IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 May 2022, accepted 17 July 2022, date of publication 25 July 2022, date of current version 3 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3193495

== RESEARCH ARTICLE

Integrated System Design and Safety Framework
for Model-Based Safety Assessment

RAHUL KRISHNAN", (Member, IEEE),
AND SHAMSNAZ VIRANI BHADA ", (Senior Member, IEEE)

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
Corresponding author: Rahul Krishnan (rkrishnan2 @ wpi.edu)

ABSTRACT The increased complexity of modern engineered systems has introduced novel challenges for
assessing their safety early in the life cycle. For example, due to the iterative nature of the design and
safety life cycle, there is constant data transformation and feedback of information between the system
design models, safety analyses, and safety verification. Data transformation and feedback are often manually
performed by engineers, which is time-consuming and error prone and can introduce inconsistencies in safety
assessments. Although several model-based systems engineering approaches have been developed for safety
analysis and safety verification, current approaches do not address the inconsistencies introduced in the
safety assessment process. This study describes the Integrated System Design and Safety (ISDS) framework,
which is a model-based safety assessment framework that aims to eliminate such inconsistencies. The
framework combines a model-based safety analysis approach with a model-based safety verification. This
paper extends previous work, which focused on the model-based safety analysis approach, to describe the
model-based safety verification approach adopted in the ISDS framework. Safety verification is performed
using a simulation-based fault injection approach and enabled by a fault injection engine, which injects
failures into the system design and characterizes system behaviors to identify safety violations impacting
the system. The results from the case study, in which the framework is used to assess the safety of a forward
collision warning system, highlight that the algorithms and automated feedback loops of the framework can
reduce inconsistencies in the safety assessment process while also identifying safety violations impacting
the system.

INDEX TERMS Model-based systems engineering (MBSE), safety analysis, failure modes and effects
analysis (FMEA), systems engineering, SysML, simulation-based fault injection, safety verification.

I. INTRODUCTION introduce new challenges [1]. One of the core challenges lies

Technological advances in recent years have led to the
design of highly complex and sophisticated systems, such
as autonomous vehicles, robots, medical devices, and even
financial-trading systems, that can significantly improve our
quality of life [1]. The scale of adoption of such systems
is evident based on future market trends. The market size
for autonomous vehicles is projected to reach 60 billion
US dollars by 2030 [2], and the intelligent robot market is
projected to reach 3 billion US dollars by 2026 [3]. While
these complex systems have numerous benefits, they also

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

in assessing the safety of such complex systems [4], [5].

The safety assessment of a system is a judgment made
about the safety conformance and safety integrity achieved
by every safety instrumented function within the system [6].
This judgment is based on a) the safety of the system
development process (i.e., is the design process mature
and in conformance with the criteria stated in the safety
standards?) and b) the safety of the system design (i.e.,
does the system design achieve the required safety integrity
level?). While both factors are important for completing a
safety assessment, this research will only focus on the latter
(i.e., safety assessment based on the safety of the system
design).

79311

https://orcid.org/0000-0001-9344-2040
https://orcid.org/0000-0001-9869-2137

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

Academic researchers, industry experts and safety stan-
dards recommend assessing the safety of the system design
using a combination of safety analyses, safety verification,
and testing at various stages in the life cycle [6]-[9]. However,
identifying safety-related design issues early in the life cycle
can reduce rework, costs, and schedule delays [9]-[11]. While
testing occurs in the later stages of the life cycle, safety
analyses and safety verification can be performed early in the
life cycle on the available design models and offer potential
solutions for the early identification of safety-related design
issues.

Safety analysis is performed using a combination of one
or more techniques, such as failure modes and effects anal-
ysis (FMEA), fault tree analysis (FTA), and hazard analysis
[71, [8]. These analyses are often performed using indepen-
dent tools [12]. Each tool works off its own system design
model; engineers must manually extract the relevant infor-
mation from the original model and either import, or worse,
re-create the system design model in each tool [12], [13].
Not only is this activity time-consuming and error prone, but
the existence of multiple system design models also creates
a lack of traceability between the models and safety analy-
ses [14]. Another limitation is that the failure to update the
system design model in each tool may create an inconsistency
between the current design model and the safety analyses,
leading to an incorrect safety assessment [12], [14], [15].

Similar limitations also plague the activities performed
during safety verification. In formal methods, a common
technique for safety verification early in the life cycle [16],
specific model checkers are used to perform safety verifica-
tion. The model checking tool can use one of the many avail-
able languages to describe the system design. Performing
safety verification requires a description or transformation of
the original system design to the specific language used by
the model checker [17]. This transformation may create an
inconsistency between the current system design and safety
verification, consequently lead to an incorrect safety assess-
ment. The main objective of this paper is to eliminate such
manual activities that are performed during safety assessment
as well as the inconsistencies they introduce.

To address these limitations, researchers have adopted
a model-based systems engineering (MBSE) approach to
safety assessment [12], [18], [19]. Studies have shown that
adapting an MBSE approach to system development, com-
monly referred to as model-based development (MBD),
improves the completeness and consistency in system devel-
opment [20], fosters improved communication across design
teams [20], provides added traceability between different
models of the system [21], and enables easy integration with
other engineering analysis tools [22]. The increased adop-
tion of MBD also enhances the ability to perform safety
analyses and safety verification early in the life cycle [23].
Consequently, an MBD approach to safety assessment offers
a solution for resolving inconsistencies that arise in the safety
assessment process. MBD also enables verification activi-
ties such as formal methods and simulation testing using

79312

early system design models, which helps to characterize and
observe design issues in the context of safety assessments.
This is because MBD allows a more formal specification
of a system’s intended behavior with respect to its require-
ments and enables the integration of a variety of analy-
ses or simulations to be performed on the available system
design model, such as formal methods or fault injection
[16], [24]-[26]. However, there is currently no framework
or method that allows for feedback from safety analyses or
safety verification to the system design model while also
identifying safety-related design issues impacting the sys-
tem. The ISDS framework described in this paper aims to
address this gap by leveraging MBD to automate the feedback
between the system design model, safety analyses, and safety
verification.

The authors’ previous work [27] described the model-based
safety analysis approach used in the ISDS framework (left
side of the framework). The paper highlighted how feedback
loops between the SysML model and safety analyses (such as
FMEA and FTA) are used not only to automatically generate
FMEA tables and fault trees from the SysML model but also
to automatically update the SysML model with any changes
made to the safety artifacts. By eliminating the manual tasks
performed by engineers, the framework could reduce the
inconsistencies introduced in the safety assessment process.
This paper extends the previous work and describes the
model-based safety verification approach used in the ISDS
framework. The remainder of the paper is organized as
follows. Section II discusses the relevant literature in the field
of safety verification. Section III describes the approach used
for safety verification in the ISDS framework. Section IV
demonstrates the application of the framework to the design
of a forward collision warning system case study. Section V
concludes the paper.

Il. LITERATURE REVIEW

Safety verification is performed on the right side of the Vee
development methodology [28] and is used to determine if
the system design meets the safety requirements [6]. Verifi-
cation techniques such as formal methods and fault injection
have been extensively used in MBD for safety verification of
complex systems [16]. Formal methods rely on mathemati-
cally proving that a design satisfies a set of defined safety
properties. A popular formal methods technique is model
checking, which is used to verify finite-state systems [29].
The model checking technique is defined as follows: given
a model of a system for which the set of finite state tran-
sitions has been encoded (i.e., system model) and a set of
safety properties that the system must satisfy (i.e., safety
requirements), the model checking problem is to identify
all states in the system model that satisfy the requirements.
Table 1 summarizes the commonly used model checking
tools, such as the safety-critical application development
environment (SCADE) design verifier [30] and NuSMV
model checker [31]. In [24], [26], the authors developed
the system design model in Simulink and used the SCADE

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

TABLE 1. Summary of model checking approaches used for safety
verification.

TABLE 2. Summary of simulation-based fault injection approaches used
for safety verification.

Authors i\: 3;3:;5 Model checking tool
Joshi, Heimdahl [24] Simulink SCADE design verifier
Wang et al. [26] Simulink SCADE design verifier
Mhenni et al. [12] SysML NuSMV

Wang et al. [17] SysML NuSMV

design verifier to automate safety verification via model
checking. In [12], [17], the authors developed the system
design model in SysML and used the NuSMV symbolic
model checker to perform safety verification. Overall, model
checking has been shown to allow the verification of system
safety properties based on requirements using automated ver-
ification procedures [25]. However, the limitation with model
checking is that it relies heavily on the knowledge and experi-
ence of the engineer to define the safety properties and system
states [32], which can be challenging for complex systems
that operate in diverse environments. Another challenge (and
ongoing research problem) with model checking is the state
explosion problem, where the increase in system complexity
leads to a state space that is too large for the technique to be
computationally viable [29].

To overcome some of the model checking challenges,
researchers have used fault injection for safety verification
of complex systems [37]. The fault injection technique is
effective at analyzing faulty system behavior in a controlled
environment by forcing faults and other exceptional condi-
tions and observing the resulting system behavior [32]. Addi-
tionally, fault injection can reduce reliance on the expertise
of engineers because it allows for automation when injecting
faults into the system design model. The automatic nature
of verification makes the high level of usability attractive to
nonexperts in the verification process as well [25].

Fault injection techniques are broadly classified into two
approaches: hardware-based and software-based approaches.
Hardware-based approaches are accomplished at the physical
level and use external sources to introduce faults into the
system’s hardware [38], while software-based (also referred
to as simulation-based) approaches mimic faults through
code changes or by injecting the effects of faults into the
code [39]. The advantages of simulation-based approaches
are that they pose no risk of damage to the system, require
fewer resources to execute in terms of time and effort, and
have higher observability (how well the effects of faults on
the system can be measured) and controllability (how well
the location of faults in space and time can be controlled)
of system behavior in the presence of faults [40], [41]. This
approach is particularly suited for an MBD environment; it
can provide timely feedback on the safety verification of the
system design model early in the life cycle [38]. Additionally,
high-fidelity simulators allow engineers to detect gaps in
requirements, identify new test cases or observe unforeseen
system behavior caused by the injected faults in realistic

VOLUME 10, 2022

Authors Modeling language Fault injection tool
Jha et al. [33] No model consideration AVFI

Jha et al. [34] No model consideration Kayotee

Li et al. [35] No model consideration AV-Fuzzer

Juez et al. [36] Simulink Sabotage

Juez et al. [19] SysML/RobotML FI framework

operational environments earlier in the life cycle [37], [42],
[43]. Table 2 summarizes the simulation-based fault injection
approaches that have been developed for safety verification.

Jha et al. [33] developed a fault injection tool called an
autonomous vehicle fault injector (AVFI) that uses the Car
Learn and Act (CARLA) simulator [44] for resilience assess-
ment of autonomous vehicle systems. The tool can inject
hardware, data, timing, and machine learning-related faults
(source level fault models) using source code instrumentation
at run time and compute resilience metrics such as mission
success rate, traffic violations per kilometer, accidents per
kilometer and time to traffic violations. Jha et al. [34] also
developed the Kayotee fault injection tool, which uses the
drivesim simulator [45] for safety and reliability assessment.
Along with source level faults, the tool can inject faults mod-
eled as bit-flips in different functional units of the processor
to identify unforeseen behavior under faulty conditions, such
as safety envelope breaches and lane-centering breaches for
autonomous vehicles. Li et al. [35] developed the AV-Fuzzer
fault injection tool, which uses the Silicon Valley Lab (SVL)
simulator [46] to find safety violations in autonomous vehi-
cles under evolving traffic conditions. The tool uses a genetic
algorithm to identify new operational scenarios or test cases
that could lead to violations of requirements that are modeled
as safety constraints. While such tools have shown success
at identifying safety-related issues caused by faulty system
behavior, they are not sufficient to perform a safety assess-
ment since they do not consider the system design model as
an input to safety verification. To leverage the benefits of
MBD for early safety assessments, safety verification must
be integrated with the design and safety life cycle (i.e., the
safety verification process should be based on the available
system design model as well as the safety analyses that were
performed on that design model).

Juez et al. [19], [36] overcome this problem by combin-
ing a model-based design process with a simulation-based
fault injection technique. In [36], the authors use Simulink
models to represent the system design and the Sabotage fault
injection framework to perform safety verification early in
the life cycle. The Sabotage framework uses the Simulink
model to configure the type, location, and time for the faults
to be injected and the Dynacar simulator [47] to perform
fault injection simulation. The framework uses source code
instrumentation to inject faults and calculates the effect of
the faults by computing the fault tolerant time interval (FTTI)

79313

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

System Definition I

Create Item Deﬁ.nition/ Concep.t of
Operational Operations
Scenarios (CONOPS)
Failure
Operational y
Scenarios Safety Goals/ System

Review Failure Operational Scenarios

System Verification '

System Safety
Validation || Validation

2a

System Safety

System

System HARA || Requirements

Review System Requirements & Safety Goals | Verification

Verification Configure

&
y ’ Execute
Generate High-level Design B . —
Sub-System (Fimtional, Physical Revise High-Level Design Sub-System || Sub-System Safety Fault Injection
HARA ArchiteéturZ) Update System Safety Analyses | Verification Verification Simulation
System Modify y ’
e Hardware/Software || Detailed | Revise Detailed Design Unit safr(tlw;re/Sf)ftware;
Safety Requirements | Design Review Hardware & Testing atety .eqm.remen
Verification -
Software Safety
Requirements
[] SE Lifecycle
D Safety Lifecycle

D Generated Safety Artifact

FIGURE 1. ISDS framework uses a model-based system engineering approach for the safety assessment of complex systems. The left side of the
framework corresponds to the system definition phase of the life cycle, where different design and safety information is captured using different SysML
diagrams but a single SysML model. Here, the framework focuses on performing safety analyses on system design and safety models (using FMEA and
FTA techniques) as part of the safety assessment. The right side of the framework corresponds to the verification phase of the life cycle, where the
system design is verified against safety requirements at the component, subsystem, and system levels. Here, the framework focuses on performing
safety verification on the system design and safety models (using simulation-based fault injection techniques) as part of the safety assessment.

(i.e., the time interval between the injection of the fault
and the observation of the fault’s system level effect). The
limitations of this approach arise from the Simulink models,
which are good for mathematically representing the system
design but cannot be used to store other design and safety
data, such as requirements, use cases, failure modes, etc.
Additionally, the framework does not use the results from the
safety analyses to configure the fault injection. This omission
can cause an inconsistency between the results of the safety
analyses performed during system definition (left side of the
Vee development process) and the safety verification (right
side of the Vee development process).

The authors overcome these limitations in [19] by devel-
oping system design models in SysML. The general-purpose
nature of SysML allows different design and safety data to
be stored in the same model. The approach uses the SysML
model and the results from the FMEA to configure the
fault injection in a robot and environment simulator called
Gazebo [48]. Using source code instrumentation, different
failure modes were injected to simulate the system design
in the presence of faults. The resulting behavior was evalu-
ated against a predefined component level safety requirement
stored in the SysML model. While this approach presents
a promising solution for early safety assessments of com-
plex systems in an MBD environment, it assumes a highly
linear approach toward safety assessments. In practice, the
design and safety life cycle are iterative, with feedback loops
between the system design and safety analyses and the system
design and safety verification. Fig. 2 illustrates this concept.
Additionally, the lack of feedback from safety verification

79314

System Design and Safety Lifecycle l

Safety
Verification

_

FIGURE 2. Feedback loops that exist between the system design model,
safety analyses, and safety verification, which highlight the iterative
nature of the design and safety life cycle.

|

Y

System Design
Model

Safety
Analyses

A

[

to the system design model can introduce inconsistencies
in later stages of the life cycle since the results from the
verification are not captured in the SysML model.

The ISDS framework addresses these problems by inte-
grating the system design and safety life cycle and incor-
porating feedback between the system design models, safety
analyses, and safety verification. The framework uses SysML
to model the system architecture and define the system design
and safety data. There are several other candidate model-
ing languages that can be used to implement MBD, such
as Modelica [49]. Modelica is an object-oriented language
for describing differential algebraic equation (DAE) systems
combined with discrete events. It is an expressive formal
language and its DAE solving capabilities can support var-
ious analyses. However, the strength of SysML lies in its

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

ISDS Framework

|Fault Injection Enginel

2

A) Fault Injection@'l Fail de dat
SysML Extract system design .| Configurator aLlure modce data > Fault CARLA
Model and safety data ” (FIC) < Fault model R Simulator
7}

~
Configure - safety goal violations,
component safety requirements

\ |

Configure - failure operational scenarios, .
. - Execute fault
failure modes to inject R
injection run

3 2
Safety Metric € . - Fault Injection
il Analyze simulation data per run Campaign Manager
(SME) Return safety metrics per run (FICM) “ Return g
simulation data
L Update SysML model with FI results J

FIGURE 3. Overview of the fault injection engine used for safety verification in the ISDS framework.

descriptive modeling capabilities, with expressive constructs
for requirements, structural decomposition, logical behavior,
and cross-cutting constructs [50]. Additionally, SysML is the
preferred language to model the system architecture among
system engineers [22] and has become the de facto modeling
language in systems engineering [51]-[53]. For these reasons,
SysML was the preferred modeling language to implement
MBD in the ISDS framework.

The authors’ previous work [27] highlighted how the
model-based safety analysis approach of the ISDS framework
reduces the inconsistencies introduced in the safety assess-
ment process by incorporating automated feedback loops
between the SysML model and safety analyses. This paper
extends previous work and describes the model-based safety
verification approach of the ISDS framework. The approach
aims to overcome the limitations of the current literature
by incorporating automated feedback loops between safety
verification and the system design model. The feedback
loops help in reducing the inconsistencies introduced in the
safety assessment process while also verifying the design by
identifying safety violations or safety-related design issues
impacting the system. The next section provides a detailed
description of the methodology for safety verification in the
ISDS framework.

1Il. ISDS FRAMEWORK: APPROACH FOR SAFETY
VERIFICATION

This section provides a brief overview of the ISDS frame-
work followed by a detailed description of the approach for
safety verification. The ISDS framework (see Fig. 1) adopts
the Vee development methodology and an MBD approach
to integrate the system design and the safety life cycle
by combining data into a single SysML model. The left
side of the framework focuses on system definition, where

VOLUME 10, 2022

system design and safety data are incrementally added to
the model. Once the high-level architecture models (func-
tional and logical architecture) and subsystem hazard and risk
assessments (HARA) are complete, the model is exported
as an XML file, and Python scripts are used to automati-
cally generate system-level fault trees and FMEA tables. Any
changes made (after review by an engineer) are updated in
the XML file and subsequently the SysML model. Finally,
component (hardware or software) safety requirements are
added, if applicable, for the failure modes. The right side
of the framework focuses on verifying that the system
design satisfies the safety requirements for all the identified
operational scenarios. The verification process is based on
simulation-based fault injection, which allows for the obser-
vation of safety requirement violations even in the presence of
faults. The next section describes the methodology for safety
verification using fault injection— how the SysML model is
used to configure the fault injection simulation, the process of
running the simulation with faults injected, the computation
of safety metrics based on the safety requirements, and how
the SysML model is updated with the results of the safety
verification.

The safety verification approach in the ISDS framework,
shown in Fig. 3, consists of three components: a) the SysML
model containing system design and safety data developed
during the system definition; b) the CARLA simulator [44],
which is a high-fidelity simulator for recreating autonomous
vehicle behavior in realistic operational environments; and
c) the fault injection engine used to configure, run, and
analyze the simulation runs to compute safety metrics. The
fault injection engine acts as a bridge between the SysML
model and the CARLA simulator. It extracts the system
design and safety data from the SysML model, configures
the CARLA simulation based on the extracted data, executes

79315

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

bdd Profile Diagram

<<metaclass>>
Requirement
AN

<<metaclass>>
Block

Use Case
JAY

Criteria : string Violation simulation data : string [1..*]

Safety Integrity Level : char

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
safetyGoal P SafetyRequirement failureMode scenarioConfiguration
properties properties properties properties
id : int SR id : int Cause : string Name : string
Safety Integrity Level : char Criteria : string Effect : string Map : string

Mitigation Strategy : string

User Defined Safety Goal Violations : string
Fault Type : Enum

Variable : Enum

Single FM Simulation Results : string [1..*]

Weather : string

Host Vehicle Model : string
Target Vehicle Model : string
Target Vehicle Location : int
Host Vehicle Location : int
Target Vehicle Velocity : float

NOTE: Violation simulation data syntax:
["Injected Failure Mode', 'Scenario id']

Combination FM Simulation Results : string[1..*]

Host Vehicle Velocity : float

NOTE: Fault Type enum type: NOTE: Variable enum type:
Too_High Location

Too_Low Velocity

Inverse Steering

Delay Throttle

Lost
Intermittent

NOTE: Single FM Simulation Results Syntax:

['Safety goal Violated', 'Scenario id']

Combination FM Simulation Results Syntax:

['FM 1 name', FM2 Name', Safety Goal Violated, Scenario id]

Powered By Visual Paradigm Community Edition €¥

FIGURE 4. Safety profile of the ISDS framework. The safety profile illustrates how native SysML elements are extended using stereotypes to represent
safety-related information in the SysML model. The triangle from the parent element to the child element represents an extension or inheritance
relationship and can be read as “is a type of". The child element contains additional properties to capture safety-related information. The component
safety requirement and failure mode stereotype contain tagged values that are placeholders for the results from the safety verification. The syntax for the
respective tagged values is shown in the figure. Additionally, the six fault types and four variables for which fault injection is supported are also shown in

the figure.

fault injection, verifies the system design against the safety
requirements, and updates the SysML model with results
from fault injection. The next section describes the three
components of the safety verification approach in the ISDS
framework in greater detail.

A. SysML MODEL

The description provided in this section assumes that the
SysML model was developed in accordance with the system
definition phase of the ISDS framework [27]. Instead of
re-iterating the activities in the system definition phase of
the framework, this section summarizes the SysML model
elements that influence the safety verification approach of the
ISDS framework.

The SysML model contains the design and safety data
developed during the system definition (left side of the Vee)
of the ISDS framework. The model consists of multiple dia-
grams, each representing a different view of the system and
containing specific design and safety data, as shown in Fig. 5.
The framework uses SysML profiles, called safety profiles,
to store design and safety data in the same SysML model.
Fig. 4 illustrates the safety profile of the ISDS framework.
The safety profile is a SysML profile used in the ISDS frame-
work that allows data from different domains to be stored in

79316

the same SysML model, i.e., system design data, safety data,
and simulation-specific properties. Native SysML elements
are extended (i.e., customized) for storing specific types of
data based on the domain and platform of the modeled sys-
tem. Stereotypes and tagged values are used to extend the
reference meta-class of a native SysML element.

The requirement meta-class is extended to create the safety
goal and component safety requirement stereotype. The
safety goal stereotype contains an identifier, a safety integrity
level (or risk), and the criteria that represent the safety
goal violations. Similarly, the component safety requirement
stereotype contains an identifier, the criteria that represent
the safety requirement violations, and a variable to store the
results from the fault injection simulation, called the violation
simulation data. The action meta-class is extended to create
the failure mode stereotype. Each failure mode contains a
cause, an effect, a mitigation strategy, user-defined safety
goal violations (each is string data type), a fault model,
a variable (each is an enum data type) and a variable to
store the results from the fault injection simulation (one
for a single failure mode injection and one for the injec-
tion of multiple failure modes). Fig. 4 shows the syntax in
which the simulation results are stored in the SysML model.
Finally, the use case meta-class is extended to create the

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

SysML model

[)
Failure Operational
Scenarios
% Safety Goals l
]

| .[Functional Architecture |
|]

Hl Logical Architecture |
[|

Component Safety
Requirements

FIGURE 5. Overview of the system design and safety data stored in the
SysML Model. The filled diamond represents the “is made up of”
relationship in SysML.

’scenarioConfiguration’ stereotype, which contains variables
to configure the operational environment in the simulation.
The next section describes the different views of the SysML
model, as shown in Fig. 5, in detail.

1) FAILURE OPERATIONAL SCENARIOS

Failure operational scenarios specify the environment and
scenario under which fault injection is to be performed. The
scenarios are defined by use case diagrams in the SysML
model. This diagram is used to configure keywords, envi-
ronment variables, and variable states that will set up the
failure operational scenario in CARLA. The definitions that
are specified for the operational scenario and supported by
the simulator include the following: the road type, weather
conditions, host vehicle data (vehicle type, starting loca-
tion, and desired speed), and nonhost vehicle data (vehicle
type, starting location, desired speed, and specific behaviors).
These definitions are captured as tagged values under the
«scenarioConfiguration>>> stereotype, as shown in Fig. 6.
The failure operational scenario provide a basic representa-
tion for recreating scenarios in simulation. They do not pro-
vide any support for uncertainty or perturbances in scenario
parameters.

2) SAFETY GOALS

Safety goals represent the system level safety requirements
and are defined by a requirements diagram in the SysML
model. This diagram is used to configure the safety goal
metric in the simulator, i.e., the metric that evaluates if a
safety goal was violated. Each safety goal defined in the
diagram contains a safety goal ID, the safety integrity level (or
associated risk) of the safety goal, and the evaluation criteria
that represent the safety goal violations. These definitions

VOLUME 10, 2022

FCW system

(f:f;iiE Operational S@Eiqéi)

T

Scenario 1
<<scenarioConfiguration>>
Stopped Vehicle Ahead in Same Lane on Straight Road
{Map = "Town01"}

{Weather = "CloudyNoon"}

{Host vehicle model = "tesla.model3"}
{Target vehicle model = "tesla.cybertruck"}
{Host vehicle start location = 1}
{Target vehicle start location = 0}
{Host vehicle velocity = 50.0}
{Target vehicle velocity = 0.0}

FIGURE 6. Failure operational scenario for the safety assessment of a
vehicle’s forward collision warning system. The scenario is captured in a
use case diagram and contains the configurable parameters to setup up
the fault injection simulation. These parameters capture the
environmental variables and their states.

req Safety Goals
<<safetyGoal>>
Prevent late of FCW system
id="SG1"

Safety Integrity Level = "D"
Criteria = "golden_ttc > faulty_ttc and event == Event. FCW_ENGAGED"

<<safetyGoal>>
Prevent unexpected loss of FCW system

id ="SG2"
Safety Integrity Level ="D"
Criteria = "golden_ttc > 0 and faulty_ttc <0"

<<safetyGoal>>

Prevent unexpected of FCW system

id ="SG3"
Safety Integrity Level = "D"
Criteria = "golden_ttc > 0 and distance > 1.3 * d_safe and event == Event FCW_ENGAGED"

¢

FIGURE 7. Safety Goals of a forward collision warning system. The safety
goals have been identified using the HAZOP method and represent the
high-level safety requirements of the system.

are captured as tagged values under the < safetyGoal>>
stereotype.

3) FUNCTIONAL ARCHITECTURE

The functional architecture contains the different system
functions and their interactions and is defined by an activity
diagram in SysML (Fig. 8). Each function in this activity
diagram is linked to another activity diagram that contains
the function-specific safety information—the functional fail-
ure modes, causes, effects, user-defined safety goal viola-
tions, risk level, mitigation strategy, and simulation results.
Additionally, it contains a variable and fault model, which
is used to characterize the failure mode in the simulation.
The safety-specific information is extracted from the SysML
model to generate the FMEA. The activity diagrams that
make up the functional architecture are used to configure the
failure modes to be injected in the simulation. The failure
modes of a function are captured under the «failureMode>>

79317

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

act Functional Architecture J

(ch System W

Perception

Detect Lanes
Data

Vehicle Dynamics
Data

Determine host
vehicle velocity

ul
Track target and host]
vehicle

uf
Assess Threat

Determine target
vehicle velocity

y
Determine vehicle
actuation
-

Control signal o

FIGURE 8. Functional architecture of a forward collision warning system.

The functional architecture contains the different functions of the system

as well as the flow of information between the functions. Each function is
linked to a subdiagram that contains the failure modes of the function.

stereotype, and the safety information is captured as tagged
values under the < failureMode>>> stereotype (see Fig. 9).

4) LOGICAL ARCHITECTURE

The logical architecture represents the system’s structural
design and is defined by the block definition diagram (BDD)
and internal block diagram (IBD) (Fig. 10 and Fig. 11,
respectively). The BDD contains logical blocks that repre-
sent subsystems. Functions from the functional architecture
diagram are allocated to corresponding blocks in the logical
architecture. The BDD is used to organize the fault injection
simulations such that only the failure modes of functions allo-
cated to the specific block are injected in the simulation. The
IBD captures the interconnections and data flows between the
blocks modeled in the BDD.

5) COMPONENT SAFETY REQUIREMENTS

Component safety requirements represent hardware or soft-
ware safety requirements allocated to the blocks in the logical
architecture and are defined by a requirements diagram in
SysML. To ensure traceability, the requirements diagram is
linked to the corresponding block in the logical architecture as
a subdiagram. Each component safety requirement defined in
the diagram contains an identifier, the evaluation criteria that
represent the requirement violation, and a variable to store
the results from the fault injection, called violation simulation
data. The definitions are captured as tagged values under the
«componentSafetyRequirement>> stereotype (see Fig. 12).

B. CARLA SIMULATOR
CARLA is an open-source simulator for autonomous driving
systems. It provides support for a variety of sensor suites,

79318

act Determine host vehicle location

Determine host
vehicle location

<<failureMode>>
Host vehicle location too high
{Cause = "Malfunctioning sensor"}

{Effect = "Incorrect location data"}
{Mitigation Strategy = "Redundant location sensor"}
{Variable = "Host.Location"}

{Fault Type = "Too High"}

{User Defined Safety Goal Violations ="SG1"}
{Single FM Simulation Results =""}
{Combination FM Simulation Results =""}

<<allocate>>

Combines with

<<failureMode>>
Target vehicle location too low

Combines with

<<failureMode>>
Target vehicle location too high

<<failureMode>>
Host vehicle location inversed
{Cause = "Break in I/O connections"}
{Effect = "Incorrect location data"}
{Mitigation Strategy = "Redundant location sensor"}
{Variable = "Host.Location" }
{Fault Type = "Inverse"}
{User Defined Safety Goal Violations = "SG2"}
{Single FM Simulation Results = ""}
{Combination FM Simulation Results =""}

<<allocate>>

<<failureMode>>
Host vehicle location too low
{Cause = "Malfunctioning sensor"}

{Effect = "Incorrect location data"}
{Mitigation Strategy = "Redundant location sensor"}
{Variable = "Host.Location"}

{Fault Type = "Too Low"}

{User Defined Safety Goal Violations = "SG1"}
{Single FM Simulation Results = ""}
{Combination FM Simulation Results =""}

<<allocate>>

Combines with '
<<failureMode>>
Target vehicle location inversed

FIGURE 9. Failure modes for the “Determine host vehicle location”
function before the safety verification is performed. Each failure mode
contains a tagged value for storing the results from the fault injection
simulation. The syntax for how the results are stored is shown in the
safety profile. The failure modes can be combined with the failure modes
of other functions, shown in blue, and the relationship is captured as a
dependency in the SysML model.

driving environments, scenario generation, and the complete
control of actors (pedestrian and vehicles) in the simulator.
It is a high-fidelity simulator that can create detailed repre-
sentations of different environments such as urban layouts,
buildings, street signs, highways, etc., for a range of weather
and time of day conditions. The simulation platform allows
users to set up various sensors and gather data, such as GPS
coordinates, speed, acceleration, camera images, radar data,
and inertial measurement unit (IMU) data of an automotive
system.

CARLA’s architecture enables great flexibility and real-
ism for graphical rendering and physics simulation. It is
implemented as a layer over the Unreal Engine 4 (UE4) [54],
which provides state-of-the-art rendering quality and hyper

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

Determine target
e location

bdd Logical Architecture J
<<block>>
FCW System
Q Q
<<block>>| |<<block>>
Processor Sensors
<<allocate>>
H <<block>> <<block>>
- i - Obstacle Detection module — Lane Detection Sensors | <<allocate>>
Determine obstacles in allocatedFrom allocatedFrom | Detect Lanes
hosAvehiclelpathyay <<Action>> Determine obstacles in <<Action>> Detect Lanes
host vehicle pathway
Determine target <<allocate>> <<block>> <<block>>
3 'g Target Vehicle Tracking module Object Detection Sensors
vehicle velocity <<allocate>>
allocatedFrom — allocatedFrom — [€reeeseseseneneas Detect Obstacles

_s|<<Action>> Determine target vehicle location
<<Action>> Determine target vehicle velocity

<<Action>> Detect Obstacles

<<allocate>>

<<Action>> Assess Threat

<<block>> — <<block>>
Track targ?t and Threat A t module Vehicle Dynamics Sensors
host vehicle allocatedFrom L allocatedFrom

‘Assess Threat) _<<allocate>> s[<<Action>> Track target and host vehicle

<<Action>> Determine host vehicle location
<<Action>> Determine host vehicle velocity

<<block>>
Vehicle Controller

, <allocate>>
e > allocatedFrom
vehicle actuation <<Action>> Determine vehicle actuation

x %

i <<allocate>> i <<allocate>>
Determine host Determine host
vehicle location vehicle velocity

FIGURE 10. Logical architecture for the FCW system modelled using a BDD. The BDD shows the different logical blocks of the system and the
functions allocated to each block. Each function in the functional architecture is allocated to a block in the logical architecture.

Perception Data ! Ids : Lane ods : Object

| Detection Sensors | Detection Sensors |
f I

Lane geometry Obstacle id

Radar Data

Vehicle Dynamics iodm : Obstacle Detection module;
Data T
Target vehicle id

itvtm : Target Vehicle Tracking modul i

Target vehicle location and velocity

‘tam : Threat A t module

Collision alert signal

: Vehicle Controller!

Throttle, steering, and brake levels

Control Signal

FIGURE 11. Logical architecture for the FCW system modelled using an
IBD.

realistic physics. CARLA can simulate a dynamic world and
provide an interface between the world and agent. An agent is
usually an autonomous vehicle equipped with a set of sensors
to observe its environment and a set of behaviors encoded
to achieve a goal. To enable interaction between the world
and the agent, the simulator uses a server-client system. The
server (also called the world module) runs the simulation and
renders the scene. The client module represents the agent
developed by the user (i.e., the system under development).
The client communicates with the world to obtain information

VOLUME 10, 2022

req Yaw rate component safety requirement)

<<componentSafetyRequirement>>
Yaw rate must not exceed yaw authority limits

SRID="1"

Criteria = "49<= speed<=51 and delta >=4"
Violation simulation data =""

Safety Integrity Level =" D" L

Powered By Visual Paradigm Community Edition

FIGURE 12. Component safety requirement for the vehicle controller
block of a forward collision warning system. These low-level
requirements are defined to mitigate the functional failure modes. This
feature allows traceability from high-level safety requirements (safety
goals) to component-level safety requirements.

about its surroundings. The client sends commands to the
world and obtains sensor readings in return. These commands
control the behavior of the automotive system, such as throt-
tle, steering, and brake signals. After executing the command,
the world returns the latest sensor readings. Additional com-
mands can be used to control environmental properties such
as the weather, illumination, and friction of roadway surfaces.
Finally, nonagent automotive systems and pedestrians can be
added to the simulation as needed.

The ISDS framework is closely coupled to the CARLA
simulator. In its current form, the framework can only assess
the safety of systems that can be represented in the simulator,
i.e., automotive systems. A CARLA client is developed to
represent the system under development using the frame-
work; the client is a skeleton code of the system written

79319

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

in Python. The SysML model is a graphical representation
of this client and the system design and safety data from
the SysML model are used to configure the parameters in
the client. The client is developed using the libraries of the
CARLA simulator but contain parameters that are undefined
and need to be configured with the parameters defined in the
SysML model. It should be noted that this research assumes
that the SysML model is an accurate representation of the
client in CARLA. Simulating the behavior of an automotive
system requires complex Python code, whereas the SysML
model is developed at a much higher level of abstraction. It is
the responsibility of the engineer to ensure that the functions
and logical blocks defined in the SysML model are consistent
with those used in the client. Consequently, the framework
relies on subject matter experts to validate the models. This
does give rise to questions regarding model validation, i.e.,
“how can one guarantee that the SysML model is consis-
tent with the client?”’. Several researchers have developed
methods for code generation from SysML system models
[105, 106]. The SysML models are used to generate code that
can be run on specific simulators. However, these approaches
are limited to simple systems and require support from the
simulators. It is unknown whether such approaches will scale
for more complex systems, such as an automotive system
within a high-fidelity simulating environment. Consequently,
generating code for the entire CARLA client, i.e., code gen-
eration from SysML design models, is considered out of
scope for this paper but is a potential avenue for future
research.

C. FAULT INJECTION ENGINE

The fault injection engine consists of three components:
1) the fault injection configurator (FIC), 2) the fault injection
campaign manager (FICM), and 3) the safety metric evaluator
(SME).

1) FAULT INJECTION CONFIGURATOR
The FIC is responsible for extracting design and safety data
from the SysML model and configuring the CARLA simula-
tor to run the fault injection. The FIC parses the XML file of
the SysML model and extracts the data required to set up the
configurable parameters in CARLA. Essentially, FIC acts as
a bridge between the SysML model and CARLA and ensures
that the fault injection simulation reflects the current informa-
tion in the SysML model. The FIC configures the parameters
in the simulator by performing six functions: model selection,
configuring failure operational scenarios during which fault
injection is performed, configuring safety goal violations,
defining component safety requirements, extracting the fail-
ure modes to be injected for each block, and translating the
failure mode to the fault model. Algorithms 1 (a) and 1 (b)
provide the algorithms used in FIC to perform these
functions.
1.1 Model Selection
Once the SysML model is populated with the required
design and safety data, it is exported as an XML file and

79320

Fault Injection Configurator (FIC) @
Al [Model
7| selection

SysML Model 3
thfre Use case Configure failure
operational |- ------- A . 5
K diagram operational scenarios
scenarios
-].3

o=

=
Teell 4 . goal violations
- . [Requirements\ |1
r]
Component safety |-
requirement

4 -
Functional [-------- A'ctwny
architecture| diagram I~
(5]

N\\\|Configure component
safety requirements

Extract failure
mode per block

Failure mode

Translate failure
mode to fault model

-
| N S——

FIGURE 13. Fault injection configurator (FIC) is responsible for extracting
the system design and safety data from the SysML model and configuring
the simulator for the fault injection run.

parsed by FIC to extract the data required to configure
CARLA.

1.2 Configure failure operational scenarios
The use case diagram in the SysML model contains
definitions for the configurable parameters of the fail-
ure operational scenarios. Fig. 6 illustrates a use case
diagram that corresponds to an operational scenario
for a forward collision warning system: a host vehicle
equipped with a collision alert system encounters a sta-
tionery vehicle in its path. To configure this scenario in
CARLA, the FIC extracts and initializes the following
parameters: the map name (determines the road type),
host and target vehicle type, host and target vehicle
starting location, host and target vehicle desired speed,
and weather conditions. These parameters are defined
by an engineer while creating the use case diagram.
This function returns a list of objects that represent the
different failure operational scenarios of the system.

1.3 Configure safety goal violations
The requirements diagram in the SysML model con-
tains criteria which defines the violation of each safety
goal, as illustrated in Fig. 7. The FIC parses the XML
file to find the requirements that define the system
safety goals. For each safety goal, the identifier, risk,
and criteria are extracted to configure the parameters in
CARLA. The criteria are converted to a logical expres-
sion and evaluated for the Boolean result. If the criteria
return true, then the safety goal has been violated. This
function returns a list of objects that represent different
safety goals of the system.

1.4 Export component safety requirements
The component safety requirements allocated to
the blocks in the logical architecture are stored
as requirements diagrams (linked as a subdiagram).
The FIC iterates through the blocks in the logi-
cal architecture and searches for requirements that

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

Algorithm 1 (a) Algorithm for Section 1.1, 1.2, 1.3 of
Fault Injection Configurator (FIC)

Algorithm 1 (b) Algorithm for Section 1.4 of Fault Injec-
tion Configurator (FIC)

Input: XML of the SysML model

Output: list of safety goals, component safety
requirements, and failure operational scenarios.
SET root = XML Model

Function configure failure operational scenarios():
SET list of failure operational scenarios = []

find all use case elements in the root
for each use case do
if stereotype is scenarioConfiguration then
create the scenarioConfiguration object
for tagged value in use case do
store tagged value in object member
variable
end for
append object to list of failure
operational scenarios
end if
end for
| return list of failure operational scenarios
Function configure safety goals():
SET list of safety goals = []
find all requirement elements in the root
for each requirement do
if stereotype is Safety Goal then
create the SafetyGoal object
for tagged value in requirement do
store tagged value in object member
variable
end for
append object to list of safety goals
end if
end for
| return list of safety goals
Function configure component safety requirements():
SET list of component safety requirements = []
find all requirement elements in the root
for each requirement do
if stereotype is a component safety
requirement then
create the ComponentSafetyReq object
for tagged value in requirement do
store tagged value in object member
variable
end for
append object to list of component safety
requirements
end if
end for
| return list of component safety requirements

contain the «componentSafetyRequirement>> stereo-
type. If defined, the component safety requirement’s

VOLUME 10, 2022

Input: XML of the SysML model
Output: list of failure modes
SET root = XML Model
Function configure failure modes(list of safety goals):
SET list of failure modes = []
find all SysMLBLock elements in logical
architecture
for each SysMLBLock element do
Find the allocated function and store address
for action elements in functional architecture do
if stereotype is Failure Mode and
< address is equal then
find the allocated failure modes to function
for each failure mode do
create Failure Mode object
for tagged value in Failure Mode do
store tagged value in object
end for
append object to list of failure modes
find all dependency relationships
if dependency is of type Combines with
<~ then
Store destination address
Find the corresponding failure mode
Set failure mode combination
< for source and destination
end if
end for
end if
end for
end for
for each failure mode in list of failure modes do
find failure mode combinations
create tuple of failure mode combinations
append to list of failure modes
remove duplicate tuples
end for
L return list of failure modes

identifier, allocated block, and criteria are extracted
to configure the parameter in CARLA. The criteria
are converted to a logical expression and evaluated for
the Boolean result during each simulation run. This
function returns a list of objects that represent the
component safety requirements of the system.
1.5 Extract failure mode per block

The failure modes defined in the activity diagram dur-
ing the safety analyses of the system are used to identify
the faults that will be injected during the fault injection
simulation. The FIC parses the XML file to find the
blocks (or subsystems) defined in the logical architec-
ture. The functions allocated to each block are traced

79321

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

1.6

79322

to their activity diagram in the functional architecture.
The failure mode name, allocated block and function,
fault model type, variable to be corrupted, failure mode
combinations (if any), and possible safety goal viola-
tions (user-defined) are extracted from the XML file.
The failure mode combinations are extracted by check-
ing if the failure mode block has a ‘“‘combines with”
dependency relationship with other failure modes. This
function returns a list of objects that represent the
failure modes and failure mode combinations of the
system. Algorithm 1 (b) describes how the FIC module
extracts this information from the SysML model.
Translate failure mode to fault model

The last step is to translate the failure mode (which is
described as a string data type) to a fault model that
will be injected in CARLA. This translation is done
by cross-referencing the failure mode with the list of
fault models that have been defined in the fault library.
The fault library contains templates for the different
fault models that can be injected into the simulator. The
fault models define the characteristics of a fault that is
to be injected during fault injection. Each fault model
contains the following properties: fault type (stuck at,
value too high, value too low, delay, inverse value,
intermittent loss), percentage change in value due to
fault (for too high and too low fault types), number
of frames to delay (for stuck at and delay fault types),
and the variable in which the fault is injected. The
types of faults that are currently supported by the ISDS
framework are as follows:

a) Sensor Faults: Sensory faults are injected by
manipulating the measurements from sensors
(camera, GPS, IMU, etc.). The fault type deter-
mines how the measurement is altered (e.g., stuck
at faults will maintain the sensor measurement at
the constant value that was measured when the
fault was triggered). Sensory faults represent sce-
narios where faulty sensor data are obtained from
sensor errors, the environment, noise, etc. Based
on the sensor type, these faults alter the host
vehicle velocity (faulty IMU sensor), host vehicle
location (faulty GPS sensor), and target vehicle
velocity and location (faulty radar/camera/lidar
sensor).

b) Actuator Faults: Actuator faults are injected by
manipulating the output data sent by the con-
troller to the system actuators (throttle, steering,
and brake). For example, a “‘too high™ fault type
will increase the throttle value by a percentage
higher than the correct value. Actuator faults rep-
resent real-world scenarios where faulty actuator
signals lead to incorrect control commands of a
system, such as the unintended acceleration of a
vehicle. Based on the actuator type, these faults
alter the throttle percentage (faulty accelerator),

steering angle (faulty steering system), and brake
percentage (faulty brake system).

c¢) Timing Faults: Timing faults are injected by
manipulating the communication of information
between systems (sensor to controller or vice
versa). Such faults can be injected for sensor,
actuator, and processing blocks. The fault types
include delayed and loss of data. Timing faults
represent real-world scenarios where the commu-
nication of data between modules is affected by
hardware or software issues.

These fault models provide a basic representation of
failure characterization for the supported fault types.
The accuracy of the failure characterization can be
improved by incorporating concepts such as failure
mode uncertainty into the fault model. However, it is
beyond the scope of this paper and provides an inter-
esting avenue for future research.

2) FAULT INJECTION CAMPAIGN MANAGER

The FICM is responsible for executing the fault injection.
Once the FIC has configured CARLA according to the infor-
mation from the SysML model, FICM begins executing the
fault injection. Each failure operational scenario defined in
the use case diagram contains two runs: the golden run (or
fault-free run) and the faulty run. The golden run [41] involves
observing system behavior without injecting any faults. This
data is used to provide a baseline for system behavior in the
absence of faults. A faulty run involves injecting the failure
mode’s fault model and observing the behavior of the system
in the presence of faults. The faulty run can involve the injec-
tion of single failure modes or failure mode combinations.
After each faulty run, the safety metric is computed and stored
for the failure mode. Once all the faults have been injected for
the current operational scenario, the next operational scenario
is loaded, and the process is repeated.

Once the FICM completes the fault injection runs for all
the failure operational scenarios defined in the SysML model,
the results from the fault injection are updated in the SysML
model. This automatic update is enabled by the feedback
loops of the framework and is one of the primary contribu-
tions of this research. For each failure mode, the safety goal
violation, simulation data from the faulty run, and failure
operational scenario during which the violation occurred are
stored. For faulty runs that involve failure mode combina-
tions, each failure mode stores the names of the combining
failure mode, simulation data from the faulty run, safety goal
violations, and failure operational scenario during which the
violation occurred. Once all the faulty runs are complete, the
simulation results for each failure mode are updated under
the “Single FM Simulation Results” and “Combination FM
Simulation Results” tagged value in the XML file. This XML
file can be imported into the SysML tool to be viewed by
the engineer. Fig. 14 provides an overview of the entire fault
injection process.

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

SysML
Model
1

Fault Injection
Configurator
|

Manager
I

Fault Injection Campaign

CARLA
simulator

Safety Metric
Evaluator
I

| | I
| | I
: 1: Extract system : }
| design and safety data ’JI_ 2: Configure failure !
operational scenarios

3: Configure fault models for
each failure mode per block

4: Configure safety metrics

gl

|
|
f
|
|
Il
|
|

loop]

[failure operational scenario]

| 5: Load failure operational scenario

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Il
|
|
|
|
|
|
|
|

6: Execute Golden Run

<

loop)

[blocks in logical architecture]

8: Inject failure mode

<

10: Analyze faulty run data

Il
|
|
|
|
|
|
|
|
1
|
|
|
| 7: Return Golden Run data
|
I
|
|
|
|
|
|
|
T
|
|
|

<

11: Return safety metrics for run

L
|

8: Update model with fault injection results LA
I I

-

I
|
|
|
|
:
9: Return faulty run data»ﬂ
|
|
|
|
|
|
|
1
T
|
|
|
|
|

FIGURE 14. Sequence diagram elaborating the steps involved in performing the safety verification using the fault injection simulation.

3) SAFETY METRIC EVALUATOR

The SME computes the safety metrics configured by FIC. The
FICM forward data from the golden and faulty runs to the
SME to compute safety metrics. The safety metrics computed
by the ISDS framework are as follows:

1) Safety goal violations: This is a Boolean value that
indicates whether the logical expression that represents
the violation of the safety goal, as defined in the SysML
model, is met. This returns true if the safety goal was
violated. All safety goals defined for the system are
evaluated at the end of each faulty run by comparing
the golden run data with the faulty run data.

2) Component safety requirement violations: This is
a Boolean value that indicates whether the logical
expression that represents the violation of the com-
ponent safety requirement, as defined in the SysML
model, is met. This returns true if the component safety
requirement was violated. All the component safety
requirements are continuously evaluated during each
faulty run.

In summary, this section introduced the ISDS framework

and provided a detailed description of the model-based safety
verification approach used in the framework. The next section

VOLUME 10, 2022

describes the application of the ISDS framework to the safety
assessment of an FCW system.

IV. RESULTS: FCW SYSTEM CASE STUDY

This section demonstrates the application of the ISDS frame-
work to the safety assessment of an FCW system. The FCW
system case study was selected for several reasons: a) since
the ISDS framework is closely coupled to the CARLA sim-
ulator, the possible case studies are limited to automotive
systems or a safety-critical subsystem within an automotive
system; and b) FCW algorithms were first developed in the
1990s [55], [56] and are now ubiquitous in automotive sys-
tems; US government agencies are even looking to mandate
new vehicles to be equipped with such systems [57]. As a
result of the widespread adoption, mature methods have been
developed by the National Highway Traffic Safety Adminis-
tration (NHTSA) to assess the safety of FCW systems. The
ISDS framework can be compared with these methods to
evaluate the effectiveness of its safety assessment.

An FCW system identifies the potential for an impending
crash situation at the front of a vehicle and either provides
an alert to the driver or sends a control signal to activate
another vehicular subsystem that can prevent a crash [58].

79323

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

Host Vehicle A Target Vehicle
/45 mph (or 72 km/h) <«®> 0 mph (Stationary)

Point of required alert

(a) The host vehicle encounters a stopped target vehicle on a straight road.

Host Vehicle A Target Vehicle A \
45 mph (or 72 km/h) <45 mph (or 72 km/h) &>

Gy - G.Ds-MDs
l,\ =

(b) The host vehicle encounters a decelerating target vehicle on a straight
road.

Targel vehicle \
Point of requiredalert & (' G erating |

Host Vehicle A Target Vehicle
/45 mph (or 72 km/h) <> 20 mph (or 32 km/h)

Gy | Gy

Point of required alert \

(c) The host vehicle encounters a slower target vehicle on a straight road.

FIGURE 15. Test scenarios used by NHTSA to evaluate the safety of FCW
systems.

Given the widespread adoption of FCW systems, the NHTSA
has developed a series of test procedures, called the forward
collision warning confirmation test, to evaluate the safety of
FCW systems [59]. These tests evaluate the ability of the
FCW system to detect and provide an alert for a potential
crash under three driving scenarios. Fig. 15 illustrates the
scenarios used for the forward collision warning confirmation
test. For each scenario, the time-to-collision (TTC) metric is
used to assess the risk of collision. TTC is defined as the
time required for two vehicles to collide if they continue at
their current speed and remain on the same path [60]. The
test scenarios developed for the forward collision warning
field-tests are as follows:

1) The host vehicle encounters a stopped target vehicle
on a straight road, as shown in Fig. 15 (a), where the
host vehicle is traveling at 45 mph or 72 km/h and
encounters a stationery target vehicle in its path on
a straight road. The FCW system of the host vehicle
is required to provide an alert when the TTC is >
2.1 seconds.

2) The host vehicle encounters a decelerating target vehi-
cle on a straight road, as shown in Fig. 15 (b), where the
host vehicle and target vehicle are traveling at 45 mph
or 72 km/h, and are 30 meters apart. At a certain point,
the target vehicle begins decelerating. For this test, the
FCW system of the host vehicle is required to provide
an alert when the TTC is > 2.4 seconds.

3) The host vehicle encounters a slower target vehicle
on a straight road, as shown in Fig. 15 (c), where the

79324

host vehicle is traveling at 45 mph or 72 km/h and
encounters a slower moving target vehicle in its path,
traveling at a constant speed of 20 mph or 32 km/h. The
FCW system of the host vehicle is required to provide
an alert when the TTC is > 2 seconds.

These test procedures have been used by the NHTSA since
2013 to evaluate the safety of FCW systems during field
testing. The case study described in this section uses these
test procedures to evaluate the safety of an exemplary FCW
system design in simulation. The intention of this case study
is not to develop a novel FCW system using the ISDS frame-
work but rather to derive the design of an exemplary FCW
system from the current literature and use the framework to
assess the safety of its design. The architecture, key functions,
and subsystems of the exemplary FCW system used in this
case study are derived from [61]. The algorithm used by the
exemplary FCW system to compute the TTC at which the
system warns of an impending collision is based on the Honda
algorithm [62], which was chosen for its simplicity, ease of
implementation, and extensive use in the field. The remainder
of this section is organized as follows: section IV-A describes
the results from the application of the left side of the ISDS
framework to the FCW system case study, which focuses on
system definition and safety analysis using the model-based
safety analysis approach. Section IV-B describes the results
of the application of the right side of the ISDS framework
to the FCW system case study, which focuses on verifying
the safety of the FCW system using a model-based safety
verification approach.

A. ISDS FRAMEWORK: MODEL-BASED SAFETY ANALYSIS
The application of the framework to this case study begins on
the left side of Vee, where the focus is on system definition
and safety analysis. As shown in Fig. 1, the model-based
safety analysis approach comprises nine steps. After each
step, SysML model elements representing system design and
safety data are added to the model. Once the SysML model
is populated with the data, FMEA tables and fault trees are
automatically generated from the model. The remainder of
this section will describe the application of each step in the
model-based safety analysis approach to the FCW system
case study.

1) DEVELOP CONCEPT OF OPERATIONS (CONOPS) AND
CREATE FAILURE OPERATIONAL SCENARIOS

This step develops the CONOPS to identify the set of
capabilities that the system must have. In this case study,
the capabilities are derived from current literature. These
capabilities represent high-level needs such as the ability
to detect road lanes, detect obstacles in the lane, assess
possible threats, etc. The capabilities feed into the system
requirements and subsequently the functional architecture.
Next, the failure operational scenarios are created using the
«scenarioConfiguration>>> stereotype to configure the FCW
confirmation test scenarios, highlighted in Fig. 15, in the

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

simulator. One of the failure operational scenarios for the
FCW system is shown in Fig. 6. This SysML model element
captures the information required to recreate the field-test
scenarios in the CARLA simulator, such as host and tar-
get vehicle speed, location in the map (simulator-specific),
weather conditions, etc.

2) IDENTIFY SYSTEM REQUIREMENTS

System requirements translate the system capabilities and
stakeholder needs into requirements. These requirements are
used to realize the system architecture. However, the system
requirements do not directly influence the safety assessment.
Since they do not influence the safety assessment, the sys-
tem requirements diagram is not highlighted in this case
study.

3) PERFORM SYSTEM HAZARD AND RISK ASSESSMENT
(SYSTEM HARA)

The system HARA consists of three steps. First, system-
level hazards that the system might encounter are identified.
Next, each hazard is evaluated to identify the risk it poses
to the system, and a safety integrity level is assigned to it.
Finally, a safety goal is defined to mitigate each hazard. In the
FCW system case study, the system-level hazard analysis is
performed using the HAZOP technique. Guide words such
as late, loss, and not requested are used to identify three
system-level hazards: 1) late engagement of the FCW system;
2) unexpected loss of the FCW system; and 3) unexpected
engagement of the FCW system. The risk assessment frame-
work from the ISO 26262 safety standard is used to assign
a safety integrity level to each hazard. Finally, three safety
goals, which represent system-level safety requirements, are
defined to mitigate the system-level hazards identified in
the previous step. In the SysML model, they are defined
using the <safetyGoal>>> stereotype. Fig. 7 illustrates the
safety goals for the FCW system. The criteria tagged value
in the <safetyGoal>> stereotype is used to formalize the
requirement and configure the safety goal in the CARLA
simulator. For example, the criteria for SG1: Prevent late
engagement of FCW system is golden_ttc > faulty ttc &
event == Event FCW _ENGAGED. This expression checks
whether the TTC at which the FCW system engaged during
the faulty run is less than the TTC at which the FCW system
engaged during the golden run.

4) DEVELOP FUNCTIONAL ARCHITECTURE

The functional architecture is developed by translating the
system requirements into functions and capturing the inter-
actions between the functions, as shown in Fig. 8. Perception
data from camera systems or lidar systems are used to detect
lanes by identifying lane markings on roadways. Radar data
are used to detect obstacles in front of the vehicle, as well as
the obstacle location and velocity. The perception data and
radar are combined to determine whether the obstacle, now
called the target vehicle, is in the host vehicle’s pathway.
On-board sensors are used to determine the host vehicle’s

VOLUME 10, 2022

data, such as velocity and location. The host and target vehicle
data are tracked relative to each other and forwarded to assess
the threat of collision. Based on the assessment, which will be
performed using the Honda algorithm, the vehicle actuation
is determined, i.e., the throttle, steering, and brake levels. The
levels are translated into control signals and forwarded to the
respective actuation subsystems that are external to the FCW
system.

5) DEVELOP LOGICAL ARCHITECTURE

The logical architecture identifies the logical blocks of the
system (i.e., subsystems), allocates the system functions to
the blocks, and identifies the interconnections or data flows
between each block. The logical architecture of the FCW
system contains seven subsystems with functions from the
functional architecture allocated to it, as shown in Fig. 10.
The lane detection sensors and obstacle detection sensors are
responsible for detecting lane markings on the roadway and
obstacles in front of the host vehicle, respectively. The object
detection module filters obstacles to those within the lane of
the host vehicle. The target vehicle tracking module computes
the location and velocity of the target vehicle. The vehicle
dynamics sensor computes the location and velocity of the
host vehicle. The threat assessment module tracks the relative
distance and velocity between the host and the target vehicle.
The module also uses the Honda algorithm to determine the
threat of a potential collision. Finally, the vehicle controller
determines the level of throttle, steering and brake signals
required based on the threat assessment and forward the
control signals to the external actuation subsystems. Fig. 11
shows the IBD of the logical architecture and illustrates the
interconnections and flow of data between subsystems.

6) PERFORM SUBSYSTEM HAZARD AND RISK ASSESSMENT
(SUBSYSTEM HARA)

The subsystem hazard analysis is performed on the functions
allocated to the different subsystems in the logical architec-
ture using the HAZOP technique. For each function guide
words such as too high, too low, lost, delay, intermittent,
and inverse are used to brainstorm functional hazards. These
hazards represent the function’s failure modes and are cap-
tured using the «failureMode>>> stereotype. Fig. 9 shows
the failure modes for the determine host vehicle location
function of the vehicle dynamics sensor subsystem. For each
failure mode, the cause, effect, user-defined safety goal vio-
lations, and mitigation strategy have been defined. Finally,
the variable and fault type have been defined to charac-
terize the failure mode in the CARLA simulator. A subset
of the failure modes combines with the failure modes of
the determine target vehicle location function of the target
vehicle tracking module subsystem and are defined using
the “Combines with” dependency relationship. Similarly,
Fig. 16 illustrates the failure modes defined for the determine
host vehicle velocity function of the vehicle dynamics sensor
subsystem.

79325

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

act Determine host vehicle velocity

<<failureMode>>
Host vehicle velocity too high
{Cause = "Sensor malfunction"}

{Effect = "Velocity estimation higher than expected"}
{Mitigation Strategy = "Redundancy"}
{Variable = "Host.Velocity"}

{Fault Type = "Too High"}

{User Defined Safety Goal Violations ="SG1"}
{Single FM Simulation Results = ""}
{Combination FM Simulation Results =""}

.
.
0

<<failureMode>>
Host vehicle velocity too low
{Cause = "Sensor malfunction"}
{Effect = "Velocity estimation lower than expected"}

“
<<allocate>> '+,
.

A ——

<<failureMode>>
Host vehicle velocity delayed
{Cause = "Communication error"}

{Effect = "Outdated data used for estimation"}
{Mitigation Strategy = "Hetrogenous redundancy"}
{Variable = "Host.Velocity"}

{Fault Type = "Delay"}

{User Defined Safety Goal Violations = "SG1, SG2"}
{Single FM Simulation Results =""}
{Combination FM Simulation Results = ""}

g
.
.
B

.
.
.
,+ <<allocate>> <<failureMode>>

Host vehicle velocity lost
{Cause = "Communication error"}

mammmny

{Mitigation Strategy = "Redundancy"}

<<<allocate>>
{Variable = "Host.Velocity"}

---------- Determine host vehicle velocity | <<allocate>>

{Effect = "Outdated data used for estimation"}
{Mitigation Strategy = "Hetrogenous redundancy"}

{Fault Type = "Too Low"}
{User Defined Safety Goal Violations = "SG1"}
{Single FM Simulation Results = ""} g
{Combination FM Simulation Results =""} 5

~eemma

.
<<allocate>>
,

g
0
D

<<failureMode>>
Host vehicle velocity inversed
{Cause = "Incorrect output signal"}

{Effect = "Direction of velocity estimation incorrect"}
{Mitigation Strategy = "Redundancy"}
{Variable = "Host.Velocity"}

{Fault Type = "Inverse"}

{User Defined Safety Goal Violations = "SG2"}
{Single FM Simulation Results =""}
{Combination FM Simulation Results =""}

: {Variable = "Host.Velocity"}

H {Fault Type = "Lost"}

\ {User Defined Safety Goal Violations = "SG1, SG2"}

P {Single FM Simulation Results =""}

. {Combination FM Simulation Results = ""}
“‘<<allocate>>

y
.

<<failureMode>>
Host vehicle velocity intermittently lost
{Cause = "Communication error, sensor malfunction"}
{Effect = "Incorrect data used for estimation"}
{Mitigation Strategy = "Sensor fusion"}
{Variable = "Host.Velocity"}
{Fault Type = "Intermittent" }
{User Defined Safety Goal Violations = "SG1, SG2"}
{Single FM Simulation Results = ""}
{Combination FM Simulation Results=""} _

sy hsual Paradigm Gommurity Ediion €

FIGURE 16. Failure modes for the determine host vehicle velocity function of the vehicle dynamics sensor subsystem.

7) GENERATE SAFETY ARTIFACTS

With the required system design and safety data populated
in the SysML model, the FMEA table and fault trees can be
automatically generated from the model. The SysML model
is exported as an XML file, and the framework’s algorithm
parses the file to automatically generate safety artifacts. The
first safety artifact generated is the FMEA table spreadsheet.
The algorithm extracts failure mode data and creates a spread-
sheet of the system’s FMEA. If the failure mode contains
tagged values that have not been defined, the corresponding
cell in the spreadsheet contains the “—’’ symbol, which
denotes that an engineer must enter this information in the
spreadsheet. Table 3 shows a small section of the FMEA
table, which represents the FMEA for the determine host
vehicle velocity function.

The next safety artifacts automatically generated by the
ISDS framework are the system fault trees, one for each safety
goal. Fig. 17 illustrates the fault tree for the violation of the
safety goal SG1: Prevent late engagement of the FCW system.
Based on the IBD of the FCW system’s logical architecture,
the fault tree traverses from output to input. Each intermediate
level event is either an internal failure of the block or a failure
in the input to the block, which is caused by an internal failure
of its neighboring connected block. The internal failure of
each block is represented using only those failure modes of
the block that violate SG1. Since the fault tree for SGI is
large, the base events that contribute to the internal failure of a

79326

block are collapsed in Fig. 17. Fig. 18 illustrates the expanded
view of the internal failure of the vehicle dynamics block,
which contains failure modes for the determine host vehicle
velocity function that violate SG1.

At this stage, any changes made to the FMEA by a safety
engineer can be automatically updated in the SysML model
by using the feedback loop of the framework. This feedback is
an important contribution of the model-based safety analysis
approach adopted in the ISDS framework and has been high-
lighted in a previous publication [27]. This feedback prevents
any inconsistencies from arising as the design progresses
through the system definition phase of the ISDS framework.

8) DERIVE COMPONENT SAFETY REQUIREMENTS

The last step in the model-based safety analysis approach
of the framework is to derive the component safety require-
ments, if necessary. For ease of demonstration, a single
component safety requirement is defined in this case study.
The determine vehicle actuation function of the vehicle con-
troller block is responsible for computing the level of throt-
tle, brake, and steering signal required based on the input
from other subsystems. The failure modes allocated to the
function include *“Steering signal too high” and ‘“‘Steering
signal too low”, “Steering signal lost””, “Steering signal
delayed”, “Steering signal lost intermittently”’, and ““Steer-
ing signal inversed”. According to [63], a vehicle yaw rate
must not exceed 4 degrees per second at a speed close to

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: ISDS Framework for Model-Based Safety Assessment I E E E ACC@SS

TABLE 3. FMEA table for the determine host vehicle velocity function. This table is automatically generated with data from the SysML model, shown in
Fig 16. Data in any cell can be updated by a safety engineer, if necessary. Once the results from fault injection are available, the simulation data column is
also updated with the results.

. Failure Mitigation . Safety Goal | Simulation

Block Function Mode Cause Effect Strategy Risk Violation data

Vehicle Determine Host vehicle Sensor Zsetli(r)r?zlitt?on

Dynamics | host vehicle | velocity too) . . Redundancy SIL_D SG1 -
. . malfunction higher than

Sensor velocity high

expected

Vehicle Determine Host vehicle Sensor e\e/setli?’rf:t)i/on

Dynamics | host vehicle | velocity too . Redundancy SIL_D SG1 -
. malfunction lower than

Sensor velocity low

expected

Vehicle Determine Host vehicle Incorrect Direction

Dynamics | host vehicle | velocity . of Velocity | Redundancy SIL_D SG2 -
. . output signal .

Sensor velocity inversed incorrect

Vehicle Determine \]:Ie(if)li " vehicle Communication| Incorrect

Dynamics host vehicle | . Y error, sensor | datausedfor | Sensor fusion SIL_D SG1, SG2 -
. intermittently . e

Sensor velocity lost malfunction estimation

Vehicle Determine Host vehicle | Communication| Outdated Heterogenous

Dynamics host vehicle . data used for S SIL_D SG1, SG2 -
. velocity lost error . redundancy

Sensor velocity estimation

Vehicle Determine Host vehicle Communication! Outdated Heterogenous

Dynamics host vehicle | velocity data used for 8 SIL_D SG1, SG2 -
. error . redundancy

Sensor velocity delayed estimation

top
5G1 Violation

Internal failure of Failure in input to
Vehicle Controller Vehicle Controller

A A

Internal failure of Failure in input to
hreat Assessment modul hreat Assessment modul

ﬂﬁ A

L

Imernal failure of Internal fallure of Failure in input to
enlc‘.la Dynamics Sensor Tafget Vehicle Tracking modhilEarget Vehicle Tracking modple
V Internal failure of Failure in input to
Dstﬁcle Detection modul: bstacle Detection modul

Collapsed base events @

Internal failure of Internal failure of
Lane Detection Sensors [Object Detection Sensors

> D

FIGURE 17. Fault tree for SG1: Prevent delayed engagement of FCW system.

50 km/hr, called the yaw authority limit. To mitigate the is defined to prevent the vehicle from exceeding the yaw
effects of the failure modes related to the steering levels of authority limit. Fig. 12 illustrates the component safety
the vehicle controller block, a component safety requirement requirement. The component safety requirement is allocated

VOLUME 10, 2022 79327

l E E E ACC@SS R. Krishnan, S. V. Bhada: ISDS Framework for Model-Based Safety Assessment

Internal failure of Internal failure of Failure in input to
‘ehicle Dynamics Sensor: Tafget Vehicle Tracking module Tafget Vehicle Tracking module
t 3

i
i

! . 1
!| Host vehicle | | Host vehicle ‘ | Host vehicle ‘ | Host vehicle ‘ |v Host vehicle J

i

i

i

i

i

1
Internal failure of Failure in input to
bstacle Detection modul bstacle Detection modul

< A

Internal failure of Internal failure of
Lane Detection Sensors |Object Detection Sensors|

Failure modes of the “Determine host vehicle velocity” function @

'
1
'
'
velocity too high velocity too low velocity delayed velocity lost elocity intermittently losq !
'
i
1
1
'

FIGURE 18. Fault tree for SG1: Prevent delayed engagement of FCW system.

40 :_c;
g el
33 o]
o
30
-~ % Golden TTC, 249
- [0
25 - =
- .
20 @] [£]
w2 V3]

Time-To-Collision (sec)

0 sezn

Steering signal too high . SG2,-1
Steering signal too low - 5G2,-1
Steering signal inversed . SG2,-1

Host vehicle velocity too low
Relative distance tracking data
intermittently lost

Target vehicle location too high
Target vehicle location inversed - SG2,-1

Relative distance tracking data lost - SG2,-1
vehicle location too high']
vehicle location too low']
vehicle location inversed']

Relative distance tracking data delayed - SG2,-1
['Host vehicle location too low', 'Target

['Host vehicle location too high ', 'Target
['Host vehicle location too high ', 'Target

Failure Modes

mm Faulty TIC === Golden TTC NHTSATTC

FIGURE 19. Results from safety verification for scenario 1: Host vehicle encounters a stopped target vehicle on a straight road, showing
the 12 out of 43 failure mode injections that resulted in a violation of one or more safety goals. The results show the nine behaviors of the
FCW system where the faulty TTC, represented by the orange bars, is less than 2.1 seconds and two behaviors of the FCW system where it
would pass NHTSA safety assessment but violate the system’s own safety goals (i.e., orange bars where the TTC is greater than the golden
run TTC value by at least 0.05 seconds).

to the “Steering signal too high” and the ‘““Steering sig- This step completes the model-based safety analysis
nal too low” failure modes. The component safety require- approach (i.e., the system definition phase) of the ISDS
ment’s criteria formalizes the requirement in the CARLA framework and the SysML model is updated with the required
simulator. system design data, safety data, and simulation-specific

79328 VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

act Determine host vehicle velocity)
<<failureMode>>
Host vehicle velocity too high
{Cause = "Sensor malfunction"}
{Effect = "Velocity estimation higher than expected"}
{Mitigation Strategy = ""}
{Variable = "Host.Velocity"}
{Fault Type = "Too High"}

{User Defined Safety Goal Violations = "SG1"}
{Single FM Simulation Results = "None-Scenario 1
None-Scenario 2
None-Scenario 3"}

{Combination FM Simulation Results =""}

<<failureMode>>
Host vehicle velocity delayed
{Cause = "Communication error"}
{Effect = "Outdated data used for estimation"}
{Mitigation Strategy = ""}
{Variable = "Host.Velocity"}
{Fault Type = "Delay"}

{User Defined Safety Goal Violations = "SG1, SG2"}
{Single FM Simulation Results = "None-Scenario 1
None-Scenario 2
SG1-Scenario 3"}

{Combination FM Simulation Results =""}

.

<<failureMode>>
Host vehicle velocity too low
{Cause = "Sensor malfunction"}

..

.
.

.
<<allocate>>

<<failureMode>>
Host vehicle velocity lost
{Cause = "Communication error"}

Jtad “ <<allocate>>

.
.
.
.
.
.

{Effect = "Velocity estimation lower than expected"}

bamaan,

{Effect = "Outdated data used for estimation"}
{Mitigation Strategy =""}

{Mitigation Strategy = ""}

{Variable = "Host.Velocity"}

{Variable = "Host.Velocity"}

{Fault Type = "Too Low"}
{User Defined Safety Goal Violations = "SG1"}

Lo

{Single FM Simulation Results = "SG1-Scenario 1 .
SG1-Scenario 2 S,
SG1-Scenario 3"} <<allocate>> ,*’
{Combination FM Simulation Results =""} ,"

o

<<failureMode>>
Host vehicle velocity inversed
{Cause = "Incorrect output signal"}
{Effect = "Direction of velocity estimation incorrect"}
{Mitigation Strategy =""}
{Variable = "Host.Velocity"}
{Fault Type = "Inverse"}

{User Defined Safety Goal Violations = "SG2"}
{Single FM Simulation Results = "None-Scenario 1
None-Scenario 2
None-Scenario 3"}

{Combination FM Simulation Results =""}

{Fault Type = "Lost"}
User Defined Safety Goal Violations = "SG2, SG1"
y
{Single FM Simulation Results = "None-Scenario 1

. SG1-Scenario 2
*,, <<allocate>> None-Scenario 3"}
. {Combination FM Simulation Results =""}

<<failureMode>>
Host vehicle velocity intermittently lost
{Cause = "Communication error, sensor malfunction"}
{Effect = "Incorrect data used for estimation"}
{Mitigation Strategy =""}
{Variable = "Host.Velocity"}
{Fault Type = "Intermittent"}
{User Defined Safety Goal Violations = "SG1, SG2"}
{Single FM Simulation Results = "None-Scenario 1
SG1-Scenario 2
None-Scenario 3"}
{Combination FM Simulation Results = ""}

el Paradim Community Editon €}

FIGURE 20. Failure modes of the determine host vehicle velocity function updated with results from safety verification. The “Single FM Simulation
Results” tagged values are updated with the safety goal violation and the corresponding failure operational scenario during which the violation

occurred.

parameters to perform safety verification. The next section
will highlight the results from the model-based safety
verification.

B. ISDS FRAMEWORK: MODEL-BASED SAFETY
VERIFICATION

This section highlights the results of the model-based safety
verification. The ISDS framework uses a simulation-based
fault injection technique to verify whether the system design
satisfies the safety requirements (safety goals and compo-
nent safety requirements). A CARLA client is developed to
represent the FCW system designed on the left side of the
framework (i.e., during system definition). The model-based
safety verification approach is highly automated and does not
require any manual activities to be performed by an engi-
neer. The automated safety verification using the CARLA
simulator is enabled using the fault injection engine, which
is one of the key contributions of this research. Once the
safety verification is complete, the framework’s algorithms
automatically update the SysML model with the results. This
feedback ensures consistency between the safety verification,
SysML model, and safety analyses (i.e., FMEA tables and
fault trees), which is another key contribution of this research.

VOLUME 10, 2022

In the FCW system case study, the FIC module of the fault
injection engine extracts three failure operational scenario
defined using the <sceanarioConfiguration>>> stereotype,
three safety goals defined using the <« safetyGoal>> stereo-
type, 40 failure modes defined using the «failureMode>>
stereotype, three failure mode combinations identified using
the “Combines with” dependency, and one component
safety requirement defined using the <componentSafety
Requirement>> stereotype. For each failure operational sce-
nario, the FICM module of the fault injection engine com-
pletes one golden run and 43 faulty runs (40 for single failure
modes and three for failure mode combinations). At the end of
the golden run, the FICM module computes the TTC at which
the FCW system is engaged; this value acts as a reproducible
reference or baseline for system behavior in the specific oper-
ational scenario. These data represent the FCW system’s TTC
that would be obtained using the NHTSA forward collision
warning confirmation test to assess the safety of the FCW
system. For each of the 43 faulty runs, the FICM module
injects the failure mode or failure mode combinations and
computes the TTC at which the FCW system engages. The
SME module of the fault injection engine compares the data
from the golden and faulty runs (i.e., the TTC) to evaluate the
criteria defined for the three safety goals and one component

79329

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

safety requirement. This analysis determines whether any
safety goal or component safety requirements were violated
during a faulty run. Once the fault injection is complete for the
three failure operational scenarios, the FICM module updates
the SysML model with the results.

Fig. 19 illustrates the results of fault injection for failure
operational scenario 1. The blue horizontal line represents
the TTC for the golden run, called the golden TTC. This
indicates the time at which the FCW engaged during the
fault-free run. The orange columns represent the TTC for the
faulty run, called the faulty TTC. They represent the time
at which the FCW system engaged when the corresponding
failure mode(s) were injected, shown along the x-axis. The
label above each orange column highlights the violated safety
goal and the TTC at which the FCW system was engaged.
Negative faulty TTC values represent instances when the
FCW system failed to engage and did not register a TTC
value.

In failure operational scenario 1, the host vehicle equipped
with the FCW system encountered a stationary vehicle in its
path on a straight road, as illustrated in Fig. 15 (a). The TTC
for the golden run, indicated by the horizontal blue line, was
2.49 seconds. The NHTSA assessment requires this value
to be > 2.1 seconds. Hence, this system would pass safety
assessment based on the NHTSA test criteria. However, using
the fault injection engine, of the 43 faulty runs in this scenario
(40 faulty runs with single failure mode injection and three
faulty runs with dual failure mode injection), 12 runs resulted
in a violation of one or more safety goals. Fig. 19 only
highlights the data from the 12 runs. The seven negative faulty
TTC values, shown in Fig. 19, represent instances when the
FCW system failed to engage and did not register a TTC
value. During the injection of these seven failure modes,
the FCW system encountered the unexpected loss of FCW
system hazard and violated SG2: prevent unexpected loss of
FCW system.

Since the NHTSA assessment criteria only require the
TTC > 2.1 seconds, only nine out of the 12 faulty runs
would fail its safety assessment. Since there is no upper limit
to the criteria, it is difficult to classify whether runs with a
large faulty TTC value would pass or fail safety assessment
based on the NHTSA assessment. In Fig. 19, two runs fall
into this category, with faulty TTCs of 8.17 seconds and
3.35 seconds respectively. Hence, for scenario 1, in an FCW
system that passes the NHTSA safety assessment (based on
the golden run data), the ISDS framework can identify at
least nine behaviors (characterized by the system’s failure
modes) where the FCW system would fail the NHTSA safety
assessment and two other behaviors where it would pass
NHTSA safety assessment but violate the system’s safety
goals. This demonstrates that the ISDS framework can iden-
tify safety-related design issues that impact the system.

Once the fault injection simulation is complete and the
results have been compiled by the fault injection engine, the
next step is to update the SysML model with the results using
the feedback mechanism of the framework. The feedback

79330

req Yaw rate component safety requirement Diagram)

<<componentSafetyRequirement>>
Yaw rate must not exceed yaw authority
limits

SRID="1"

Criteria = "49<= speed <=51and delta >=4"
Violation simulation data =
"Scenariol,Steering signal too high
Scenario 1,Steering signal too low
Scenario 1,Steering signal inversed
Scenario 1,Steering signal delayed
Scenario 1,Steering signal lost
Scenario 2,Steering signal too high
Scenario 2,Steering signal too low
Scenario 2,Steering signal inversed
Scenario 2,Steering signal delayed
Scenario 2,Steering signal lost
Scenario 3,Steering signal too high
Scenario 3,Steering signal too low
Scenario 3,Steering signal inversed
Scenario 3,Steering signal delayed
Scenario 3,Steering signal lost "
Safety Integrity Level =" D"

FIGURE 21. Yaw rate must not exceed yaw authority limits component
safety requirement updated with the results from the safety verification.
The “Violation Simulation data” tagged value is updated with the failure
operational scenario during which the requirement was violated as well
as the failure mode that caused the violation.

mechanism from safety verification to the SysML model
is implemented by the FICM module in the fault injection
engine. The module updates the XML file that was previously
used to configure the CARLA simulator with the results from
the safety verification. The updated XML file can be imported
into the SysML tool to be viewed by the engineer.

Two types of SysML model elements are updated with
results from the safety verification - the failure modes and
the component safety requirements. Fig. 20 illustrates the
failure modes of the determine host vehicle velocity function
updated with results from the safety verification. For each
failure mode, the “Single FM Simulation Results” tagged
value is updated with the safety goal violation and failure
operational scenario in which the violation occurred. For
example, for the “Host vehicle velocity too low” failure
mode, the results show that the failure mode only violated
SG1 for scenarios 1, 2, and 3. The results in Fig. 20 are
consistent with those of the safety verification, as shown in
Fig. 19. The second SysML model element that is updated
with the results of the safety verification is the component
safety requirements. Fig. 21 illustrates that the component
safety requirement yaw rate must not exceed the yaw author-
ity limits updated with the results from the safety verification.
The requirement’s ““Violation simulation data’ tagged value
is updated with the scenario in which the requirement was
violated and the failure mode that was injected when the
violation occurred. For the FCW system, all three failure
operational scenarios require the vehicle to drive on a straight

VOLUME 10, 2022

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

IEEE Access

TABLE 4. FMEA table for the determine host vehicle velocity function. This table is automatically generated with data from the SysML model, shown in

Fig. 20.
Block Function Failure Cause Effect Mitigation Risk S?fety. Goal Simulation data
Mode Strategy Violation
Vehicle Determine Host vehicle VEI.OCHY None-Scenario 1
. . . Sensor estimation .
Dynamics | host vehicle | velocity too . . Redundancy SIL_D SG1 None-Scenario 2
. . malfunction higher than .
Sensor velocity high expected None-Scenario 3
Vehicle Determine Host vehicle Sensor qutli(r)xfétt{on SG1-Scenario 1
Dynamics | host vehicle | velocity too) . A Redundancy SIL_D SG1 SG1-Scenario 2
. malfunction lower than .
Sensor velocity low expected SG1-Scenario 3
Vehicle Determine Host vehicle Incorrect Direction None-Scenario 1
Dynamics | host vehicle | velocity output sienal of Velocity | Redundancy SIL_D SG2 None-Scenario 2
Sensor velocity inversed putsig incorrect None-Scenario 3
Vehicle Determine f]—le(;ztdtvehlcle Communication| Incorrect None-Scenario 1
Dynamics host vehicle . Y error, sensor | datausedfor | Sensor fusion SIL_D SG1, SG2 SG1-Scenario 2
. intermittently . L .
Sensor velocity lost malfunction estimation None-Scenario 3
Vehicle Determine Host vehicle | Communication! Outdated Heterogenous None-Scenario 1
Dynamics host vehicle . data used for g SIL_D SG1, SG2 SG1-Scenario 2
. velocity lost error L redundancy .
Sensor velocity estimation None-Scenario 3
Vehicle Determine Host vehicle Communication! Outdated Heterogenous None-Scenario 1
Dynamics host vehicle | velocity error data used for redun dinc SIL_D SG1, SG2 None-Scenario 2
Sensor velocity delayed estimation Y SG1-Scenario 3
Internal failure of Internal failure of Failure in input to
llehicle Dynamics Sensorsl Talge(Vehicle Tracking modLIe Ta le
! n _— - T : Internal failure of Failure in input to
ey | [e, | [oo | [oou ey ts] DistacsBtscion ot} DstocsDtscion o

Failure modes of the “Determine host vehicle velocity” function

A

Internal failure of
Lane Detection Sensors

Internal failure of
Object Detection Sensors

<>

FIGURE 22. Fault tree for violation of safety goal SG1 updated with results from safety verification. The fault tree only contains failure modes that were

found to violate SG1 during the fault injection simulation.

road. Consequently, the failure modes that affect this compo-
nent safety requirement are limited to those of the steering
actuator, as these are the only failure modes that can cause a
sudden change in the yaw rate of the vehicle.

Once the feedback from safety verification to the SysML
model is complete, the updated SysML model is used to
generate a new FMEA table and three new fault trees of
the system. The new FMEA table stores the results from
the safety verification in the simulation data column. Not
only does this ensure consistency between the SysML model,
safety artifact, and safety verification, it also allows the engi-
neer to compare the safety goal violations detected using a
formal verification approach against user-defined safety goal
violations, which was an analysis based on an engineer’s
intuition and experience. Table 4 presents a small section of

VOLUME 10, 2022

the updated FMEA table, which highlights the FMEA for the
“Vehicle Dynamics Sensor” block.

Finally, the fault tree generation algorithm is rerun to gen-
erate fault trees based on the safety goal violations found
during the fault injection simulation. A fault tree is generated
for each safety goal, and each fault tree contains only failure
modes that violate the safety goal. The failure modes included
in the updated fault tree are based on the updated safety
goal violations from safety verification. Fig. 22 illustrates
the updated fault tree for the safety goal SG1: Prevent late
engagement of the FCW system. The updated fault tree is
generated using the results from the safety verification, i.e.,
using the simulation data. The feedback mechanism of the
ISDS framework eliminated the need for engineers to perform
this step manually by automating the feedback from safety

79331

IEEE Access

R. Krishnan, S. V. Bhada: I1SDS Framework for Model-Based Safety Assessment

verification to the SysML model as well as by automatically
generating the fault tree. Generating fault trees for each safety
goal based on the results from safety verification marks the
end of the model-based safety verification approach and com-
pletes the model-based safety assessment of the FCW system.

V. CONCLUSION

This paper introduced the ISDS framework, a model-based
safety assessment framework, along with a detailed descrip-
tion of the model-based safety verification approach used
in the framework. Current safety assessment methods that
combine safety analysis and safety verification still require
manual tasks to be performed by safety engineers to complete
the safety assessment. These tasks include manually gener-
ating safety artifacts from a system design model for safety
analysis, updating the system design model with changes
made to the safety artifact, and updating the system design
model with the results from safety verification. These manual
tasks are time-consuming and error prone, which can lead
to inconsistencies between the system design model, safety
analysis, and safety verification.

The main objective of the ISDS framework is to elimi-
nate tasks that can introduce inconsistencies into the safety
assessment process. The feedback mechanism of the ISDS
framework eliminated the need for engineers to manually
update the SysML model with changes made to the safety
artifact generated during safety analysis and to manually
update the SysML model with results from safety verifica-
tion. Consequently, the ISDS framework eliminates a key
source of inconsistency in the safety assessment process.
The automated feedback mechanism combined with the abil-
ity to automatically generate FMEA tables and fault trees
allows the ISDS framework to capture the iterative nature
of safety assessment while maintaining consistency between
the SysML model, safety analyses (i.e., safety artifacts), and
safety verification. The feedback mechanism of the ISDS
framework is a key contribution of this research.

Another key contribution of this paper is the safety ver-
ification approach of the ISDS framework. The approach
uses a fault injection engine, which allows engineers to inject
faults into a system design and observe the system behavior
under fault-free and faulty conditions. This allows engineers
to assess the safety of the system early in the life cycle using
available system design models and to identify safety-related
design issues that impact the system. Such assessments can
complement existing safety assessment methods that are
based on field-testing to provide a comprehensive analysis of
the safety of the system.

There are also several avenues for future work that can
address the current limitations of this research and extend the
ISDS framework. Currently, the ISDS framework is closely
coupled to the CARLA simulator and is limited to the eval-
uation of automotive systems that can be characterized in
CARLA. Although the results from the case study are promis-
ing, the framework must be evaluated for a broad range
of conditions and applications before it can be generalized

79332

across other domains or applications. Future research can
look at adapting the fault injection engine of the ISDS
framework to other high-fidelity simulators across different
domains.

Next, the framework relies heavily on subject matter
experts for model validation. A promising avenue for future
work includes the incorporation of more comprehensive
model validation techniques into the framework.

Another possibility is to support the automated generation
of executable code from SysML models. The use of automatic
code generation will allow engineers to completely generate
the CARLA client from the SysML model and remove the
responsibility of ensuring consistency between the code run-
ning in the simulator and the SysML model from the design
and safety engineers. This could also aid in model validation.

Finally, the fault coverage is limited to the failure modes
identified in the FMEA and the fault models that are sup-
ported by the framework for the CARLA simulator. In addi-
tion, the failure modes are deterministic and do not account
for any uncertainty. Future work can involve extending the
types of faults that can be injected into the CARLA simulator
by the fault injection engine. This can help improve the
fault coverage of the framework and support an increased
number of fault models for automotive systems. Additionally,
modeling uncertainty in failure modes will help in injecting
failure modes that are more representative of real-world fail-
ures. Similarly, modeling uncertainty into failure operational
scenarios can help bridge the gap between scenarios executed
in simulation and real-world scenario that impact the safety of
the system. Once these features are implemented, an interest-
ing avenue for research could be to investigate the statistical
characterization of the performance of the framework over a
large number of simulations.

REFERENCES

[1] M. Cummings and D. Britton, “Regulating safety-critical autonomous

systems: Past, present, and future perspectives,” in Living With Robots.

Amsterdam, The Netherlands: Elsevier, Jan. 2020, pp. 119-140.

Statista. (2019). Autonomous Cars by Global Market Size

2030 | Statista. Accessed: Mar. 5, 2021. [Online]. Available:

https://www.statista.com/statistics/428692/projected-size-of-global-

autonomous-vehicle-market-by-vehicle-type/

Statista. (2020). Autonomous Guided Vehicle Market Size Worldwide

From 2018 to 2026. Accessed: Mar. 15, 2021. [Online]. Avail-

able: https://www.statista.com/statistics/428692/projected-size-of-global-

autonomous-vehicle-market-by-vehicle-type/

Z. Tahir and R. Alexander, “Coverage based testing for V&V and safety

assurance of self-driving autonomous vehicles: A systematic literature

review,” in Proc. IEEE Int. Conf. Artif. Intell. Test. (AlTest), Oxford, U.K.,

Aug. 2020, pp. 23-30.

[5] J. Guiochet, M. Machin, and H. Waeselynck, *“Safety-critical advanced

robots: A survey,” Robot. Auto. Syst., vol. 94, pp. 43-52, Aug. 2017, doi:

10.1016/j.robot.2017.04.004.

Road Vehicles-Functional Safety, Standard ISO 26262, International Orga-

nization for Standardization (ISO), 2018.

[7] C. A. Ericson, Hazard Analysis Techniques for System Safety, 2nd ed.
Hoboken, NJ, USA: Wiley, 2005.

[8] N. J. Bahr, System Safety Engineering and Risk Assessment: A Practical
Approach, 2nd ed. Boca Raton, FL, USA: CRC press, 2018.

[9] M. V. Stringfellow, N. G. Leveson, and B. D. Owens, “‘Safety-driven design
for software-intensive aerospace and automotive systems,” Proc. IEEE,
vol. 98, no. 4, pp. 515-525, Apr. 2010.

2

—

K]

[t

4

[l

[6

VOLUME 10, 2022

http://dx.doi.org/10.1016/j.robot.2017.04.004

R. Krishnan, S. V. Bhada: ISDS Framework for Model-Based Safety Assessment

IEEE Access

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

B. Boehm, R. Valerdi, and E. Honour, “The ROI of systems engineer-
ing: Some quantitative results for software-intensive systems,” Syst. Eng.,
vol. 11, no. 3, pp. 221-234, Jun. 2008.

D. K. Hitchins, “Systems engineering: In search of the elusive optimum,”
Eng. Manage. J., vol. 8, no. 4, pp. 195-207, Aug. 1998.

F. Mhenni, N. Nguyen, and J.-Y. Choley, “Safesyse: A safety analysis
integration in systems engineering approach,” IEEE Syst. J., vol. 12, no. 1,
pp. 161-172, Mar. 2018.

O. Lisagor, T. Kelly, and R. Niu, “Model-based safety assessment: Review
of the discipline and its challenges,” in Proc. 9th Int. Conf. Rel., Maintain-
ability Saf. (ICRMS), Guiyang, China, Jun. 2011, pp. 625-632.

A. Legendre, A. Lanusse, and A. Rauzy, “Toward model synchronization
between safety analysis and system architecture design in industrial con-
texts,” in Model-Based Safety and Assessment, vol. 10437. Trento, Italy:
Springer, 2017, pp. 35-49.

G. Biggs, T. Juknevicius, A. Armonas, and K. Post, “Integrating safety
and reliability analysis into MBSE: Overview of the new proposed
OMG standard,” in Proc. INCOSE Int. Symp., vol. 28, no. 1, Jul. 2018,
pp. 1322-1336.

A. Joshi, S. P. Miller, M. Whalen, and M. P. E. Heimdahl, “A proposal
for model-based safety analysis,” in Proc. 24th Digit. Avionics Syst. Conf.,
Oct. 2005, p. 13.

H. Wang, D. Zhong, T. Zhao, and F. Ren, “Integrating model checking
with SysML in complex system safety analysis,” IEEE Access, vol. 7,
pp. 16561-16571, 2019.

N. Yakymets, M. Sango, S. Dhouib, and R. Gelin, “Model-based engineer-
ing, safety analysis and risk assessment for personal care robots,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid, Spain, Oct. 2018,
pp. 6136-6141.

G. Juez Uriagereka, E. Amparan, C. Martinez Martinez, J. Martinez,
A. Ibanez, M. Morelli, A. Radermacher, and H. Espinoza, “Design-time
safety assessment of robotic systems using fault injection simulation in a
model-driven approach,” in Proc. ACM/IEEE 22nd Int. Conf. (MODELS-
C), Munich, Germany, Sep. 2019, pp. 577-586.

E. R. Carroll and R. J. Malins, “Systematic literature review: How is
model-based systems engineering justified?”” Sandia Nat. Laboratories,
Albuquerque, NM, USA, Tech. Rep. SAND2016-2607627724, 2016.

M. Chodas, “Improving the design process of the REgolith X-ray imaging
spectrometer with model based systems engineering,” M.S. thesis, Dept.
Aeronaut. Astronaut., MIT, Cambridge, MA, USA, 2014.

J. D’ Ambrosio and G. Soremekun, “Systems engineering challenges and
MBSE opportunities for automotive system design,” in Proc. IEEE SMC,
Banff, AB, Canada, Nov. 2017, pp. 2075-2080.

A. M. Madni and M. Sievers ‘“Model-based systems engineering: Motiva-
tion, current status, and research opportunities,” Syst. Eng., vol. 21, no. 3,
pp. 172-190, May 2018.

A. Joshi and M. P. Heimdahl, ‘““Model-based safety analysis of simulink
models using SCADE design verifier,” in Computer Safety, Reliability, and
Security (Lecture Notes in Computer Science), vol. 3688. Berlin, Germany:
Springer, 2005, pp. 122-135.

M. Bozzano and A. Villafiorita, ““The FSAP/NuSMV-SA safety analysis
platform,” Int. J. Softw. Tools Technol. Transf., vol. 9, no. 1, pp. 5-24,
Feb. 2007.

H. Wang, S. Liu, and C. Gao, “Study on model-based safety verification
of automatic train protection system,” in Proc. Asia—Pacific Conf. Comput.
Intell. Ind. Appl. (PACIIA), Wuhan, China, Nov. 2009, pp. 467—470.

R. Krishnan and S. V. Bhada, “An integrated system design and safety
framework for model-based safety analysis,” IEEE Access, vol. 8,
pp. 146483-146497, 2020.

(2020). SEBoK. System Life Cycle Process Models: Vee—SEBoK.
Accessed: Aug. 4, 2021. [Online]. Available: https://sebokwiki.org/w/ind
ex.php?title=System_Life_Cycle_Process_Models:_Vee&oldid=59874
E. M. Clarke, W. Klieber, M. Novdacek, and P. Zuliani, “Model checking
and the state explosion problem,” in Tools for Practical Software Verifi-
cation (Lecture Notes in Computer Science), vol. 7682. Berlin, Germany:
Springer, 2011, pp. 1-30.

Ansys. Ansys Scade Suite: Model-Based Development Environment for
Critical Embedded Software. Accessed: May 8, 2022. [Online]. Available:
https://www.ansys.com/products/embedded-software/ansys-scade-suite
A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification (Lec-
ture Notes in Computer Science), vol. 2404. Berlin, Germany: Springer,
2002, pp. 359-364.

VOLUME 10, 2022

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, “Fault injec-
tion analytics: A novel approach to discover failure modes in cloud-
computing systems,” IEEE Trans. Dependable Secure Comput., vol. 19,
no. 3, pp. 1476-1491, May 2020.

S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer, “AVFI:
Fault injection for autonomous vehicles,” in Proc. IEEE/IFIP DSN-W,
Luxembourg, Jun. 2018, pp. 55-56.

S. Jha, T. Tsai, S. Hari, M. Sullivan, Z. Kalbarczyk, S. W. Keckler,
and R. K. Iyer, “Kayotee: A fault injection-based system to assess the
safety and reliability of autonomous vehicles to faults and errors,” 2019,
arXiv:1907.01024.

G.Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk, and
R. Iyer, “AV-FUZZER: Finding safety violations in autonomous driving
systems,” in Proc. IEEE 31st Int. Symp. Softw. Rel. Eng. (ISSRE), Coimbra,
Portugal, Oct. 2020, pp. 1-12.

G. Juez, E. Amparan, R. Lattarulo, A. Ruiz, J. Pérez, and
H. Espinoza, “Early safety assessment of automotive systems using
sabotage simulation-based fault injection framework,” in Computer
Safety, Reliability, and Security (Lecture Notes in Computer Science),
vol. 10488. Trento, Italy: Springer, 2017, pp. 255-269.

P. Koopman and M. Wagner, “Autonomous vehicle safety: An inter-
disciplinary challenge,” IEEE Intell. Transp. Syst. Mag., vol. 9, no. 1,
pp. 90-96, Mar. 2017.

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 1997.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with
software fault injection: A survey,” ACM Comput. Surv., vol. 48, no. 3,
pp. 1-55, Feb. 2016.

M. Kooli and G. Di Natale, “A survey on simulation-based fault injection
tools for complex systems,” in Proc. 9th IEEE Int. Conf. Design Technol.
Integr. Syst. Nanosc. Era (DTIS), Santorini, Greece, May 2014, pp. 1-6.
B. Vedder, “Testing safety-critical systems using fault injection and
property-based testing,” Ph.D. dissertation, School Inf. Technol., Halmstad
Univ., Halmstad, Sweden, 2015.

P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE Int. J. Transp. Saf., vol. 4,no. 1, pp. 15-24, Apr. 2016.
P. Koopman and M. Wagner, “Toward a framework for highly automated
vehicle safety validation,” in Proc. WCX World Congr. Exper., Detroit, MI,
USA, Apr. 2018, pp.‘1-13.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proc. Conf. Robot Learn., Mountain
View, CA, USA, 2017, pp. 1-16.

NVIDIA. NVIDIA DRIVE Sim. Accessed: Apr. 27, 2021. [Online]. Avail-
able: https://www.nvidia.com/en-us/self-driving-cars/simulation/

G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Mozeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner,
K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim, “LGSVL simulator:
A high fidelity simulator for autonomous driving,” in Proc. IEEE 23rd Int.
Conf. Intell. Transp. Syst. (ITSC), Rhodes, Greece, Sep. 2020, pp. 1-6.

A. Pena, I. Iglesias, J. Valera, and A. Martin, “‘Development and validation
of Dynacar RT software, a new integrated solution for design of electric and
hybrid vehicles,” in Proc. EVS, Los Angeles, CA, USA, 2012, pp. 1-7.
N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sendai, Japan, Sep. 2004, pp. 2149-2154.
Modelica—A Unified Object-Oriented Language for Systems Modeling,
Version 3.5, Modelica Association, 2021.

SysML-Modelica Transformation, v1.0, OMG Standard formal/2012-11-
09, Object Management Group, Nov. 2012.

A. L. Ramos, J. V. Ferreira, and J. Barcelo, ‘“Model-based sys-
tems engineering: An emerging approach for modern systems,” IEEE
Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 42, no. 1, pp. 101-111,
Jan. 2012.

R. Cressent, P. David, V. Idasiak, and F. Kratz, “Increasing reliability
of embedded systems in a SysML centered MBSE process: Applica-
tion to LEA project,” in Proc. M-BED, Dresden, Germany, Mar. 2010,
pp. 1-7.

R. Behjati, T. Yue, S. Nejati, L. Briand, and B. Selic, “Extending
SysML with AADL concepts for comprehensive system architecture
modeling,” in Modelling Foundations and Applications (Lecture Notes
in Computer Science), vol. 6698. Berlin, Germany: Springer, 2011,
pp. 236-252.

Unreal Engine 4. Accessed: May 21, 2021. [Online]. Available:
https://www.unrealengine.com/en-U.S./

79333

IEEE Access

R. Krishnan, S. V. Bhada: ISDS Framework for Model-Based Safety Assessment

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

P. B. N. Clarke, “Advanced collision warning systems,” in Proc. IEE
Colloquium Ind. Automat. Control, Appl. Automot. Ind., London, U.K.,
Jan. 1998, p. 2.

K. Lee and H. Peng, “Evaluation of automotive forward collision warning
and collision avoidance algorithms,” Vehicle Syst. Dyn., vol. 43, no. 10,
pp. 735-751, Oct. 2005.

P. A. DeFazio. (2020). H.R.2—116th Congress (2019-2020): Moving
Forward Act. [Online]. Available: https://www.congress.gov/bill/116th-
congress/house-bill/2

G. J. Forkenbrock and B. C. O’Harra, ““A forward collision warning (fcw)
performance evaluation,” in Proc. Int. Tech. Conf. Enhanced Saf. Vehicles
(ESV), Stuttgart, Germany, 2009, pp. 1-12.

Forward Collision Warning System Confirmation Test, N. H. T. S. Admin.,
Office Vehicle Saf., Office Crash Avoidance Standards, Nat. Highway
Traffic Saf. Admin., Washington, DC, USA, 2013.

R. Van Der Horst and J. Hogema, “Time-to-collision and collision
avoidance systems,” in Proc. ICTCT Workshop, Salzburg, Austria, 1993,
pp. 109-121.

R. Ervin, J. Sayer, D. LeBlanc, S. Bogard, M. Mefford, M. Hagan,
Z. Bareket, and C. Winkler, “‘Automotive collision avoidance system field
operational test report: Methodology and results,” NHTSA, Washington
DC, USA, Tech. Rep. HS-809 900, 2005.

Y. Fujita, “Radar brake system,” JSAE Rev., vol. 16, no. 1, p. 113,
Jan. 1995.

A. Neukum, E. Ufer, J. Paulig, and H. Kruger, ““Controllability of super-
position steering system failures,” in Proc. Steering Tech (TUV SUD),
Garching, Germany, 2008, pp. 1-12.

79334

RAHUL KRISHNAN (Member, IEEE) received
the M.Sc. degree in robotics engineering
and the Ph.D. degree in systems engineering
from the Worcester Polytechnic Institute (WPI),
USA, in 2017 and 2021, respectively. His research
interests include model-based systems engineer-
ing (MBSE) and functional safety.

SHAMSNAZ VIRANI BHADA (Senior Member,
IEEE) received the Ph.D. degree in industrial
and systems engineering from The University of
Alabama in Huntsville, in 2008. She is currently
an Assistant Professor in systems engineering with
the ECE Department, Worcester Polytechnic Insti-
tute (WPI). Her research interests include applying
model-based systems engineering toward safety
analysis and policy modeling and digitization.

VOLUME 10, 2022

