features in a hyperplane to
understand their fault specific characteristics. Hyperplane is
created with extreme vectors, which describes the variations
across features. It is a supervised learning model with accom-
panying learning algorithms that are used to examine features
and recognize patterns across each fault type. It is widely
used in applications like classification, regression models,
and pattern recognition. It can overcome the limitations in
data dimensionality and inadequate samples. This makes it
ideal for fault classification in inverters, where wider range of
fault class is encountered. SVM is use to diagnose the O.C.
faults in cascaded Multilevel inverters [8].

Naïve Bayesian classifier (NBC) is one of the quickest
learning algorithms and able to handle larger number of
classes. Simple in construction, efficient classification and
immune to noise in data sets are some of the metrics that
encourages the used of NBC for fault classification. It is
a supervised probabilistic classifier predominantly used for
classification [39]. Knowledge-based nature of NBC encour-
ages its usage for both binary and multiclass pattern classifi-
cation. It estimates the fault class based on the likelihood of
the features. It is used to decide the possibility of a premise
with previous information extracted from the training set.
It relies on conditional probability estimated using the Bayes
theorem is given as in (2).

P(A|B) = P(A|B)P(A))/P(B) (2)

NBC is used for image classification in [40] due
to its greater classification accuracy and fast com-
puting time, which makes it dependable in real-time
applications [41], [42].

E. PROPOSED COMBINED OPTIMIZER FOR ML-BASED
FAULT CLASSIFIER DESIGN
The design of an ML-based fault classifier involves the selec-
tion of optimal features and classification technique, which
has been investigated in this work using a combined opti-
mizer as in Figure 8. The combined optimizer tends to select
the optimal features from the set of features described in
Section C. These features are extracted from the output mea-
sured voltage (Vm) acquired from the faulty inverter. It also
selects one ML classifier from the given set of classifiers
as described in Section D. The optimal selection of features
and classifier is governed by evaluating the classification

accuracy using confusionmatrix analysis. The proposed com-
bined optimizer is designed using ACO based combinatorial
optimization technique.

FIGURE 8. Proposed combined optimizer.

ACO is one of the popular and reliable techniques for
solving combinatorial optimization problems [43]. It is a
metaheuristic technique that was inspired by the commu-
nicative and navigation behavior of ants to solve their path
planning problems. Ants tend to define an optimal path that
can be traced to bring in the food to their nest. They define
the shortest path by avoiding obstacles through their collab-
orative nature. Ants deposits pheromone (a scented chemical
substance) on their navigation path, which leaves traces for
other ants to recognize. This deposited pheromone is used
by the ants to determine the optimal path by their foraging
behavior. This natural-inspired technique is mathematically
formulated as ACO for solving various applications.

In the proposed work, an ACO-based combinatorial opti-
mization problem is used to determine the optimal selector
ant, which can minimize the cost function. The cost function
is formulated in terms of classification accuracy, which is
evaluated using a confusion matrix and as a function of
selector ant, as illustrated in Figure 9.

The selector ant has information to select the optimal fea-
tures (FS ) and classifier (cS ) from the given set of features (F)
and classifiers (C), respectively. In the proposed work, about
fourteen features (M = 14) and five classifiers (N = 5) are
considered as in (3) and (4), respectively. Each selector ant
(AS ) has the mask formulated using ‘1s’ and ‘0s’ of length
(N + m) as in (5). It is used as a gating signal for feature
and classifier selection. For feature selection, a ‘1’ indicates
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FIGURE 9. Objective function of combined optimizer.

the closure of the gate, which allows the particular feature to
be used for training the classifier, and a ‘0’ opens the gate
restricting the features as in (6). Unlike features, only one
classifier is selected using the (m) gating signals from the
selector ant. The classifier gating signals (m =

⌈
log2M

⌉
)

is used by the decimal decoder to select one classifier from
the available classifier set (M ). The decimal decoder tends to
convert the binary gating signal into a corresponding decimal
to select the classifier as in (7). The selected classifier (cs) is
trained using the training data of the selected features (F trS )
to design an ML-based fault classifier (Fc) as in (8).

F = {f1, f2, . . . . . . , fN } (3)

C = {c1, c2, . . . . . . , cM } (4)

As = {a1, a2, . . . , aN , . . . , aN+m} (5)

FS = {fi|ai = 1, i ≤ N , fi ∈ F} (6)

cs =
{
ci|i =

∑N+m

j=N+1
aj2j−1,

N + 1 < i ≤ N + m, ci ∈ C
}

(7)

The classification performance of the trained classifier is
evaluated in terms of classification accuracy to formulate the
cost function. The predicted fault class (CliP) for the given
feature set is determined using the trained classifier as in (9).
Then, the predicted class is compared with the actual fault
class (Cl iA) to determine the classification accuracy (CAt )
in percentage as in (10). The classification accuracy for
training (CAtr ) and testing data (CAte) are calculated, and
weights added. The weights provide the importance of each
classification accuracy in evaluating the cost function (CF)
as in (11). Thus, the objective of the proposed combined
optimizer is to determine the selector ant (Af ), which can
minimize the cost function with the choice of features and

classifier as in (12).

Fc = Train(cs,F trs ) (8)

CliP = Predict(Fc,F iS ) (9)

CAt =
1
Nt

Nt∑
i=1

{
1|Cl iA = Cl iP

}
× 100% (10)

CF = wtr (100− CAtr )+ wte(100− CAte) (11)

Af = argminA (CF |Fs ⊆ F, cs ∈ C) (12)

IV. RESULTS AND DISCUSSION
The proposedwork aims to formulate an automated technique
to design an ML-based fault classifier. It majorly involves the
choice of features and the classifier, which are determined
using a multi-objective ACO algorithm. It tends to choose
the optimal features and the ML classifier that maximizes the
classification accuracy for fault classification.

The performance of the proposed design technique is eval-
uated using two types of Multilevel inverters (CHBMLI and
PUC). The switches in the Multilevel inverter are subjected
to O.C. and S.C. faults, which need to be identified to
provide proper mitigation. Features like Mean value, RMS
value, Harmonic order, and %THD of the output voltage
signal under healthy, O.C., and S.C. faulty circumstances are
extracted. The extracted features are labeled to create the data
set required for training the ML classifier. The data set is
segregated to have 80% of data for training and 20% of data
for testing the classifier, as in Table 7.

TABLE 7. Dataset preparation.

Four widely used ML-based classifiers, namely D.T.,
KNN, NBC, and SVM, are considered in this study, and the
ACO is responsible for choosing any one optimal classifier
out of them. The choice in features and classifier across
various iterations of the proposed combined optimizer are
acquired as in Figures 10 to 13, respectively. The actual
choice of features and classifier of all the ants and choice of
best ant is observed. It is indicated that the fault classifier of
CHBMLI uses a higher number of features at initial iterations
and settles at seven optimal features. Similarly, among the
four classifiers, a close competition exists between the choice
of NBC and KNN classifiers. However, KNN is chosen to be
the optimal classifier to detect faults in CHBMLI.

During the automatic design of the fault classifier for
PUC, a minimal number of features are selected during initial
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FIGURE 10. Selection of classifier for CHBMLI.

FIGURE 11. Selection of classifier for PUC.

iterations, and features are increased to maximize the classi-
fication accuracy. Finally, optimal eight features are selected.
NBC is selected as the fault classifier, which provides maxi-
mum classification accuracy.

The designed ML-based classifier with optimal selected
features is evaluated using a confusion matrix at various
levels. Initially, the fault classes are grouped as no faults
indicating a health inverter, O.C. faults, and S.C. faults.
It is observed that the KNN-based fault classifier used in
CHBMLI is capable of classifying the fault type accurately
without any error, as indicated by the confusion matrix in
Table 8. Whereas in PUC, the NBC-based fault classifier
misclassifies one O.C. fault as an S.C. fault leading to the
classification accuracy of 98.6%, for testing data, as indicated
by the confusion matrix in Table 9.

The switch-specific fault classification performance is also
evaluated in Tables 10 and 11, which tend to identify the
type of fault and the corresponding faulty switch. The data

FIGURE 12. Optimal feature selection for CHBMLI.

FIGURE 13. Optimal feature selection for PUC.

TABLE 8. High-level confusion matrix for CHBMLI.

responsible for the misclassification and its classification
accuracy is also tabulated. It is observed that in one instance,
the S.C. fault occurred in T9 switch of PUC is predicted as it
occurred in T10. Similarly, in three instances of testing data,
the fault classifier failed to detect the faulty switch in the
CHBMLI inverter.

A. COMPARISON WITH CONVENTIONAL TECHNIQUE
The performance of the ML-based classifier designed using
the proposed combined optimizer is compared with the
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TABLE 9. High-level confusion matrix for PUC.

TABLE 10. Performance analysis of CHBMLI fault classifier.

TABLE 11. Performance analysis of PUC fault classifier.

conventional classifier designed with no feature and classifier
selection. With no feature selection procedure available, all
features are used to design the conventional classifier. Four
ML classifiers considered in this study are used individually
to design the fault classifier for both the inverters as described
in Tables 12 & 13. The training and testing classification
accuracy is evaluated and is considered as performance met-
rics. It is observed that the proposed combined optimizer is
capable of selecting optimal features and a classifier that can
significantly improve the classification accuracy as compared
with the conventional classifier design.

It is observed that the D.T. and SVM have a lesser level
of classification accuracy with the use of conventional design
techniques. KNN suffers overfittingwith higher classification
accuracy on the training dataset. But fails to classify the
testing dataset accurately. NBC provides higher performance
to detect the fault in CHBMLI. However, with the use of opti-
mal features selected by the proposed design, NBC exhibits
a significantly higher performance as compared with other
conventional techniques as described in Table 12. Similarly,
KNN is capable of detecting the fault in the PUC inverter
accurately with the use of all features in conventional design.
The proposed design tends to select KNN with eight optimal
features enabling it to have a higher level of accurate fault
detection as described in Table 13.

TABLE 12. Performance comparison of CHBMLI fault classifier.

TABLE 13. Performance comparison of PUC fault classifier.

B. EXPERIMENTAL ANALYSIS
A laboratory-scaled prototype is developed for the selected
MLIs such as CHBMLI and PUC separately, as in Figure 14.
The MLIs are constructed using IGBT switches, a TPL350
driver, and two D.C. sources. These MLIs are capable of
generating a five-level output voltage. The switching sig-
nals are generated using a real-time controller (FPGA) by
incorporating the APOD PWM technique. The prototype is
equipped with a voltage sensor to acquire the output voltage
for the various modulation indices. It also has a 3196-power
quality analyzer to extract the features from the acquired
output voltage.

In the experimental setup, healthy and O.C. faults are only
investigated due to the practical difficulties in realizing S.C.
faults. The O.C. fault is created by disconnecting the gate
signal from the corresponding switch and the output volt-
age is measured at various modulation indices ranging from
0.6 to 1. The output voltage acquired from the experimental
setup during healthy and O.C. faulty conditions indicates
observable changes as in Figure 15 for the modulation index
0.8. The O.C. fault in the switch T1 causes the voltage to lose
its positive peak value making it biased towards the negative
cycle and vice versa during O.C. fault at the switch T2 of
CHBMLI. A similar change in output voltage is observed in
the PUC inverter also, as in Figure 16.

Table 14 represents the accuracy of experimental dataset
values for CHBMLI and PUC using a confusion matrix.
The experimental results illustrate a reliable classification
accuracy of 95.56% and 94.31% for CHBMLI and PUC
respectively.

Further, the experimental setup is compared with the
simulation studies in terms of feature extraction and fault
classification. The quality of voltage measurement and the
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FIGURE 14. Experimental setup of MLIs.

FIGURE 15. Output voltage waveforms of CHBMLI: (a) Healthy state
(b) Open circuit fault in T1 (c) Open circuit fault in T2.

FIGURE 16. Output voltage waveforms of PUC: (a) Open circuit fault in T2
(b) Open circuit fault T6.

corresponding features extracted during experimental imple-
mentation are evaluated by comparing with simulation. Mean
absolute error (MAE) as described in (13) is used as a per-
formance metric for comparison. It tends to calculate the
deviation between the features extracted from the simulated

TABLE 14. Performance analysis in the experimental setup.

TABLE 15. Comparative analysis of features.

TABLE 16. Comparative analysis of classifier.

inverter (F i,js_sim) and the experimental setup (F i,js_exp). The
MAE is expressed in terms of percentage for all the available
features (Nf− number of features) as listed in Table 15. It is
observed that the THD and RMS feature have lesser devi-
ations. The harmonic order will have increased deviations
at higher orders. The classification accuracy for the experi-
mental setup is compared with the simulation as described
in Table 16. Minor deviation in classification accuracy is
observed due to the noise associated with the measurement
signal and features extracted from the experimental setup.
Analysis indicates a significant detection accuracy making
the proposed design ideal for real-time implementation.

MAE j =
1

N j
d

∑
i=1

Nd j

∣∣∣F i,js_sim − F i,js_exp∣∣∣
F i,js_sim

× 100%|j ∈
[
1,Nf

]
(13)

V. CONCLUSION
In this paper, a fully automated methodology to design
a machine learning-based classifier is proposed using
a combined optimizer. A combined optimizer tends to
select optimal features and classifiers using the ACO-based
Combinatorial optimization technique. A multi-objective
ACO is formulated using classification accuracy as the
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performance metric. The different features such as mean, %
THD, RMS, and harmonic orders (upto 12th order) from the
output voltage of the selected MLI have been considered as
features for the proposed ML technique. The proposed com-
bined optimizer is used to design a fault classifier for Multi-
level inverters. Two widely used inverters, namely CHBMLI
and PUC, are selected. Open circuit and short circuit faults
are detected based on the features extracted from the output
voltage of the selected MLI.

About 7 features with the KNN classifier are selected to
design an optimal fault classifier for CHBMLI. Similarly,
NBC with 8 features is selected for PUC. The proposed
fault diagnosis technique has improved accuracy which will
decrease the operating time of electrical equipment’s and also
increase the working life span of equipment under abnor-
mal circumstances. The experimental results have been taken
for CHBMLI and PUC with the implementation of pro-
posed technique to corroborate their performance. Simulation
results illustrate a reliable classification accuracy of 97.84%
and 98.56% for CHBMLI and PUC inverters, respectively.
In addition, the designed classifiers are also subjected to
detect the fault in the laboratory-scale prototype ofMLIs with
the classification accuracy 95.56% and 94.28% for CHBMLI
and PUC respectively. Reliable performance with significant
classification accuracy is observed to make the proposed
combined optimizer a reliable tool for designing ML-based
classifiers.

The proposed automated design methodology can be used
to design classifiers for other power converters. The designed
classifier can be integrated with fault isolation and mitigation
systems to ensure operational continuity.
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