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ABSTRACT The study of face frontalization is essential for improving face recognition accuracy in extreme
pose scenarios. Mainstreammethods like TP-GAN, CAPG-GAN, etc., have made meaningful contributions.
However, they still suffer from two problems: the lack of extracted feature diversity and the blurred details
in generated images. This paper proposes a pre-trained feature fusion and multi-domain identification
generative adversarial network (PM-GAN) for face frontalization: the features of the model pre-trained on
large-scale datasets are fused with the original features of the encoder to enhance the diversity and robustness
of features. In order to fuse features more effectively, we design a novel feature fusion module (FFM).
In addition, a group of global and local discriminators is introduced to reinforce the local details and realism
of generated frontal faces. Experimental results show that our proposed method outperforms state-of-the-art
methods on M2FPA and CAS-PEAL datasets.

INDEX TERMS Face frontalization, transferring pre-trained network, feature fusion, detail optimization,
generative adversarial network.

I. INTRODUCTION
with the development of deep learning, face recognition has
made significant progress but still suffers from drastic accu-
racy reduction in side-view poses. Currently, this problem
is mainly tackled in two research directions: the methods
of learning pose-invariant features [1]–[3] and the methods
of face frontalization [4]–[8]. Since the features learned by
the former methods often perform poorly in extreme pose
scenarios, face frontalization research has become a hot topic
in the face field, and many excellent works have emerged.
However, how to generate high-quality faces remains a
challenging task.

The methods of face frontalization can be broadly clas-
sified into three categories. The first category is based on
2D/3D local texture warping [9]–[11]. Hassner et al. [9] used
one single and unmodified 3D model for face normalization.
The second category is based on statistical modeling
[12]–[14]. Sagonas et al. [14] used a statistical model to
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generate frontal faces via tackling a limited low-rank
minimization problem. The third category is based on deep
neural networks [6], [17], [35]. Kan et al. [15] presented
progressive stacked autoencoders (SPAE) for gradually
converting side-view faces under extreme poses to frontal
faces. Zhang et al. [16] proposed a flow-based convolutional
network for face frontalization to learn the conversion from
non-frontal faces to frontal faces in the spatial domain. Ben-
efiting from the excellent generative abilities of generative
adversarial networks (GAN), GAN-based face frontalization
research is increasing. Hu et al. [17] presented a couple-agent
pose-guided generative adversarial network (CAPG-GAN) to
generate faces of arbitrary angles by using facial landmark
heatmaps as pose guidance information. Zhang et al. [18]
presented a pose-weighted generative adversarial network
(PW-GAN) to pay more attention to faces of extreme poses.
Duan et al. [20] proposed a boosting generative adversarial
network(Boost-GAN) to convert side-view faces with exter-
nal occlusion to frontal faces. Zhang et al. [21] introduced
an identity-and-pose guided generative adversarial network
(IPG-GAN) to enhance identity features. However, most
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previous generative networks were only trained on face
frontalization datasets, which were collected under controlled
conditions (limited subjects, poses, lighting, etc.), resulting
in insufficient diversity of extracted features. How to extract
richer face features is a problem worth studying.

In recent years, many studies [23]–[25] improved the
network performance via transferring the models pre-trained
on other large-scale and diverse datasets into their archi-
tectures. In image synthesis, Johnson et al. [26] produced
higher-quality images by using a perceptual loss function
based on the high-level features of a pre-trained network.
Huang et al. [6] used the features extracted by a pre-trained
face recognition network as identity features to define
an identity-preserving loss. The above methods show the
effectiveness of using pre-trained models. Most previous
works in image synthesis only used the high-level features
of pre-trained networks to define loss functions. In contrast,
transferring pre-trained models into generative networks to
enhance the feature extraction capability of networks is rarely
explored and how to better use pre-trained models deserves
more in-depth study.

Face synthesis has much higher requirements for local
details in critical areas than general image generation.
Huang et al. [6] proposed a dual-path generative adversarial
network (TP-GAN), simultaneously perceiving global struc-
tures and local details to develop the detail quality of gen-
erated face images. Hao et al. [28] proposed a detail-based
guidance generative adversarial network for pose reconstruc-
tion (DGPR), using dual generators to reconstruct detail
and global features. Many researchers improved the detailed
quality of synthesis images by designing different structures
of generators. Designing a group of local discriminators
is another way, but it has not been deeply researched.
Yin et al. [7] proposed a dual-attention generative adversarial
network (DA-GAN), using multiple local discriminators to
pay attention to local areas. However, they ignored the
differences of importance between different local features.
Furthermore, we found that generating clear and consistent
facial landmark regions was more difficult than other local
features, such as hair and skin color. We consider making the
generator pay more attention to those local features that are
more difficult to generate.

In response to the above findings, we propose a pre-trained
feature fusion and multi-domain identification generative
adversarial network (PM-GAN) for face frontalization.
To better exploit the capabilities of the pre-trained model
and enrich the diversity and robustness of extracted features,
we transfer the pre-trained model into the generative network
and fuse the features of the pre-trained model with the
original features of the encoder in multiple layers. Due
to the semantic dissimilarity between pre-trained features
and original features, simple fusion operations such as
summing and concatenation are challenging to obtain a
better performance. So we also design a novel feature fusion
module (FFM) to effectively fuse the pre-trained and original
features in the channel and spatial dimensions. In addition,

we introduce a group of global and local discriminators to
encourage the generative network to pay more attention to
more important local regions and improve the detail quality
of generated images during adversarial training, namedmulti-
domain identification.

Experiments demonstrate that our proposed PM-GAN
can generate photorealistic frontal faces with more delicate
details and improve the performance of face recognization
on M2PFA [29] and CAS-PEAL [30] datasets. Significantly,
PM-GAN increases face recognition accuracy by 1.4% and
2.2% under the extreme poses of 75◦ and 90◦ on M2FPA,
respectively, compared with state-of-the-art methods. Our
primary contributions are as follows:

1) We propose a feature optimization method by fusing the
features of the pre-trained network with the original features
of the encoder to enrich the diversity of extracted features.

2) A novel feature fusion module (FFM) is designed to
more effectively fuse features in the channel and spatial
dimensions.

3) A image detail enhancement approach based on
multi-domain identification is introduced, making the details
of generated images clearer.

The rest of this article is organized as follows. We first
introduce related works in section 2, and then describe our
proposed method in section 3. Finally, experiments and
discussions are introduced in section 4 and section 5.

II. RELATED WORK
A. GAN AND FACE FRONTALIZATION
The generative adversarial network (GAN) proposed by
Goodfellow et al. [31] consists of a generator G and a
discriminator D. G takes random noise z as inputs and
generates images and D distinguishes generated images G(z)
and true images x. GAN can push the distribution of generated
images to move toward the distribution of true images during
adversarial training. The objective function of GAN can be
formulated as follows:

min
G

max
D

V (G,D) = Ex∼pdate (x) [logD(x)]

+Ez∼pdate (z)[log(1− D(G(z))] (1)

In recent years, many researchers have made significant
progress on GAN, and many excellent GANs emerged,
such as pix2pix [32], CGAN [33], Style-GAN [34], etc.
Thanks to the generative ability of GAN, GAN-based
methods for face frontalization have been the mainstream.
Tran et al. [35] proposed a feature decoupled learning gener-
ative adversarial network (DR-GAN) to learn pose robustness
features and generate frontal faces. Inspired by Cycle-
GAN [36], Zhang et al. [8] presented a cycle-consistent gen-
erative adversarial network for face frontalization. A coupled
generative adversarial network (PF-cpGAN) was introduced
by Taherkhani et al. [19] to establish the unseen relationship
between side-view faces and frontal faces. Although previous
approaches have made significant contributions, there are
still problems of insufficient feature diversity and blurred
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FIGURE 1. Overall framework of our proposed PM-GAN. It contains a generative network and a multi-domain identification. The generative network
consists of an encoder-decoder network and a pre-trained network. The features of the pre-trained network are fused with the original features of
the encoder by our designed feature fusion modules (FFM) in multiple layers. The multi-domain identification is composed of multiple discriminators
capable of discriminating the authenticity of global and local areas of images.

local details in generated images. In this paper, we propose
a pre-trained feature fusion and multi-domains identification
generative adversarial network (PM-GAN) to increase feature
diversity and optimize the local details of images.

B. TRANSFERRING PRE-TRAINED NETWORKS
Transferring networks pre-trained on large-scale datasets
to other tasks has been extensively studied. In computer
vision, the usage of pre-trained models can be broadly
classified into two categories. The first category uses the
pre-trained model as an extractor to perform other tasks.
Loey et al. [42] applied a pre-trained ResNet50 to extract
features and send them into another network for performing
face mask detection. Iglovikov et al. [37] used a pre-trained
VGG network as the encoder of U-Net for feature extraction,
which improved the robustness of the segmentation model.
Dagher et al. [22] improved accuracy by using a network
pre-trained on face datasets to extract features and send them
into an age estimation model. The second category uses
the high-level features extracted by the pre-trained network
to define feature losses. In the field of face frontalization,
Huang [6] and Yin [7] used pre-trained face recognition
networks to extract identity features and employed them to
define identity-preserving losses. Previous methods indicated
the effectiveness of applying pre-trained models to other
tasks. However, most existing face frontalization methods
applying pre-trained networks mainly used the high-level
features of pre-trained networks to define loss functions. How
to transfer pre-trained models into generative networks to
improve the performance of face frontalization networks is
a worthwhile research problem.

To use the pre-trained network to improve the performance
of face frontalization, we fuse the features of the network
pre-trained on a large-scale face recognization dataset with
the original features of the encoder in multiple layers

to enrich the diversity of extracted features. Furthermore,
considering semantic dissimilarity between pre-trained and
original features, we design a novel feature fusion module
to fuse features in the spatial and channel dimensions
effectively.

III. METHOD
In the section, we first show the overall architecture
of our proposed PM-GAN, then describe the pre-trained
feature fusion, the designed feature fusion module, and the
multi-domain identification. Objective functions, detailed
structures of networks, and the algorithm are introduced at
the end.

A. NETWORK ARCHITECTURE OF PM-GAN
As shown in Figure 1, the overall network architecture
of our proposed PM-GAN can be divided into two parts:
a generative network and a multi-domain identification.
The generative network is composed of an encoder-decoder
and a pre-trained network. The multi-domain identification
consists of a group of global and local discriminators.

Side-view faces are fed into the pre-trained network and
the encoder. Then, the features extracted by the pre-trained
network are fused with the features of the encoder to enhance
feature diversity. Finally, the decoder generates frontal faces.
Multiple discriminators encourage the generative network to
pay more attention to the critical local regions of generated
faces during adversarial training.

B. TRANSFERRING PRE-TRAINED MODEL INTO
GENERATIVE NETWORK
Most face frontalization networks learn only from face
frontalization datasets, which were collected under controlled
conditions (limited subjects, poses, lighting, etc.), resulting
in the lack of extracted feature diversity. On the contrary, the
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FIGURE 2. Different structures of generative networks. E and D are an encoder and a decoder, respectively. P is a pre-trained model. E+D is a basic
encoder-decoder network. P+D means that P replaces E in E+D. (c), (d) and (e) are three various structures that we explore, and they are different in
fusion positions. E+D+P (M) is used in PM-GAN.

model pre-trained on large-scale face recognization datasets
captured in the wild can extract richer face features. To fully
take advantage of the pre-trained model’s powerful feature
extraction capability, we transfer the pre-trained model into
the generative network to extract more diverse features.

Different structures of generative networks are shown in
Figure 2. E+D means the encoder-decoder network com-
monly used in GAN-based methods. P+D uses a pre-trained
network for extracting features. Different from the first two
structures, E+D+P(M), E+D+P(H), and E+D+P(H_M)
use P and E to extract features in parallel. Especially,
E+D+P(M) uses the pre-trained network and encoder to
extract features and fuses them in middle layers, which
we finally use in PM-GAN. E+D+P(H) fuses features in
high-level layers while E+D+P(M_H) in middle and high-
level layers.

C. FEATURE FUSION MODULE
Feature fusion is commonly performed via simple operations
such as summing or concatenation. However, the semantic
dissimilarity between different features is ignored, resulting
in poor fusion performance. Considering the semantic
differences between the pre-trained features and original
features, we design a novel feature fusion module to smooth
the semantic dissimilarity between the two features in the
channel and spatial dimensions, fusing pre-trained features
with original features more efficiently.

Our proposed feature fusion module (FFM) is shown in
Figure 3. FFM-a and FFM-b are two different feature fusion
modules proposed in the paper. The channel modulation
module (CMM) and spatial modulation module (SMM) are
the components of FFM.
fo ∈ RC×H×W and fp ∈ RC1×H×W denote the

original features and pre-trained features, respectively. fo+1 ∈
R2C×H×W is the output of FFM. CMM and SMM aim
to obtain the channel modulation map Mc and spatial
modulation mapMs. Mc and Ms are defined as follows:

Mc = 8σc
(
fpo1

)
(2)

Ms = 8σ s
(
fpo2

)
(3)

fo+1 = 8c (fo ⊗ (Mc + 1)⊗ (Ms + 1) ,

fp ⊗ (Mc + 1) ⊗ (Ms + 1)) (4)

FIGURE 3. Feature Fusion Module (FFM). FFM-a and FFM-b are two
various feature fusion modules proposed in the paper. CMM and SMM
are the channel modulation module and spatial modulation module
separately, and they are the components of FFM-a and FFM-b. FFM-a is
used in PM-GAN.

where fpo1 and fpo2 denote the simple fusion of pre-trained
features and original features through channel concatenation.
8σc(·) and 8σ s(·) are defined as the calculation processes
of Mc and Ms, respectively. FFM-a can be formulated as
equation 4. 8c(·) is channel concatenation and⊗ is element-
wise multiplication.

D. MULTI-DOMAIN IDENTIFICATION
Face image is classified into four components: facial
landmark regions, skin color, hair, and background. In this
paper, we consider the importance difference of different
local features and pay more attention to more important local
features. Through experimental studies, we found that it is
more difficult to generate clear and consistent facial landmark
regions than skin color and hair, so we consider facial
landmark regions as the most important face component and
pay more attention to them.

Different structures of identification networks are shown in
Figure 4. 1D only uses a global discriminator to discriminate
the authenticity of global face images. 2D based on 1D adds
a local discriminator to distinguish the authenticity of face
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FIGURE 4. Different structures of identification networks. 1D, 2D, 3D, and
4D use different numbers of discriminators for identifying images. 1D is
commonly used in GAN-based methods. 2D, 3D, and 4D are various
structures we explore. Specifically, 4D is used in PM-GAN.

images without the background. Based on 2D, 3D applies
another discriminator for discriminating the authenticity of
local face images without background or hair. We add a facial
landmarks regions discriminator on top of 3D to form 4D,
which is used in PM-GAN.

4D shows that all global and local images contain the facial
landmark regions. Four discriminators push the generative
network to pay more attention to the facial landmark regions,
while the background is only concerned by the global
discriminator during adversarial training.

To obtain local images, we feed target images Igt into a
face attribute segmentation network fp and obtain multiple
local masks, including background-free mask Mb, mask
without hair or backgroundMh, and facial landmarks regions
mask Mf , which is defined as equation 5.

Mb,Mh,Mf = fp
(
Igt
)

(5)

Igtb , I
gt
h , I

gt
f =

(
Mb,Mh,Mf

)
� Igt (6)

I fb , I
f
h , I

f
f =

(
Mb,Mh,Mf

)
� I f (7)

Then target images Igt and generated images I f are
processed with the three masks, respectively. Finally,
we obtain corresponding target local images (Igtb , I

gt
h , I

gt
f )

and generated local images (I fb , I
f
h , I

f
f ). The processing can

be formulated as equation 6 and equation 7. � means the
element-wise product. The global and local images are fed
into corresponding discriminators for identification.

E. OBJECTIVE FUNCTIONS
PM-GAN learns a series of objective functions in a
supervised learning manner. The overall objective function
of the generative network is composed of multiple losses:
a multi-scale pixel-wise loss, an adversarial loss, a total
variation regularization loss, an identity preserving loss, and
a symmetry loss. The discriminators are only supervised by
the adversarial loss.

1) MULTI-SCALE PIXEL-WISE LOSS
To keep the content consistency between generated images I f

and target images Igt , we use a multi-scale pixel-wise loss to
supervise the generative network. It can be defined as follow:

Lpix =
1
S

S∑
s=1

1
C ×Ws × Hs

C,Hs,Ws∑
c,hs,ws=1

∣∣∣I fs,c,hs,ws − Igts,c,hs,ws ∣∣∣
(8)

where |·| denotes the L1-norm. S means the number of scales,
andWs and Hs are the corresponding width and height at the
scale s and the channel c. S is set as 3, and the scales are 32×
32, 64 × 64, and 128 × 128, respectively.

2) ADVERSARIAL LOSS
The pixel-wise loss produces overly smooth images, while the
adversarial loss can help to generatemore realistic images and
make the distribution of generated images move close to the
distribution of true images. The overall adversarial loss of the
generative network G and discriminators D can be expressed
as follow:

min
G

max
D

V (G,D) =
∑

j∈{g,b,h,f }

(
EIgtj

[
logDj

(
Igtj
)]

+EI fj

[
1− logDj

(
I fj
)])

(9)

where I fg and Igtg represent generated images and target
images, {I fb , I

f
h , I

f
f } and {I

gt
b , I

gt
h , I

gt
f } mean the local images.

Dg is the global discriminator while {Db,Dh,Df } are local
discriminators.

Ladvg = −
∑

j∈{g,b,h,f }

EI fj

[
logDj

(
I fj
)]

(10)

Ladvd = −
∑

j∈{g,b,h,f }

(
EIgtj

[
logDj

(
Igtj
)]

+EI fj

[
1− logDj

(
I fj
)])

(11)

The adversarial loss can be formulated as equation 10
when optimizing the generative network G. Similarly, the
objective function of the discriminators D can be formulated
as equation 11.

3) TOTAL VARIATION REGULARIZATION LOSS
We use a total variation regularization loss to eliminate
undesirable artifacts in generated images. It is defined as
follows:

Ltv =
1

C × H ×W

C,H−1,W−1∑
c,h,w=1

(∣∣∣I fc,h,w − I fc,h,w+1∣∣∣
+

∣∣∣I fc,h,w − I fc,h+1,w∣∣∣) (12)

where I fc,h,w and I fc,h,w+1 denote adjacent pixels in the width

dimension. Similarly, I fc,h,w and I fc,h+1,w are adjacent pixels
in the height dimension.
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4) IDENTITY PRESERVING LOSS
In order to preserve more identity information, our generative
network is also supervised by an identity preserving loss,
which can be formulated as follows:

Lid =
1
2

2∑
i=1

∥∥∥fID (I f )− fID (Igt)∥∥∥ (13)

where ‖·‖ is the L2-norm and fID(·) means the output features
of the last two layers of the pre-trained face recognition
LightCNN [38]. I f and Igt are generated images and target
images, respectively.

5) SYMMETRY LOSS
The symmetry loss proposed by TP-GAN can remove the
unnatural asymmetry effect of generated faces. It can be
defined as follow:

Lsym =
2

H ×W

H ,W/2∑
h,w=1

(∣∣∣I fh,w − I fh,W−w∣∣∣) (14)

where I fh,w and I fh,W−w denote the left-right symmetric pixels
in the width dimension.

6) OVERALL OBJECTIVE FUNCTION OF GENERATIVE
NETWORK
The total loss of the generative network is a weighted sum of
the losses mentioned above. It can be formulated as follows:

LG = λ1Lpix + λ2Ladvg + λ3Lid + λ4Lsym + λ5Ltv (15)

where λ1, λ2, λ3, λ4, and λ5 are the hyperparameters that
regulate the weight of different losses.

F. THE DETAILED STRUCTURES OF NETWORKS
The detailed structures of the encoder-decoder and discrim-
inator in PM-GAN are listed in Table 1. Each convolu-
tion (Conv) and transposed convolution (TConv) are followed
by batch normalization (BN) and rectified linear unit (ReLU)
except TConv42. In particular, BN and hyperbolic tangent
unit (Tanh) are used after TConv42. The sigmoid activate
function is employed after the full connection layer (FC).

G. ALGORITHM
The specific algorithm flow for training our proposed
PM-GAN is shown in Algorithm 1.

IV. EXPERIMENTS
To illustrate that PM-GAN can synthesize photorealistic
images with finer detail while preserving identity. We first
introduce datasets, implementation details, and evaluation
metrics in the following subsections. Then, we conduct abla-
tion studies to prove the advantages of the three components
proposed in the paper and design experiments compared with
current state-of-the-art methods. Finally, we qualitatively
evaluate the equality of generated images.

TABLE 1. Structures of the encoder-decoder and the discriminator. The
layer∗E/D only is used in the encoder/ discriminator.

Algorithm 1 Pre-Trained Feature Fusion and Multi-Domain
Identification Generative Adversarial Network for Face
Frontalization
Input: Side-view faces Ip, true frontal faces Igt . θG and

θD are the parameters of the generative network G and
discriminators D, respectively.

Output: Generated frontal faces I f

1: for the number of iterations do
2: Randomly select m pairs date {Ip, Igt};
3: Feed Ip into G, and G generates frontal faces I f ;
4: Obtain multiple local images {I fb , I

f
h , I

f
f } after

masks processing;
5: Feed {I f ,I fb , I

f
h , I

f
f } into D;

6: Calculate the cost of the function LD of D according
to equation 11;

7: Update the parameters θD by using the Adam
optimization algorithm:
θD = Adam

(
∇θD (LD) , θD

)
8: Calculate the cost of the function LG of G according

to equation 15;
9: Update the parameters θG by using the Adam

optimization algorithm:
θG = Adam

(
∇θG (LG) , θG

)
10: end for

A. EXPERIMENTAL SETTINGS
1) DATASETS
We conducted our experiments on M2FPA [29] and
CAS-PEAL [30] datasets.M2FPAwas released in 2019 and is
a public dataset for facial pose research. It has 397,544 images
containing 229 subjects with 13 yaws (−90◦ ∼ +90◦),
five pitches (−30◦ ∼ +45◦), four attributes, and seven
illumination changes. We only used the images under
13 yaws of 0◦ pitch for the following experiments. There
are face frontalization benchmarks on M2FPA, including
TP-GAN [6], DR-GAN [35], and CAPG-GAN [17]. We fol-
low the official settings for our experiments.

VOLUME 10, 2022 77877



S. Cen et al.: Pre-Trained Feature Fusion and Multidomain Identification GAN for Face Frontalization

CAS-PEAL [30] is a public dataset available for facial
pose research. It is composed of 30,863 grayscale images of
1040 subjects with nine poses. Following previous methods,
we used the pictures with angles of 0◦,±15◦,±30◦, and±45◦

for a fair comparison. It is divided into train/test sets with
7 : 3 at random.

2) IMPLEMENTATION DETAILS
Following previous methods, all images were cropped and
resized to 128 × 128. Image intensities were scaled to the
range of [−1, 1]. In our experiments, we set λ1 = 10, λ2 =
0.1, λ3 = 0.3, λ4 = 0.1, λ5 = 0.01. We used the Adam
optimizer with the β1 of 0.5 and β2 of 0.99. The learning
rate was initialized with 2e-4 and gradually decreased after
each epoch until it reached 0. The batch size was set as 32,
and all trainable parameters of networks were initialized by a
normal distribution. We implemented our code with PyTorch
and trained our PM-GAN on four GeForce GTX 3090 GPUs.

3) EVALUATION METRICS
Following previous works, the rank-1 recognition rate is
mainly used to evaluate the face recognition performance of
the proposed method. We generate frontal faces and send
them to a pre-trained face recognition network LightCNN
[38] for extracting deep features. The rank-1 recogni-
tion rate is calculated with the cosine distance of the
deep features. In addition, We also use peak signal-to-
noise ratio (PSNR) to evaluate the quality of generated
images and structural similarity index (SSIM) for measuring
structural similarity between generated images and target
images.

B. ABLATION STUDIES
1) THE EFFECTS OF TRANSFERRING PRE-TRAINED MODEL
To clarify the effectiveness of transferring the pre-trained
model into the generative network on face frontalization.
As shown in Table 2, we conducted experiments on
different structures of generative networks. We used a
FaceNet [39] pre-trained on VGGFace2 [40] dataset as the
pre-trained model P. The discriminator was the standard
1D in Figure 4, and the fusion operation used the typical
concatenation. We explored different structures of generative
networks.

We find that transferring the pre-trained model into the
generative network can significantly improve the rank-1
recognition rate performance of face frontalization. It is worth
noting that E+D+P(M) works better than other network
structures. Specifically, It increases the rank-1 recognition
rate by 8.3% and 8% under angles of ±75◦ and ±90◦,
separately, compared with the baseline E+D. Experimental
results illustrate that fusing the features of the pre-trained
model with the original features of the encoder can improve
the performance of face frontalization, and feature fusion
works best in the middle layers. We think that transferring
the pre-trained model to the generative network improves the

TABLE 2. Rank-1 recognition rate (%) performance of different structures
of generative networks in Figure 2 on M2FPA.

TABLE 3. Rank-1 recognition rate (%) performance of different
pre-trained models on M2FPA.

TABLE 4. Rank-1 recognition rate (%) performance of different fusion
operations on M2FPA. FFM-a and FFM-b mean the structure graphs in
Figure 3.

feature extraction capability of the network and enhances the
diversity of the extracted features. We use E+D+P (M) as the
generative network structure of PM-GAN.

To further investigate the effect of different face recog-
nition models as pre-trained networks on face frontal-
ization, we compared three different pre-trained models:
LightCNN [38], SphereFace [41], and FaceNet [39]. Experi-
mental results are reported in Table 3. It can be seen that the
rank-1 recognition rate of different pre-trained models is a
small gap, but FaceNet works slightly better than LightCNN
and SphereFace. FaceNet is selected as the pre-trained
network of PM-GAN.

2) THE EFFECTS OF FEATURE FUSION MODULE
To prove the effectiveness of our proposed feature fusion
module (FFM), we designed experiments shown in Table 4.
We choose the E+D+P(M) in Table 2 as the basic generative
network structure, but they fuse features with different
fusion operations. Compared with typical fusion operations
(Summing and Concatenation), our proposed FFM-a and
FFM-b can improve the rank-1 performance rate across all
poses on M2FPA. In particular, FFM-a improves the rank-1
recognition rate by 0.8% and 1.2% under angels of±45◦ and
±60◦, respectively, compared with the concatenation fusion
operation. Experimental results demonstrate that FFM can
effectively fuse pre-trained features and original features and
improve the performance of face frontalization. We think
that it is because the proposed feature fusion module can
better smooth the semantic differences of different features
and obtain a better fusion performance. Finally, we choose
FFM-a as the fusion operation in PM-GAN.
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TABLE 5. Rank-1 recognition rate (%) performance of different
identification networks in Figure 4 on M2FPA.

TABLE 6. PSNR and SSIM performance of different identification
networks in Figure 4 on M2FPA.

3) THE EFFECTS OF MULTI-DOMAIN IDENTIFICATION
To verify the contributions of our proposed multi-domain
identification to face frontalization, we designed experiments
shown in Table 5. We use E+D+P(M) as the generative
network, and the feature fusion operation is FFM-a. Dif-
ferent structures of identification networks are explored.
Experimental results show that increasing the count of
discriminators from one to four can gradually improve
the face recognition accuracy across all poses on M2FPA.
Noteworthy, four discriminators (4D) achieves the best per-
formance. Compared to 1D commonly used in GAN-based
methods, our proposed 4D obtains accuracy improvements
of 0.9% and 1.5% under angles of ±75◦ and ±90◦. It is
because the group of global and local discriminators makes
the generative network pay more attention to the important
local regions in the face image. The above analysis illustrates
the validity of the multi-domain identification.

As shown in Table 6, it can be seen that 4D increases the
PSNR score and SSIM score by 1.3 and 0.07 on M2FPA,
compared with 1D. The results demonstrate that our proposed
multi-domain identification can generate higher-quality
images and constrain face structure consistency.

4) THE VISUAL RESULTS OF GRADUALLY ADDING
PROPOSED COMPONENTS
To visually show the impact of transferring the pre-trained
model, the feature fusion module, and the multi-domain
identification on face frontalization, we gradually add the
pre-trained network (FaceNet), FFM-a, and the multi-domain
identification to the basic network (G1+1D), which only
contains an encoder-decoder (G1) and a discriminator (1D).
Generated results are shown in Figure 5. We observe that
G1+P+1D can generate faces with better identity consis-
tency than G1+1D. After adding FFM, G1+P+FFM+1D
can generate face images with more significant identity
features than G1+P+1D, but generated images are blurry in
some areas. After adding 4D, G1+P+FFM+4D can generate
face images with clearer details than G1+P+FFM+1D.
Experimental results qualitatively illustrate the benefits of
each component proposed in this paper.

FIGURE 5. Generated results of gradually adding the pre-trained network
(P), FFM, and the multi-domain identification to a basic network
(G1+1D). G1 means E+D. G1+P represents E+D+P(M). Specifically,
G1+P+FFM+4D is our PM-GAN.

FIGURE 6. Generated results of different models under extreme poses on
M2FPA.

TABLE 7. Rank-1 recognition rate (%) performance of compared models
on M2FPA.

C. COMPARISON EXPERIMENTS
To further prove the identity preservation ability of our
proposed method. Table 7 lists the rank-1 recognition rate of
our method compared with existing state-of-the-art methods
on M2FPA. The rank-1 recognition rate gradually decreases
as angles increase from 0◦ to 60◦. It sharply drops while
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FIGURE 7. Synthesized results of PM-GAN across poses
(
−90◦ ∼ +90◦

)
on M2FPA.

TABLE 8. Rank-1 recognition rate (%) performance of compared models
on CAS-PEAL.

angles are larger than 60◦. It is because side-view faces
under larger angles provide less helpful information. Notably,
our proposed method achieves higher rank-1 recognition
accuracy than state-of-the-art methods across most poses.
In particular, our PM-GAN raises the rank-1 recognition
accuracy by 1.4% and 2.2% under extreme angles of ±75◦

and±90◦, respectively. We think that it is because our model
can extract richer face features and generate clearer and more
consistent local details.

Table 8 reports the rank-1 recognition rate of PM-GAN
on CAS-PEAL, compared with the state-of-the-art methods,
including CR-GAN [27], TP-GAN [6], DA-GAN [7], and
DGPR [28]. The comparison results demonstrate the superior
performance of our PM-GAN.

To visually report the performance of PM-GAN, Figure 6
shows the generated results of our proposedmethod and some
state-of-the-art methods on M2FPA. It can be seen that all
of the above methods can generate realistic images, but it is
remarkable that our proposed PM-GAN can generate frontal
faces with better identity preservation and clearer details than
other models. It further illustrates that our PM-GAN can
extract richer features and generate higher quality faces.

D. FACE SYNTHESIS
To qualitatively demonstrate the generative ability of our
proposed PM-GAN. Figure 7 and Figure 8 show synthesized
results of the persons under arbitrary poses on M2FPA and
CAS-PEAL datasets separately. It can be seen that our
proposed method can generate photorealistic frontal faces
with high identity consistency under the angles within 60◦.
When the angle is larger than 60◦, although the similarity
between view-side faces and frontal faces decreases severely,

FIGURE 8. Synthesized results of PM-GAN across poses
(
−45◦ ∼ +45◦

)
on CAS-PEAL.

FIGURE 9. Failure cases. Failure results in the case of the extreme pose
and intense illumination.

facial landmark regions and structures of the generated
images still maintain high similarity with target images. The
visual perception proves that our PM-GAN can extract more
identity robust features and generate photorealistic frontal
faces with identity preservation under extreme poses.

Although our method can perform well in most cases,
some challenges still exist under intense illumination and
extreme poses scenarios. Figure 9 shows some failure cases.
Generated faces perform poorly in some local areas since
the facial information of input images is seriously missing,
such as the features of the nose and mouth are covered by
intense illumination. However, it can still recover most of the
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facial features accurately. It further proves the superiority of
PM-GAN in identity preservation and image quality.

V. CONCLUSION
In this paper, aiming at the two weaknesses of the lack
of extracted feature diversity and blurred details in gen-
erated images, we present pre-trained feature fusion and
multi-domain identification generative adversarial network
(PM-GAN) for face frontalization. The features of the
network pre-trained on large-scale face recognition datasets
are fused with the encoder’s original features to enhance the
features’ diversity and robustness. We also design a novel
feature fusion module (FFM) to make the feature fusion
more effective. A method based on multi-domain identi-
fication for optimizing details is proposed to improve the
detail quality of generated images. Experiments demonstrate
that our proposed PM-GAN can synthesize photorealistic
frontal faces with finer detail and improve face recognition
performance, especially in extreme pose scenarios. In future
work, we will conduct further research on face frontalization
inmore complex environments with intense light and extreme
poses.
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