
Received 28 June 2022, accepted 4 July 2022, date of publication 25 July 2022, date of current version 28 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3190538

Edge Deployment Framework of GuardBot for
Optimized Face Mask Recognition With
Real-Time Inference Using Deep Learning
SUMAIRA MANZOOR 1, EUN-JIN KIM 2, SUNG-HYEON JOO 2, SANG-HYEON BAE 2,
GUN-GYO IN 2, KYEONG-JIN JOO 2, JUN-HYEON CHOI 2, AND TAE-YONG KUC 2
1Creative Algorithms and Sensor Evolution Laboratory, Suwon 16419, South Korea
2Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University,
Suwon 16419, South Korea

Corresponding author: Tae-Yong Kuc (tykuc@skku.edu)

This research is supported by the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry,
and Energy (MOTIE) (No. 1415180816).

ABSTRACT Deep learning based models on the edge devices have received considerable attention as a
promising means to handle a variety of AI applications. However, deploying the deep learning models
in the production environment with efficient inference on the edge devices is still a challenging task due
to computation and memory constraints. This paper proposes a framework for the service robot named
GuardBot powered by Jetson Xavier NX and presents a real-world case study of deploying the optimized
face mask recognition application with real-time inference on the edge device. It assists the robot to detect
whether people are wearing a mask to guard against COVID-19 and gives a polite voice reminder to wear the
mask. Our framework contains dual-stage architecture based on convolutional neural networks with three
main modules that employ (1) MTCNN for face detection, (2) our proposed CNN model and seven transfer
learning based custom models which are Inception-v3, VGG16, denseNet121, resNet50, NASNetMobile,
XceptionNet, MobileNet-v2 for face mask classification, (3) TensorRT for optimization of all the models
to speedup inference on the Jetson Xavier NX. Our study carries out several analysis based on the models’
performance in terms of their frames per second, execution time and images per second. It also evaluates the
accuracy, precision, recall & F1-score and makes the comparison of all models before and after optimization
with amain focus on high throughput and low latency. Finally, the framework is deployed on amobile robot to
perform experiments in both outdoor and multi-floor indoor environments with patrolling and non-patrolling
modes. Compared to other state-of-the-art models, our proposed CNNmodel for facemask recognition based
on the classification obtains 94.5%, 95.9% and 94.28% accuracy on training, validation and testing datasets
respectively which is better than MobileNet-v2, Xception and InceptionNet-v3 while it achieves highest
throughput and lowest latency than all other models after optimization at different precision levels.

INDEX TERMS Face detection, face mask classification, voice alert, service robot, deep learning, transfer
learning, Jetson Xavier NX, TensorFlow TensorRT, optimization, inference.

ACRONYMS
The list of acronyms and abbreviations used in this survey is
given in Table 1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jamshid Aghaei .

I. INTRODUCTION
Deep learning [1] models based on CNN are key compo-
nents for developing efficient robotic systems with a wide
range of applications that span from vision-based recognition,
NLP, UAV to entertainment and healthcare. The deployment
strategies for these DL-based applications can be categorized
into cloud-based and edge-based. Cloud-based deployment is

77898 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5512-7824
https://orcid.org/0000-0002-4157-5316
https://orcid.org/0000-0001-7068-2324
https://orcid.org/0000-0002-8447-9252
https://orcid.org/0000-0003-2546-4891
https://orcid.org/0000-0001-8023-1682
https://orcid.org/0000-0002-2715-4865
https://orcid.org/0000-0002-5816-0088
https://orcid.org/0000-0002-5254-9148

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

TABLE 1. List of Acronyms and Abbreviations used in this paper.

centralized with high processing and compute power, while
edge-based deployment is decentralized with low-latency [2].
Despite the better performance of cloud-based AI solutions,
most DL-based applications cannot compromise with the
high latency rate in data transfer and security threats in the
network. Hence, edge-based deployment is an alternate solu-
tion for building faster, more secure and easily scalable appli-
cations [3]. More recent, deep learning models’ deployment
at the edge devices is getting popular.

According to Gartner [4], the enterprises that have
deployed edge solutions in the production are anticipated
to extend from about 1% at the end of 2018 to about 40%
by 2024 [5]. The worldwide edge spending guide from IDC
states that the market for edge devices will reach $250.6 bil-
lion in 2024 [6]. A report from Tractica [7] predicts that the
worldwide shipment of edge devices from 161.4 million units
in 2018 will increase to 2.6 billion units annually by 2025 [8].

In the battle of edge AI, Nvidia, Google and Intel are
three major players that are providing the support to harness
the power of AI at the edge. by offering essential hardware
platforms.

Initially, Raspberry Pi was widely used as an edge device
in IoT paradigm for several years. It was a SBC launched by
Raspberry Pi Foundation in 2012 for educational purposes.
Its moderate speed processor and support for peripheral inter-
facing and networking made it well-suited for IoT-driven
operations such as data sensing [9]. However, it was a limited
solution because it does not come with a GPU. All its tasks
are performed by the processor which is not efficient.

More recently, NVIDIA has come up with different GPU
accelerated boards for driving AI innovation at the edge.
The embedded computing boards of the Nvidia Jetson series
(Nano, TK1, TX1, TX2, Xavier, and AGX) depict various
capabilities and tradeoffs between costs and performance.
Nvidia released the Jetson TK1 in late April 2014, whereas
TX1 in 2015 and TX2 in March 2017 as AI-enabled edge
devices. Later, Nvidia introduced Jetson Nano 4GB in March
2019 and Jetson NX at the end of August 2018 while Jetson
AGXOrin in the first quarter of 2022 [10] for processing deep
learning applications and AI data for edge computing.

Apart from the improvements in hardware platforms
of edge devices, their limited computation and memory
resources [11] are the challenges that affect DL-based mod-
els inference. The reason is, models trained with differ-
ent DL frameworks such as TensorFlow [12], Caffe [13],
PyTorch [14], Darknet [15] and PaddlePaddle [16] are not
designed for low-powered devices. Therefore, the execution
of these models on the edge devices hinders their perfor-
mance. This has led to the development of inference compil-
ers [17] that include Relay [18], TensorRT [19], TensorFlow
Lite [20] and TVM [21] which optimize the inference of
DL-basedmodels for deployment at the edge devices. Among
them, TensorRT from Nvidia and TFLite from Google pro-
vide state-of-the-art solutions. TFLite was initially developed
for deploying the DL-based models on the iOS and Android
devices (i.e. tablets, mobile phones), whereas TnesorRT was
designed for accelerating inference on Nvidia GPUs. These
compilers take the models developed in DL frameworks [12],
[13], [15], [16] and optimize them for real-time inference on
the edge devices.

Meanwhile, the spike in edge devices has motivated the
researchers to develop and run DL-based models with real-
time inference on the edge devices for new robotic appli-
cations in different fields. The use of robots has come into
the spotlight with the Covid-19 pandemic. It is an infectious
disease that spreads from person to person mainly through
droplets of saliva or runny nose. The virus is transmitted when
an infected person coughs or sneezes. Wearing the face mask
has been recommended [22] to reduce the virus transmission
and save lives since the initial outbreak [23]. Therefore, many
countries have enacted laws mandating to wear face masks in
both indoor and outdoor public places such as shops, schools,
hospitals, airports and open area gatherings.

However, as humans, we are prone to forgetfulness and
asking someone to wear a face mask is a touchy subject.
Therefore, a safe alternative is to develop adaptable robotic
solutions to monitor and remind the people to wear a face

VOLUME 10, 2022 77899

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

mask. A promising avenue in this Covid-19 situation is the
use of service robots. According to the new report of Polaris
Market Research [24], it is anticipated that the size of global
service robotics market is estimated to reachUSD 54.4 billion
by 2026 with a Compound annual growth rate of 17.3%
from 2018 to 2026.

Indeed, these service robots can be used in hospitals to
improve the safety of frontline HCW, hotels, super markets,
airports, universities and offices to ensure that people are
wearing face masks and reminding them that wearing face
masks is compulsory. In this direction, Kyoto-based research
institute ATR deployed a robot nicknamed ‘‘Robovie’’ at a
sports store to make sure its customers wear face masks [25].
The university hospital Pitié Salpêtrière in Paris lent 4 Pepper
robots developed by SoftBankRobotics with a new feature of
face mask detection during the pandemic [26].

In this direction, we present GuardBot, which is a service
robot powered by Nvidia’s Jetson Xavier NX, an embedded
edge computing board to deploy our DL-based face mask
recognition framework with voice interaction for assisting
the humans in preventing them from getting infected by
Covid-19. The task is accomplishedwhenGuardBot’s camera
scans the faces of the people and identifies the people without
masks. A polite reminder/ warning is carried out through a
generated voice message.

A. CONTRIBUTION
The following are key contributions of our work.

1) For face detection module, we pursue two main goals:
i) We first draw comparisons of traditional and deep

learning based face detectors. The aim of this com-
parison is to select the one detector that is the most
accurate in terms of multi-view face detection.

ii) After obtaining the most accurate face detector, our
next objective is its optimization that improves its
inference speed on the edge device that is Jetson
Xavier NX in our work.

2) For face mask recognition module, we proceed with the
following goals:
i) We apply transfer learning on seven pre-trained mod-

els and then we fine-tune them with the same param-
eters during training. In addition, we contribute to
optimize all the models for edge specific inference.

ii) We also proposed our CNN model architecture with
optimized parameters which has been compared
with transfer-learning based custom CNN models.
In our contribution, we focused on minimizing net-
work complexities and simultaneouslymaintaining its
accuracy. To accomplish our goal, we first fine-tune
our network (discussed in Section Framework III)
during the training phase and then optimize the
fine-tuned model for obtaining real-time inference
speed.
Our proposed CNN-based classifier for face mask
recognition is trained from scratch, which is another

FIGURE 1. Paper structure.

contribution. The main advantages of our proposed
architecture are:
• A considerably good accuracy for face mask clas-
sification task.

• A highly reduced complexity due to its slim archi-
tecture compared to other state-of-the-art models.

• The minimum risk of negative weight transfer due
to model training from scratch.

• The usability of the model in computationally
resource-limited platform.

• High throughput and low latency.
3) We integrate visual recognition modules with the voice

alert system for generating a warning voice message if a
person without a mask is identified.

4) Finally, we deploy our proposed framework on Guard-
Bot that is equipped with Jetson Xavier NX and
Zed camera. It performs face mask recognition task
in patrolling or non-patrolling modes. We access its
performance in both outdoor and multi-floor indoor
environments.

5) Moreover, we present performance comparison based on
the results of all thesemodels after training-testing phase
and optimization phase.

The overall structure of our paper is shown in Figure 1. The
rest of our article is organized as follows: Section II presents
literature review related to edge computing and optimization
of DL-models. It also discusses the previous studies related to
face mask detection with a brief review of speech recognition
work. Section III gives a detailed description of our proposed
two-stage framework that consists of three main modules.
It also explains the architecture of each DL-based model used
in our framework. Section IV covers implementation details
of all the models and techniques that we have used in our
framework. Section V describes the hardware and software
requirements for conducting the experiments in real-world
scenarios and presents two case studies. Section VI presents
the results and discusses the performance at the edge deploy-
ment using different evaluation metrics. Finally, we conclude
our work in Section VII with an outline of future research
direction.

II. LITERATURE REVIEW
We have divided the literature review section into three sub-
sections. In the first subsection II-A, we first discuss the
work related to edge computing in comparison with the the
cloud computing. In the second subsection II-B, we review
the optimization approaches for edge devices while in the

77900 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

third subsection II-C, we discuss the backgroundwork related
to the face mask II-C1.

A. EDGE VS CLOUD COMPUTING
Deep learning [1] has emerged as a particular form of hierar-
chical learning that uses multi-layer neural networks to learn
efficiently and progressively the useful data representations
through the extraction of higher-level features from the raw
input. It has demonstrated promising results and brought
revolution in several applications related to the robotics [27],
object detection and recognition [28]–[35], image classifi-
cation [36]–[38], character recognition [39], [40], document
classification [41], NLP [42], speech recognition [39], [41],
[43], human pose estimation [34], activity recognition [32],
[41], brain-computer interface [44], medical applications [45]
and autonomous driving [46].

Its prediction algorithms, also known as models, have been
consistently outperforming traditional methods for the last
few years [47], [48]. However, high accuracy of these models
comes at the expense of high computational resources [49]
and memory requirements.

A common approach to overcome the computational
resources is to leverage cloud computing [50] in which data
of IoT sensors is transmitted from the source to a centralized
location. It introduces challenges related to the latency [51],
scalability and privacy [52] that are critical for many appli-
cations. For example, camera frames of AV require to be
swiftly processed for detection and obstacle avoidance or
voice commands given to a robot need to be instantly parsed
for returning the quick response to the user’s query. However,
cloud-based data processing cannot satisfy the end-to-end
low-latency requirements of these applications due to addi-
tional queuing and propagation delays. Mahadev et al. [53]
showed that camera frame offloading to AWS server for the
execution of end-to-end vision task takes more than 200 mil-
liseconds. The cloud-based bandwidth-intensive data sources
such as video streams have the limitation of scalability for a
large number of streams that is particularly a concern for most
of the commercial systems such as cloud-based video surveil-
lance. It also exacerbates security and privacy issues which
increase the risk of data leaks. For example, a study [54]
reported that 40% of business organizations experienced
cloud-based data breach. A study discussed in [55], stated that
resource sharing in cloud robotics leads to 75% of security
challenges.

Edge computing [55] is a feasible solution to overcome
these issues related to the latency, scalability, and privacy
challenges by bringing the computation and data storage
closer to the source of the data itself at the end devices.
In recent years, it has received considerable attention in the
academic and industrial circles. It has become a key enabler
for many technologies where rapid response to the sensor is
necessary. For example, in the 5G many applications rely on
edge computing to perform real-time interaction and local
data processing [56], In IoT [57], high bandwidth and reduced
end-to-end delays were achieved by proposing a multi-access

virtualized edge computing framework [58]. In AV, it pro-
vides support to design an edge computing ecosystem with
enough computing power and security to guarantee the safety
of AV [34]. Similarly, in the field of healthcare service robots,
edge-based solutions are preferred in a situation where a
surgeon using a medical robot can not tolerate latency and
network delays [59], It is envisioned to handle different appli-
cations in human-robot interaction [60], [61]. In [60], edge
computing based robot interface was proposed for automatic
mental health care of elderly people using a programmable
embedded device with audio processing unit and environ-
ment noise filtering to understand voice commands. In [61],
a framework for guide dog robot was presented based on an
edge computing on Intel UpSquared board and a prototype
was developed for obstacle avoidance and traffic sign recog-
nition along with human following and voice recognition.

B. OPTIMIZATION FOR EDGE DEPLOYMENT
In the era of edge computing, equipping the edge devices
with AI powered deep learning models has attracted the
attention of many researchers and companies for providing
the real-time solutions for deployment. However, despite
the edge computing advantages of low latency, scalabil-
ity and privacy, the deployment of the DL-based models
on the edge devices is still a major challenge in terms of
computation, memory, and power consumption [62]. Typi-
cally, once the model is trained with the popular DL-based
frameworks such as TensorFlow [12], PyTorch [14], Dark-
net [63] or Caffe [13]. it is typically used for inference
in the same framework. However, the model’s slow speed
and high latency might cause performance issues when the
model is run using [12]–[14], [63] frameworks on the edge
devices because it contains several additional layers that are
not required for inference. Moreover, the trained model with
these frameworks [12]–[14], [63] by default uses FP 32-bit
precision, which makes it computationally expensive during
the inference on the edge devices and as a result its per-
formance decreases due to limited computational resources.
To amortize the DL-based resource-intensive [64] networks
for fast prediction (i.e., inference), the researchers have
explored several techniques such as quantization [65]–[68],
mixed precision inference [69] and weight pruning [64],
[70]–[72]. In this direction, different optimization frame-
works have also been proposed for mobile, embedded and
edge devices [72]. Among themTensorRT [73] fromNVIDIA
and TFLite [20] from Google are the most popular and state-
of-the-art framework because they encompassmost optimiza-
tion techniques which make it possible to execute DL-based
models on a single accelerator.

TensorRT [73] is built on the top of CUDA that performs
various optimizations to generate high throughput and low
latency for DL-based models on the Nvidia GPUs and Jetson
boards. It optimizes the models trained in other frameworks.
Besides the mixed-precision computation, it calibrates the
weights of trained models along with its activation function.
It performs quantization for precision reduction to FP32,

VOLUME 10, 2022 77901

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FP16 and INT8 which produces high throughput. Further-
more, It also performs layer and tensor fusion for memory
optimization. In a study [74], face recognition model using
TensorRT and TensorFlow Lite was deployed on different
GPUs (GTX 1080, RTX 2080Ti, RTX 2070, and RTX 8000)
and edge devices. The experimental results showed that Ten-
sorRT optimization had the fastest inference speed compared
to TensorFlow Lite on all GPUs and edge devices at the
expense of energy consumption. In another study [17], per-
formance of TensorFlow-TensorRT (TF-TRT) and Tensor-
Flow Lite (TF-Lite) was analyzed on the edge platform by
comparing their throughput, latency and power consumption.
It showed that TF-Lite performance was better with light
weight TF-models than the deep network while, TF-TRT
performance was consistently higher with different DL-based
models.

C. BACKGROUND
In this subsection, we first discuss the approaches that have
been used for face mask recognition and after that we com-
pare our work with the related work for face mask detection.

1) FACE MASK RECOGNITION
COVID-19 is the infectious disease caused by SARS-CoV-2
that emerged in December 2019 [75]. According to the
CDCP [76], direct or indirect contact and droplet spray
in short-range are the reasons that cause its spread [77].
The SOP’s by WHO suggest the best way to prevent and
slow down COVID-19 transmission is to wear the face
mask [78]. However, it is a challenging task to monitor
the people manually in crowded indoor or outdoor places.
Researchers have attempted different approaches to automate
this task. Prusty et al. [79] applied filtering techniques during
the preprocessing step to perform data augmentation using
grayscale [80] images with gaussian blur [81] and detected
the facemask using YOLOv3 [82].Wang et al. [83] proposed
‘‘WearMask’’ application to provide web based solution for
face mask detection using YOLOv3 [82] while perform-
ing the optimization using NCNN [84] framework. It used
MAFA [85], RMFD [86],MMD [87] and SMFD [88] datasets
for faces with masks andWIDER FACE [89] dataset for faces
without mask.

A study [90] presented the hybrid model consisting of two
components. Its first component was designed for face feature
extraction using ResNet-50 [91] while the second component
was face mask classification using decision trees, ensemble
algorithm and SVM. It used the SMFD [88], the LFW [92]
and RMFD [86] datasets while highest accuracy of 99% was
achieved on the LFW with SVM. This model produced high
accuracy, however its speed was slow. The practical applica-
tion for deployment in a productive environment requires a
model to work in real-time on the edge or portable devices.
Putro et al. [93] used face RoI and developed a FFDMASK to
detect the faces and built a CNN architecture with attention
module for mask classification on Jetson nano. It used a wider
face [89], SMFD [88] and LFW [92] datasests.

In another study, Nagrath et al. [94] proposed SSDMNV2
approach. It detected the faces using SSD [95] and performed
the face masks classification using MobileNet-v2 [96] archi-
tecture. Militante et al. [97] performed face mask classifica-
tion using VGG-16 on Raspberry pi. It set an alarm if the
person is not wearing a face mask and created a knowledge-
based dataset.

Table 2 reports our model’s comparative characteristics
with the previous related work.

III. FRAMEWORK
In this section, we discuss the overall architecture of our
framework for face detection,mask recognition and optimiza-
tion modules. The pipeline of our framework’s deployment
architecture is illustrated in Figure 2.
Our two-stage framework architecture consists of three

main modules. The first module performs face detection with
the MTCNN at the first stage and the second module involves
the face mask recognition using our proposed CNN model.
It also contains transfer learning based seven custom CNN
models at second stage. While the third module performs
optimization to execute real-time inference for all models on
Jetson Xavier NX for deployment on the GuardBot. It gener-
ates the voice message when detected person is not wearing
a face mask.

In the following sections, we explain three module and
discuss the models that have been used in these modules.

A. STAGE 1: FACE DETECTION MODULE
The first stage of our architecture contains a face detection
module that has been deployed using MTCNN [98] face
detector. Although, for face detection, we have implemented
four pre-trained face detection models on Jetson Xavier NX
which are Haar cascade [99], HOG [100], Caffe DNN [13]
and MTCNN [98] face detectors. However, the objective of
implementing four face detectors is to select the one model
which performs better among all in terms of accuracy and
then optimize the most accurate detector for real-time infer-
ence on the edge device. As a result, among all these, we have
selected MTCNN for optimization and deployment due to its
better accuracy compared to other models [as compared in
section VI-A].

1) HAAR CASCADE FACE DETECTOR
It [99] is a ML-based approach to train the classifier using a
lot of positive (images of faces) and negative (images without
faces) examples. It consists of four steps.

• Haar Feature Selection
• Creating an Integral Image
• Applying Adaboost [101]
• Cascading Classifiers

For face detection, it applies haar rectangular features
which are similar to the kernel convolution and uses an image
representation called integral image to evaluate the rectangu-
lar features in constant time. As a result, each feature returns

77902 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

TABLE 2. Characteristics of our work compared with the work related to Face Mask Recognition.

FIGURE 2. Flow diagram of our framework.

a single value that is calculated by subtracting the pixels’ sum
of white rectangles from the pixels’ sum of black rectangles
as:

value=
∑

(pixels in black area)−
∑

(pixels in white area)

Its object detection procedure employs a variant of the
learning algorithm AdaBoost [101] for the selection of best
features and training of the classifier (30). Its attentional
cascade technique combines complex classifiers into cascade

VOLUME 10, 2022 77903

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

structure for focusing on the promising region of the image
to improve the detection.

2) HOG FACE DETECTOR
The HOG [100] is a feature descriptor. The idea is to extract
the face features into a vector using HOG. The features are
described by distribution (histograms) of edge directions and
intensity gradients. The gradients are large around the corners
and edges which help in detection. When we pass an image
to HOG, it divides the image into cells and computes the
histograms of gradient directions for the pixels in each cell.
These histograms represent the descriptor. The descriptor
takes an input image of size 64 × 128 × 3 and the length
of its output feature vector is 3780.

3) CAFFE DNN MODEL
We have used the Caffe DNNmodel for face detection. Caffe
models were developed as a fast and efficient alternative to
other frameworks for performing object detection and recog-
nition. Caffe DNN model. Caffe DNN model is based on the
SSD (Single Shot-Multibox Detector) [95] and uses ResNet-
10 architecture as its backbone.

4) MTCNN FACE DETECTION
The MTCNN [98] face detector performs both detection and
alignment tasks using multi-task learning. It adopts a cas-
caded structure for landmark prediction and face detection.
Its architecture consists of a three-stage network. At first
stage, it uses P-Net which is a fully Convolutional net-
work. It is used to obtain candidate windows and their bbox
regression vectors. At the second stage it uses R-Net which
is a convolutional neural network. It is used to refine the
bboxes by performing calibrating with bbox regression and
employing NMS (Non-Maximum Suppression). At the third
stage, it uses O-Net which aims at describing the face and its
landmarks with more precision. As a result, it returns three
outputs: Facial landmark localization, BBox regression, and
face or not face classification.

B. STAGE 2: FACE MASK RECOGNITION MODULE
In the second stage, for face mask recognition, we have
proposed our own CNN model for face mask classification.
In addition, we have applied the transfer learning based
approach to seven pre-trained CNNs for building custom
models that are: MobileNet-v2 [96], Inception-v3 [102],
VGG-16 [103], ResNet-50 [91], DenseNet-121 [104], Xcep-
tion [105], NASNet-Mobile [106]. All these models take RoI
from the face detection module as input and their outcome
is face mask recognition based on the classification. In the
following section, we discuss the architecture of our proposed
CNN model along with seven TRL-based custom models.

1) OUR PROPOSED CNN MODEL
In this work, we have built our own classification CNN for
the face mask recognition task to classify input images with-
out relying on pre-trained models. The purpose is to design

light weight and less complex model for reducing the image
dimensionality and identifying the patterns related to each
class.

We have started to develop the custom model in Tensor-
Flow with the functional API of Keras because it is more
flexible than sequential API. It is a way to build graphs of
layers and allows the creation of layers in DAG. In our model
definition, the initial size of the input image to our network
is 224 × 224 with three channels. Our model takes a color
image as input which is scaled to 224×224×3 for training
and testing. Figure 3 represents the overall definition of our
model.

The architecture of our model consists of four convolu-
tional blocks in which each block contains one convolutional
layer followed by a ReLU layer and a max pooling layer. The
first convolutional block uses 16 filters of size 3 by 3. Each
filter slides across the whole image and produces a separate
2D activation or feature map as output using ReLU activation
function. Max pooling of size 2 by 2 is then used to reduce the
spatial dimensions of the output volume.We stack three more
convolutional blocks in which the second, third and fourth
convolution blocks are stacked with 32,64 and 128 filters.
Each convolutional block has a higher number of filters than
the previous one.

To make the prediction, we need to convert the output
feature maps of convolutional blocks into a single or one-
dimensional array. For this, we have used a Flatten layer in
our model which gets a multidimensional output and makes
it linear to pass it as input to the dense layer.

We add two dense layers with 256 and 50 neurons. These
layers are also referred to as the fully connected layers. Each
FC layer has been followed by two dropout layers (dropout
ratio value 0.2) to constrain the network from over-learning.
Adding more than one FC layers, prior to the layer that
makes predictions, allow greater coverage for the entire spa-
tial dimension of the image and better interpretation between
the features extracted by the convolutional blocks and the
predictions.

Finally, we construct a prediction output layer which is
a dense or FC layer with softmax activation function. The
reason for using Softmax instead of Sigmoid is to generate
two output neurons from our model instead of one. Hence,
our final dense layer has the same number of output nodes
as the number of classes. It outputs target class probabilities
where each value ranges between 0 & 1 and all values sum
to 1. Finally, we group input and output layers into the model
object.

2) TRANSFER LEARNING-BASED CUSTOM MODELS
I) MobileNet-v2

MobileNet-v2 [96] is lightweight in its architecture
which seeks to perform well on mobile and embedded
edge devices. It introduces inverted residual structure
which consists of thin bottleneck layers for residual
block’s input and output. It performs depth-wise sep-
arable convolutions to extract the features from each

77904 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 3. Our proposed CNN model for face mask recognition based on
classification.

color channel. It maintains the representational power by
removing the non-linearities in n-array layers. Its archi-
tecture contains two main blocks. One residual block
is with stride of 1 while second is with stride of 2 for
downsizing. Both blocks consists of three layers. The
first layer is 1×1 convolution with ReLU6 [107], second
is depth-wise convolution and third is 1× 1 convolution
without any non-linearity. The main intuition is to use
the bottlenecks for encoding inputs and outputs while
the inner layer for encapsulating the transform from
lower to higher-level i.e. from pixels to image cate-
gories [108].

II) Inception-v3
It [102] focuses on the less computational power by
introducing the idea of factorized convolutions: It aims
at reducing the number of parameters or connections
without affecting the network efficiently. For this, it per-
forms factorization into convolutions by replacing large
convolutions with smaller. For example, two 3× 3 con-
volutions (3×3 + 3×3= 9+9=18) replace one 5×5 con-
volution (5×5=25) which results in parameter reduction
from 25 to 18. Similarly, it also performed factorization
into asymmetric Convolutions. It also adds an auxiliary
classifier that acts as a regularizer.

III) VGG-16
The VGG-16 [103] architecture is an improvement over
AlexNet. Its idea was to replicate large size convolution
filters (11×11, 5×5, 3×3 used inAlexnet) withmultiple
3× 3 filters of a fixed size. Its 16 layer architecture has
a total of 138 million parameters consisting of 13 con-
volution and 3 fully connected layers. Instead of having
a large number of hyper-parameters, VGG-16 focuses
on convolution layers with stride of 1 and max pooling
layers with the stride of 2. Its whole architecture follows
the same arrangement for convolution and max pooling
layers.

IV) ResNet-50
ResNet-50 [91] is much deeper than VGG-16 [103],
however, its size is substantially smaller because it uses
global average pooling instead of fully-connected lay-
ers. It uses skip connections and batch normalization
to train deep layers without affecting the model’s per-
formance. The deep CNNs are difficult to train due to
the vanishing gradients problem. However ResNet-50
provides its solution by introducing skip connections
which are also known as gated units. These gated recur-
rent connections allow to train the model of 152 lay-
ers with lower complexity than VGG-16 [103]. It runs
residual functions using H(x) = F(x) + x for a few
stacked layers instead of learning the direct mapping.
It contains 23 million parameters which makes it faster
to train compared to the VGG-16 [103]. The ResNet-50
architecture is based on the Resnet-34 with one major
difference. That is a modified building block into a bot-
tleneck designwhich uses a stack of 3 layers instead of 2.
The skip connections do not contain extra parameters

VOLUME 10, 2022 77905

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

and cause less computational complexity and allow to
transfer relevant detail from previous to the next layer.

V) DenseNet-121
The DenseNet-121 [104] architecture is the modifica-
tion of standard CNN architecture. The DenseNet-121
architecture contains one 7× 7 Convolution, fifty eight
3 × 3 Convolution, sixty one 1 × 1 Convolution, four
average pooling layers and one FCN layer. Connectivity,
dense blocks, growth rate and bottleneck layers are main
components in its architecture. In CNN the feature map
of the previous convolutional layer is passed to the next
layer. In this way, CNNprovides L direct connections for
L layers. In contrast, the main idea of DenseNet-121 is
the concatenation of feature maps from previous layers
such that for L layers there are L(L+1)/d direct connec-
tions. Instead of extremely deep or wide architecture,
The DenseNets exploit the potential representational
power through feature reuse and alleviate the vanishing-
gradient problem.

VI) Xception
Xception [105] stands for ‘‘extreme inception’’. It is
inspired by the Inception model to improve multi-scale
feature extraction. It combines the advances from
ResNets [91] and Inception [102]. The design of the
Xception model is based on the idea of depth-wise
separable convolution. The Xception model is separated
into 3 main parts which are main flow, middle flow
with 8 repetitions of the same block and exit flow.
It contains 36 convolutional layers which are structured
into 14 modules with linear residual connection, except
for first and last modules. All Convolution and SCL
(Separable Convolution layers) are followed by batch
normalization

VII) NASNetMobile
NASNetMobile [106] stands for Neural Architecture
search (NAS) Network. It is a scalable CNN architecture
which consists of cells that are its basic building blocks
and have been optimized using reinforcement learn-
ing. A cell performs some operations such as separable
convolution and pooling. These operations are repeated
according to the network capacity [109]. The mobile
architecture of NASNet contains 12 cells and 5.3 million
trainable parameters.

C. OPTIMIZATION MODULE
Optimization is an additional but important step that is per-
formed before deploying the models for inference.

In this module, we optimize the stage 1 (section III-A)
and stage 2 (section III-B) models to speed up the inference
on the Jetson Xavier NX. We accelerate the inference using
the Nvidia TensorRT integration with TensorFlow to obtain
maximum performance at run-time with low latency and high
throughput of our DL-based models. TensorRT is a library
that has been developed by Nvidia to accelerate the inference
process on Nvidia GPUs and Jetson boards. It is built on
CUDA that supports parallel computing platforms to use the

FIGURE 4. Typical workflow to perform inference using TensorFlow.

FIGURE 5. Optimzed Workflow to perform inference using
TensorFlow-TensorRT via ‘‘SavedModel’’.

FIGURE 6. Optimzed workflow to perform inference using
TensorFlow-TensorRT via ‘‘frozen graphs’’.

computing capabilities of GPUs. TensorRT allows optimizing
the model trained in different deep learning platforms (i.e.
TensorFlow, Caffe, PyTorch) and performs lower precision
on model weights while maintaining the accuracy for final
deployment of models to a variety of environments.

The typical workflow when deploying the DL-based Ten-
sorFlow trained model for inference is shown in Figure 4.
However, to optimize the DL-based models in TensorFlow

with TensorRT integration (TF-TRT) the workflow changes
in one of the two forms as shown in Figure 5 and 6.

The inference is performed using the saved model if the
trained models are stored in the ‘‘SavedModel’’ format as
illustrated in Figure 5 or it runs using frozen graphs if
models are saved with regular checkpoints as described in
Figure 6.
In our study, all custom trained TensorFlow models have

been saved in ‘‘SaveModel’’ format, therefore our optimiza-
tion workflow follows the Figure 5. TensorFlow employs
graphs for ‘‘SavedModel’’ format when it exports them from
Keras. TensorRT integration applies the optimizations to
compatible sub-graphs that consist of TensorFlow with Ten-
sorRT (TF-TR) supported operations [110]. For this, it scans
all the sub-graphs that can be optimized based on the opera-
tions supported and replaces them with TensorRT optimized
nodes while it leaves the unsupported operations untouched
which are handled natively by TensorFlow.

D. VOICE MESSAGE ALERT SYSTEM
GuardBot’ camera detects the faces of people approaching
it at stage 1 (section III-A), and if it detects their face is
uncovered at stage 2 (section III-B). A call to the voice
message alert system is sent that pronounces the phrase: ‘‘You
have to always wear a mask.’’

77906 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

IV. IMPLEMENTATION
In this section, we describe the implementation details of our
framework.

A. FACE DETECTION MODULE
This section discusses the implementation of four pre-trained
face detection models on Jetson Xavier NX that include Haar
cascade [99], HOG [100], Caffe DNN [13] and MtCNN [98]
face detectors.

In our framework, we have selected MTCNN because of
its accuracy (section VI-A) and used its optimized model
(Section IV-A) for real-time face detection at the edge device.

We apply Haar cascade to the images and videos using the
OpenCV library. To detect faces using Haar cascade, we draw
rectangles around the detected faces on the color images by
performing following steps:

• Step 1: We load the frontal-face xml detector
• Step 2: We resize the image to 224×224 and input it by
converting into grayscale because Haar cascades work
only with gray images.

• Step 3: We run the classifier to detect the faces.
• Step 4: We draw the rectangles around detected faces
and extract the coordinates.

• Step 5: We create an object called faces and store the
detected faces in it.

• Step 6: We use detetMultiScate() function to obtain
the tuple of four elements from the rectangle: x and y
coordinate of top-left corner, and w and h which are
width and height values.

• Step 7: We set the scale factor to default that is 1.05. For
reducing the image size at each scale.

• Step 8: We specify the minimum number of neighbors
to 5. For determining the number of neighbors each
candidate rectangle should have to retain it.

HOG implementation consists of five main stages.

• Pre-processing
• Gradient computation
• Calculating magnitude and orientation
• Calculating Histogram of Gradients (8× 8 cells)
• Normalize gradients (16 × 16 cells)
• Calculate the final feature vector of complete image

The first step is image preprocessing and resizing it to
the width to height ratio of 1:2. Although, the descriptor can
take the images of different sizes with an aspect ratio of 1:2.
However, it should preferably be 64 × 128. Because we
will divide the image into 8*8 and 16*16 patches for feature
extraction. Having the specified size (64 × 128) will reduce
the computational cost (43). In this step, the performance
gains of gamma corrections are minor. It can be skipped.
In the second step, we calculate the gradient of each pixel

which represents the change in x and y directions. To calcu-
late it for the selected pixel in x direction, we subtract left
pixel value from the value on the right, while for y-direction
we subtract below pixel value from the above pixel value.
We achieved it by filtering the image using kernels. Same

results can be obtained using the Sobel filter [111] with kernel
size 1.
In the third step, we determine the magnitude and direction

of gradient for all pixel values using the following formula.

g =
√
gx2 + gy2

2 = arctan(
gy
gx

)

The higher magnitude value represents sharp change in
intensity around the edges.

In the 4th step, we divided the image into 8 × 8 cells to
calculate a 9-bin histogram of gradients for all 8×8 cells. The
gradient for individual pixels contains 2 values (magnitude
and orientation) which accumulate 8×8×2 = 128 numbers.
These 128 numbers are stored in 9-bin histograms corre-
sponding to angles 0, 20, 40, 60 . . . 160. Each cell is weighted
using gradient direction and voted (the value that goes into
the bin) into 9-bins based on the magnitude. Finally, all voted
values are added up to create the 9-bin histogram.

In fifth step, the image gradients calculated in the last
step are sensitive to light. In this step, we normalize the
gradients by taking 16 × 16 blocks to reduce lighting vari-
ation. Initially, we combine 4 adjacent cells in which each
contains a feature vector of size 9. Consequently, we create a
concatenated feature factor of size 36 (4 cells * size of feature
vector in each cell). To normalize this 36×1matrix, we divide
each vector value by the square root of the sum of squares of
the values.

In the last step we obtain the final feature vector for a grid
of 8×16. It ends up with 7 horizontal and 15 vertical (16×16)
blocks where each block is represented by a 36 × 1 feature
vector. We concatenate all these vectors and obtain a single
(7 × 15 × 36 =) 3780 dimensional vector of the complete
image.

Caffe DNN model introduced in the deep neural network
module of post OpenCV 3.3 has been implemented. We have
used the ‘readNetFromCaffe’ method to load the pre-trained
model with the OpenCV library. For this, we have down-
loaded pre-trained model weights and prototxt files which
were passed to the method as arguments. After some pre-
processing, we pass the images and video frames to the model
to get the bboxes of detected faces.

MTCNN is very complex model for face detection. How-
ever, its third-party open source implementations are avail-
able under a permissive MIT open source license which save
time and allow to train MTCNN with new dataset or use a
pre-trained model for face detection. Perhaps the best third-
party Python-basedMTCNNare availabe by Iván de PazCen-
teno [112] with Keras and OpenCV support, jbrownlee [113]
with TensorFlow and OpenCV support and linxiaohui [114]
with OpenCV support. In our work, we have used TensorFlow
and OpenCV implementation of jbrownlee [113] that is a
forked from [112]. It uses FaceNet’s MTCNN [115] as source
which is based on the work of [98] from 2016.

VOLUME 10, 2022 77907

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

Optimization:MTCNN is the state-of-the-art approach for
face detection with high accuracy (section VI-A1 among
HOG, Haar cascade and Caffe DNN model. That is the
main reason of selecting MTCNN for deployment on Guard-
Bot. However, embedded device’s capabilities to efficiently
process the frames with real-time FPS rate is a challenge
in the edge deployment. The incoming frames processing
with MTCNN is slow on Jetson Xaveir NX (section VI-A2)
due to limited computational power of the embedded board.
To overcome this issue, we have used its TensorRT imple-
mentation from [116]. For this, we have customized the code
of MTCNN TensorRT for the integration with our face mask
recognition module.

B. FACE RECOGNITION MODULE
In this section, we first discuss the dataset and its split that
we have used for training and evaluating the models. After
that, we explain the implementation of our proposed CNN
classification model to recognize the face mask. It is then
followed by the implementation details of the TRL-based
approach for fine-tuning the seven models ([102], [91],
[103]–[105], [106]) to classify face mask images for recogni-
tion. At the end, we elucidate optimization of these models.

1) DATA SPLIT
All images belonging to two classes have been divided
into three train, validation and test data splits using Image-
DataGenerator class that makes 700 images for testing the
models’ performance, 2260 images for their validation and
9040 images for training the models. Initially, we used a
learning rate of 0.001 for models before fine-tuning. However
later, it was set at 0.0001 for fine-tuning both our model
and transfer-learning based custom models. The batch size of
32 with 50 epochs has been used during training the models.
We avoid themodels’ over-fitting of the training dataset using
early stopping which restores the best weights with a patience
of 10 by monitoring the validation loss. The cross-entropy
has been used as a loss function to compare the predicted
probabilities with actual class output values between 0 and 1.

2) PROPOSED CNN MODEL
The end-to-end pipeline of our proposed CNN model is
described below.

• Pre-processing and Augmentation:
Data preparation is the first step after data collection.
In this step we have performed image pre-processing,
data normalization and augmentation steps. In the pre-
processing step, we standardize the shape of the input
images with the same width and height (224 × 224).
Reducing the size of images helps to decrease the train-
ing time and increase the inference speed without signif-
icantly affecting the performance.We also normalize the
image data by scaling the pixel values to the range 0-1
before passing the data to CNN layers. Our data aug-
mentation step involves flipping images horizontally,

applying shearing transformations, randomly zooming
inside the image, turning by increasing or decreasing the
brightness level. This step artificially creates different
versions from existing data to allow our model to gen-
eralize across images trained on different flips, shear,
zoom and lighting levels. We apply pre-processing steps
both on training and testing images while augmentation
steps only on the testing image

• Compile the Model:
After defining the model architecture (section III-B1),
we compile it by specifying the optimizer, loss and met-
rics. We specify loss function as category cross entory to
evaluate howwell the network models the dataset during
network tracing. It outputs a lower number if predictions
are good, otherwise it returns a higher number.
We have used accuracy, recall, precision and auc metrics
to determine the performance of the model. Unlike loss
function, these metrics are not used for training the
network. We instantiate the Adam optimizer which is an
adaptive learning rate optimization algorithm with the
suggested [117] learning rate (0.001). We change the
learning rate (0.001) during the fine-tuning process,to
reduce overall loss and increase the accuracy.

• Training:
Next, we start training our model by specifying
50 epochs to train our network along with the batch size
32. We set up the data generators to draw the random
batches of images from training and validation directo-
ries and generated the batches of data with augmentation
that have been passed to fit the model during the training
process. We have used callback techniques that allow
automatic interaction with the network during training.
EarlyStopping callback has been used to monitor the
validation loss to find that it is decreasing. We specify
a delay to ensure that it does not trigger at the first
minimum value of the validation loss. Instead, it stops
training after waiting for the 5 epochs with no improve-
ment. The ‘‘ModelCheckpoint’’ callback has been used
to save the best model automatically during the training
process bymonitoring theminimal validation loss on the
dataset.

• Optimization:
As a last step, we improve the model’s throughput and
reduce its latency by converting the trained model from
TensorFlow to TensorRT. We have discussed its details
in the Optimization Section IV-B4.

• Inference:
Finally, we perform the inference on the Jetson Xavier
NX and its results are discussed in the Section VI-B.

3) TRANSFER LEARNING-BASED CUSTOM MODELS
Our transfer learning based approach uses the layers,
pre-trained on a source task and fine-tunes them to
perform the target task that is face mask recognition.
We downloaded seven pre-trained models which include
MobileNet-v2 [96], Inception-v3 [102], VGG-16 [103],

77908 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

ResNet-50 [91], DenseNet-121 [104], Xception [105], and
NASNet-Mobile [106] models and cut off their top portion
containing FC layer which leaves us with the convolution
and pooling layers. We use these layers for feature extraction.
Once the pre-trained layers have been imported and the ‘‘top
head’’ of each model has been excluded, we employ the
transfer learning approach on all the models for training with
and without fine tuning techniques.

Our transfer learning approach is a multi-step process. For
this,

• We first freeze pre-trained convolution layers in the
network to ensure that previous generic features learned
by the CNN are not destroyed.

• Then we remove the top head or last fully connected
output layer(s) at the end of each network.

• After that, we create a new top head with five layers on
the pre-trained layers of the model, which entails
– One flatten layer: We add a new flatten layer that
converts the output of earlier pre-trained layers from
2D filter maps into a vector.

– Two dense layers: We include two dense layers con-
sisting of 1024 and 512 neurons, followed by Relu
activation. We pass the vector obtained from the
flatten layer to the dense fully connected layers for
classification.

– One dropout layer:We append 0.2 dropout regulariza-
tion to reduce the network over-fitting.

– One output layer: We define an output layer with
softmax activation to predict the probability for two
classes. The total number of outputs of this layer is
equal to the number of classes in the model.

• Finally, we group the input of the convolutional base
and output of the new top head into a model object.
It bootstraps the top model onto the pre-trained layers.

• Compiling: We compile the model by initializing the
Adam optimizer, cross-entropy and metrics.

• Training: We train the compiled network with back-
propagation.
– Training without fine-tuning:
To use transfer learning approach without fine tuning:
We start training the network, but we only train the
new top head of the model. For this, our new compiled
model contains the pre-trained weights and layers of
the model along with the new top head for face mask
classification. In this case, we freeze all pre-trained
layers. This model extracts the features using the
frozen pre-trained layers and trains the output layer
with suggested lr (learning rate = 0.001) to perform
the predictions.

– Training with fine-tuning:
Alternatively, to entail the transfer learning approach
with fine tuning in which some specific or all convo-
lution layers of the pre-trained network are un-freezed
and a second pass of training with the new top head of
the model is performed. For this, we have re-compiled

FIGURE 7. Optimization steps.

the models by un-freezing the last two pre-trained lay-
ers and used back-propagation to update the weights
in the last two pre-trained layers with the new top head
of the model. Then, we have trained this model with
lower lr (learning rate = 0.0001) to warm up the FC
layer in learning the patterns from previously learned
convolution layers. The rest of our model with its top
head and weights has been initialized just as before.

4) OPTIMIZATION
In this step, we perform optimization through quantization
using TensorRT for all face mask recognition models to
speed up their inference. The quantization is a process that
reduces the precision of weights for all the models with
the goal of improving run-time performance for the effi-
cient inference. TensorRT supports two modes. The first is
TenorFlow+TensorRT while the second is TensorRT native.
In this study, we have implemented the first option that
involves TensorFlow integration with TensorRT on Jetson
Xavier NX. However, the challenge in Jetson Xavier NX is
its limited memory that does not provide enough space to
convert the TensorFlow deep learning models into TensorRT
format. To handle this issue, we cannot build a TensorRT
execution engine on any other device to get the conversion
results because it should be run on the GPU of the same
device, on which inference will be performed. As a solution,
we have created a swap file that allows Jetson Xavier NX to
use more memory than its physically installed memory. For
this, we built a memory swapfile on the SSD and leveraged
the 24GB swap memory with 8 GB Jetson Xavier memory.

After that, we accomplished the optimization by following
the steps shown in Figure 7.

First, we created a batched input to load test data and per-
formed the batch processing on the images. Initially, we used
a batch size of 8 images from 1000 images but the Jetson

VOLUME 10, 2022 77909

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

Xavier NX ran out of memory at an early stage due to heavy
computation in the TensorRT conversion process. To over-
come this problem, we used a smaller batch size of 4. This
batch processing promotes parallel processing and improves
the throughput. Next, we start the implementation by loading
our saved TensorFlow custom trained models for optimiza-
tion and converting them to TensorRT format.

Finally, We obtain the prediction throughput and latency
results of our base models and compare them with the
throughput and latency of optimized TensorFlow+TensorRT
models. For this, we converted and benchmarked TensorFlow
models at FP32, FP16 and FP08 precisions. The results are
discussed in section VI-B3.

C. VOICE MESSAGE ALERT SYSTEM
In this module, we have used PyAudio [118] library which is
a Python binding for PortAudio. It is a cross platform library
that allows to record and play audio at real-time. We call it to
generate a voice alert message, when a detected person is not
wearing a facae mask. We first recorded our voice message
using PyAudio, ‘‘You always have to wear a face mask.’’
For this, we opened a stream with required audio parameters
to setup the pyaudio. Stream to record audio is saved in
voiceMessage.wav file. We execute this audio message using
pyaudio.Stream.read() when a call to the voice message alert
system is received.

V. EXPERIMENTS
A. DATASET
We have employed a Kaggle face mask detection
dataset [119] that include 12,000 images which contains peo-
ple wearing amask and not wearing amask both in indoor and
outdoor environments. All mask images in this dataset have
been collected from google search while face images without
mask have been processed from CelebFace dataset [120].
We have made the dataset balanced for our work. It consists
of 6000 face images with mask and 6000 face images without
mask. The images in the dataset have different characteristics
varying largely in poses, scales, illuminations, and occlu-
sions. For example: In some images, the face occupies large
portion in the image while in other images it occupies small
portion; faces lying at different positions in the image i.e.
left, right, center, or at the border of the image which are not
visible completely and only a part of the face is depicted in
the image; faces that are partially occluded by some objects
and the faces that are not overlapped.

B. SOFTWARE SPECIFICATIONS
We have employed various tools in which TensorFlow [12],
Keras [121] and Tnesorflow-TensorRT (TF-TRT) [122] are
the main tools to implement and deploy the models. Tensor-
Flow [12] is a DL framework that provides both high and
low level APIs. It is written to provide support for Python,
C++ and CUDA. It was developed by the Google Brains

team to perform multiple machine learning tasks on different
processing units such as CPUs, GPUs, and TPUs.

Keras [121] is a powerful and high-level neural network
API that is written in python and it runs on the top of Tensor-
Flow. It was developed by François Chollet. The architecture
of TensorFlow is more flexible and complex than Keras. The
TensorFlow framework and its high-level API Keras, provide
the support of pre-trained models that can be used to solve a
specific problem using Transfer Learning.

However, end-to-end inference of these models is
slow on the edge devices. To overcome this challenge,
TensorRT [122] was introduced by Nvidia to run faster infer-
ence. In this study, TensorRT integration with TensorFlow
also known as TF-TRT has been implemented for inference
optimization on Jetson Xavier NX.

C. HARDWARE SPECIFICATIONS
The main main components for this task are Jetson Xavier
NX, Zed camera and USB speaker. Both camera and speaker
have been connected with Jetson Xavier NX. The position
of the robot’s cameras on a mast is at human eye level that
allows the robot to capture the image with the best possible
angle which is suitable for optimal face mask recognition.

D. CASE STUDIES
COVID-19 pandemic has affected every aspect of human life
in different environments including workplaces, educational
institutes and hospitals. In order to prevent its spread and
avoid the health risks, safety instructions have to be followed
in both indoor and outdoor places by wearing a face mask
as a precaution. In our case studies, we have conducted
the experiments in both indoor and outdoor environments to
perform face mask recognition with GuardBot.

1) MONITORING MODES
The GuardBot works in patrolling and non-patrolling modes
to monitor the people for face mask recognition.

In patrolling mode, it performs multi-floor navigation in
the indoor environment and eliminates the need for human
workers to ensure the people arewearing the facemaskswhile
moving in the outdoor environment.

In non-patrolling mode, it stands stationary at a specific
location to monitor the people wearing masks.

In both modes, it carries out a polite warning through a
voice message if people are not wearing the face mask.

The workflow of experiments in both indoor and outdoor
environments with two different modes is illustrated in fol-
lowing scenarios.

i) Scenario 1: Indoor Environment - Non-patrolling mode
In this scenario, we have placed the GuardBot at the
entrance of the building. When a new visitor arrives at
the entrance, it detects the human face to recognize the
face mask by its entrance check system as illustrated in
the Figure 8 and generates a voice message if that person
is not wearing a mask.

77910 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 8. Indoor environment - GuardBot in non-patrolling mode &
outdoor environment - GuadBot in patrolling mode.

Figure 8 shows that GuardBot’s entrance check sys-
tem is performing face detection and mask recogni-
tion in the indoor environment. Its workflow in indoor
non-patrolling mode is as follows:
• Check the arrival of visitor(s) at the entrance
• Capture the face(s) for detection
• Perform the classification for face mask recognition
• Generate the polite voice message if the visitor enter-
ing in the building is not wearing face mask

ii) Scenario 2: Outdoor Environment - Patrolling Mode In
this scenario, it patrols in the vicinity of the outdoors and
detects the faces of the people to determine whether they
wear the face mask or not as shown in Figure 8 and asks
for wearing a mask if it finds a person without a face
mask. Its pipeline in outdoor patrolling mode as shown
in Figure 8 works as follows:
• Patrolling in open area
• Monitoring the people by detecting their faces
• Performing the face mask recognition
• Issuing voice warning message when people without
mask are detected

VI. RESULTS AND DISCUSSION
In this section, we illustrate the experimental results in detail
using evaluation matrices. To obtain the experimental results,
we captured the live videos from the camera of GuardBot.
We also acquired the experimental results from recorded
video and static images. The results explanation with through
discussion has been divided into two subsections. In first
subsection VI-A, we describe the experimental results of
face detection module together with the MTCNN optimiza-
tion. In second subsection VI-B, we explain the results
of face mask recognition module along with the models’
optimization.

A. FACE DETECTION MODULE
The experimental results of the face detection module show
the performance of four face detectors: Haar cascade [99],
HOG [100], Caffe DNN [13] and MTCNN [98].

FIGURE 9. Correctly detected faces by four face detectors.

TABLE 3. Accuracy of face detectors.

The detection results of these four models have been com-
pared based on their

• Accuracy
• FPS
• Time

1) ACCURACY
To determine the most accurate face detection model,
we passed 300 images consisting of 1200 faces to eachmodel.
Experimental results show that

I) Face detection using Haar Cascade [99] is light-weight
and properly detects frontal faces. However it is prone
to false-positives and its accuracy is not high compared
to other face detectors.

II) Face detection with HOG [100] is less accurate than
Haar cascade [99] and computationally more expensive
than Haar cascade. It fails to detect profile faces because
it is not invariant to the changes in viewing angle.

III) Face detection with Caffe model [13] is more accurate
than Haar cascade [99] and HOG [100]. It is capable
of detecting the faces from varying angles. Since its
backbone contains a shallow network with SSD [95],
it is capable of running real-time.

IV) Face detection with MTCNN [98] is very accurate.
Compared to all face detectors above, MTCNN has the
best and the highest accuracy.

Figure 9 shows a graph with rectangular bars. The hor-
izontal (x) axis represents the categories of face detectors;
The vertical (y) axis represents a total number of 1200 faces.
It illustrates that MTCNN has correctly detected the max-
imum number of 1040 faces with an 86.67% accuracy.
Caffe DNN model correctly detected 920 faces with 76.96%
accuracy, Haar cascade correcly detected 700 faces with
58.33% accuracy, while HOG correctly detected 620 faces
and showed least 51.48% accuracy. Based on the results
in Figure 9, the % accuracy of four models is shown in
Table 3.

VOLUME 10, 2022 77911

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

TABLE 4. Minimum and maximum number of frames processed for
camera and recorded videos.

TABLE 5. Image processing time (in seconds) for camera and recorded
video.

2) FPS: FRAME RANGE
Table 4 shows the frame range both in live camera and
recorded video for each face detectors. It depicts a relatively
better frame range for recorded video compared to the live
camera on Jetson Xavier NX. Caffe DNN model performs
face detection from minimum 7 FPS to maximum 11 FPS
for live camera while 8-12 FPS for recorded video. It shows
that MTCNN is very slow on Jetson Xavier NX despite its
good accuracy because it requires high computation to run its
3-starge detection networks.

3) TIME
We have performed the face detection on 777 frames for both
live camera and recorded video.

Table 5 shows that overall processing time of recorded
video was less than the live camera video for each detector. It
is the time that is taken by Jetson Xavier NX for each model
to process images for face detection. Since, Jetson Xavier
has limited memory, therefore, when we run MTCNN, it runs
too slow and takes longer processing time. Because MTCNN
consists of three CNNs, therefore, its processing speed is slow
compared to other models and Jetson Xavier takes more time
when we run MTCNN model. The results demonstrate that
the Haar Cascade detector has the lowest processing time
for both live camera and recorded video. MTCNN has the
highest processing time compared to all other detectors on
Jetson Xavier NX.

4) OPTIMIZATION
The accuracy of MTCNN is higher, however, its incoming
frame processing speed is very slow and it takes more time.
To handle this issue, we have used its open source imple-
mentation [116] that is optimized with TensorRT and adopted
this implementation with some customization for our face
recognition module. To evaluate the performance, we have
used live camera and recorded videos of one minute. Table 6
reports that incoming frame processing has increased with
descent FPS rate for both camera and videos at different

TABLE 6. Frames per Second with Optimized MTCNN at different
resolutions.

resolutions. It also shows that processing time for recorded
videos is less than the live camera videos and processing time
increases for high resolution videos.

B. FACE MASK RECOGNITION MODULE
We have implemented eight face mask classification models
for mask recognition. These models include our pro-
posed CNN model, DenseNet121 [104], VGG16 [103],
NASNetMobile [106], Inception-v3 [102], Xception [105],
ResNet50 [91] and MobileNet-v2 [96].

The results in this section have been discussed in three
parts. In the first part VI-B1, we start the discussion by
analyzing the results with and without fine-tuning of the
eight face mask classification models on the training dataset.
Next, we examine the results of fine-tuned models based on
training and validation dataset. In the second part VI-B2, the
performance on testing dataset has been evaluated.

The classification results of eight models for face mask
recognition have been evaluated based on their
• Accuracy
• Precision
• Recall
• F1-score
• Confusion Matrix
While in third part VI-B3, results before and after opti-

mization have been discussed with the main focus on thier
• High throughput
• Low latency

1) ACCURACY: TRAINING AND VALIDATION DATASETS
The training loss in Figure 10 shows that all models converge
faster after fine-tuning. A rapid reduction in loss from 5.792,
2.871 and 1.244 to 0.099, 0.343 and 0.094 can be seen in
ResNet50, Xception and VGG16 models while a slight loss
reduction of 0.032 can be seen in our model.

In addition, these models have gained better accuracy after
fine-tuning as shown in Figure 11. From Figure 11, it can be
seen that the accuracy of VGG16, NASNetMobile, ResNet50,
DenseNet121 and our model has increased by 4.2, 4.1, 3.9,
2.7 and 1.6 respectively while the accuracy of Inception-v3
and MobileNet-v2 has improved by 1.6 after fine-tuning.
However, a slight rise of 0.2 can be seen in case of Xception.
The overall analysis on training set with fine-tuning shows
that the DenseNet121 has the highest accuracy of 98%. After
that NASNetMobile, ResNet50, VGG16, our CNN model

77912 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 10. Training loss of models with and without fine-tuning.

FIGURE 11. Training accuracy of models with and without fine-tuning.

have better performancce than MobileNet-v2 and Inception-
v3. While Xception has the lowest training accuracy among
all that is 91.6% to classify face mask for recognition task.

As discussed above, the fine-tuned models demonstrate
better performance. Therefore, we have used fine-tuned mod-
els to perform the face mask recognition task. Table 7 gives
an overview of fine-tuned models on the training and valida-
tion dataset based on their training loss and accuracy while
Figure 12 shows the comparison of plots for the training
and validation loss & accuracy of each model. It can be
seen the validation loss being smaller than the training loss
and slight increase in the validation accuracy compared to
training accuracy for all the models. The smaller loss with
an improved accuracy indicates better performance of the
classifier at modeling the validation data.

2) ACCURACY: TEST DATA
In this subsection, the performance of fine-tuned models on
the test dataset using confusion matrix, accuracy, precision,
recall and F1- score has been evaluated.

TABLE 7. Accuracy vs loss for training and validation dataset.

Figure 13, lists the confusion matrices of all classification
models for the comparative analysis based on the frequency
of predicted classes with the expected classes

It can be seen that DenseNet121 has relatively high accu-
racy compared to all other models for TP (348) where actual
and predicted values are true and TN (2) where the actual
and the predicted values both are false. In the meanwhile,
it depicts low scores for FN (3) where actual value is true but
the model predicted the value as false and FP (347) where the
model predicted value is true, but the actual value is false.
In contrast, MobileNet-v2 indicates low accuracy for TP
(319) and TN (313)while high scores for FN (31) and FP (37).
However, our proposed model has better classification results
than Inception-v3, Xception and MobileNet-v2.

Table 8 shows an overview of the results of fine-tuned
models that have been evaluated on the testing dataset using
five metrics: accuracy, precision, recall and F1 score.

Figure 14, shows our CNN model is 2.08% better than
Inception-v3, 2.99% than Xception and 3.99%more accurate
than mobileNet-v3. The DenseNet121 is the most accurate
compared to all other models while MobileNet-v2 depicts the
lowest accurate model. NASNetMobile, VGG16 and Rest-
Net50 have better performance than Inception-v3 and Xcep-
tion models on the testing dataset.

Figure 15 shows that for Mask class, our model
outperforms ResNet50, MobileNet-v2, Xception,
InceptionNet-v3 and VGG16 on precision metric while it out
performs MobileNet-v2 and Xception on recall metric and its
F1-score is higher comparedto MobileNet-v2, Xception and
VGG16. Figure 15 depicts that for No Mask class, its preci-
sion is higher than the Mobilenet-v2 and smiliar to Xception
and InceptionNet-v3 while it outperforms all other models
except NASNetMobile andDenseNet121 on recall metric and
its peformance is better than MobileNet-v2, Xception and
InceptionNet-v3 on F1-score. Figure 15 and Figure 16 show
that DenseNet121 and NASNetMobile both outperform all
other models regarding precision, recall and F1-score in both
classes. It can be seen that the Inception-v3 model shows the
same precision, recall and F1-score for ‘‘No Mask’’ class.
However, it has 0.01 difference between, precision, F1-score
and recall for ‘‘Mask’’ Class. The MobileNet-v2 has lowest
precision and F1-score for both classes while its recall score
is the lowest for Mask class. VGG16 and ResNet50 have the
same recall and F1 score for ‘‘NO Mask’’ class. However,

VOLUME 10, 2022 77913

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 12. Accuracy, loss, precision and recall curves for training and validation datasets.

77914 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 12. (Continued.) Accuracy, loss, precision and recall curves for training and validation datasets.

TABLE 8. Accuracy, precision, recall and F1-score for test dataset.

precision of VGG16 is .01 better than ResNet50 for this
class. The Xception model lies between InceptionNet-v3
and MobileNet-v2 in terms of F1-score, its precision is
.01 higher than theMobileNet-v2 while its recall is similiar to
MobileNet-v2 for NoMask class. Its performance is between
InceptionNet-v3 and MobileNet-v2 on precision, recall and
F1-score metrics Mask class. On training, validation and
test accuracy our model lies at 5th position as shown in
Table 7 & Table 8 and performs better than MobilenNet-v2,
Inception-v3 and XceptionNet.

3) OPTIMIZATION
In this section, we present the on-device inference perfor-
mance of face mask classification models by focusing on the
twomain metrics: the latency & throughput and the trade-offs
between them. The low latency and high throughput are
the primary objectives when deploying the deep learning
models on the edge devices and autonomous robotic sys-
tems. We have optimized our models with TensorRT which
speeds up the inference by quantization for deployment in the

production environment. We aim at improving the inference
speed for our models with different optimization modes.
For this, we have optimized our custom Keras-TensorFlow
trained models with Nvidia’s TensorRT at FP32, FP16, and
INT8 precision, and observe performance effects along with
inference throughput as shown in Table 9 and Figure 17.

In this section, we have used throughput and latency met-
rics to compare the performance of customKeras-TensorFlow
trained models for inference at the edge with Nvidia’s Ten-
sorRT at FP32, FP16, and INT8 precision as shown in
Table 9, Table 10 and Figure 17 & 18. The base models are
our TensorFlow models without optimization while TF-TRT
FP32, TF-TRT FP16 and TF-TRT INT8 are TensorFlow
optimized models with TensorRT integration at different
precision levels.

From the results shown in Table 9, it can be seen that
our model outperforms all other models with the highest
throughput among all base models (without optimization)
and optimized FP32, FP16 and INT8 models which is fol-
lowed by the MobileNet-v2 at second position when we

VOLUME 10, 2022 77915

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 13. Confusion matrices of face mask classification models for
face mask recognition.

FIGURE 14. Accuracy on test dataset of face mask classification models
for face mask recognition.

run the inference on Jetson Xavier NX. For base models,
the throughput of DenseNet121 is higher than the rest of
five models, in which Xception and VGG16 have the least
throughput of 14 and 13 images per second while NasNet-
Mobile, Incpetion-v3 and ResNet have similar throughput of
15 images per second. For TF-TRT optimizedmodels at FP32
precision level, the NASNetMobile followed by Inception-
v3 and DensNet121 have higher throughput compared to
the ResNet50, Xception and VGG16 models. For TF-TRT
FP16 precision level, the Inception-v3, ResNet50 and Den-
sNet121 have better throughput than the Xception, NASNet
and VGG16. For TF-TRT INT8 precision level, Inception-v3,

FIGURE 15. Precision, recall and F1-score for Mask class.

FIGURE 16. Precision, Recall and F1-score for No Mask class.

TABLE 9. Throughput of face mask classification models for face mask
recognition.

ResNet50 and Xception have better throughput compared to
VGG16, NASNetMobile and DenseNet121.

Table 10 shows the results of our custom trained models
based on latency metric for inference at edge deployment
on Jetson Xavier NX. It can be that our model has the

77916 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

FIGURE 17. Models’ throughput before and after optimization at different
precision levels.

TABLE 10. Latency of face mask classification models for face mask
recognition.

lowest latency rate compared to all other models. After that,
MobileNet-v2 has the maximum reduction in latency of all
the models. For base models, DenseNet121 has lower latency
than Xception and Inception-v3 models while Inception-v3
and ResNet18 have almost similar latency which is less than
NASNetMobile and VGG16 For TF-TRT FP32 optimiza-
tion, NASNetMobile has lower latency than Inception-v3 and
DenseNet121 while VGG16 has higher latency than Xcep-
tion and ResNet50. For INT8 optimization, Inception-v3 has
lower latency compared to ResNet50, Xception and VGG16
while DenseNet121 and NASNetMobile have almost similar
latency.

In addition, it is observed that compared to base models
when we run the TensorFlow models with TensorRT inter-
gration for optimization to speed up the inference

• Using TF-TRT FP32 optimization improves the
throughput of these models by 107.69% (27 vs 13)
to 660.00% (114 vs 15) which indicates a 2× to 7×
performance increase.
The throughput of our model has increased 7.0 times
compared to its base model. After that, NASNetMobbile
model shows the maximum increase in performance and
it is 0.6 times faster than our model while VGG16 shows
the minimum increase compared to other models and it
is 5× slower than our model.
At the same time FP32 optimization reduces models’
latency in the range of 52%∼95%. VGG16 has the min-
imum reduction of 52% while our model presents the

FIGURE 18. Models’ latency before and after optimization at different
precision levels.

maximum reduction of 95% (from 166.1ms to 7.8ms) in
latency among all models which is 21 times lesser than
its base model.

• Using FP16 optimization the inference speed increases
by 746.15% (110 vs 130)∼ 2160.00% (339 vs 15) which
shows the performance of these models is 8 to 22 times
higher than the base models. The performance of our
model is 16 times faster than the base model while the
Inception-v3 with increased throughput is 6 times faster
and VGG16 is 7.8 times slower compared to our model.
Meanwhile the maximum decrease in latency has been
encountered in our model by 97% (from 166.1 ms to
3.9 ms) while the minimum decrease has been experi-
enced in the VGG16 model by 88% (from 316.2 ms to
36.4ms). Ourmodel has a 42× decrease in latencywhile
VGG16 has 8× decrease compared to their base models’
latency.

• Using INT8, we examine a speedup of 1318.75%
(227 vs 16) to 3895.00% (799 vs 20) which exhibits
14 to 39 times faster performance. The inference speed
of our model rises 35 times faster than the base model.
MobileNet-v2 has the highest performance increase that
is 4.5 times better than our model while DenseNet121 is
21.25 times slower compared to our model. Simultane-
ously, Similarly, the decline in latency has been observed
by 92.9% 98.4%. Our model has the lowest latency with
98% decrease which makes a 63× reduction in latency
compared to its base model. While DenseNet121 has the
highest latency at INt8 precision among all models that
is 92.9%. Its latency is 14× lower than the base model
and 5.5% higher than our model at INT8.
To summarize, our model has the highest throughput
and lowest latency because the architecture of our model
is tiny which does not require large amount of compu-
tational memory compared to other models. After that
the throughput and latency of MobileNet-v2 is better
than other models because MobileNet-v2 also has light

VOLUME 10, 2022 77917

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

weight architecture which does not required huge com-
putation compared to the XceptionNet, NASNetMobile,
DenseNet121, VGG16, IncpetionNet-v3 and ResNet50
models.

VII. CONCLUSION AND FUTURE WORK
This paper presented a two-stage face mask recognition
framework that was optimized to run real-time inference on
the GuartBot using Nvidia Jetson NX. Our DL-based frame-
work was composed of three main modules. It processed
every frame for face detection using MTCNN in the first
module and performed the face mask recognition based on
the classification using our proposed CNN model and seven
transfer learning-based custom models in the second mod-
ule while optimization was performed in the third module
using TensorRT integration with TensorFlow. It set a polite
voice message to request wear a mask if a person without
face mask was identified. The real-world experiments were
conducted in the indoor and outdoor environments with the
GuardBot in patrolling and non-patrolling modes and the
results were discussed in detail. We first discussed the results
on the training and validation datasets based on accuracy and
loss curves of different models. After that, we evaluated the
performance of all the models on the test dataset by present-
ing the classification report using the confusion matrix and
analyzed their predictions based on accuracy, recall, precision
and F1-score metrics. Finally, all the models were optimized
with TF-TRT FP32, FP16 and INT8 precision with the main
aim of reducing the latency and improving the throughput.
Experimental results demonstrated the effectiveness of our
proposed CNN model to classify the face masks for the
recognition task with an accuracy higher than MobileNet-v2,
Xception and InceptionNet-v3 while efficient inference with
the highest throughput and lowest latency compared to all
other models after optimization.

In future, we intend to extend our framework for
detection-based human tracking problem and examine the
impact of our framework optimizations on the detection and
tracking accuracy across different edge devices.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. E. Hinton, ‘‘Deep learning,’’ Nature,

vol. 521, pp. 436–444, Dec. 2015.
[2] Y. Chen, Q. Feng, and W. Shi, ‘‘An industrial robot system based on edge

computing: An early experience,’’ in Proc. USENIXWorkshop Hot Topics
Edge Comput. (HotEdge), 2018, pp. 1–6.

[3] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, ‘‘Edge
computing in IoT-based manufacturing,’’ IEEE Commun. Mag., vol. 56,
no. 9, pp. 103–109, Sep. 2018.

[4] V. Combs. (Jun. 4, 2022). Will Edge Computing Become the New
Cloud in 2021? [Online]. Available: https://www.techrepublic.
com/article/willedge-computing-become-the-new-cloud-in-2021/

[5] A. Weil. (Mar. 3, 2022). Can Edge Computing Exist Without the
Edge? Part 2: Edge Computing. [Online]. Available: https://www.
akamai.com/blog/edge/can-edge-computingexist-without-the-edge-part-
2-edge-computing

[6] IDC. (Mar. 4, 2022).Worldwide Spending on Edge ComputingWill Reach
$250 Billion in 2024, According to a New IDC Spending Guide. [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=prUS46878020

[7] Omdia. (Mar. 4, 2022). Worldwide Spending on Edge Computing
Will Reach $250 Billion in 2024, According to a New IDC Spend-
ing Guide. [Online]. Available: https://omdia.tech.informa.com/topic-
pages/artificial-intelligence

[8] Z. Tsai. (Mar. 5, 2022). The Emerging Role of AI in Edge Computing.
[Online]. Available: https://www.adlinktech.com/en/emergingrole-of-ai-
in-edge-computing

[9] R.Mahmud andA. N. Toosi, ‘‘Con-Pi: A distributed container-based edge
and fog computing framework,’’ IEEE Internet Things J., vol. 9, no. 6,
pp. 4125–4138, Mar. 2021.

[10] Z. Tsai. The Emerging Role of AI in Edge Computing. [Online].
Available: https://nvidianews.nvidia.com/news/nvidia-sets-path-for-
future-of-edge-%ai-and-autonomous-machines-with-new-jetson-agx-
orin-robotics-computer

[11] Y. Wang, ‘‘Towards ultra-efficient DNN inference acceleration on edge
devices for wellbeing applications,’’ inProc. Deep Learn.Wellbeing Appl.
Leveraging Mobile Devices Edge Comput., Jun. 2020, p. 17.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, ‘‘TensorFlow: A system for large-
scale machine learning,’’ in Proc. 12th USENIX Symp. Operating Syst.
Design Implement. (OSDI), 2016, pp. 265–283.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for
fast feature embedding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, and L. Antiga, ‘‘Pytorch: An imperative
style, highperformance deep learning library,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019.

[15] J. Redmon. (Apr. 6, 2022).DarkNet: Open Source Neural Networks in C.
[Online]. Available: https://pjreddie.com/darknet/

[16] Paddle. (Apr. 6, 2022). Paddle Deep Learning. [Online]. Available:
https://github.com/PaddlePaddle/Paddle

[17] G. Verma, Y. Gupta, A. M. Malik, and B. Chapman, ‘‘Performance
evaluation of deep learning compilers for edge inference,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), Jun. 2021,
pp. 858–865.

[18] J. Roesch, S. Lyubomirsky, M. Kirisame, L. Weber, J. Pollock, L. Vega,
Z. Jiang, T. Chen, T. Moreau, and Z. Tatlock, ‘‘Relay: A high-level
compiler for deep learning,’’ 2019, arXiv:1904.08368.

[19] A. S. J. Pool and J. Rodge. Accelerating InferenceWith Sparsity Using the
NVIDIA Ampere Architecture and NVIDIA Tensorrt. [Online]. Available:
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-
%using-ampere-and-tensorrt/

[20] S. Li, ‘‘Tensorflow lite: On-devicemachine learning framework,’’ J. Com-
put. Res. Develop., vol. 57, no. 9, p. 1839, 2020.

[21] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, and L. Ceze, ‘‘TVM: An automated end-to-end optimiz-
ing compiler for deep learning,’’ in Proc. 13th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2018, pp. 578–594.

[22] T. Kumar, ‘‘An evidence review of face masks against covid-19,’’ Int.
J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 12, pp. 919–923, Dec. 2021.

[23] Q. Wang and C. Yu, ‘‘The role of masks and respirator protection against
SARS-CoV-2,’’ Infection Control Hospital Epidemiol., vol. 41, no. 6,
pp. 746–747, Jun. 2020.

[24] POLARIS. (Feb. 25, 2022). Service Robotics Market Size to Reach
USD 54.4 Billion by 2026. [Online]. Available: https://www.
polarismarketresearch.com/press-releases/global-service-robotics-
market

[25] F. 24. (Feb. 25, 2022). Robot Reminds Japan Shoppers to Wear Masks.
[Online]. Available: https://www.france24.com/en/live-news/20201119-
robot-reminds-japan-shoppers-to-wear-masks

[26] S. B. Robotics. (Mar. 25, 2022). Protect Your Customers & Employ-
ees With Pepper’s Mask Detection Capabilities! [Online]. Avail-
able: https://www.softbankrobotics.com/emea/fr/pepper-mask-detection-
capabilities

[27] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, ‘‘Deep reinforce-
ment learning robot for search and rescue applications: Exploration in
unknown cluttered environments,’’ IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 610–617, Apr. 2019.

[28] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
‘‘Deep learning for computer vision: A brief review,’’ Comput. Intell.
Neurosci., vol. 2018, pp. 1–13, Feb. 2018.

77918 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

[29] S. Manzoor, E.-J. Kim, G.-G. In, and T.-Y. Kuc, ‘‘Performance evaluation
of YOLOv3 and YOLOv4 detectors on elevator button dataset for mobile
robot,’’ in Proc. 21st Int. Conf. Control, Autom. Syst. (ICCAS), Oct. 2021,
pp. 890–893.

[30] K.-H. L. Minh, K.-H. Le, and Q. Le-Trung, ‘‘DLASE: A light-weight
framework supporting deep learning for edge devices,’’ in Proc. 4th Int.
Conf. Recent Adv. Signal Process., Telecommun. Comput. (SigTelCom),
Aug. 2020, pp. 103–108.

[31] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, ‘‘Deepdecision: A mobile
deep learning framework for edge video analytics,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 1421–1429.

[32] P. Liu, B. Qi, and S. Banerjee, ‘‘EdgeEye: An edge service framework
for real-time intelligent video analytics,’’ in Proc. 1st Int. Workshop Edge
Syst., Analytics Netw., Jun. 2018, pp. 1–6.

[33] S. Manzoor, S.-H. Joo, E.-J. Kim, S.-H. Bae, G.-G. In, J.-W. Pyo, and
T.-Y. Kuc, ‘‘3D recognition based on sensor modalities for robotic sys-
tems: A survey,’’ Sensors, vol. 21, no. 21, p. 7120, Oct. 2021.

[34] L. Liu, H. Li, and M. Gruteser, ‘‘Edge assisted real-time object detection
for mobile augmented reality,’’ in Proc. 25th Annu. Int. Conf. Mobile
Comput. Netw., Aug. 2019, pp. 1–16.

[35] A. Koubaa, A. Ammar, M. Alahdab, A. Kanhouch, and
A. T. Azar, ‘‘DeepBrain: Experimental evaluation of cloud-based
computation offloading and edge computing in the Internet-of-Drones
for deep learning applications,’’ Sensors, vol. 20, no. 18, p. 5240,
Sep. 2020.

[36] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, ‘‘Adaptive
deep learning model selection on embedded systems,’’ ACM SIGPLAN
Notices, vol. 53, no. 6, pp. 31–43, Dec. 2018.

[37] M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, ‘‘RSTensorFlow:
GPU enabled TensorFlow for deep learning on commodity Android
devices,’’ in Proc. 1st Int. Workshop Deep Learn. Mobile Syst. Appl.
(EMDL), 2017, pp. 7–12.

[38] U. Drolia, K. Guo, and P. Narasimhan, ‘‘Precog: Prefetching for image
recognition applications at the edge,’’ in Proc. 2nd ACM/IEEE Symp.
Edge Comput., 2017, pp. 1–13.

[39] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,
and F. Kawsar, ‘‘DeepX: A software accelerator for low-power deep
learning inference onmobile devices,’’ inProc. 15th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2016, pp. 1–12.

[40] Y. Huang, X. Ma, X. Fan, J. Liu, and W. Gong, ‘‘When deep learning
meets edge computing,’’ in Proc. IEEE 25th Int. Conf. Netw. Protocols
(ICNP), Oct. 2017, pp. 1–2.

[41] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, ‘‘DeepWear:
Adaptive local offloading for on-wearable deep learning,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 2, pp. 314–330, Feb. 2020.

[42] T. Young, D. Hazarika, S. Poria, and E. Cambria, ‘‘Recent trends in deep
learning based natural language processing,’’ IEEE Comput. Intell. Mag.,
vol. 13, no. 3, pp. 55–75, Aug. 2018.

[43] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, ‘‘Speech
recognition using deep neural networks: A systematic review,’’ IEEE
Access, vol. 7, pp. 19143–19165, 2019.

[44] X. Wang, M. Hersche, B. Tomekce, B. Kaya, M. Magno, and L. Benini,
‘‘An accurate EEGNet-based motor-imagery brain–computer interface
for low-power edge computing,’’ in Proc. IEEE Int. Symp. Med. Meas.
Appl. (MeMeA), Jun. 2020, pp. 1–6.

[45] J. Ker, L. Wang, J. Rao, and T. Lim, ‘‘Deep learning applications in
medical image analysis,’’ IEEE Access, vol. 6, pp. 9375–9389, 2018.

[46] Y. Tian, K. Pei, S. Jana, and B. Ray, ‘‘DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,’’ in Proc. 40th Int. Conf.
Softw. Eng., May 2018, pp. 303–314.

[47] J. Chen and X. Ran, ‘‘Deep learning with edge computing: A review,’’
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[48] S. Manzoor, S.-H. Joo, and T.-Y. Kuc, ‘‘Comparison of object recognition
approaches using traditional machine vision and modern deep learning
techniques for mobile robot,’’ in Proc. 19th Int. Conf. Control, Autom.
Syst. (ICCAS), Oct. 2019, pp. 1316–1321.

[49] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, ‘‘The com-
putational limits of deep learning,’’ 2020, arXiv:2007.05558.

[50] M. N. Birje, P. S. Challagidad, R. Goudar, and M. T. Tapale, ‘‘Cloud
computing review: Concepts, technology, challenges and security,’’ Int.
J. Cloud Comput., vol. 6, no. 1, pp. 32–57, 2017.

[51] R. Sharp, ‘‘Latency in cloud-based interactive streaming content,’’ Bell
Labs Tech. J., vol. 17, no. 2, pp. 67–80, Sep. 2012.

[52] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, ‘‘Security and privacy challenges
in cloud computing environments,’’ IEEE Security Privacy, vol. 8, no. 6,
pp. 24–31, Nov./Dec. 2010.

[53] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[54] Thales. (Mar. 28, 2022). 2021 Thales Cloud Security Study.
[Online]. Available: https://www.thalesgroup.com/en/poland/press_
release/majority-businesses-protect-theirsensitive-data-cloud-finds-
thales

[55] N. Subramanian and A. Jeyaraj, ‘‘Recent security challenges in cloud
computing,’’ Comput. Electr. Eng., vol. 71, pp. 28–42, Oct. 2018.

[56] N. Hassan, K.-L. A. Yau, and C.Wu, ‘‘Edge computing in 5G: A review,’’
IEEE Access, vol. 7, pp. 127276–127289, 2019.

[57] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of
Things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, 2012.

[58] H.-C. Hsieh, J.-L. Chen, andA. Benslimane, ‘‘5G virtualizedmulti-access
edge computing platform for IoT applications,’’ J. Netw. Comput. Appl.,
vol. 115, pp. 94–102, Aug. 2018.

[59] S. Wan, Z. Gu, and Q. Ni, ‘‘Cognitive computing and wireless commu-
nications on the edge for healthcare service robots,’’ Comput. Commun.,
vol. 149, pp. 99–106, Jan. 2020.

[60] C. Yvanoff-Frenchin, V. Ramos, T. Belabed, and C. Valderrama, ‘‘Edge
computing robot interface for automatic elderly mental health care based
on voice,’’ Electronics, vol. 9, no. 3, p. 419, Feb. 2020.

[61] J. Zhu, Y. Chen, M. Zhang, Q. Chen, Y. Guo, H. Min, and Z. Chen,
‘‘An edge computing platform of guide-dog robot for visually impaired,’’
in Proc. IEEE 14th Int. Symp. Auto. Decentralized Syst. (ISADS),
Apr. 2019, pp. 1–7.

[62] M. Zhang, F. Zhang, N. D. Lane, Y. Shu, X. Zeng, B. Fang, S. Yan, and
H. Xu, ‘‘Deep learning in the era of edge computing: Challenges and
opportunities,’’ in Fog Computing: Theory and Practice. Wiley, 2020,
pp. 67–78.

[63] J. Redmon. (Mar. 29, 2022). DarkNet: Open Source Neural Networks in
C. [Online]. Available: https://pjreddie.com/darknet/

[64] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization andHuffman coding,’’
2015, arXiv:1510.00149.

[65] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Training deep neural
networks with low precision multiplications,’’ 2014, arXiv:1412.7024.

[66] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘‘Compressing deep convolu-
tional networks using vector quantization,’’ 2014, arXiv:1412.6115.

[67] V. Vanhoucke, A. Senior, and M. Z. Mao, ‘‘Improving the speed of neural
networks on CPUs,’’ in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop, NIPS Workshop, Spain, vol. 1, 2011.

[68] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, and L. Hornof, ‘‘Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[69] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep
learning with limited numerical precision,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 1737–1746.

[70] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
‘‘Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,’’ ACM SIGARCH Comput. Archit. News, vol. 45, no. 2,
pp. 548–560, 2017.

[71] J. Lin, Y. Rao, J. Lu, and J. Zhou, ‘‘Runtime neural pruning,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[72] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, ‘‘Learning structured
sparsity in deep neural networks,’’ Proc. Adv. Neural Inf. Process. Syst.,
vol. 29, 2016, pp. 1–9.

[73] H. Vanholder, ‘‘Efficient inference with tensorrt,’’ in Proc. GPU Technol.
Conf., vol. 1, 2016, p. 2.

[74] A. Koubaa, A. Ammar, A. Kanhouch, and Y. AlHabashi, ‘‘Cloud ver-
sus edge deployment strategies of real-time face recognition inference,’’
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 143–160, Jan. 2021.

[75] E. L. Schiffrin, J. M. Flack, S. Ito, P. Muntner, and R. C. Webb,
‘‘Hypertension and COVID-19,’’ Amer. J. Hypertension, vol. 33, no. 5,
pp. 373–374, 2020.

[76] CDC. How COVID-19 Spreads. [Online]. Available:
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-
covid-spreads.html

VOLUME 10, 2022 77919

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

[77] Risk Assessment and Management of Exposure of Health Care Workers
in the Context of COVID-19: Interim Guidance,’’ World Health Org.,
Geneva, Switzerland, 2020.

[78] Mask use in the Context of COVID-19: Interim Guidance, World Health
Org., Geneva, Switzerland, 2020.

[79] M. R. Prusty, V. Tripathi, and A. Dubey, ‘‘A novel data augmentation
approach for mask detection using deep transfer learning,’’ Intelligence-
Based Med., vol. 5, 2021, Art. no. 100037.

[80] S. Roy, A. Mitra, and S. K. Setua, ‘‘Color & grayscale image represen-
tation using multivector,’’ in Proc. 3rd Int. Conf. Comput., Commun.,
Control Inf. Technol. (CIT), Feb. 2015, pp. 1–6.

[81] P. Singhal, A. Verma, and A. Garg, ‘‘A study in finding effectiveness of
Gaussian blur filter over bilateral filter in natural scenes for graph based
image segmentation,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun. Syst.
(ICACCS), Jan. 2017, pp. 1–6.

[82] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[83] Z. Wang, P. Wang, P. C. Louis, L. E. Wheless, and Y. Huo, ‘‘WearMask:
Fast in-browser face mask detection with serverless edge computing for
COVID-19,’’ 2021, arXiv:2101.00784.

[84] Nihui. (Feb. 25, 2022). Neural Network Inference Computing (NCNN)
Framework. [Online]. Available: https://github.com/Tencent/ncnn

[85] S. Ge, J. Li, Q. Ye, and Z. Luo, ‘‘Detecting masked faces in the wild
with LLE-CNNs,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 2682–2690.

[86] Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu, P. Yi, K. Jiang,
N.Wang, Y. Pei, H. Chen, Y.Miao, Z. Huang, and J. Liang, ‘‘Masked face
recognition dataset and application,’’ 2020, arXiv:2003.09093.

[87] H. in the Loop. (Feb. 26, 2022). Medical Mask Dataset. [Online]. Avail-
able: https://humansintheloop.org/medical-mask-dataset

[88] Prajnasb. (Feb. 25, 2022). Observations. [Online]. Available: https://
github.com/prajnasb/observations

[89] S. Yang, P. Luo, C. C. Loy, andX. Tang, ‘‘WIDERFACE:A face detection
benchmark,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 5525–5533.

[90] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, ‘‘A hybrid
deep transfer learning model with machine learning methods for face
mask detection in the era of the COVID-19 pandemic,’’ Measurement,
vol. 167, Jan. 2021, Art. no. 108288.

[91] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[92] M. Kawulok, E. Celebi, and B. Smolka, Advances in Face Detec-
tion and Facial Image Analysis. Springer, 2016. [Online]. Available:
https://books.google.co.kr/books?id=rsntCwAAQBAJ

[93] M. D. Putro, D.-L. Nguyen, and K.-H. Jo, ‘‘Real-time multi-view face
mask detector on edge device for supporting service robots in the COVID-
19 pandemic,’’ in Proc. Asian Conf. Intell. Inf. Database Syst. Thailand:
Springer, 2021, pp. 507–517.

[94] P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth,
‘‘SSDMNV2: A real time DNN-based face mask detection system using
single shot multibox detector and MobileNetV2,’’ Sustain. Cities Soc.,
vol. 66, Mar. 2021, Art. no. 102692.

[95] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. The Netherlands: Springer, 2016, pp. 21–37.

[96] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[97] S. V. Militante and N. V. Dionisio, ‘‘Real-time facemask recognition with
alarm system using deep learning,’’ in Proc. 11th IEEE Control Syst.
Graduate Res. Colloq. (ICSGRC), Aug. 2020, pp. 106–110.

[98] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, ‘‘Joint face detection and align-
ment using multitask cascaded convolutional networks,’’ IEEE Signal
Process. Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[99] P. Viola andM. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Dec. 2001, pp. 1–11.

[100] N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 1, no. 1, Jun. 2005, pp. 886–893.

[101] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of
on-line learning and an application to boosting,’’ J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1995.

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Dec. 2016, pp. 2818–2826.

[103] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[104] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[105] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[106] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[107] A. Krizhevsky and G. Hinton, ‘‘Convolutional deep belief networks
on CIFAR-10,’’ Unpublished Manuscript, vol. 40, no. 7, pp. 1–9,
2010.

[108] M. Sandler and A. Howard. (Apr. 3, 2018). Google AI Blog.
Google Research. [Online]. Available: https://ai.googleblog.com/
2018/04/mobilenetv2-next-generation-of-on.html

[109] F. Saxen, P. Werner, S. Handrich, E. Othman, L. Dinges, and
A. Al-Hamadi, ‘‘Face attribute detection with MobileNetV2 and NasNet-
mobile,’’ in Proc. 11th Int. Symp. Image Signal Process. Anal. (ISPA),
Sep. 2019, pp. 176–180.

[110] (Jan. 1, 2022). Supported Operators. NVIDIA Accelerating Inference
in TF-TRT User Guide. [Online]. Available: https://docs.nvidia.com/
deeplearning/frameworks/tf-trt-user-guide/index%.html#supported-ops

[111] I. Sobel and G. Feldman, ‘‘A 3×3 isotropic gradient operator for image
processing,’’ in Pattern Classification and Scene Analysis, Jan. 1973,
pp. 271–272.

[112] IPAZC. (Mar. 7, 2022). MTCNN. [Online]. Available: https://github.
com/ipazc/mtcnn

[113] Jbrownlee. (Mar. 7, 2022). MTCNN. [Online]. Available: https://github.
com/jbrownlee/mtcnn

[114] Linxiaohui. (Mar. 7, 2022). MTCNN. [Online]. Available: https://github.
com/linxiaohui/mtcnn-opencv

[115] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 815–823.

[116] J. Jung. Optimizing Tensorrt MTCNN. JK Jung’s Blog. (Oct. 5, 2019).
[Online]. Available: https://jkjung-avt.github.io/optimize-mtcnn/

[117] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[118] (Mar. 3, 2022). PyAudio. [Online]. Available: http://people.csail.
mit.edu/hubert/pyaudio/

[119] A. Jangra. (Mar. 7, 2022). Face Mask Detection 12k Images
Dataset. [Online]. Available: https://www.kaggle.com/datasets/
ashishjangra27/face-mask-12k-images-dataset

[120] Z. Liu, P. Luo, X. Wang, and X. Tang. (Mar. 7, 2022). Large-
Scale Celebfaces Attributes (Celeba) Dataset. [Online]. Available:
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[121] (2020). K. Team. Keras Documentation: Keras Applications. Inglés.
[Online]. Available: https://keras.io/api/applications

[122] S. S. J. Park, S. Rella, and H. Abbasian. (Jul. 20, 2021). Speeding up
Deep Learning Inference Using NVIDIA Tensorrt (Updated). Technical
Blog. [Online]. Available: https://developer.nvidia.com/blog/speeding-
up-deep-learning-inference-using-tensorrt-updated/

77920 VOLUME 10, 2022

S. Manzoor et al.: Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition

SUMAIRA MANZOOR received the M.S. degree
in computer science from COMSATS University,
Pakistan, in 2016. She is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, Sungkyunkwan Uni-
versity, South Korea. She worked as a Researcher
with the Intelligent System Research Institute,
Sungkyunkwan University, in 2017, and joined the
Control and Robotics Laboratory, in 2018. Since
2021, she has been working with the Creative

Algorithms and Sensor Evolution Laboratory. Her major research inter-
ests include human–robot interaction, cognitive vision for robotics, and
autonomous driving vehicles.

EUN-JIN KIM received the B.S. degree from
the Division of Electronic Engineering, College
of ICT, Dongeui University, in 2017. He is
currently pursuing the Ph.D. degree with the
School of Electrical and Electronics Engineering,
Sungkyunkwan University, Suwon, South Korea.
He has been with the School of Electrical and
Electronics Engineering, Sungkyunkwan Univer-
sity. His research interests include coverage path
planning and robot design.

SUNG-HYEON JOO received the B.S. degree
from the School of Electrical and Electronics
Engineering, Sungkyunkwan University, Suwon,
South Korea, in 2017, where he is currently pur-
suing the Ph.D. degree. He has been with the
School of Electrical and Electronics Engineer-
ing, Sungkyunkwan University. His research inter-
ests include mobile robot navigation and semantic
simultaneous localization and mapping.

SANG-HYEON BAE received the B.S. degree
from the School of Electrical and Electronics
Engineering, Sungkyunkwan University, Suwon,
South Korea, in 2017, where he is currently pur-
suing the Ph.D. degree. He has been with the
School of Electrical and Electronics Engineering,
Sungkyunkwan University. His research interests
include mobile robot control and planning.

GUN-GYO IN received the B.S. degree from
the Division of Electronic Engineering, Korea
Polytechnic University, in 2017. He is cur-
rently pursuing the Ph.D. degree with the
School of Electrical and Electronics Engineering,
Sungkyunkwan University, Suwon, South Korea.
He has been with the School of Electrical and
Electronics Engineering, Sungkyunkwan Univer-
sity. His research interests include multiple robot
planning and task allocation.

KYEONG-JIN JOO received the B.S. degree
from the Department of Electronic Engineering,
Dong-A University, South Korea, in February
2021. He is currently pursuing the integrated
Ph.D. degree with the Department of Electrical
and Computer Engineering, Sungkyunkwan Uni-
versity, Suwon, South Korea. Since March 2021,
he has been with the Department of Electrical
and Computer Engineering, Sungkyunkwan Uni-
versity. His research interests include intelligent

robotics, computer vision, SLAM, and navigation for the robot.

JUN-HYEON CHOI received the B.S. degree from
the School of Electronic Engineering, Dong-A
University, in 2021. He is currently pursuing the
Ph.D. degree with the School of Electrical and
Electronics Engineering, Sunkyunkwan Univer-
sity, Suwon, South Korea. He has been with the
School of Electrical and Electronics Engineer-
ing, Sunkyunkwan University. His major research
interests include cognitive vision and SLAM for
mobile robot.

TAE-YONG KUC received the B.S. degree in con-
trol and instrumentation engineering from Seoul
National University, South Korea, in 1988, and the
M.S. and Ph.D. degrees from the Pohang Univer-
sity of Science and Technology, South Korea, in
1990 and 1993, respectively. From April 1993 to
August 1993, he worked as a Chief Research
Engineer at the Precision Machinery Institute of
Samsung Aerospace Company. From September
1993 to February 1995, he was a Senior Lecturer

with the Department of Electrical Engineering, Mokpo National University,
South Korea. Since March 1995, he has been with the School of Electri-
cal and Electronics Engineering, Sungkyunkwan University, Suwon, South
Korea, where he is currently a Professor. His research interests include intel-
ligent robotics, adaptive and learning control, and visual sensor processing
for computer-aided control systems.

VOLUME 10, 2022 77921

