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ABSTRACT The performance of any Mobile Wireless Network (MWN) is dependent on the appropriate
level of radio coverage, with Path Loss (PL) models being a valuable resource for its evaluation. Recently,
advancements in Machine Learning (ML) and Deep Neural Networks (DNNs) have been applied to radio
propagation to produce new data-driven PL models. Notoriously, these advancements have also allowed
the inclusion of non-classical inputs, such as satellite images. However, data-driven PL models are often
developed under the assumption that training and test data distributions are similar, which is a weak
assumption in real-world scenarios. Thus, generalization (i.e., the model’s ability to perform on different
data distributions) is a crucial aspect of data-driven PL models in the context of Mobile Network Operators
(MNOs). This paper proposes a new data-driven PLmodel, the Ubiquitous Satellite Aided Radio Propagation
(USARP) model, developed to enhance the geographical generalization capabilities of empirical PL models,
by using satellite images. The USARP model considers self-supervised learning to extract general data
representations of the radio environment from satellite images, improving the PL prediction Root Mean
Square Error (RMSE) of the 3rd Generation Partnership Project (3GPP) PL model in the order of 9 dB, and
for a data distribution distinct from the training data. Moreover, it was demonstrated the potential of the
USARP model in terms of geographical and radio environment generalization. Although the generalization
capabilities of ML regression algorithms are limited, the chosen USARP architecture and the use of
regularization techniques had a positive impact on its geographical generalization performance.

INDEX TERMS Wireless networks, radio propagation, path loss models, satellite data, deep learning, self-
supervised learning, convolutional neural networks.

I. INTRODUCTION
MNOs are continuously managing their MWNs, from ini-
tially planning the deployment of new Base Stations (BSs),
to monitoring the existing network infrastructure and opti-
mizing its performance. The network planning phase not only
impacts the MNOs Capital Expenditure (CapEx) but also
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their Operating Expense (OpEx), as the network optimiza-
tion stage depends on the reliability of the network plan-
ning phase. Considering Radio Access Networks (RANs),
the planning phase aims to guarantee coverage, capac-
ity, and Quality of Service (QoS) requirements, with the
least amount of investment (e.g., minimizing the number
of BSs). Still, the ability to estimate coverage accurately is
of paramount importance in the development of successful
RAN planning [1].
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During the RANs optimization phases, the use of Drive
Test (DT) data [2], geopositioning of network traces [3],
or crowdsourcing data [4], provide accurate data to evalu-
ate and optimize the radio coverage and the network QoS.
However, during initial RAN planning phases, PL mod-
els are the primary option to estimate and evaluate
coverage.

The use of PL models introduces a higher coverage esti-
mation error than the other ‘‘signal level’’ data sources
(e.g.,DTmeasurements), but they are the only existent option
in the RAN planning phase for coverage prediction. Differ-
ent levels of PL prediction accuracy can be obtained from
different PL models; however, the most accurate PL models
tend to be highly computational expensive and require exten-
sive and detailed environment data [5], which limits their
practical applicability. Furthermore, the continuous advance-
ments in ML and DNNs are providing the fundamentals
for the development of new data-driven PL models [6], [7],
where satellite-based data is also being considered as an
additional input. The goal is to achieve higher prediction
accuracy than conventional (empirical) PL models without
introducing excessive computational complexity or requir-
ing extensive environment data. Nonetheless, the general-
ization capability—i.e., the ability to learn from a limited
volume of data and perform similarly in an out-of-distribution
data— of ML or deep learning-based models is still being
investigated [8]. Moreover, PL models, when calibrated with
DTmeasurements, generally require a specific calibration for
each propagation environments [9].

This paper aims to study the geographical generalization
capabilities of empirical PL models, including ML/DNN
based ones, towards developing ubiquitous PL models,
which can be applied to multiple radio propagation environ-
ments without re-calibration or training. Therefore, a novel
DNN-based model, the USARP model for PL prediction,
is proposed; it uses satellite images with a self-supervised
methodology to increase the PL prediction accuracy, enhanc-
ing the geographical generalization towards breaking sin-
gle environment usage restraints of empirical PL models.
DT data from real Long Term Evolution (LTE) networks was
extensively used for the development and assessment of the
USARP model.

The main contributions of this paper are summarized as
follows:
• Geographical generalization analysis of empirical and
ML/DNN based PL models using data distributions dis-
tinct from the initial training data.

• Proposal of a two-stage development process for
DNN-based PL models using satellite images, namely:
1) use of self-supervised learning to learn radio environ-
ment representations from satellite images; 2) employ-
ment of the radio environment representations together
with DT measurements, for PL prediction.

• Proposal of a new data-driven PL prediction model—
the USARP model— based on the previous two-
stages procedure, and its architecture optimization and

TABLE 1. Main notation used in this paper.

evaluation in multiple radio environments, towards a
single (multi-environment) PL model solution.

This paper is organized as follows. After the introduction,
Section II overviews classical PL models and the recent work
on the development of PL models using satellite images.
Section III gives a brief description of the data considered
in this work (satellite and DTs). Section IV explains how
the useful information from satellite images is extracted for
PL predictions. First, a brief background on self-supervised
learning is provided. Then, the self-supervised algorithm used
in the scope of this work is presented, along with the results
obtained by applying it to satellite data. In Section V, the
error metrics to evaluate the PL predictions are firstly defined.
Then, the process leading to the development of the USARP
model is presented. Section VI evaluates the PL prediction
results of the USARP model, and provides a comparison to
benchmark PL models. Section VII analyses the geograph-
ical generalization capability of the USARP model towards
its use in multiple radio propagation environments. Finally,
Section VIII presents the main conclusions and final remarks.
The main notation adopted in this paper is summarized
in Table 1.

II. RELATED WORK
This section overviews related work on radio propagation,
notably classical PL models and PL models using satellite
images. First, a classification of classical radio PL models
is presented, highlighting the base structure of empirical
models, which are used as a reference throughout this work.
Then, the most relevant work in PL models using satellite
images, and typically resorting to deep learning algorithms,
is presented.
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A. CLASSICAL PATH LOSS MODELS
PL models for MWNs are broadly categorized into two
classes: large-scale and small-scale (or fading) models.
Large-scale PL models predict the mean strength of the
received signal, and small-scale models characterize the rapid
fluctuations occurring in a distance of a few wavelengths or
on very short time intervals [10].

A UE, with just slight motion, may experience severe
signal strength oscillations, as the instantaneously received
signal strength results from the contribution of several Mul-
tipath Components (MPCs) with distinct directions and ran-
dom phases. This behavior is known as small-scale fading and
may originate signal level fluctuations in a range of 30 dB,
for distance differences comparable to the signal wavelength.
Small-scale PL models attempt to predict the received sig-
nal strength under these circumstances. As the UE moves
away from the BS, the local average received signal strength
decreases, which is what large-scale PL models predict [10].

Depending on the modelling approach, PL models can
be also classified as either deterministic or empirical; while
deterministic PL models are derived from the electromag-
netic theory (e.g.,Maxwell equations), empirical models are
obtained by curve fitting from extensive DT signal strength
measurements. The deterministic models may apply to var-
ious scenarios, by taking into account the reflection and
diffraction laws in the PL prediction; therefore, they tend
to achieve higher accuracies in the PL prediction than other
modeling approaches. However, they have high computa-
tional complexity (e.g., require Ray Tracing (RT) or Ray
Launching (RL) techniques) and usually demand precise
3-Dimensional (3D) environment information. On the con-
trary, empirical PL models are mathematically tractable and
do not require 3D environment data, despite tending to exhibit
lower PL prediction accuracy than the deterministic counter-
part [11].Moreover, as empirical models consider all environ-
mental impacts subjacent on the signal measurements of the
respective area, they have higher accuracy in environments
similar to the original measurements area [12].

For radio coverage estimation in large areas, empirical
models are preferred due to their computational efficiency.
The empirical PL models are mostly based on the Alpha-
Beta-Gamma (ABG) or the Close In (CI) equations. The
PL ABG equation, also known as Floating Intercept (FI),
is dependent on the frequency and on the distance, according
to [13]:

PLABG(fc, d3D)=10α log10(d3D)+β+10γ log10(fc)+χ
ABG
σ

(1)

where α and γ are coefficients denoting the dependence of
PL on distance and frequency, respectively, whereas β is an
optimized offset value. The variable d3D is the 3D distance
between the BS and the UE in meters, fc is the carrier fre-
quency inGHz, andχABGσ is a zero-meanGaussian distributed
random variable with a standard deviation σ , describing the
Shadow Fading (SF) signal fluctuations. The coefficients α,

β and γ are obtained directly from real signal measurement
campaigns, fitting (1) to the measured data.

The CI PL equation is given by [13]:

PLCI(fc, d3D) = FSPL(fc, 1 m)+ 10n log10(d3D)+χ
CI
σ (2)

where n is the Path Loss Exponent (PLE), and the only
parameter that can be used for the model calibration, the
FSPL(fc, 1 m) is the Free Space Path Loss (FSPL) at a BS-UE
separation of 1 m and carrier frequency fc in GHz, and
χCI
σ is a zero-meanGaussian distributed random variable with

a standard deviation σ (SF).
The 3GPP TR 38.901 model [14] is an example of a ABG-

based PL model. Its latest version is valid for a wide range of
carrier frequencies (fc), ranging from 0.5 GHz to 100 GHz
(including the entire 5th Generation (5G) spectrum), and
for a limited number of propagation scenarios [15]. This
PL model separates Line-of-Sight (LoS) from Non-Line-of-
Sight (NLoS) propagation, with specific PL equations and
parameters for each propagation condition. Moreover, it con-
siders additional variables, such as the BS and UE heights.

Many other empirical PL models are available in the liter-
ature, from the more classical models to the new 5G com-
pliant models. Examples of the more classical PL models
include the Okumura-Hata model [16] or the Lee model [12],
while the Millimetre-Wave Based Mobile Radio Access
Network for Fifth Generation Integrated Communications
(mmMAGIC) [17] or the NYUSIM [18] are PLmodels devel-
oped for the 5G.

B. SATELLITE-BASED PATH LOSS MODELS
The incorporation of satellite images in radio propagation
modeling has been gradually proposed in the last years, fueled
by advances in the computer vision field. In [19], the authors
proposed the use of satellite images to predict radio channel
parameters (PLE and SF) for a given area. The data used to
train the model was supported by a deterministic PL model
for an Unmanned Aerial Vehicle (UAV) scenario (with a
transmitter antenna height of 300 m and a carrier frequency
of 900 MHz). Accuracies of 88% and 75% in predicting the
PLE and SF, respectively, were reported. The authors pro-
posed the use of pre-trained Convolutional Neural Networks
(CNNs), despite being pre-trained on an image dataset very
distinct from satellite images, composed of objects, animals,
vehicles, and others [20].

In [21], the authors proposed a CNN-based deep learning
model for PL estimation using images with building foot-
prints. The PLmeasurements to train themodel were obtained
using a deterministic PL model, considering a 900 MHz
frequency and an antenna height of 35 m. After training
the model, a Mean Square Error (MSE) of 19.52 dB was
reported between the ground truth (using the deterministic
PL model) and the predicted PL. The authors reported that
the proposed model could adapt to modified environments;
however, no results have been presented to support that claim.

In [22], a deep learning model that also considers satel-
lite images as input was proposed to estimate LTE signal
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metrics namely, Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), and Signal-to-
Interference plus Noise Ratio (SINR). The model was devel-
oped with real signal measurements, limited to three BSs,
and was composed of a CNN to process the image data,
and a Neural Network (NN) to process the radio propagation
variables (e.g., distance between the UE and the BS). For each
training signal measurement, a satellite image (centered on
the UE location) is required. The authors reported a MSE
of 7.7 dB between measured RSRP and the proposed model
predictions. The authors evaluated the generalization perfor-
mance of the proposed model by considering training and
testing data, but both datasets resulted from the same signal
measurements distribution and same locations.

In [23], the authors proposed the use of satellite images
to estimate PL with a deep learning model. The model was
composed of the 3GPP Urban Macro (UMa) PL model and
a correction term generated by a DNN. The DNN contains
a CNN to extract features from satellite images, a NN to
process radio propagation variables, and a final NN that
estimates the PL given the features learned by the previous
two modules. The proposed model was trained and evaluated
using real LTE PL measurements from three BSs and two
distinct carrier frequencies. The authors demonstrated that the
use of satellite images provided a reduction of 0.8 dB on the
RMSE considering the ground truth PL and the model predic-
tions. Nonetheless, the limited amount of data prevented to
derive considerations about the generalization capacity of the
model. In [24], the same authors expanded the results of [23]
(with some model adjustments) by considering a dataset
containing 125000 PL measurements from five distinct envi-
ronments, allowing to further evaluate the generalization
capabilities of the model. The authors reported a prediction
RMSE of around 6 dB for unseen locations. However, in the
latter work, the proposed DNN model was used to estimate
RSRP and not PL.

Overall, the proposed PL models use CNNs to extract
features from images. Transfer learning has been applied
in [19], but most PL models were trained end-to-end (where
a model learns all the parameters of the different mod-
ules simultaneously) [21]–[24]. PL models considering only
images as input have been proposed in [19], [21], [25],
along with mix approaches considering both image-
based features and already known radio propagation
variables [22]–[24]. Moreover, in several contribut-
ions [22]–[24], real signal measurements were used to
develop the propagation models. Nevertheless, the used mea-
surements tend to be limited in number and type of envi-
ronment, limiting the generalization analysis of the proposed
models.

This work proposes a new DNN-based PL model using
both satellite images and radio propagation variables as input,
where the satellite images are used as a complementary data
source to increase PL prediction accuracy. The proposed
model uses pretraining to enhance its geographical general-
ization capabilities but, instead of transfer learning, it uses a

self-supervised paradigm, which has demonstrated promis-
ing results on several applications [26]. To the best of the
author’s knowledge, this work constitutes the first applica-
tion of self-supervised learning to data-driven PL models.
Moreover, this work is supported by data from a live network
with extensive PLmeasurements obtained frommultiple BSs,
in distinct radio propagation environments. Related work
has been generally supported by simulated data or limited
measurements, restricted to the same geographical area. Fur-
thermore, this work analyzes the geographical generalization
capability of data-driven PL models, a topic that has received
limited contributions in the related literature, culminating
with the proposal of a PL model with enhanced geographical
generalization capability.

III. SATELLITE AND DRIVE TEST DATA
In this section, the data that supported the development of
this work is presented, comprising the description of the
used satellite data and the procedures to obtain the PL from
DT measurements.

A. SATELLITE DATA
In this work, the used satellite images cover an area
of 194 km2, encompassing a mix of urban/suburban envi-
ronments, along with some areas dominated by vegetation
and trees (see Fig. 1). The images were stored in Geospatial
Tagged Image File Format (GeoTIFF) format files, being
already georeferenced with the same coordinate system used
in the DT data, have a pixel resolution of 5m× 5m (after sub-
sampling), corresponding to Visible Satellite Images (VSIs)
with three bands, setting the Red, Green, Blue (RGB) color
information, and were cropped with a size of 2 km × 2 km.
The reference area, depicted in Fig. 1, contains the geograph-
ical area correspondent to the DT data used throughout this
work.

B. DRIVE TEST DATA
For this work, DT measurements from a live LTE network
were used. The DT data, including coordinates, RSRP, and
Physical Cell Identity (PCI), was obtained from 23 BSs
operating with a carrier frequency of 2.6 GHz. More-
over, a binning approach [27] considering squared areas of
10 m × 10 m (bin) was carried out to preprocess the
DT measurements. Therefore, for each bin, the average value
of the RSRP values and the coordinates for each PCI were
used, resulting in 23936 DT measurements.

Afterwards, the PL of each measurement, MPL, was com-
puted, in dB, as:

MPL|[dB]=PRS|[dBm]+GBS|[dBi]+GUE|[dBi]−RSRP|[dBm]

(3)

where PRS is the Reference Signal (RS) transmitted power in
dBm, and GBS and GUE are the BS and the UE antenna gains
in dBi, respectively. The GBS was computed using the 3GPP
antenna model [14], using the datasheet parameters of the
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FIGURE 1. Reference area including urban and suburban environments
along with some open areas [31].

real antenna: vertical and horizontal Half-Power Beamwidth
(HPBW), Front-To-Back Ratio (FTBR), Side-Lobe Level
(SLL), and the antenna maximum gain.

One of this paper objectives is to evaluate the geographical
generalization capabilities of the PL models, when used in
locations distinct from those where the PL models were
initially calibrated or developed. So, the considered DT mea-
surements were split in three datasets: train, validation, and
generalization. From a central location of the reference area
(cf. Fig. 1), DT measurements from 14 BSs were retrieved
and randomly divided between the training and the valida-
tion sets, using a ratio of 80%/20%. The training set (with
11293 measurements) was used to calibrate the PL models
and to develop data-driven approaches using ML algorithms,
namely, Linear Regression (LR), Support Vector Regression
(SVR) [28], Random Forest Regression (RFR) [29], and
Light Gradient Boosting Machine (LightGBM) [30] regres-
sion. While the LR provides a linear model similar to the
structure of the widely used ABG PL model, the remaining
allow for exploring non-linear and more complex regression
models. The validation set (2824 measurements) was used
to evaluate the PL models’ accuracy on similar conditions
to the training data. Finally, the generalization set contains
9819 DT measurements from nine BSs, from other locations.
The generalization dataset is used to evaluate the PL models’
accuracy when applied to locations distinct from the training
ones, providing insights into the location dependability of a
PL model. The three datasets are represented geographically
in Fig. 2.

The PL measurements for the train, validation, and gen-
eralization sets are depicted in Fig. 3 as a function of the
3D distance between the BS and the UE. Besides, this figure
also presents the normalized histogram of the 3D distance
(on the upper part of the figure) and of the PL variable
(on the right side of the figure). Individually, the histograms

FIGURE 2. Geographical disposition of the train, validation, and
generalization DT datasets (based on [31]).

FIGURE 3. Train, validation, and generalization PL measurements as a
function of the 3D distance between the BS and the UE.

of the PL values and of the 3D distances are similar for
train, validation, and generalization. Moreover, the PL dis-
persion becomes more evident when evaluating the PL as
a function of the 3D distance, i.e., for a fixed distance the
PL can vary substantially, which is a consequence of the
distinct environments and the different radio link conditions
(e.g., LoS or NLoS). Note that the 3D distance information
was not present on the measurements dataset but calculated
using the the BS and measurement point coordinates, includ-
ing terrain elevation at the respective positions.

IV. SELF-SUPERVISED LEARNING WITH SATELLITE DATA
The development of realistic PL models is influenced by the
quality and quantity of PL measurements, as a low num-
ber of measurements may fail to properly enclose all the
radio propagation mechanisms or adequately characterize the
radio environment. However, extensive PL measurements are
not always available, limiting the accuracy of the developed
model. Considering deep learning PLmodels that use satellite
images as input, if the PL measurements are limited to a few
and homogeneous geographical locations, the correspond-
ing satellite images tend to be similar, which is undesirable
towards developing models with geographical generaliza-
tion capacities. With limited data, a deep learning model
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can easily overfit to the particularities of the used satellite
images and to the specific environment corresponding to the
PL measurements area. Therefore, this work proposes to split
the problem of PL prediction into two parts: firstly, learn
effective representations of the radio environment from satel-
lite images (without supervision), regardless of representing
areas with or without PL measurements; secondly, use them
with the PL measurements to train the PL model. With this,
the generalization capability of a PL model is expected to be
enhanced.

This section starts by providing a background on represen-
tation learning and CNNs. Representation learning is used in
this work to develop DNNs to extract features from satellite
images, and CNNs are the prime NN architecture to handle
images as data inputs. Then, the self-supervised methodology
(a particular representation learning approach) used in this
work is presented. Finally, the self-supervised methodology
is applied to the satellite data described in section III-A.

A. BACKGROUND
Nowadays, the volumes of produced data are ever increasing,
making the manual task of extracting valuable information
a huge challenge. An alternative is to automatically extract
features from the raw data, for which representation learning
has been used successfully throughout the years, particularly
in computer vision tasks. The goal of representation learning
is to extract a set of general representation features that can be
used to increase the performance of downstream tasks, such
as data regression [32].

1) SELF-SUPERVISED REPRESENTATION LEARNING
The use of pre-trained models is common in the computer
vision field; these are trained for specific tasks in large
datasets (e.g., ImageNet [20]) and fine-tuned to new tasks.
Firstly, the NN parameters learned from large datasets pro-
vide a good initialization of the NN, allowing a faster conver-
gence. Secondly, the hierarchical NN features learned from
models using large datasets can prevent overfitting, particu-
larly if the final task has a small dataset.

However, large-scale datasets are expensive and time-
consuming when labeling is required, and many problems
do not have large enough datasets. This problem is mitigated
with self-supervised methods that learn visual features from
unlabeled images. Generally, a transformation (e.g., an image
rotation) is applied to the unlabeled images and a NN is
trained to predict the properties of the transformation. These
transformations are known as pretext tasks [33]. Thus, the
NN is trained by learning the objective function of the pre-
text tasks, and new feature representations are discovered in
this process. The learned NN parameters associated with the
feature representations are carried to other tasks, typically
supervised ones, where the available data might be more
limited [34].

In self-supervised learning, several pretext tasks have been
proposed, designed so that features of the training images
have to be captured by a CNN to solve the pretext tasks.

FIGURE 4. Two-layer residual block [36].

At the same time, the pretext task generates a label for
each image, according to the applied transformation, mak-
ing this a supervised problem. According to the taxonomy
proposed in [34], pretext tasks can be classified as generation-
based, context-based, free semantic label-based, and cross-
modal-based. The pretext tasks belonging to the class of
generation-based involve image or video generation, forcing
the learned features to be relevant for this purpose. Context-
based tasks require the learned features to describe context
similarity between images, the spatial structure within an
image, or the temporal structure for video data, besides oth-
ers. The free semantic label-based tasks require the automatic
generation of semantic labels to train the NN. Finally, cross-
modal-based tasks intend to train the NN by verifying if
two different input data channels correspond to each other
(e.g., video and audio correspondence) [34].

2) CONVOLUTIONAL NEURAL NETWORKS
CNNs have been used in most of computer vision tasks,
such as semantic segmentation, object detection, or image
classification, achieving state-of-the-art results. This success
is tightly associated with the CNNs architecture, which has
several advantages over other deep learning architectures,
such as the use of local connections [35].

In this work, a particular CNN architecture was used: the
ResNet [36]. Its architecture addresses some of the problems
associatedwith deeper NNs (e.g., gradient vanishing) with the
introduction of residual connections, as depicted in Fig. 4;
these connections, represented by the identity shortcut con-
nection in Fig. 4, propagates the input of a given layer, X ,
to subsequent layers, which helps the training process of
deeper networks, leading to more accurate models. The out-
put of a residual block is the sum of theweight layersmapping
function, F(X ), and the respective input, X .

The ResNet architecture has been widely used in several
computer vision tasks, and multiple ResNet-based architec-
tures have been proposed (e.g., [37]). In addition, a recent
work [38] demonstrated that the original work of the ResNet
matches recent state-of-the-art models when using advanced
training and scaling methodologies. Therefore, in this work a
ResNet architecture —the ResNet50 [36]— was selected to
develop the CNN for processing the satellite images.

The ResNet50 is composed of a total of 48 convolu-
tion layers, one max-pooling layer, and one average pooling
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layer. This particular architecture exploits the benefits of
deeper architectures without being too computational com-
plex. The ResNet50 implementation provided in [39] was
used.

B. SELF-SUPERVISED MODEL
Several self-supervised learning models have been proposed
in the recent literature, most requiring a pretext task to be
solved. Within the scope of this paper, the image repre-
sentations of the radio environment, learned from satellite
images, should be relevant to discern the several factors that
influence radio PL. Such factors are the existence (or not) of
obstructions (e.g., buildings), areas with vegetation, the width
of the streets, among others.

According to the pretext task taxonomy provided in [34],
the context-based is the most appropriate group of pretext
tasks for this work. These can be set for the CNN to predict
the relative positions of two patches from the same image,
as in [40]. Another pretext task is to predict the rotation
angle applied to an image or to recognize the correct order
of a sequence of shuffled patches from the same image,
also known as puzzle tasks [41], [42]. To accomplish these
pretext tasks, CNNs need to learn spatial context information,
such as the shape of the objects and the relative positions of
different parts of an object [34]. However, a recently proposed
methodology for self-supervised learning, called as Bootstrap
Your Own Latent (BYOL) [43], has achieved exciting results,
outperforming previous models. The main goal of BYOL is
to learn image representations that can then be used for down-
stream tasks, which in the scope of this work is to develop a
model for predicting radio path loss. The BYOL architecture
includes two NNs, the online and target networks, as depicted
in Fig. 5.

The BYOL uses image augmentation to produce two addi-
tional views from the original image; by applying random
transformations to the input images (e.g., color transforma-
tions) it enriches the training data, reduces overfitting, and
improves the model generalization [44]. BYOL considers the
following transformations for augmenting images: random
cropping, left-right flip, color jittering, color dropping, Gaus-
sian blurring, and solarization [43]; then, each additional view
is used as input to the online and target networks. While
the online network is constituted by an encoder, a projector,
and a predictor, the target network contains an encoder and
a projector (see Fig. 5). In the original work, the encoder
is implemented using a ResNet network (other architectures
can be used), and the projectors and the predictor are imple-
mented using Multi-Layer Perceptrons (MLPs). The over-
all network is trained to minimize the MSE loss between
the normalized predictions of the online network (qθ (zθ ))
and the target network projections (z′ξ ); the weights of the
target network result from an exponential moving average
of the weights of the online network. After training the
global network, the encoder from the online network can
be used to generate image representations in downstream
tasks.

FIGURE 5. BYOL architecture (adapted from [43]).

FIGURE 6. Example of a satellite image used for training, corresponding
to an area of 2 km × 2 km [31].

C. SATELLITE SELF-SUPERVISED LEARNING
In the following, the ResNet50 architecture was used as the
encoder for the BYOL self-supervised learning approach,
considering the reference area described in section III-A.
Therefore, 500 images, with a resolution of 400 × 400 pix-
els (each corresponding to an area of 2 km × 2 km) were
randomly cropped from the satellite image of the reference
area. Fig. 6 presents an example of an image used for training.
The BYOL network was trained during 360 epochs, with a
learning rate of 3× 10−4.
Fig. 7 depicts theMSE between the normalized predictions

of the online network and the target network projections, as a
function of the epoch number. From this figure, it can be
stated that, despite some variability, the network training loss
converged.
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FIGURE 7. BYOL training loss by epoch using the satellite images.

The general success of deep learning, and particularly
of CNNs, is achieved at the cost of low interpretability, which
is still an active and open research question. However, a sim-
ple approach to gain intuition about the trained CNNs is to
represent the feature maps of the convolutional layers for a
given input image. A feature map is the output of a single
filter of a convolutional layer.

Fig. 8 depicts four feature maps (from the first convolu-
tional layer), when the image in Fig. 6 is used as input for
the ResNet50 model. Comparing the satellite image with the
four feature maps, it can be concluded that each feature map
represents different information from the original image; it is
also noted that information representing roads, buildings, and
open areas is preserved, which is a valuable information for
the development of a PL model.

In the next section, the trained RestNet50 model is used
to extract features from the satellite images and support the
PL predictions.

V. UBIQUITOUS SATELLITE AIDED RADIO PROPAGATION
This section describes the proposed USARP model for
PL estimation. Firstly, the data inputs of the USARP model
are presented alongside the model base architecture. Then,
the model base architecture is optimized to maximize the
geographical generalization capabilities of the model. The
section ends by presenting the final architecture of the pro-
posed USARP model.

A. USARP INPUTS
The inputs of the USARP model are satellite images, the BS
andUE locations, and variables describing the BS toUE radio
link, namely the 3D distance in logarithmic scale, log10(d3D),
and the radio link effective height, heff, defined as:

heff = (hTBS + hBS)− (hTUE + hUE) (4)

where hBS and hUE are the BS and the UE antenna heights
above ground, respectively, hTBS and hTUE are the terrain
heights above sea level at the location of the BS and the UE,
accordingly.

The inclusion of the satellite images as input of the USARP
model is performed as follows:

FIGURE 8. Example of feature maps from RestNet50 after trained with
the satellite images.

FIGURE 9. Example of an ROI mask with the BS location on the smallest
white circle, the UE location on the center of the largest white circle, and
the area corresponding to the direct link between both ends.

• The satellite images are centered in the BS.
• A ROI mask is produced to identify the BS and UE
locations and the direct radio link region.

• The overlap between the satellite image and the ROI
mask keeps only the areas of the satellite images that are
relevant for the PL prediction: the BS and UE locations,
and the direct radio link region.

The ROI mask works as an attention mechanism, in the
satellite image, retaining the key locations to estimate the PL.
Fig. 9 presents an example of the ROI mask. In the ROI
mask, the radius of the circle identifying the UE location
was defined according to the Delay Spread (DS) of a radio
signal in an UMa environment and the frequency of the DT
measurements (2.6 GHz). According to [14], the DS mean
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(in a logarithmic scale) for LoS radio links in an UMa envi-
ronment is given by:

DSLoS[dB] = −6.955− 0.0963 log10(fc) (5)

where fc is the carrier frequency in GHz. For NLoS radio
links, the DS mean is given by [14]:

DSNLoS[dB] = −6.28− 0.204 log10(fc) (6)

The distribution of DS is further characterized by a standard
deviation of 0.66 for LoS and 0.39 for NLoS [14]. Consid-
ering a reference DS based on one standard deviation from
the mean, that accounts approximately for 68% of the DS
distribution (µDS ± σDS), the corresponding DS distance
is 318m for NLoS and 139m for LoS. Accordingly, the radius
of the circle characterizing the UE locations was defined with
the value of 318 m. The radius of the circle surrounding the
BS location is smaller (empirically defined as half of the
UE circle radius), as the surrounding area of a BS is usually
unobstructed, not conditioning the PL, and therefore has less
impact on the PL than the surrounding of the UE. The direct
link between BS and UE was defined as having a width
of half of the UE circle radius, to identify the existence of
propagation obstacles between the BS and the UE.

The geo-referencing between the DT measurements and
the satellite images, using an ROI mask, is enabled using the
GeoTIFF image format with the same coordinate system as
the DTs measurements [45]. Furthermore, any error associ-
ated with the location of the UE or in the pixel association
is mitigated, as the ROI mask also considers the neighboring
pixels of the UE, as previously described.

Overall, the training of the USARP model requires
DTmeasurements (see Section III-B) and the respective satel-
lite image data. Firstly, satellite images centered on a BS
location were generated for each BS reported in the DT data
(see Fig. 6 as an example of such images); then, the ROI
masks were created for each pair of BS and UE locations
(see Fig. 9).

B. USARP BASE ARCHITECTURE
This section presents the base architecture of the USARP
model and explains how its inputs (satellite image, ROImask,
and radio link variables) are considered.

Fig. 10 depicts the base architecture of the USARP model,
which was inspired in [46], where the author presented a filter
approach for focusing the attention of CNNs on an ROI. The
ROI Filter implementation corresponds to an element-wise
multiplication between the feature maps resulting from the
convolution applied to the satellite image and the ROI mask.
This process acts as a hard attentionmechanism by discarding
the image features that do not belong to the respective ROI.
Moreover, after the element-wise multiplication of the satel-
lite image by the ROI mask, the resulting image is rotated so
that the UE is at zero degrees relatively to the north direction.
Thus, the USARP model is invariant to the direction between
the BS and the UE. Furthermore, the image is cropped to

FIGURE 10. Base architecture of the USARP model for PL predictions
using satellite images.

FIGURE 11. Example of the output of the ROI Filter layer.

enclose the ROI mask. Fig. 11 presents an example of the
output of the ROI Filter layer.

After, the CNN (ResNet50), trained using the self-
supervised learning approach (as described in section IV-C),
is used to extract features from the ROI Filter output. The vec-
tor of features resulting from the ResNet50, and the radio link
variables (log10(d3D) and heff), are then concatenated. At this
point, the resulting feature vector is the input of an MLP
network composed of three Single-Layer Perceptrons (SLPs).
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Each SLP includes a batch normalization and a non-linear
activation (Parametric Rectified Linear Unit (PReLU)). The
output of the last layer is the PL prediction at the UE position.

C. USARP ARCHITECTURE OPTIMIZATION
In this section, the base architecture of the USARP model
(cf. Fig. 10) was optimized, with the goal of developing a
PLmodel able to generalize to data distributions distinct from
the training data distribution. Accordingly, the contributions
of the radio link variables, log10(d3D) and heff, and the satel-
lite images were evaluated by applying some modifications
to the base architecture of the USARP model, namely the
following:
• The addition of a linear layer that outputs the PL based
on the radio link variables and on the features extracted
from the satellite images.

• The disabling of the ResNet50 parameters update during
training.

• The removal of the convolutional layer having the satel-
lite images as input.

The proposedmodifications were evaluated using the train-
ing dataset for training purposes, and the validation and
generalization datasets to measure the ability of each mod-
ification to generalize to new data distributions. For the
PL predictions assessment, three error metrics were used,
namely the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), and the Explained Variation Score
(EVS). The PL prediction error vector is defined as:

e = MPL − M̂PL (7)

where MPL, and M̂PL are, respectively, the PL ground truth
vector and the predicted PL vector. The MAE and RMSE
metrics are computed as:

MAE =
1
N

N−1∑
i=0

|ei| (8)

RMSE =

√√√√ 1
N

N−1∑
i=0

e2i (9)

where ei is the i-th element of e and N is the length of e.
The EVS, which measures the proportion of variation

accounted for in a given set of predictions, is computed
according to:

EVS = 1−
Var(e)

Var(MPL)
(10)

where Var(.) is the variance function.
All experiments were conducted using fixed training

parameters: 50 epochs, a learning rate of 0.5, a batch size
of 20, and the MSE as loss function. Also, the model param-
eters corresponding to the epoch with the lowest validation
error were retained for comparison.

The addition of a final linear layer, which acts as a simple
linear regression, to predict the PL based on the radio link

FIGURE 12. PL RMSE of the base architecture and the modified
architecture (with the addition of the SLP 4) in the training, validation,
and generalization datasets.

variables and the satellite-based features, enforces two con-
straints: the independency between the contributions of the
radio link variables and the satellite-based features, to the PL
prediction; the linear dependence of the predicted PL from
the radio link variables. These constraints, known to be valid
according to the FSPL theory, were not guaranteed in the
base architecture. Nonetheless, in related works [23], [24],
radio link variables and image-based variables are commonly
concatenated before using a NN to estimate the PL. The final
linear layer modification corresponds to the introduction of
SLP 4 having, as input, the output of SLP 3 and the radio link
variables.

The initial and modified architectures were compared
using the RMSE between the PL ground truth and the respec-
tive PL predictions for each dataset (cf. Fig. 12), allowing to
conclude that even without optimizing the training param-
eters, the modified architecture (using the SLP 4) achieves
a lower error than the base one (without SLP 4). Thus, the
modified architecture with the addition of a final linear layer
is more efficient in solving the PL prediction problem.

The second modification to the base architecture was to
disable the update of the ResNet50 parameters during train-
ing. Particularly in the computer vision domain, DNNmodels
are commonly trained in one initial task before fine-tuning
them into a second task, which is known as transfer learn-
ing [47]. In this work, the ResNet50 model was initially
trained with extensive satellite images using self-supervised
learning (cf. Section IV-C) before being integrated into the
USARP model architecture. However, in the PL prediction
problem, the images used in the self-supervised stage and
the PL prediction stage are from the same source, contrary
to typical transfer learning scenarios. Therefore, updating the
ResNet50 parameters during the USARP model training may
limit the range of radio environment representations already
learned. Accordingly, the update of ResNet50 parameters
was disable during the training to assess its impact on the
generalization performance.
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Finally, the impact of removing the convolutional layer that
directly processes the satellite images was also evaluated, as it
could be leading to overfitting by over-represent environment
properties already included on the training data.

The error metrics of the validation and generalization
datasets, for the studied architecture elements, are presented
in Table 2; the first and the second rows of this table cor-
respond, respectively, to the base architecture and to the
addition of a final linear layer (SLP 4). All error metrics show
that the modified architecture achieves a better generalization
than the base one; therefore, it is more representative of the
PL prediction problem.

The third row of Table 2 shows the errors obtained by
disabling the update of the ResNet50 parameters during train-
ing (but keeping the newly added SLP 4). Although the
performance on the validation set decreases, it increases on
the generalization set. So, the use of the ResNet50 with the
parameters learned with the BYOL algorithm, as opposed to
allowing them to be updated contributes tomitigating satellite
image overfitting, resulting in lower generalization errors.
The use of a self-supervised algorithm, as the BYOL, enables
the incorporation of a wider variety of satellite images, as the
existence of DT measurements for the respective areas of the
satellite images is not required. Therefore, more representa-
tions of radio environments are learned, and the generaliza-
tion capabilities of the USARP model are increased.

Finally, the last row of Table 2 corresponds to an architec-
ture without the convolution layer that precedes the ROI Filter
layer (cf. Fig. 10), but retaining the previous architectural
modifications. This architecture achieves the highest perfor-
mance in the generalization dataset in all metrics. As before,
the higher generalization performance is achieved by degrad-
ing the validation performance.

Overall, having the radio link variables as input of the last
SLP, disabling the update of the ResNet50 parameters during
training, and removing the convolutional layer preceding the
ROI Filter layer, leads to the highest generalization.

D. USARP MODEL
This section starts by defining the final architecture of the
USARP model based on the previous analysis. Then, the
hyperparameters of the USARP model are optimized, and
regularization methods to further improve the generalization
capacity of the proposed model are introduced.

1) FINAL ARCHITECTURE
The architecture analysis presented in Section V-C is
reflected on the final USARP model architecture depicted
in Fig. 13. Comparing the final architecture with the base
architecture (see Fig. 10), the initial convolution layer was
removed, as discussed. The ResNet50 produces an output
vector with a dimension of 2048, but the three SLPs allow
to reduce its dimension. Each SLP includes a batch nor-
malization layer and a PReLU activation. The SLP 4 was
added to the base architecture, to enforce the linear associ-
ation between the radio link variables and the predicted PL.

TABLE 2. Prediction error metrics for the modified architectures of the
USARP model in the validation and generalization datasets.

FIGURE 13. Proposed architecture for the USARP model using satellite
images.

Formally, the PL predictions of the USARP model, obtained
by the SLP 4, can be decomposed as:

PLUSARP(x, r, s) = f1(x, r)+ f2(s) (11)

where x ∈ {0, . . . , 255}3×M×N is an RGB satellite image
with a dimension ofM ×N pixels, r ∈ {0, 1}M×N is a binary
image representing the ROI mask, and s ∈ R2 is a vector
containing the distance and the effective height of the radio
link. Functions f1(x, r) and f2(s) represent the independent
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contributions to the PL predictions of the image-based inputs,
(x, r), and the radio link variables, (s), respectively.

According to the proposed architecture in Fig. 13, f1(x, r)
is implemented by the ROI Filter layer, the ResNet50,
SLPs 1, 2, and 3, and the nodes of the SLP 4 that process the
SLP 3 output. Similarly, f2(s) is implemented by the nodes
of the SLP 4 that process the radio link variables and the
bias term of the SLP 4. The PL dependence on the radio link
variables, f2(s), is computed by:

f2(s) = ω0 +

2∑
i=1

ωisi (12)

where ω ∈ RP+3 is a vector with the SLP 4 parameters
and P is an hyperparameter of the USARP model indicating
the number of output nodes in the SLP 3. Therefore, f2(s)
follows the structure of the widely used ABG PL model.
The PL dependence on the image-based variables, f1(x, r),
is calculated as part of the SLP 4, as follows:

f1(x, r) =
P+2∑
i=3

ωif4(f3(T (x � s)))i (13)

where T (.) rotates the input image [39], aligning the BS
and UE locations vertically (the BS location is always cen-
tered in the satellite image), f3(.) ∈ R2048 is the output of
ResNet50 according to the implementation [39] used in this
work, f4(.) ∈ RP is the output of the MLP (composed of
SLP 1, SLP 2, and SLP 3), and� is the element-wise product
operator. Additionally, each SLP is given by:

SLPj = g(BN(W juj + bj)), j ∈ {1, 2, 3} (14)

where g(.) is the PReLU activation, BN (.) is the batch nor-
malization function, W j is the j-th layer parameter vector, uj
is the j-th layer input vector, and bj is the bias parameter of
the j-th layer. Finally, BN(.) is given by (for a batchB) [48]:

BN(u′) = γ �
u′ − µB

σB
+ β (15)

where γ and β are the scale and the shift parameters (learned
during training), µB is the sample mean, and σB is the
sample standard deviation of batchB, for u′ ∈ B.

2) REGULARIZATION AND HYPERPARAMETER TUNING
DNNs can approximate very complex functions due to their
large number of parameters and expressiveness. However,
they can easily overfit and provide poor generalization.
Therefore, regularization techniques have been proposed; one
of such techniques is the use of dropout during the DNN
training [49]. The dropout consists of randomly ignoring
nodes during the DNN training, which prevents single neu-
rons from becoming too specialized, and neighboring neurons
too dependent on each other. In the USARP architecture, the
dropout was applied to the SLPs 1, 2, and 3.

Another regularization technique, widely used even before
DNNs, is the L2 regularization [50]; it adds a penalty to the
loss function, which penalizes the magnitude of the learned

TABLE 3. Hyperparameter search space for the USARP model.

model parameters. The loss function, L(w), of the USARP
model, is given by:

L(w) =
1
N
(MPL − u4w)2 (16)

where N is the number of PL measurements, MPL is the
measured PL, and u4 is the input of the SLP 4. Further, the
L2 regularization penalty, Lreg(w), is computed only for
the parameters corresponding to the output features
of SLP 3:

Lreg(w) = λ

√√√√P+2∑
i=3

w2
i (17)

where λ is the regularization rate. The rationale is that no
overfitting would be associated with the radio link variables
but possibly to the image-based variables. Thus, the total
training loss is given by:

L̃(w) = L(w)+ Lreg(w). (18)

Then, a set of hyperparameters of the USARP model
were optimized, namely the number of the output nodes of
the SLP 3, the dropout probability, the regularization rate,
the learning rate, and the number of epochs. The number
of output nodes of the SLP 3 represents the final num-
ber of image-based features to estimate the PL (first row
of Table 3). The dropout probability establishes the proba-
bility of ignoring network nodes during training, while the
regularization rate, λ, (see (17)) enforces the magnitude of
the L2 regularization penalty. Then, the learning rate and the
number of epochs governs the network training process.

For the optimization of hyperparameters, an open-source
optimization framework, called as Optuna [51], was used.
This optimization framework firstly requires defining the
search space for each hyperparameter, which is presented in
Table 3. The Optuna framework allows the use of various
sampling methods for the defined search space. In this work,
the Tree-structured Parzen Estimator (TPE) sampling method
was used [52], which efficiently explores the hyperparameter
search space towards the optimal configuration; also 200 tri-
als (iterations searching the optimal configuration) were con-
ducted. The resulting best hyperparameter configuration is
presented in Table 4.

VI. RESULTS
This section starts with the performance assessment of sev-
eral empirical PL models (considered as benchmark), on the
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TABLE 4. Optimal hyperparameter values for the USARP model.

validation and generalization datasets, establishing the base-
line performance for the remainder of the section. Then, the
performance of the USARPmodel is presented and compared
with the baseline approaches. Finally, the results of ablations
studies performed on the USARP model are analysed.

A. BENCHMARK MODELS
The DT train dataset, presented in section III-B, was used
to train data-centric PL models, while the DT validation
dataset measures the respective PL prediction performance.
Additionally, the DT generalization dataset (see Fig. 2) was
used to estimate the PL models’ performance in distinct
environments (but still similar to the training environments).

Firstly, to gauge the performance of non-calibrated empir-
ical PL models, the 3GPP TR 38.901 model [14] was used
to estimate the PL corresponding to the locations of the DT
validation data. This model has distinct equations for LoS and
NLoS, requiring the classification of each of the considered
DT measurements accordingly. The LoS classification was
performed deterministically, using terrain and 3D building
information [53]. Afterwards, the 3GPP model was applied,
and an RMSE of 20.96 dB was obtained, which is within the
values reported in [8]. The 3D building data was limited to
the train and validation areas, preventing an evaluation of the
3GPP PL model on the locations of the generalization DT
data. Nonetheless, the generalization RMSE of the 3GPP PL
model is expected to be within the same order of magnitude
of the RMSE obtained for the validation dataset, taking into
account the similarities of the radio environment.

Secondly, four ML regression-based algorithms were con-
sidered to develop data-driven PL models based on the
DT training dataset: LR, SVR [28], RFR [29], and Light-
GBM [30] regression. These algorithms have, as input, the
3D distance between the BS and the UE locations in loga-
rithimic scale, log10(d3D), and the BS effective height, heff
(cf. (4)). Each regression algorithm predicts the PL, M̂PL,
as a function of the 3D distance and effective height:

M̂PL = f (log10(d3D), heff) (19)

The four data-driven PL models were developed according to
the methodology presented in [8].

The overall PL prediction performance of the 3GPP and
the data-driven PL models is presented in Table 5, using the
error metrics from section V-C in the validation (Val) and the
generalization (Gen) datasets. This table shows that, for
the validation dataset, all the data-driven PL models outper-
form the 3GPP PL model, in all error metrics. Considering

TABLE 5. The 3GPP and data-driven PL models’ performance for the
validation and the generalization datasets.

FIGURE 14. PL RMSE of the linear regression and data-driven PL models
in the validation and the generalization datasets.

the validation dataset, the LightGBM-based model achieves
the lowest RMSE, and the highest EVS, while the SVR-
basedmodel attain the lowestMAE.Notably, although the LR
model obtained the highest prediction errors on the validation
dataset, it showed the best performance on the generalization
dataset. The LR, which is mathematically similar to the ABG
equation that supports most empirical PL models, demon-
strates identical performance on the validation and on the
generalization datasets. Additionally, the non-linear regres-
sion algorithms (SVR, RFR, and LightGBM) have a signif-
icant performance degradation between the validation and
generalization datasets. This comparison is further depicted
in Fig. 14 for the RMSE metric. This figure shows that
the performance of the data-driven models on the validation
dataset is higher than the performance obtained when new
data distributions are used. Therefore, unless the trained PL
model is intended for making PL predictions on the same area
of the training data, LR is preferable over the ML regression
algorithms.

B. USARP MODEL
The USARP model was trained using the hyperparame-
ters from Table 4. The resulting performance is presented
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in Table 6, showing that this model surpasses the performance
of all baseline models, in all metrics and datasets. Notably,
it improves the generalization performance in all metrics
relatively to the best baselinemodel, corresponding to the LR.

Fig. 15 allows a direct comparison between the considered
models in terms of the resulting RMSE of the PL predic-
tions. It can be stated that the LR still presents the low-
est performance degradation between the validation and the
generalization datasets. However, the superior expressiveness
of the USARP model allows that even with a higher per-
formance degradation (validation to generalization datasets),
it still overcomes the LR by almost 1 dB difference in terms
of RMSE.

In Fig. 16, the PL predictions of the USARP model are
compared with the DT PL measurements, for the generaliza-
tion dataset; the diagonal red line represents the predictions
of an ideal model. From that reference, it can be stated that
the USARP model follows the tendency of the measured PL.
Also, the PL predictions between 110 dB and 140 dB demon-
strate a higher standard deviation, possibly due to the higher
volume of PL measurements in that range. Nonetheless, the
USARP PL predictions are balanced between overestimat-
ing and underestimating the observed PL; the average error
between the predicted and the measured PL is -0.01 dB, and
the median error is 0.19 dB.

Although the PL measurements used in this work and in
other related works are naturally distinct and from differ-
ent experimental areas, it is still valuable to compare the
order of magnitude of the attained PL prediction accuracy
without failing to describe the data measurements setup. But
more importantly, the adopted methodologies should be com-
pared. For instance, in [21], the authors obtained an RMSE
of 4.42 dB between ground truth PL values and the proposed
model predictions, a CNN-based model using images with
buildings footprints. However, the prediction error was esti-
mated based on PL values obtained by a deterministic PL
model, which could lead to a different performance when
using real PL measurements. Furthermore, the generalization
of the model has not been evaluated. In addition, the pro-
posed model requires one image per PL prediction, while the
USARP model requires only one satellite image per BS to
make the PL predictions.

In [23], a satellite-based DNN PL model achieved an
RMSE around 4 dB using a dataset of real PL measure-
ments on the 2600 MHz band; these measurements were
obtained from a single propagation environment (an univer-
sity campus) using three BSs. The authors also reported an
RMSE around 8.5 dB between the 3GPP TR 38.901 model
predictions and the PL measurements. This error analysis
resulted from PL measurements geographically adjacent to
the training data. Therefore, considering the validation set
used for the USARP model development, the 3GPP TR
38.901 and the USARP obtained an RMSE of 20.96 dB and
10.71 dB, respectively. The model proposed in [23] and the
USARP model reduce the 3GPP model RMSE to approx-
imately half of its error, even though the model proposed

TABLE 6. The USARP model PL error metrics in the validation and the
generalization DT data.

FIGURE 15. PL RMSE of the linear regression, data-driven, and USARP PL
models in the validation and the generalization datasets.

FIGURE 16. PL measurements as a function of the USARP model PL
predictions in the generalization dataset.

in [23] was trained end-to-end specifically in a single (and
very particular) environment. On the contrary, the USARP
model was developed in urban and suburban environments
and preconized the generalization, over validation, accuracy.

C. USARP ABLATION STUDIES
This section applies ablation studies to evaluate the contri-
bution of each input type, within the USARP architecture,
to the PL prediction. First, the satellite images were replaced
by matrices with all elements set to zero and with the same
dimensions as the satellite images; secondly, the ROI mask
images were replaced by matrices of the same size, filled
with ones, and, finally, the radio link variables were set to
zero. The corresponding PL performance in the validation
and generalization datasets, for each ablation, is presented
in Table 7.
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When the ablation of the satellite image is applied, it also
blocks the information flow from the ROI mask. Thus,
in practice, the ablation of the satellite image corresponds to
only use the radio link variables as input. Comparing with the
regular USARP model, the satellite-based inputs improve the
RMSE of the PL predictions by more than 2 dB on the vali-
dation dataset, and around 1 dB in the generalization dataset.
The remaining error metrics report a similar behavior, where
the satellite-based inputs contribute with higher performance
gains in the validation dataset than in the generalization
dataset. Moreover, an RMSE gain of 1.03 dB and 3.28 dB
is obtained for the generalization and validation datasets,
respectively. In [23], the authors reported gains of just 0.8 dB
for the RMSE, from using satellite images.

In the second ablation, which targeted the ROI mask, all
error metrics are severely affected in both datasets. Thus,
the extraction of relevant information characterizing both
the UE and the BS locations is enhanced by using the
ROI mask.

In the final ablation, the radio link variables were set to
zero. As presented in Table 7, the radio link variables have
the highest contribution to the performance of the USARP
model. It results from the chosen architecture (cf. SLP 4 in
Fig. 13) that incorporates known fundamentals of radio
propagation.

VII. EXTENDING THE USARP MODEL TO MULTIPLE
RADIO ENVIRONMENTS
This section shows the potential of using the USARP model
for the PL prediction in multiple radio propagation environ-
ments. The supporting data —satellite and DT— are firstly
introduced; the main results of the USARP model perfor-
mance evaluation over multiple radio propagation environ-
ments are then presented and analysed.

A. DATA
The ResNet50 CNN used in the USARP model was trained
using the BYOL (as in section IV-C) with 1000 new satellite
images, each one corresponding to a 2 km × 2 km geo-
graphical area. These images were randomly obtained from
previously identified areas, encompassing rural, suburban,
and urban environments to incorporate, in the ResNet50,
representations of distinct radio environments.

Fig. 17 depicts an example of a rural environment satellite
image used in the self-supervised training of the ResNet50,
while Fig. 18 and Fig. 19 depict the suburban and urban areas,
respectively. Afterwards, the ResNet50 was trained during
500 epochs, with a learning rate of 1× 10−3.

The DT data used to extract the PL measurements (as
detailed in section III-B) was obtained from 85 distinct BSs
from different radio propagation environments. Moreover,
onlymeasurements on the 800MHz bandwere contemplated,
as this band is widely selected regardless of the environ-
ment, from rural to urban locations, due to its lower PL.
Fig. 20 exhibits the association between the PL and the 3D
distance of the whole DTmeasurements, and the environment

TABLE 7. PL error metrics of the input ablations for the USARP model in
the validation and generalization datasets.

FIGURE 17. Example of rural satellite image used for the ResNet50
training using the BYOL [31].

FIGURE 18. Example of suburban satellite image used for the ResNet50
training using the BYOL [31].

(rural, suburban, and urban) associated with each PL mea-
surement. This classification was obtained by considering a
conversion of population density to radio environment pro-
vided by [54] and a population density map [55]. Overall,
from a total of 6066 PL measurements, 3275 correspond to
rural, 1300 to suburban, and 1491 to urban locations.
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FIGURE 19. Example of urban satellite image used for the ResNet50
training using the BYOL [31].

FIGURE 20. PL measurements as a function of the 3D distance between
the BS and the UE with radio environment classification.

B. RESULTS
The potential of the USARP model for predicting PL in
multiple radio propagation environments was assessed using
the DT data (presented in the previous section). The DT data
was randomly divided into training and validation datasets
while maintaining the proportion of rural, suburban, and
urban measurements in both datasets. Moreover, the training
dataset accounted for 80% of the PL measurements, and the
validation dataset with the remaining 20%.

The USARP model was trained with the training dataset
using the hyperparameters shown in Table 4, except for the
number of epochs (set to 100). The number of epochs was
increased to obtain broader conclusions about the potential
of the USARP model by evaluating the model performance
along the training iterations.

Fig. 21 depicts the RMSE loss for the training and vali-
dation datasets obtained by the USARP model as a function
of the number of epochs. The training loss of the USARP
model is represented with the blue line, while the orange
line corresponds to the USARP validation error. The training
error gradually decreases as the number of epochs increases,
while the validation loss follows the training loss trend,

FIGURE 21. PL RMSE of the USARP model in the training and validation
datasets, as a function of the epoch number, and the PL RMSE of the
linear regression PL model in the validation dataset.

FIGURE 22. PL MAE and EVS distributions of the USARP model in the
validation dataset and the respective errors of the linear regression in the
same dataset (red lines).

despite exhibiting higher variability. Furthermore, the train-
ing dataset was used as fitting data for a linear regression
algorithm (as in section VI-A), and the error metrics were
calculated on the validation dataset. In Fig. 21, the horizontal
red line corresponds to the validation RMSE obtained by
the linear regression. It may be concluded that only in the
worst cases (particular epochs), the USARP does not provide
a lower error than the linear regression. Overall, the USARP
model reaches higher accuracy in PL predictions and, in the
best case, the difference to the linear regression is substantial,
extending to more than 4 dB for the RMSE. Note that linear
regression was selected for a reference comparison as it is the
baseline model with higher generalization capacity, therefore
the most trustworthy PL model (cf. section VI-A).
The remaining error metrics were also considered to evalu-

ate the USARPmodel. Fig. 22 depicts a box-plot graph repre-
senting theMAE and EVS distributions of the USARPmodel
in the validation dataset. The horizontal red lines denote the
MAE and EVS values of the linear regression, in the vali-
dation dataset. The USARP model error distributions consis-
tently present values outperforming the ones obtained by the
linear regression PL model. For completeness, the statistics
defining the previous box-plot representations (minimum,
percentiles 25, 50, and 75, and the maximum) for each error
metric are displayed in Table 8, along with the corresponding
linear regression error metrics.
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TABLE 8. Error metrics of the linear regression PL model and the
respective statistics for the USARP model in the validation dataset.

TABLE 9. Error metrics of the general USARP model and the specialized
linear regression models for each radio environment.

Considering the median statistic of the USARP error dis-
tributions, it can be stated that this model improves the
RMSE, MAE, and EVS of the linear regression, in 2.70 dB,
2.50 dB, and 0.37, respectively. Altogether, under the same
setup regarding training and validation data representingmul-
tiple propagation environments, the USARP model clearly
surpasses the linear regression. Additionally, section VI-B
demonstrated that the USARP model has a higher gener-
alization capacity than the linear regression, which in turn
surpasses all the ML-based algorithms.

The potential of the USARP model for widespread geo-
graphical use, considering multiple radio propagation envi-
ronments, was further evaluated. Firstly, the USARP model
parameters with the lowest RMSE on the validation dataset
were considered. Secondly, linear regression was used specif-
ically for each propagation environment, where only the train-
ing data for the respective environment was used. Therefore,
the USARP model was trained with data from all radio
environments, while three linear regression models were
obtained, specifically for each environment. Table 9 exhibits,
for each radio environment, the error metrics obtained on the
respective validation datasets, for each model.

The potential of the USARP model is emphasized
by the lower error metrics when compared to the
environment-specific linear regression models. Therefore,
the USARP model has a high potential to be used in multiple
propagation environments, given its generalization capacity
and ability to surpass environment-specific PL models.

VIII. CONCLUSION
This paper proposes the USARP model for PL predictions,
improving the geographical generalization capabilities of
empirical PL models, including ML/DNN based, towards an
ubiquitous PL model.

Firstly, it was shown that the performance of regression-
based ML algorithms decreases significantly for locations
not considered on the training, although belonging to sim-
ilar propagation environments. In this context, the linear
regression (the base of empirical PL models) is the most
robust approach considering the geographic generalization
performance. Therefore, the use of satellite images and
DNN algorithms provides an opportunity to enhance the
geographic generalization performance of data-driven PL
models. Consequently, this paper proposes to split the prob-
lem of PL estimation using satellites images in two steps:
1) use of self-supervised learning to learn radio environment
representations from satellite images; 2) employment of the
radio environment representations together with DTmeasure-
ments, for PL prediction. This approach allows the develop-
ment of robust satellite image representations, notably from
locations without DT data, contributing to the geographical
generalization of the model.

Then, the USARP model, based on a DNN architec-
ture, was proposed with focus on the generalization perfor-
mance. Notwithstanding, the USARP model still exceeds the
baseline methods in the validation performance, but it also
surpasses the generalization performance of the baseline
methods. In the generalization dataset, the USARP model
attained an RMSE of 12.34 dB, 1 dB lower than the RMSE
resulting from the linear regression-based model, and 3 dB
and 2 dB lower than the RMSE resulting from the SVR and
the RFR based models, respectively. Furthermore, the abla-
tion studies performed on the USARP architecture revealed
that the satellite-based inputs improve the RMSE of the PL
predictions by more than 3 dB on the validation dataset,
and around 1 dB in the generalization dataset, improving on
previously reported values in the literature [23].

Finally, the potential of the USARP model for multi-
ple radio propagation environments was shown. In fact, the
USARP model can achieve a higher prediction accuracy than
linear regression models specialized for each environment.

Overall, the USARP model enhances the geographical
generalization capacities of empirical PL models, supported
by an appropriated architecture, with regularization methods,
and by successfully exploiting data from satellite images in a
self-supervised approach.

Future work is in motion to extend the USARP model
for multiple radio frequencies and develop new approaches
to learn even more insightful representations of the radio
environment from satellite images.
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