
Received 14 June 2022, accepted 20 July 2022, date of publication 25 July 2022, date of current version 28 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3193509

Driving Cycle Recognition Based Adaptive
Equivalent Consumption Minimization
Strategy for Hybrid Electric Vehicles
DONGDONG CHEN 1, TIE WANG 1,2, TIANYOU QIAO1, TIANTIAN YANG1, AND ZHIYONG JI1
1College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2Centre for Efficiency and Performance Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.

Corresponding author: Tie Wang (wangtie57@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51805353.

ABSTRACT Hybrid electric vehicles (HEVs) are considered themost practical option for reducing emissions
and fuel consumption of conventionally powered vehicles. Energy management strategies (EMSs) are the
core technology of HEVs because of decreasing the cost of the system and limiting its negative effects.
Equivalent consumption minimization strategy (ECMS) can achieve instantaneous optimal control and has
attracted attention in recent years. In this study, an adaptive equivalent consumption minimization strategy
(A-ECMS) based on driving cycle recognition is constructed for a parallel HEV. First, select the standard
driving cycle and analyze its characteristic parameters. And then training learning vector quantization (LVQ)
neural network-based driving cycle recognizer to achieve an average of 98% accuracy. At last, the optimal
equivalent factor (EF) is selected for ECMS by recognizing the current driving cycle. It is jointly simulated
and analyzed by AVL CRUISE andMATLAB/Simulink software under NEDC and CHTC-LT driving cycle.
The results show that compared with the logic-based EMS, in the NEDC driving cycle the 100 km fuel
consumption of A-ECMS decreases by 3.8%, and the battery state of charge (SOC) increases by 1.1%.
In the CHTC-LT driving cycle, fuel economy improves by 3.6%, proving the superiority of the A-ECMS.

INDEX TERMS Hybrid electric vehicle (HEV), energy management strategy (EMS), equivalent consump-
tion minimization strategy (ECMS), driving cycle recognition, learning vector quantization (LVQ).

I. INTRODUCTION
With the intensification of environmental pollution and short-
age of oil resources, people pay more and more attention to
the environmental protection and energy saving of vehicles.
Today, the world is grappling with concerns about oil con-
servation and hazardous emissions, prompting a major shift
in technology from traditional internal combustion engine
(ICE)-powered automobiles to more energy-efficient auto-
mobile powertrains. Due to the limitations of battery tech-
nology, electric vehicles have the fatal defects of short-range
and low energy density. Low energy density and high cost
are the main challenges to developing commercially viable
all-electric vehicles. With more than two power sources,
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HEV combines the advantages of both electric vehicles and
conventional internal combustion engine vehicles.

The EMS controls the power flow of the vehicle and
thus fully exploits the energy-saving and emission reduc-
tion potential of the HEV [1], [2]. According to the dif-
ferent control methods, the EMSs of HEVs can be divided
into three categories: rule-based, optimization-based, and
learning-based EMS. The optimization-based EMS control
method includes global optimization, transient optimization,
and model predictive control (MPC) [3]. Rule-based EMSs
are widely used in real vehicles, including logic threshold
strategies and fuzzy logic strategies. The logic threshold strat-
egy mainly analyzes the opening and change rate of the accel-
erator pedal and brake pedal to determine the demand power
of the vehicle. Then it combines the state input of the vehi-
cle to determine the corresponding output variables so that
the engine always runs in the high-efficiency zone [4]–[6].
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The global optimization-based EMS applied the optimal
control theory to dynamically allocate torque for the entire
driving cycle [7]–[9]. However, the MPC-based EMS is to
transform the global optimization problem in the whole driv-
ing cycle which is a local optimization problem in the predic-
tion time domain. Through rolling optimization, researchers
obtained better optimization results by continuously updating
the future driving state of the vehicle in the prediction time
domain [10]–[12]. The transient optimization-based EMS
takes transient fuel consumption as the optimization target.
It allocates the output power of different power sources to
minimize the transient consumption under an unknown driv-
ing cycle [13]–[15]. Compared with rule-based EMSs, these
methods usually take the instantaneous fuel consumption as
the optimization target and calculate the energy allocation in
real-time that mainly including the ECMS and Pontryagin’s
minimum principle (PMP) [16], [17]. The control strategy
parameters are optimized by learning-based EMS that learns
from historical data and forecast information [18], [19].

The ECMS achieves instantaneous optimality by equat-
ing electrical consumption to fuel consumption through an
equivalence factor (EF). Any stored electrical energy used
during the battery discharge phase is replenished at a later
stage using engine fuel or through regenerative braking in
an HEV [20]. The conventional ECMS considers the EF a
constant value, while the adaptive EF varies with SOC values
and driving cycle. Research on ECMS-based EMSs focuses
on optimizing the EF. There are three main approaches to
adaptive EF: SOC-based feedback, driving cycle recognition-
based, and driving cycle prediction-based.

By adjusting the EF through SOC deviation feedback, the
method proved to effectively control the SOC to vary within
a certain range and keep the SOC stable. Wang et al. [21]
investigated a SOC obtained by dynamic programming (DP)
global optimization algorithm as a reference SOC for
A-ECMS. Fan et al. [22] used the DP algorithm to extract the
mode switching boundaries and shifting laws under three typ-
ical operating conditions and established a reference SOC by
using the PI algorithm and adjusting the EF. Guan et al. [23]
designed the SOC expectation trajectory based on the differ-
ence between the initial SOC and the minimum SOC divided
by the remaining mileage and used a fuzzy controller with
SOC feedback to correct the EF.

The optimal EF for the typical driving cycle is calculated
offline by using the historical driving cycle information. Then
the current driving cycle is identified online by the historical
driving cycle information. The algorithm that analyzes the
historical driving cycle is called the identification algorithm.
Han et al. [24] used a particle swarm optimization algorithm.
The real historical traffic data offline to establish the map-
ping table of SOC and power demand, obtained the EF of
SOC optimal trajectory by SOC and recursive neural net-
work. Zhang et al. [25] used the principal component analysis
method to extract the characteristic parameters of the driving
cycle based on cluster analysis. They identified driving con-
ditions and automatically adjust the EF to the actual driving

cycle. Guo et al. [26] used a hybrid particle swarm optimiza-
tion genetic algorithm to optimize the relationship between
driving style and EF. They analyzed the accelerator pedal
opening and its change rate under different driving cycles and
established a fuzzy logic recognizer to identify the driving
cycle. Shi et al. [27] developed a method to identify driving
cycle types in real-time with higher accuracy and apply a
driving cycle identification model based on a support vector
machine optimized by a particle swarm algorithm to ECMS.

The prediction range is generally short in predicting future
driving cycles by algorithms. Another method is to use infor-
mation from external devices such as GPS, intelligent trans-
portation systems, and vehicle networks to predict driving
cycles over longer distances and adjust the EF in advance.
Lin et al. [28] established an EF model based on the energy
required per unit distance. The EF correction was optimized
by using the particle swarm optimization method and the
future driving cycle was predicted by using an artificial neural
network, and the EF estimation model was updated online.
Zhang et al. [29] established an ECMS prediction model by
predicting vehicle speed through back propagation (BP) neu-
ral network and designed dynamic adaptive EF according to
the future driving cycle. Zhang et al. [30] proposed a chain
neural network to predict the speed in different time ranges
for application to ECMS. Sun et al. [31] constructed a neu-
ral network-based speed predictor to predict future short-
term driving behavior by learning from historical data and
combined it with an A-ECMS to provide temporary driving
information for real-time EF.

Learning vector quantization (LVQ) is an output forward
artificial neural network for training output competitive, and
output layers, which is widely used in recognition, diagnosis,
and optimization fields. If two or more input vectors are
close to each other, the competitive layer will classify them
into the same class. Compared with other pattern recogni-
tion, LVQ lattices are simple and do not require complex
neural network structures, but only the distance between their
competing neurons [32], [33]. However, LVQ has rarely been
applied to the study of driving cycle recognition. In this study,
an LVQ-based driving cycle recognition method is proposed
to combine with ECMS to optimize the EF.

Taking a single-axle parallel HEV light-duty truck as the
research object, the logic-based EMS and ECMS is first
built. Based on the ECMS, an LVQ-based recognizer of
driving cycles is designed with fuel economy as the opti-
mization target to optimize the EF. The verification of the
EMSs is carried out by joint simulation of AVL Cruise and
MATLAB/Simulink under the driving cycle of the China
heavy-duty commercial vehicle test cycle-truck (CHTC-LT)
and the new European driving cycle (NEDC).

II. HEV MODELING
The research object of this paper is a parallel HEV of P2
configuration, as shown in Fig. 1, which consists of a diesel
engine, clutch, integrated starter generator (ISG) electric
motor, six-speed transmission, and battery. It can realize
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TABLE 1. Main system parameters.

electric motor (EM) drive mode, drive charging mode, hybrid
drive mode, regenerative braking mode, and engine drive
mode. When the vehicle demand torque is small at the start,
the EM provides the power completely. When the vehicle
demand torque is large, the engine is working, and the EM
is in drive motor mode or generator mode according to the
vehicle driving state. When the SOC is lower than the thresh-
old value, the engine is the only power source, and the excess
torque is used to drag the motor to generate electricity. When
the vehicle decelerates and brakes, the size of the mechanical
braking force is determined according to the current vehicle
speed and SOC. The main parameters of the study model are
shown in Table 1.

FIGURE 1. A parallel HEV with P2 configuration.

A. ENGINE MODEL
In this paper, by using experimental modeling to get the
engine characteristic curve according to the bench test and
established the input-output relationship. The engine univer-
sal characteristics diagram is shown in Fig. 2.

The engine output torque is calculated by (1).

Te = ftorque(ae, ne) (1)

The engine fuel consumption rate is calculated by (2).

mf = ffuel(Te, ne) (2)

where ae is the engine accelerator pedal opening; ne is the
engine rotational speed, r/min; Te is the engine torque, N·m;
and mf is the engine fuel consumption rate, g/(kW·h).

FIGURE 2. Universal characteristics curve of engine.

B. ELECTRIC MOTOR MODEL
The EM modeling method is experimental modeling, and the
efficiency characteristics diagram is shown in Fig. 3.

FIGURE 3. EM efficiency characteristics diagram.

The efficiency of the EM is calculated by (3).

ηm = η(nm,Tm) (3)

The power of the EM is calculated by (4).

Pm =
( Tmnm

ηm
,Tm ≥ 0

Tmnmηm,Tm < 0
(4)

where nm is the EM rotational speed; Tm is the EM torque;
ηm is the EM efficiency; Pm is the EM power.

C. BATTERY MODEL
According to the voltage drop characteristics during battery
use, the battery charge and discharge efficiency curve is used
to determine the relationship between battery voltage and
SOC.
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TABLE 2. Shift logic.

The battery SOC is calculated by (5).

SOC = SOC0 +
1

3600C

t∫
t0

Idt (5)

The battery current is calculated by (6).

I =
U −

√
U2 − 4RPb
2R

(6)

where SOC0 is the initial SOC; C is the battery capacity;
U is the open-loop battery voltage; R is the battery internal
resistance, and Pb is the battery power.

D. GEAR TRANSMISSION MODEL
The gear transmission is a 6-speed automatic transmission.
This refers to six gears within the transmission. The transmis-
sion control module controls the automatic transmission shift
process, and the specific shift control is shown in Table 2.

E. PHYSICAL MODEL
Based on the above model, an HEV simulation model was
built in AVL CRUISE as shown in Fig. 4. Calibrate mechan-
ically and electrically connect the engine, clutch, EM, and
other components. The mechanical connect is used to trans-
mit the mechanical signal, and torque output from the engine.
Through the clutch, transmission, main gearbox, and differ-
ential, mechanical connect is converted into the driving force
of the wheels. The electrical connections transmitted elec-
trical signals and connect the motor, battery, and electrical
accessories. The monitor module can be connected to any
module’s input and output signals.

F. EXPERIMENTAL VALIDATION
This paper ensures the model’s credibility by comparing and
verifying the fuel consumption variation curves of the bench
test and simulation results. The single-axis parallel hybrid
power system test bench is mainly composed of a diesel
engine, hydraulic clutch, ISG EM, electric dynamometer,
analog power supply, water cooling system, and control sys-
tem as shown in Fig. 5.

Fig. 6 shows the test condition points selected in the
NEDC, it can be seen that 101 condition points (808-835 s,
1044-1116 s) are selected in the high-speed phase, and the
condition points are input into the control system for the
bench test.

FIGURE 4. Physical model of the parallel HEV.

FIGURE 5. Schematic diagram of the experimental test bench for a
single-axis parallel hybrid power system.

FIGURE 6. Test working point.

Fig. 7 shows the variation curves of fuel consumption of
the hybrid power system under 101 operating points. From
Fig. 7, it can be seen that the simulation results match well
with the test result curves, proving the model’s credibility.

III. ENERGY MANAGEMENT STRATEGIES
A. LOGIC-BASED ENERGY MANAGEMENT STRATEGY
The HEV adopts a logic-based torque distribution control
strategy, with engine and EM torque as the direct control
objects, and adopts the best torque distribution based on
ensuring the performance of the whole vehicle. The control
strategy working modes in this paper can be divided into
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FIGURE 7. Fuel consumption change curve.

EM drive mode, drive charging mode, hybrid drive mode,
regenerative braking mode, and parking mode.

When SOC ≥ SOClow, T ≥ Tlow, 0 ≤ Treq ≤ T1 or when
SOC ≥ SOClow, Treq ≤ Tmmax, 0 ≤ V ≤ V1, it enters EM
drive mode.

When V ≥ V1, T1 ≤ Treq ≤ T2, or when SOC < SOClow,
it enters the travel charging mode.

When SOC ≥ SOClow,V ≥ V1, Treq ≥ T2 orwhen SOC ≥
SOClow, V ≥ V1, Treq ≥ T1, it enters the hybrid drive mode.
When Pbreak ≥ 0 and V > 0, enter the brake energy

recovery mode.
Where Treq, Tmmax, TEM, and TEN are driver demand

torque, EM maximum torque, EM torque, and engine torque
respectively, unit is N·m; T1 is the torque corresponding
to the engine minimum fuel consumption; T2 is the torque
corresponding to the engine high-efficiency zone at a dif-
ferent speed; V1 is the speed at which the gearbox shifts at
2000 r/min second gear, unit is km/h; V2 is to ensure that
the high speed in hybrid drive mode and takes the value of
100 km/h; SOClow is a low battery threshold of 0.65 and
SOChigh is a high battery threshold of 0.75.

B. EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGY
The basic principle of the ECMS approach is to allocate
costs to electrical energy so that the use of electrical energy
storage is equivalent to the use (or saving) of a certain amount
of fuel. The ECMS equates electrical consumption to fuel
consumption through an EF and assigns the lowest set of
torque combinations to the motor and engine. The battery is
seen as an auxiliary, reversible fuel tank.

The ECMS mainly includes three core issues: first,
to determine the EF, the EF mainly through the Pontryagin’s
minimum principle, hitting the target method, and the effi-
ciency conversion equivalence method to determine. Second,
the torque distribution of the power source is optimized to
minimize the equivalent fuel consumption according to the
vehicle’s driving condition on the road. Third, it is ensured
that the initial SOC and the final SOC have convergence at
the end of the driving cycle.

The transient equivalent fuel consumption is calculated
by (7).

ṁf,eqv = ṁf +
s

Qlhv
Pbatt (7)

where ṁf,eqv is the engine fuel consumption rate, the
unit is g/s; Qlhv is the fuel lower heating value, taken
as 425000 J/g.

Neglecting the loss of energy through the transmission
system, the charge and discharge efficiency of the battery is
calculated by (8) and (9).

ηdis_batt =
Pdis_em
Edis_batt

(8)

ηcharg_batt =
Echarg_batt
Pcharg_em

(9)

where Edis_batt is the output power of the battery per unit
time; Pdis_em is the power that the EM gets from the battery;
Echarg_batt is the power that the battery gets from the EM per
unit time; Pcharg_em is the power generated by the EM.

The EF is calculated by (10)

s =


1

η̄eng_chgη̄bat_chg
, Pbatt ≥ 0

η̄bat_dis

η̄eng_dis
, Pbatt < 0

(10)

where Pbatt is the battery charging and discharging power,
when Pbatt ≥ 0, means battery discharging, when Pbatt < 0,
means battery charging, unit kw; s is the EF; η̄eng_chg is the
average efficiency of the engine under line charging; η̄bat_chg
is the average charging efficiency of the battery; η̄eng_dis is the
average efficiency of the engine under hybrid drive; η̄bat_dis
is the average efficiency of the battery when discharging.

C. ADAPTIVE EQUIVALENT CONSUMPTION
MINIMIZATION STRATEGY
1) STANDARD DRIVING CYCLE SELECTION
The standard driving cycle is mainly divided into the subur-
ban driving cycle, urban driving cycle, and high-speed driving
cycle. The main characteristics of the urban driving cycle are
many intersections, overcrowded roads, and low speeds. The
main characteristics of the suburban driving cycle are fewer
intersections, shorter idling time of power source, and often
driving at low and medium speeds. The main characteristics
of the high-speed driving cycle are higher speeds and fewer
vehicle stops. In this paper, the urban dynamometer driving
schedule (UDDS) represents the suburban driving cycle, the
New York city cycle (NYCC) represents the urban driving
cycle, and the highway fuel economy test (HWFET) repre-
sents the high-speed driving cycle. The standard driving cycle
is shown in Fig. 8.

2) ANALYSIS OF DRIVING CYCLE CHARACTERISTIC
PARAMETERS
The characteristics of the driving cycle can be directed
by the parameter characteristic. In this paper, 10 character-
istic parameters are selected to describe the characteristics
of the driving cycle, which are maximum speed, average
speed, maximum acceleration, average acceleration, maxi-
mum deceleration, average deceleration, acceleration time
ratio, deceleration time ratio, uniform speed time ratio, and
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FIGURE 8. Standard driving cycle.

idling time ratio. The fixed-step analysis method is selected,
and the step size of 120 s is chosen. To increase the number of
micro conditions, onemicro condition is taken at themidpoint
of the intersection of two consecutive micro conditions.

The specific steps of the characteristic parameter solution
are as follows.

(1) Load standard driving cycle data on MATLAB.
(2) Build the Simulink model, import the time and velocity

series, derive the velocity, and find the acceleration at each
moment.

(3) Cutting of the driving cycle using circular statements,
120 s for each micro condition.

(4) Solving for 10 characteristic parameters for each micro
condition in the command window.

(5) Marking and counting for each group of micro working
conditions.

3) OVERVIEW OF LEARNING VECTOR QUANTIZATION
Learning Vector Quantization (LVQ) is an output forward
neural network for training output, competing and output
layers, which is widely used in recognition, diagnosis, and
optimization fields. If two or more input vectors are close
to each other, then the competition layer will classify them
into the same class. Compared with other pattern recognition,
LVQ lattices are simple and do not require complex neural
network structures, but only the distance between them and
competing neurons.

The specific steps of the LVQ algorithm are as follows.
(1) Determine the connectivity threshold matrix between

neurons and the learning efficiency.
(2) Input vector to the input neuron, according to (11)

calculate the distance from the competing neuron, S1.

di =

√√√√√ R∑
j=1

(xi − wij)2(i = 1, 2, .., S1) (11)

(3) Select the competing neuron with the smallest distance
from the input vector, then the output neuron connected to it
is noted as label S1.

(4) If the label S1 is the same as the input vector category,
the threshold is adjusted according to (12). If the label S1
is different from the input vector category, the threshold is

adjusted according to (13).

wij_new = wij_old + η(x − wij_old) (12)

wij_new = wij_old − η(x − wij_old) (13)

4) TRAINING LVQ-BASED DRIVING CYCLE RECOGNIZER
Based on the training samples, 80% of the data are randomly
selected as the training set, and 20% of the data are used
as the test set. The input neurons are set to 10, representing
10 characteristic parameters of each data set. The output
neurons are set to 3, which represent the urban driving cycle,
suburban driving cycle, and high-speed driving cycle. The
training steps are as follows.

(1) Loading data into MATLAB and using a random func-
tion to break up the training data according to the proportional
division.

(2) Calculate the proportion of different driving cycles
in the training data respectively based on creating an LVQ
network. LVQ network by new lvq function, and set the
number of hidden layers as 10.

FIGURE 9. Test sample identification results.

(3) Set the grid parameters, the learning rate is 0.01, and
the root means the square error is reduced to 0.1 within
1000 training iterations. The test sample recognition results
are shown in Fig. 9, which shows that 20% of the test data
are recognized correctly at 100%. Conducted several driving
cycle recognition tests, and the results showed an average
accuracy rate of 98%. Indicating that the LVQ neural network
can be used for driving cycle recognition.
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FIGURE 10. Driving cycle tracking in NEDC.

5) CONSTRUCTION OF LVQ-BASED DRIVING CYCLE
RECOGNIZER
The LVQ-based driving cycle recognizer is constructed by
encapsulating the LVQ neural network into a module via
MATLAB/Simulink. The characteristic parameters of the
driving cycle are calculated and input as vectors into the
LVQ-based recognition network. The equivalent factors cor-
responding to the micro working conditions are represented
in code and encapsulated into a Simulink module. The EF
working conditions are realized offline. The internal encap-
sulated function is shown in (14).

function : (y1, y2, . . . yn) = fcn(x1, x2, . . . xn) (14)

where x is the function independent variable; y is the function
dependent variable.

IV. SIMULATION ANALYSIS
The vehicle driving cycle is the basis for evaluating vehicle
fuel economy and emission performance. Different countries
have different standards. In this paper, the new European
driving cycle (NEDC) and China heavy-duty commercial
vehicle test cycle-truck (CHTC-LT) are selected for simula-
tion analysis.

A. PERFORMANCE COMPARISON UNDER NEDC DRIVING
CYCLE
Fig. 10 shows the speed following of different EMSs under
the NEDC driving cycle. From Fig. 10, it can be seen that the

actual speed of the three EMSs matches well with the target
speed curve. The maximum speed error of the logic-based
EMS is about 2 km/h, and the maximum speed error of both
ECMS and A-ECMS is less than 2 km/h.

FIGURE 11. driving cycle recognition results in NEDC.

Fig. 11 shows the driving cycle recognition results in
NEDC. From Fig. 11, it can be seen that the suburban driving
cycle in 0-120 s and 600-720 s, and the travel charging
and hybrid drive mode EF are 3.5 and 2.77, respectively.
Meanwhile, the condition recognizer identifies the high-
speed condition, and the travel charging and hybrid drive
mode equivalence factors are 2.58 and 2.84, respectively.
Recognition results in high-speed driving cycles in other
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FIGURE 12. Engine and EM torque distribution in NEDC.

FIGURE 13. SOC variation curve in NEDC.

periods, and the charge mode and discharge mode EF are
2.58 and 2.84 respectively.

Fig. 12 shows engine and motor torque distribution in
NEDC, it can be seen from Fig. 12 that the engine and motor
torque change periodically during 0-780 s while the maxi-
mum engine torque is around 250 N·m. The vehicle speed
increases, causing the torque to increase during 780-1180 s.
Compared with the logic-based EMS, the variation of torque
distribution under ECMS increases, and the number of engine
starts and stops becomes more frequent. This is mainly
because ECMS is solving for the minimum fuel consump-
tion at each instant, which makes the engine turn on more
frequently and the EM torque change more. Near the 1100 s,
the EM torque is negative under the logic-based EMS, and the
EM torque is close to 0 under the ECMS. This is because at
this time the vehicle gradually shifts from the uniform speed

FIGURE 14. Final SOC and 100 km fuel consumption comparison in NEDC.

to the acceleration state. The economy of using engine drive
is better at this time based on compared fuel and electricity
consumption. Compared with the ECMS, the engine torque
drop is maintained near 300 N·m and the EM torque drop is
maintained near 200 N·m under the A-ECMS, which adjusts
the working area of the engine and EM and better optimizes
the fuel economy of the vehicle.

Fig. 13 shows the SOC change curve in NEDC, that indi-
cating under 0-780 s, the SOC is in a step-up state, and
under 780-1180 s, the SOC first decreases and then increases.
This is mainly because the engine and EM drive the vehi-
cle together under the high-speed driving cycle, resulting in
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FIGURE 15. Driving cycle tracking in CHTC-LT.

the SOC is decreasing. When the vehicle speed gradually
decreases, it is in regenerative braking mode, resulting in
a rising SOC. The SOC changes under the three EMSs are
within the range of variation.

Fig. 14 shows the comparison of final SOC and 100 km
fuel consumption under the NEDC driving cycle, it can be
seen from Fig. 14 that the final SOC values of the three EMSs
are 70.064%, 70.486%, and 70.801%, and the 100 km fuel
consumption is 7.565 L, 7.285 L, and 7.278 L, respectively.
Compared with the logic-based EMS, the A-ECMS improves
the final SOC by 1.1%, while reducing fuel consumption
by 3.8%, indicating that A-ECMS can better improve fuel
economy.

B. PERFORMANCE COMPARISON UNDER CHTC-LT
DRIVING CYCLE
Fig. 15 shows the speed following of different EMSs under
CHTC-LT driving cycle. From Fig. 15, it can be seen that
the actual speed of the three EMSs matches well with the
target speed curve, while the maximum speed error of the
logic-based EMS is about 2.5 km/h. The maximum speed
error of ECMS is about 4 km/h. The maximum speed error
of the A-ECMS is less than 2 km/h. The A-ECMS has the
best following effect.

Fig. 16 shows the driving cycle recognition results in
CHTC-LT. In 0-120 s, the results of the driving cycle
recognition are the urban driving cycle. The charging mode
and discharge mode EF of 2.75 and 2.79, respectively. In the

FIGURE 16. Driving cycle recognition results in CHTC-LT.

period of 120-360 s and 1080-1200 s, the results of the driving
cycle recognition are the suburban driving cycle. The EF
charging and discharge modes are 3.5 and 2.77, respectively.
In other periods, the result of the driving cycle recognition
is high-speed driving cycles. The EF charging and discharge
modes are 2.58 and 2.84, respectively.

Fig. 17 shows the engine and EM torque distribution under
CHTC-LT driving cycle. From Fig. 17, it can be seen that
under the logic-based within 0-300 s, it is mainly driven
by the EM. Under the 300-1647 s operating conditions, the
maximum engine torque is nearly 250 N·m. The engine runs
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FIGURE 17. Engine and EM torque distribution in CHTC-LT.

under the economic curve, and the EM cuts the peak and
fills the valley. Under ECMS in 0-300 s, it is in hybrid drive
and the engine starts frequently. Under 300-1647 s operating
conditions, the maximum engine torque is nearly 340 N·m,
which is because the ECMS is to allocate torque by a more
fuel-efficient principle at eachmoment, so the torque vagaries
more. Around the 160 s, there is an abrupt change in the
logical rule EMS motor torque due to the larger demand
torque corrected by PID, which is improved under the ECMS
strategy. Compared with the ECMS, under the A-ECMS, the
engine torque drop is maintained near 300 N·m and the EM
torque drop is maintained near 200 N·m, which better adjusts
the working area of the engine and EM and optimizes the fuel
economy of the vehicle.

FIGURE 18. SOC variation curve in CHTC-LT.

Fig. 18 shows the SOC change curve under the CHTC-LT
driving cycle. It can be seen that the SOC gradually decreases

FIGURE 19. SOC and 100 km fuel consumption comparison in CHTC-LT.

from 0-300 s, which is because the vehicle mainly runs in
EM driving mode at low speed. The SOC first rises and
then decreases from 300-1150 s, mainly because in 0-300 s
EM consumes part of the battery-electric energy, so that the
vehicle runs in driving charge mode, SOC overall tends to
rise. When the vehicle torque becomes large, the vehicle
running in hybrid drive mode, SOC overall tends to decline.
In 1150-1647 s, the vehicle running was in the driving charge
mode and hybrid drive mode, so the SOC rises and then falls.
When the velocity gradually drops to 0 km/h, the vehicle
running in regenerative braking mode, the EM recovery part
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of the energy flow to the battery, resulting in an upward trend
of SOC. SOC changes under the three EMSs are within the
range of change.

Fig. 19 shows the comparison of final SOC and 100 km
fuel consumption under the CHTC-LT driving cycle. it can
be seen from Fig. 19 that the final SOC values of the three
EMSs are 71.032%, 71.28%, and 71.47%, and the 100 km
fuel consumption is 7.04 L, 6.88 L, and 6.786 L, respectively.
Compared with the logic-based EMS, the final SOC of the
A-ECMS is improved by 0.6%, while the 100 km fuel con-
sumption is reduced by 3.6%, indicating that A-ECMS can
better improve fuel economy.

V. CONCLUSION
In this paper, we take a hybrid light truck as the target
model, get the instantaneous optimal fuel consumption by
the discrete engine and EM torque, establish a logic-based
EMS, optimize the fuel economy, and develop the ECMS
and A-ECMS. Select urban, suburban and high-speed driving
cycles to obtain the characteristic parameters as a training
database, and construct the LVQ-based driving cycle recog-
nizer. The simulation results were carried out under NEDC
and CHTC-LT driving cycles. Compared with the logic-based
EMS, the fuel consumption of the ECMS was reduced by
3.7% and 2.27%, respectively. Compared with the ECMS,
the fuel consumption of the A-ECMS was reduced by 0.96%
and 1.37%, respectively, which can control the SOC variation
well and achieve the expected results.
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