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ABSTRACT Dynamic Treatment Regimes (DTRs) are sets of sequential decision rules that can be adapted
over time to treat patients with a specific pathology. DTR consists of alternative treatment paths and any
of these treatments can be adapted depending on the patient’s characteristics. Reinforcement Learning (RL)
and Imitation Learning (IL) approaches have been deployed for obtaining optimal treatment for a patient but,
these approaches rely only on positive trajectories (i.e., treatments that concluded with positive responses of
the patient). In contrast, negative trajectories (i.e., samples of non-responding treatments) are discarded,
although these have valuable information content. We propose a Cooperative Imitation Learning (CIL)
method that exploits information from both negative and positive trajectories to learn the optimal DTR. The
proposedmethod reduces the chance of selecting any treatment which results in a negative outcome (negative
response of the patient) during the medical examination. To validate our approach, we have considered a
well-known DTR which is defined for the treatment of patients with alcohol addiction. Results show that
our approach outperforms those that rely only on positive trajectories.

INDEX TERMS Inverse reinforcement learning, imitation learning, dynamic treatment regime,
reinforcement learning, cooperative imitation learning, Markov decision process.

I. INTRODUCTION
Dynamic Treatment Regimes (DTRs) are sequences of
decision rules that implement adaptive treatment strategies.
A DTR allows clinicians to personalize the treatment of
a patient depending on his/her step-by-step response to
the treatment [1], [2]. Nowadays, DTRs is considered part
of precision medicine because it determines the choice
of treatment for the patient based on his/her condition.
In general, DTRs can be designed and assessed by exploit-
ing the Sequential Multiple Assignment Randomized Trial
(SMART) method [3], [4] which includes a sequence of
observations and treatments.
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Figure 1 shows the DTR of patients with alcohol addiction.
According to the structure of the DTR and the SMART
method, each participant to the experiment is initially
associated with one of the available treatments. Treatment
is modified based on the patient’s response. In the Figure 1,
a circle with the letter R indicates a Randomization stage
where patients are given other available treatments.

In the proposed scenario, three basic treatments are
contemplated: psychological therapy (PSY), medication
therapy (MED) and telephone monitoring (TM). In addition,
a combination is also possible, such as Psychological and
Medication Therapy (PSY + MED).
Responders are those participants who have reported less

than two drinking days over the last two months. In contrast,
patients who have reported more drinking days are classified
as Non-Responders. Non-Responders are re-randomized for
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FIGURE 1. A Dynamic Treatment Regime.

the successive stages of the treatment. For example, if a
patient has not responded properly to a Psychological
treatment (PSY), the next type of treatment will be chosen
randomly among the Medical or the combination of Medical
and Psychological one. Instead, Responders to the first-stage
treatment will successively be checked only via Telephone
Monitoring (TM).

Application of Machine Learning (ML) techniques in
biomedical [5], minimizing medication errors during home
treatment [6], [7] vision enhancing scheme for low vision
impairments [8], risk management [9], communication [10],
and healthcare [11], [12] domains has been increased
extensively in recent years.

The structure of a DTR, however, fits naturally into
the Reinforcement Learning (RL) [13] problem. In a RL
problem, we aim at learning the optimal policy; i.e., the
policy that maximizes the cumulative reward. A similar goal
is pursued by the clinicians who search for the optimal DTR;
i.e., the one that maximizes the response of the patients to
the treatment. This can be modeled as a reward function and,
thus, the problem of searching the optimal DTR as an RL one.

However, in many RL problems the defined reward
function can be very scattered (specially in a large state space)
and it can be extremely complicated to identify which actions
allow the best end result [14]. Patients with similar conditions
may respond differently to the given treatments. Some
patients respond while others may not. Reward function,
in that case, can be designed under experts (clinicians)
guidance to find better treatments for all patients [15].

On the other hand, Inverse Reinforcement Learning
(IRL) [16], [17] obtains the reward function from the
demonstrations(expert trajectories) given by an expert [18].
It is also the foundation of Learning from Demonstration
(LD) [19], which aims at reproducing the demonstrated
behaviour.

We define positive trajectories as those episodes that
report good results after the therapeutic process and negative
trajectories as those episodes that fail to reduce the addiction
to alcohol. Usually, these IRL and Imitation Learning (IL)
methods consider the positive trajectories only to learn the
optimal policy, but it can be intuitively figured out that the
information carried by negative trajectories (which has been
largely ignored) can help to speed up or improve the learning
process.

To address these limitation, we proposed a Cooperative
Imitation Learning (CIL) model to learn the optimal policies,
where the negative trajectories are also taken into account.
The proposed algorithm aims to learn policies πθ that
replicate positive trajectories and avoid negative trajectories.

This article is organized as follows. Related work is
described in Section II. In particular, a comparison between
different methods of IL in DTRs is discussed. Section III
presents technical background to Markov Decision Process
(MDP), RL, and IRL. Section IV describes the proposed
approach for learning the optimal DTR from positive and
negative trajectories. Section V mainly concerns with the
theoretical analysis of the proposed approach. The discussion
about experimental model, data description and results
is reported in Section VI. We concludes the paper in
Section VII.

II. RELATED WORK
DTR, during to time-varying treatment process where the
treatment is frequently tailored to a person’s dynamic state,
oversimplify personalized medicine [20], [21]. DTRs are also
referred as adaptive treatment strategies [22].

A framework to estimate properly defined ‘‘optimal’’
DTRs using a time-varying instrumental variable is devel-
oped in [23]. Authors have derived a Bellman equation
under partial identification and utilized it to define a generic
class of estimands known as instrumental variable optimal
DTRs. However, the analysis in this paper depends on
the assumption of bounded concentration coefficients. It is
important to evaluate whether this assumption can be relaxed
if additional structural assumptions are imposed. A new
Subgoal conditioned hierarchical Imitation Learning frame-
work is proposed in [24]. Authors sequentially set a subgoal
for each sub-task using high-level policy and without prior
knowledge. Moreover, a self-supervised learning technique
is used to learn an effective representation for each subgoal
to get rid of prior knowledge.

Two RL-based techniques (Direct Augmented V-Learning
and Safe Augmented V-Learning) are proposed in [25]. The
performance of the proposed methods has been evaluated
using clinical data and synthetic data. However, research
work is required to examine the interpretability of the
policies that authors have obtained using the proposed two
methods to make sure of effective use in practice. Optimal
DTRs estimation is done in [26] employing information
extraction from the available unstructured clinical text.
Authors combine information extraction and optimal DTR
estimation to derive patient characteristics and then utilized
tree-based RL for estimating multistage optimal DTRs.
However, the accuracy of DTR estimation mostly depends
on the quality of unstructured clinical notes. The advantage
of information extraction may be limited in case of less
additional informative content available in the clinical free-
text.

Two methods using causal forests and causal trees and are
based on a data-driven estimation of heterogeneous treatment
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effects are presented in [27]. These methods learn non-linear
relationships and control for time-varying confounding. Both
models have been evaluated on synthetic data and then
utilized real-world data from intensive care units. It would
be useful to implement this technique in the operational
decision-making of healthcare providers to evaluate the
feasibility for patients in the field.

A Privacy-Preserving RL method for DTRs using health
data is introduced in [28]. The authors first present com-
putation protocols based on Cheon’s approximate homo-
morphic encryption technique for implementing comparison,
exponentiation, maximum, and division and then develop
a homomorphic reciprocal of square root protocol that
only requires one approximate computation. In the end,
an asynchronous advantage actor-critic RL algorithm is
designed. Similarly, an outcome-weighed learning method
for the decision function in DTRS in a boosting scheme
is presented in [29] in line with prediction in supervised
learning.

Behavior Cloning (BC) and RL [30], [31] are two
techniques exploited to learn DTRs where the first method
can be used to recover the clinician’s policies provided
that the Electronic Health Record (EHR) is optimal and
plentiful. BC [32] learns the policy through supervised
learning by direct mapping of states to the actions. However,
without considerable improvement during training, BC
introduces a compounding error [33] over the trajectories
length. On the other hand, RL and Deep Reinforce-
ment Learning (DRL) methods are based on maximizing
the aggregated reward [14], [30] by directly learning a
policy.

To find the best fitting rewards function, the researcher
adopted the IRL approaches [34], [35]. IRL learns the reward
function by using expert demonstrations. The Maximum
likelihood IRL (MLIRL) utilizes an estimate of the gradient
of the likelihood function. It states that the likelihood of the
data-set may be expressed by the product of the likelihood
of the state-action pairs [36]. Researchers have discussed
a technique of Maximum Margin Planning (MMP) [37]
to learn a reward function that improves the expert policy
than alternative policies. Gaussian Process (GP) [38] is
adopted in continuous state space to recover both rewards
information and uncertainty. Deep GP model [39], mounds
many hidden GP layers and it can learn the complex reward
patterns even with limited demonstrations. However, unlike
the IRL approaches, the preference of the IL [40] is to
learn policy by minimizing the Jensen-Shannon divergence
between learned policy and expert policy directly [41]. IL
approaches to model the intention and preference of the
demonstrator.

These existing IL and Adversarial Imitation Learning
(AIL) techniques mostly use positive trajectories for learning
purposes. The information in the negative trajectories is
being ignored which we believe, is important in learn-
ing the preference of an agent and avoiding making
mistakes.

TABLE 1. Description of related notations.

To address these limitations associated with existing
methods, we proposed a CIL model to learn the optimal
policies. These learned policies should be similar to positive
policies. To achieve this goal, two discriminators ( adversarial
discriminator AD and cooperative discriminator CD) have
been used. AD plays a role in minimizing the difference
between positive and learned policies. On the other hand, the
CD distinguishes between positive and learned policies from
negative policies (detail is presented in section-IV).

III. TECHNICAL BACKGROUND
A. REINFORCEMENT LEARNING (RL)
RL is the domain of ML where the learning process is guided
by interactions with the environment, without any prior
knowledge, to achieve a goal. The RL algorithms generally
satisfy theMarkovDecision Process (MDP) based onMarkov
properties. It does not take into account previous information
when taking action in the current state.

MDP is a tuple (S,A, T ,R, γ ) [42] as described in table 1.
The objective of RL approaches is to learn the behavior of

the surrounding environment by repetitive interactions. The
Agent is the component that interacts with the environment.
The agent selects action at in state st at time t . After, the
environment updates its status st+1 and returns a reward rt+1,
whichmay be positive or negative. TheAgent aims at learning
the optimal policy by using a try&error approach. It tries to
maximize the cumulative reward, which is provided by the
Value Function (V π (s)). Such a function gives the expected
reward for the policy π given the current state st = s as in
equations 1 and 2:

V π (s) = Eπ {Rt |st = s}

=

∑
a∈A(s)

π (s, a)
∑
st+1∈S

T asst+1{r(s, a)+γV
π (st+1)} (1)

being

Rt = rt+1 + γ rt+2 + γ 2rt+3 + . . . ..
∞∑
k=0

γ krt+k+1 (2)
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The optimal policy is denoted as π∗. The state value
function (V ) for the optimal policy π∗ using the Bellman
equation is given as in equation 3:

V ∗(s) = maxa
∑
st+1∈S

T asst+1 (R
a
sst+1 + γV

∗(st+1)) (3)

The reward function defined for the very large state
space RL problem is usually sparse and imprecise. Under
such conditions, IRL has been successfully adopted to
automatically estimate the reward function from a set of given
trajectories or expert demonstrations.

B. INVERSE REINFORCEMENT LEARNING (IRL)
IRL is about learning the expert knowledge by observing
its decisions during the decision-making process [43]. This
set of techniques aims at finding a reward function that
explains the expert behavior (derived from a series of
demonstrations).

Expert demonstrations, called trajectories, are supposed to
be part of the optimal policies [44]. A policy may be optimal
for several distinct reward functions. Therefore, the objective
is to obtain a reward function that best reflects the optimal
policy pi∗ derived from expert demonstrations.

IRL can be modeled to an optimization problem and
consequently Linear Programming (LP) can be employed for
the solution [45]. LP method assumes that the expert policy
always produce a higher expected value E[V ∗(ś)] than the
expected value of any other estimated policy E[V π (ś)] [46].
It is defined as in equation 4.

∀s0 ε S ,∀a ε A: Eśv T (ś|s,π (s)){V
∗(ś)}

≥ Eśv T (ś|s,a){V
π (ś)} (4)

LP algorithm aims to maximize the minimum difference
between expert values and the estimated values as in
equation 5.

max
∑
s∈S0

min
a∈A|π(s)

{Eśv T (ś|s,π (s)){V
∗(ś)}

− {Eśv T (ś|s,a){V
π (ś)}} (5)

LP is useful if all parameters of RL environment are
known. In many practical applications we do not have
complete knowledge of the environment (i.e., transition
probabilities are not known) then the max-margin IRL [47]
technique can be utilized. Max-margin IRL method assumes
that the reward function can be represented as a linear
function of known basis 8i [48]:

R =
∑
i

wiφi. (6)

where weight vector w : (||w||1 ≤ 1) minimizes
the Euclidean distance (||µ(π̂ ) − µE ||2) between the
expert feature expectation µE and the estimated feature
expectation µπ̂ [48].

max
w:||w||2≤1

min
j∈{0..(i−1)}

(||wTµ(π̂ )− wTµE ||2) (7)

≤ ||wT ||2 ||µ(π̂)− µE ||2
≤ ε (8)

The value of w is considered optimal when the Euclidean
distance (||µ(π̂)−µE ||2) becomes smaller than a predefined
threshold value ε. The Max-Margin IRL method examines
almost all policies to find the best one. In large state space,
it is computationally complex to investigate all actions and
states.

IV. SYSTEM MODEL
The flowchart of proposed CIL methodology is shown in
Figure 2. The patient model emulates the responses of a
real patient to treatment. We are given a set of positive
and negative trajectories. Trajectories τ are the sequence of
state-action pairs such as τ = (s0, a0, s1, a1 . . . ..). States
represent the response of the patients (i.e., responder, non-
responder, etc.) and actions represent the recommended
treatments (i.e.,MED,PSY , TM ,PSY +MED, etc.). Positive
trajectories consist of the samples that result in a successful
outcome (e.g., successful medical treatments). On the other
hand, negative trajectories τ− refer to failures or bad
outcomes (e.g, unsuccessful medical treatments). The goal
of CIL is to identify the positive trajectories and stay away
from the negative trajectories. To achieve this objective two
discriminators, the Adversarial Discriminator Da (AD) and
the Cooperative Discriminator Dc (CD), have been used.
AD plays a role in minimizing the difference between
positive policies and learned policies. On the other hand,
the CD distinguishes positive and learned policies from
negative policies. Both the discriminators are used to update
the Q-table which eventually updates the learned behavior
policy πθ .
Positive trajectories τ+ and negative trajectories τ−, some

time called demonstrations, are generated from the positive
behaviour policies π+ and negative behavior policies π−

respectively, as given below in equations 9 and 10.

τ+ = [(s1+1 , a1+1 , s1+2 , a1+2 , .., s1+d , a1+d ),

(s2+1 , a2+1 , s2+2 , a2+2 , .., s2+d , a2+d ), . . .]

= [τ 1+, τ 2+, . . .] (9)

τ− = [(s1−1 , a1−1 , s1−2 , a1−2 , .., s1−d , a1−d ),

(s2−1 , a2−1 , s2−2 , a2−2 , .., s2−d , a2−d ), . . .]

= [τ 1−, τ 2−, . . .] (10)

Occupancy measure ρπ : S × A→ R for a policy π ∈ 5 is
defined as:

ρπ (s, a) = π (a | s)
T∑
t=0

γP(st = s | π) (11)

It represents the distribution of state-action pairs by following
a policy π with discount factor γ . State st ∈ S
represents the patient’s condition, while action at represents
the recommended medication. Practically, we compare the
difference between positive behavior policies π+ and learned
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FIGURE 2. Flow chart of proposed model for DTR.

policies πθ by their generated trajectories. Da: S × A →
(0, 1) is known as adversarial discriminator. It estimates the
probabilities that an action on a state belongs to the positive
policies π+, rather than learned policies πθ . It can be updated
according to:

max
Da

(Eρπ+[log(Da(s, a))]+ Eρπθ [log(1− Da(s, a))]) (12)

Optimizing Da and πθ are opposite goals. Da minimizes
the transition probabilities of state-action pairs that are
generated by πθ . On the other hand, πθ aims at maximizing
the transition probabilities of Da by making a mistake. The
Cooperative Discriminator Dc: S × A → (0, 1), instead,
differentiates the positive policiesπ+ and the learned policies
πθ from the negative ones π−. The objective function can be
defined as:

max
Dc

(Eρπ+,ρπθ [log(Dc(s, a))]+ Eρπ− [log(1− Dc(s, a))])

(13)

This function is naturally cooperative because the objec-
tives of Dc and πθ are the same. Both are trying to maximize
the probability that learned trajectories be similar to the

positive trajectories. Adversarial and cooperative discrimi-
nators are used to refine the learning policy πθ . Objective
functions of Da can be represented as a minimization
problem of Jensen–Shannon(JS) divergence DJS (ρπθ ‖ ρπ+ )
between ρπθ , ρπ+ . Instead, objective functions of Dc can be
represented as a maximization DJS (ρπθ + ρπ+ ‖ ρπ− ),
of Jensen–Shannon(JS) divergence between ρπθ , ρπ+ and
ρπ− [49]. Given a fixed policy πθ , optimal discriminatorsD∗a
and D∗c can be defined as:

D∗a(s, a) =
ρπ+ (s, a)

ρπ+ (s, a)+ ρπθ (s, a)
(14)

D∗c (s, a) =
ρπ+ (s, a)+ ρπθ (s, a)

ρπ+ (s, a)+ ρπθ (s, a)+ ρπ− (s, a)
(15)

The value of an action (e.g., medical treatment) in a
particular state (e.g., patient’s condition) is represented by the
Q-value as:

Q(s, a) = Êτ θi [ωα log(Da(s, a))+ ωβ log(Dc(s, a))] (16)

where ωα ∈ [0, 1] and ωβ ∈ [0, 1] are the balancing
factors that control the importance of the Adversarial and
Cooperative discriminators. The aim of updating learned
policyπθ is to learn the positive trajectories τ+, while staying
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away from negative ones τ−. The Q-value plays an important
role in finding this objective because the higher the Q-value
in a state, the more likely this action will be chosen by the
agent.

πθ = argmax
a
Q(s, a) ∀s ∈ S (17)

Under this setting, the learned policy is updated where Da
push πθ close to π+, while Dc separates πθ from π−.

V. THEORETICAL ANALYSIS
In this section we provide the theoretical analysis of
convergence of learned policy. Given enough time and
capacity, we would like the learned policy πθ to converge
to the positive distribution ρπ+ . The learned policy πθ

represents the probability distribution ρπθ of state-action
pairs. This analysis is mainly based on the theorems presented
in [49].

The objective function for proposed algorithm can be
defined as:

Jπθ ,Da,Dc
= Eρπθ [ log(1− Da(s, a))]+ Eρπ+ [log(Da(s, a))]

−Eρπ+,ρπθ [ log(Dc(s, a))]− Eρπ− [log(1− Dc(s, a))]

(18)

For simplicity, balancing factors ωα , ωβ (defined in equa-
tion 16) are set to 1. The objective function can be written
as follows:

Jπθ ,Da,Dc = [
∫
s,a
[ρπ+ log(Da(s, a))+ ρπθ log(1− Da(s, a))

− (ρπ+ + ρπθ ) log(Dc(s, a))

− ρπ− log(1− Dc(s, a))]dsda] (19)

To find the optimal values of adversarial and cooperative
discriminators (D∗a, D

∗
c ), we maximize the function inside

integral w.r.t Da and Dc. Setting the derivative w.r.t Da and
Dc to 0 yields the following results:

ρπ+(s, a)
Da

− (ρπ+(s, a)+ ρπθ (s, a)) = 0 (20)

ρπ+(s, a)+ ρπθ (s, a)
Dc

− (ρπ+ (s, a)+ ρπθ (s, a)

+ ρπ−(s, a)) = 0 (21)

Thus it can be verified from above equation that:

D∗a(s, a) =
ρπ+ (s, a)

ρπ+ (s, a)+ ρπθ (s, a)
(22)

D∗c (s, a) =
ρπ+ (s, a)+ ρπθ (s, a)

ρπ+ (s, a)+ ρπθ (s, a)+ ρπ− (s, a)
(23)

We have obtained the maximum solution as the second
derivation:−ρπ+ (s,a)

D2
a

and−
ρπ+ (s,a)+ρπθ (s,a)

D2
c

are non-positive.
Occupancy measure ρπ (s, a) indicates the distribution

of state-action pairs when the agent interacts with the
environment under the policy π . By inserting the values of

D∗a and D
∗
c in equation 18, the proposed algorithm minimizes

the following imitation learning algorithm,

min
πθ

DJS (ρπ+ ‖ ρπθ )− DJS (ρπθ + ρπ+ ‖ ρπ− ) (24)

It represents theminimization of JS divergence between prob-
ability distributions which encourages the learned trajectories
to replicate the positive trajectories and stay away from the
negative ones.

The proposed algorithm exploits the same concept as
described in Adversarial Cooperative Imitation Learning
(ACIL). In the ACIL approach, parameters of Da and Ds are
updated by taking the expectations of gradient values over the
trajectories (τ+, τ− and τ θ ) as given bellow:

Êτ+ [ ∇ log(Da(s, a))]+ Êτ θ [∇ log(1− Da(s, a))] (25)

Êτ+,τ θ [ ∇ log(Dc(s, a))]+ Êτ− [∇ log(1− Dc(s, a))] (26)

In contrast, in our proposed algorithm, we update the
parameters of Da and Dc by finding the immediate optimal
values of occupancy measures ρπ as given in algorithm-1.
Updating Da and Dc in such a way makes our approach
computationally and mathematically simpler than the ACIL
approach.

Another difference that makes our approach simpler and
faster, during the process of learning optimal dynamic
treatment regimes, is the method of updating learned
trajectories. In the ACILmethod, learned policies are updated
through the Trust Region Policy Optimization (TRPO) [50]
approach. TRPO tries to update the learned trajectories
iteratively by solving a trust region optimization problem.
On the other hand, in the proposed algorithm we used the
current maximum Q-value to update the learned policies
as mentioned in equation 17 which makes the proposed
algorithm comparatively simple.

VI. EXPERIMENT
In this section, we present the results of experiments that have
been conducted to evaluate the proposed model.

Firstly, we describe the dataset and test. Next, we present
results and validation.

A. MODEL SETUP AND DATASET DESCRIPTION
TheDTRunder examination (Figure 1) is a two stage decision
process. We have completed and mapped such a process into
the MDP Model as shown in Figure 3.

Each patient is assigned to one of two possible initial
treatments: psychology (PSY ) or medicine (MED) randomly
during the trial. As already described in section I, participants
are classified as responders (Res) or non-responders (NR)
in response to the first treatment depending on whether
participants do (or do not) have had more than two
heavy-drinking days over the last two months.

We have built a model of the patient to emulate his/her
behavior, as a responder or non-responder, that is described
by probability distributions and depends on some patient
characteristics such as gender, age, cultural level, and
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Algorithm 1 CIL Algorithm for Optimal DTR
Given: Data set, discount factor γ , termination criteria,
Initialize: Input Parameter, number of iteration T , Positive trajectories τ+, Negative trajectories τ− generated by behavior
policies π+ and π− respectively, length of trajectories N , number of trajectoriesM .
Estimate occupancy measures ρπ+ , ρπ− where ρπ (s, a) = π (a|s)

∑
M γP(st = s|π )

Assign random values to Q_Table, Q(s, a) = rand() ∀ states and actions
for (i = 1; i ≤ No. of iteration; i++) do

Generate τ θ by πθ = argmaxa Q(s, a) ∀s ∈ S
Estimate ρπθ (s, a) = π (a|s)

∑
M γP(st = s|π )

Adversarial Discriminator Da(s, a) =
ρπ+

ρπ++ ρπθ

Cooperative Discriminator Dc(s, a) =
ρπ++ ρπθ

ρπ++ ρπθ + ρπ−

Update Q(s, a) = Eτ θ [ωα log(Da(s, a) + ωβ log(Dc(s, a)] with balancing terms ωα, ωβ ∈ [0, 1]
end for
Return: τ θ and Q-Table.

FIGURE 3. A Markov Decision Process mapping the DTR.

neighborhood of residence. Any observable trajectory of
the dataset is encoded in sequences of data such as:
(O1,A1,O2,A2,O3). Where O1, O2, and O3 are the pre-
treatment information, intermediate outcomes and final out-
comes respectively.A1 andA2 are the randomized treatments.
In the addiction management study, for example, O1 may
include comorbidity, gender, age, level of addition, etc.While
O2 may contains the participant’s binary response (Res,NR),
side effects, and adherence to the initial treatment. Similarly,
O3 could be the number of non-heavy-drinking days over an
under-observed period. On the other hand, A1 can be PSY
or MED and A2 can be one of the TM , PSY , MED and
PSY +MED treatments.
The model, shown in figure 3, consists of seven states
{S0, . . . , S6} and four types of treatments {′MED′, ′PSY ′,
′TM ′, ′PSY + MED′} that a clinician or an artificial agent
can select. Probability distributions can be represented as

P(SX ‖ACTION ), where P is the probability that the patient is
’Responder’, SX is the current state and ACTION is the
selected treatment.

Patient’s behavior and their responses to the treatments are
dependent on some pre-treatment information as reported in
Table 2: Recommended treatments at fist stage (e.g PSY and
MED ) are dependent on the following pre-treatment features:

− Location: {downtown(d), hill−station(o)}. It represents
the neighborhood of residence.

− Gender= {Male(M ), Female(F)}. It represents the the
sex of the patient.

− Cultural-Level= {high(h), medium(m), low(l)}. It repre-
sents and socio-cultural level of patient.

Whereas, the treatment selected at the second stage depends
on the kind of response of the patient (i.e Responder,
non-responder) to the previous treatment.
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TABLE 2. Features of (SMART) design schematic for DTR.

TABLE 3. Recovered trajectories through CIL.

In order to validate the proposed approach, we have
generated a dataset by adopting the SMART method [3],
[51], [52]. For different pre-treatment parameters, we have
generated 500 positive trajectories (τ+) that ends as a suc-
cessful treatment (i.e the patient is reponder) and 500 negative
trajectories (τ−) which represents the failure of the treatments
(i.e the patient is non-reponder). Both trajectories are used
in the proposed algorithm to guide the RL agent to learn the
optimal trajectory. An example of positive trajectories with
trajectory length l = 3 is τ+ = [S0, MED, S2,TM , Success].

B. RESULT
This subsection intends to present the outcomes of experi-
mental setup that was used during experiments. In addition,
we have also compared the result of our scheme to other well
knownmethods such as: Optimism in the Face of Uncertainty
(OFU-DTR) [53], MDP based approach [54], and Q-learning
based method [55].

A patient may have different pre-treatment parameters
and accordingly we may have varying dynamic treatment
regimes. Similarly, there are positive and negative trajectories
against each combination of pre-treatment parameters in the
dataset. We have conducted experiments and validated the
proposed methodology on them. The goal of the proposed
algorithm is to mimic the positive trajectories and avoid the
negative ones.

An example of recovered trajectories is shown in Table 3.
States represent the patient responses while Actions represent
the recommended treatments. We assumed that M − O− L
(i.e, {Gender=Male (M); Residence= Hill-station (O); and
Cultural level = Low (L)}) are the pre-treatment features.

FIGURE 4. Accuracies comparison.

FIGURE 5. Imitation learning in uncertain environment.

Under this consideration, a small batch of positive and
negative trajectories is collected as shown in Table 3. The
final state in case of positive trajectories is ‘‘success’’,
while it is ‘‘failure’’ in case of negative trajectories. Learned
trajectories in Table 3 represent the recommended treatments
at each state by executing the CIL algorithm. It can be
seen that learned trajectories have the same sequence of
state-action pairs as positive trajectories and are different
from negative trajectories.

We have used accuracy as a performance metric to indicate
the ratio of correct selection of a treatment in a given state.
Initially, we experimented only with positive trajectories and
later we have performed experiments by both using positive
and negative trajectories. The result of obtained for accuracy
parameter against both schemes is shown in Figure 4. It is
evident from Figure 4 that the accuracy of the proposed
algorithm is better.

Furthermore, to mitigate the problem of overfitting i.e.
the repetition of the same outcome, we introduced 15% of
uncertainty to the environment. This is to say that if PSY
treatment is recommended at state s0 (refer to Figure 3), then
the probability that the next state will be s1 or s2 is 0.85 while
a probability of 0.15 that next state will be s3 or s4.

Results of both Imitation Learning (with only positive
trajectories) and CIL in an uncertain environment are shown
in the Figure 5. Patients can be divided into different groups
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TABLE 4. Comparison in terms of accuracy.

based on the pre-treatment features. Some treatments, that
are recommended by observing patient’s responses, are con-
sidered positive treatments for a group of patients and these
may be considered negative treatments to the other groups
of patients. The bars in figure-5 represents a comparison of
how many times the negative treatment, which may lead to
the negative outcome, is proposed by each of the algorithms.
In other words, graph present the errors and mistakes the RL
agent made each time while proposing a treatment.

On 1000 trials, Imitation Learning algorithm (where only
positive trajectories are used as input) proposed 13 times
’MED’ treatments that were negative treatments for a chosen
group of patients. On the other hand, in CIL case, this error is
repeated only twice. Similarly, the number of times negative
treatments were recommended by both the algorithm are
shown in the graph. Among all, ’PSY+MED’ is the negative
treatment that is proposed most of the time in each case. For
all groups of patients, CIL algorithm made fewer mistakes
in recommending negative treatments as compared to the
Imitation Learning algorithm.

Moreover, we present a comparison in terms of accuracy
in Table-4 to demonstrate the effectiveness of the proposed
approach to the existing work. In [53] authors introduced
an algorithm of Optimism in the Face of Uncertainty
(OFU-DTR). The learning process is comprised of optimistic
planning, policy execution, and model updating. At 200 num-
ber of episode, OFU-DTR achieved 93% accuracy. While
Posterior Sampling for Reinforcement Learning (PSRL) [54]
updates a prior distribution over MDP and selects one sample
from this posterior. It achieved 92% accuracy. In [55] authors
have employed Q-learning to determine the optimal strategy.
In an uncertain DTR environment, it achieved 90 % accuracy.
On the other hand, the proposed algorithm achieved 98 %
accuracy over 200 number of the episode which is the highest
among all.

It can be seen that the use of negative trajectories has not
only shown superior performance but also can prevent the
agent from making false or negative actions (treatments) and
positive trajectories guide the agent to take good actions. This
is why the use of CIL is fruitful in an uncertain environment.

VII. CONCLUSION
W have presented CIL method to learn the optimal dynamic
treatment regime by exploiting information from both trajec-
tories (positive and negative). The adversarial discriminator
is responsible for minimization of discrepancies between
positive trajectories (e.g. survived patients) and learned
trajectories while the cooperative discriminator is used to
separate the learned trajectories from negative trajectories

(e.g. deceased patients). Adversarial discriminator and coop-
erative discriminator play an important role in updating
Q-table and hence improving learned trajectories.

The proposed algorithm performs better in a case where we
do not have the complete knowledge of the environment (e.g
reward function, transition probabilities). Experiments have
demonstrated that the proposed algorithm provides better
dynamic treatment regimes for people with alcohol addiction.

LIST OF ACRONYMS
AI Artificial Intelligence
MDP Markov Decision Process
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DTR Dynamic Treatment Regime
IRL Inverse Reinforcement Learning
IL Imitation Learning
LP Linear Programming
AIL Adversarial Imitation Learning
CIL Cooperative Imitation Learning
AD Adversarial Discriminator Da
CD Cooperative Discriminator Dc
LD Learning from Demonstration
ML Machine Learning
BC Behavior Cloning
MLIRL Maximum likelihood IRL
GP Gaussian Process
MMP Maximum Margin Planning
SMART Sequential Multiple Assignment Randomized

Trial
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