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ABSTRACT Kernel method is a non-parametric linearization method for system modeling, which uses
nonlinear projection from input data space to high-dimensional Hilbert feature space and employs kernel
function for hiding the projection operator in a linear learner to replace inner product calculation in Hilbert
space and to avoid the curse of dimensionality. Kernel method is data-driven and learnable to nonlinear
model. For independency to a priori model, it provides a novel way of state estimation for nonlinear
dynamic systems with model uncertainties. In this paper, an adaptive kernel learning Kalman filtering
method is proposed and applied into the problem of maneuvering target tracking. Without use of a priori
system model, the method performs Kalman filtering in a reproducing kernel Hilbert space (RKHS) by
estimating conditional embedding operator (CEO) as system state transfer function from training data. For
the stochastic uncertainty in systemmodel, themaximum correntropy criterion (MCC) is introduced to obtain
kernel parameter optimization and balance of estimation performance, while a sliding window is designed
for online updating estimation of state transfer function to get adaptability to unknown system dynamics.
Such the construction for kernel Kalman filtering (KKF) is helpful to extend application from time-series
signal processing to state estimation of uncertain dynamical systems. Simulation scenarios include average
sunspot prediction, hovering target tracking and hypersonic maneuvering target tracking, corresponding to
verification in low-dynamic, periodic-dynamic and high-dynamic systems. Numerical results have illustrated
that the proposed adaptive KKF can realize model-free tracking for target that has nonlinear dynamical
motion, shown adaptability to non-cooperative target maneuver and better precision and convergence speed
than typical model-based algorithms.

INDEX TERMS Kernel Kalman filtering, adaptive filtering, kernel learning, Bayesian online learning,
RKHS, conditional embedding operator, maximum correntropy criterion, maneuvering target tracking.

I. INTRODUCTION
Target tracking involves in many research areas, such
as pattern recognition, artificial intelligence, and autono-
mous control, with promising applications on unmanned
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systems [1]–[3], feature classification and decision [4],
reconnaissance and surveillance [5], biomedical engineering
[6], human-machine interaction [7], etc.

The maneuvering target tracking technique is essentially
a class of nonlinear pattern recognition problems [8], where
a priori of the target motion is usually required for build-
ing a tracking model and based on which predicting the

78088
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3184-3679
https://orcid.org/0000-0002-7245-9529
https://orcid.org/0000-0003-1759-8785
https://orcid.org/0000-0001-7025-7651


Y. Li et al.: Adaptive Kernel Learning Kalman Filtering

current motional or featured states and rules of the target.
However, modeling quality greatly affects the tracking effec-
tiveness, and model mismatch or unmodeled dynamics prob-
ably lead to tracking divergence or even target loss.

Independent with a priori system model, kernel method
may carry out feature recognition, prediction and estima-
tion for input signals based on theory of statistical learn-
ing [9]. The method uses nonlinear projection from input data
space to a linearized high-dimensional Hilbert feature space,
or say kernel space, and employs kernel trick to perform
high-dimensional function approximation in inner product
space and further the kernel parameter learning and opti-
mization. Without requirement of a priori signal structure or
system uncertainty, kernel method has data-driven character-
istics. Applied into the target tracking problem, it can help
to keep high tracking quality for the target with nonlinear
uncertain motion and to promote environmental adaptability
of the tracking algorithm.

Recently, kernel method has gained fast development in
nonlinear time-series prediction and estimation and learning,
generating many nonlinear filtering methods in reproduc-
ing kernel Hilbert space (RKHS) where Mercer condition is
satisfied, such as kernel least mean squares (KLMS) [10],
[11], kernel affine projection algorithm (KAPA) [12], [13],
kernel recursive least squares (KRLS) [14] and extended
KRLS [15], [16]. These algorithms are generally used for
processing time-series signals with certainty, but unsatisfied
for widely-existed uncertain dynamic systems or hard to
be applied into maneuvering target tracking problem where
stochastic uncertainties exist.

To improve applicability to dynamic systems,
Ralaivola et al. [18] combined kernel method with a Kalman
filter and produced kernel Kalman filtering (KKF) algorithm,
in which the measurement and state vectors are projected
into a Hilbert feature space to process. To use in state
space of dynamic system, Song et al. [19], [20] embedded
conditional distribution into the kernel projection to feature
space, providing theoretic support for dynamical modeling
in RKHS. In [21], [22], kernel Bayesian and Kalman cri-
teria based on least squares are derived to form a unified
class of non-parametric Bayesian rules. In [23], Zhu et al.,
by introducing the conditional embedding operator (CEO)
into KKF, presented a KKF-CEO algorithm that is capable of
model learning. Using the embedded measurement in kernel
space as hidden state, the algorithm can real-time construct
state space model in RKHS and describe the system unknown
dynamics accurately. Dang et al. [24] further used the maxi-
mum correntropy criterion (MCC) to replace the usual LMS
[23] for kernel optimization, enhancing algorithm robustness
to the system stochastic disturbance such as heavy-tailed
noises. MCC can seek for the best solution under the worst
case and make decision without loss of high-order statisti-
cal information under insufficient prior knowledge. For its
advantage to robustness in complex environment, MCC is
paid great attention recently. It is designed on the Kalman
filter [25], [26], promoting the adaptability to non-Gaussian

noises, and on the Cubature Kalman filter (CKF) [27], [28],
increasing the robustness to nonlinear complex noises and
stochastic disturbances. Yang et al. [29] studied the MCC
based on generalized Gaussian distribution for improving
target tracking precision under non-Gaussian noises.

Kernel Kalman filtering shows a trend of applying the
kernel method into dynamic systems. The KKF algorithms
above are established based on off-line training data for recur-
sive estimation and global optimization. The inner parameter
of the kernel projection is generally insensitive to system
uncertainty, leading to inherent filtering error and difficulty
of recognizing the accurate change rule of system states.
To establish the adaptability of the KKF to system uncer-
tainty, in this paper, a sliding window adaptive (SWA) kernel
learning Kalman filtering algorithm is proposed. The algo-
rithm is developed in the RKHS-based kernel Bayesian
filtering framework. On one hand, we employed CEO for
online learning the state transfer operator, eliminating the
dependency to the system model. On the other hand, MCC
is applied for local optimization of the kernel projection,
balancing the filtering performances, and sliding window
is introduced to rolling update the learning of the state
transfer operator, guaranteeing the global adaptability to
the system uncertainty. Because linear noise that is defined
in high-dimensional RKHS can represent nonlinear noise
with wide distribution in input space, and noise distribu-
tion in RKHS is updated by training data from real-time
measurements rather than by the assumed typical statistics,
the algorithm is naturally adaptable to non-Gaussian noise
environment.

In the paper, three types of numerical scenarios that are
average sunspot prediction, hovering target tracking and
hypersonic maneuvering target tracking, regarding as low-,
periodic- and high-dynamic system respectively, are used for
simulation verification. The results have shown that the pro-
posed adaptive kernel learning filter can realize model-free
tracking of nonlinear motional target with adaptability to
the non-cooperative maneuver, achieving better precision and
convergence speed than typical model-based methods.

The rest of this paper is organized as follows. In Section 2,
the kernel projection with Mercer condition is presented,
followed by CEO-based KKF framework in Section 3. The
proposed adaptive kernel learning filter with designed MCC
and sliding window is given in Section 4. Simulations are in
Section 5 to verify the algorithm and Section 6 concludes the
paper.

II. KERNEL PROJECTION TO RKHS
Kernel method is a non-parametric linearized modeling
method, where system signals in original data space are
nonlinearly projected into a high-dimensional RKHS and
processed in this feature space. The prerequisite of the kernel
method is to construct the kernel projection.

Define a nonlinear projection ϕ to build a kernel function
κ . For any arbitrary x, y ∈ R, they satisfy

κ (x, y) = 〈ϕ(x), ϕ(y)〉 (1)
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where ϕ is the feature projection operator from input vector
space R to feature vector space F. When κ satisfies Mercer
condition [30], [31], i.e., κ is continuous, symmetric and
positive definite, it has

1) ∀ x ∈ R, κ (x, y) ∈ F;

2) κ (x, y) is reproducible, which means for function in F

as

h (·) =
∑

i
aiκ (xi, ·) (2)

where ai is the weight at the ith dimension, there exist

〈h, κ (y, ·)〉 =
∑

i
aiκ (xi, y) = h(y) (3)

Then, κ is a reproducing kernel of F. If F is a complete inner
product space with reproducing kernel, F is known as the
reproducing kernel Hilbert space.

In an infinity-dimensional RKHS, the reproducing kernel
satisfying Mercer condition can be written as

κ (x, y) =
∑∞

i=1
ζiϕi(x)ϕi(y) (4)

where ζi are nonnegative eigenvalues, then the projection
operator ϕ can be constructed by

ϕ(x) = [
√
ζ1ϕ(x1),

√
ζ2ϕ(x2), . . .] (5)

Generally, ϕ is difficult to get an explicit form and we
often use kernel function to replace inner product between
projected functions in RKHS to fulfill nonlinear projection
calculation, as

ϕ(x)Tϕ(y) = κ (x, y) (6)

so that the nonlinear function can be linearized into a high-
dimensional space.

III. KERNEL KALMAN FILTERING IN DYNAMIC SYSTEM
For a dynamic system, kernel projection needs to project
dynamic model or variable functions into RKHS for lin-
earized processing. Naturally, the Kalman filter structure can
be employed, forming kernel Kalman filtering method [18].
In KKF, state transfer operator, by embedding conditional
distribution into kernel projection, is constructed and learned
recursively with kernel function and training data in input
space. Clearly, it is independent with any prior knowledge.
Using conditional embedding operator, Kalman filtering can
be established in RKHS, realizingmodel-free state estimation
of dynamic systems.

A. CONDITIONAL EMBEDDING OPERATOR
For a dynamic system in noise environment, system model
expresses the transition rule of stochastic state variables.
Therefore, the probability distribution projected in RKHS is
required to be represented so that the system state transition
operator can be built in kernel space.

For stochastic variables X ,Y ∈ R, embedding their corre-
sponding functions f (X ), g(Y ) ∈ R into a kernel projection
can construct the following general definitions.

Definition 1: Expectation of Embedded Distribution
Denote the probability distribution of X in an input space

R as PX and that of X projected by kernel function kF to
an RKHS F as ϕ(X ). Then, the distribution function f (X )
embedded in F has expectation formed as

EF [f (X )] =
∫
〈f , ϕ(x)〉FdPX (x)

= 〈f ,
∫
ϕ(x)dPX (x)〉F

= 〈f ,EF [ϕ(X )]〉F
= 〈f , µX 〉F (7)

where µX := EF[ϕ(X )] is defined as the embedded expec-
tation of X in F. In the RKHS F, for ϕ(X ) satisfying
E [kF(X ,X )] < ∞, µX can be approximated using finite
samples by

µ̂X =
1
m

∑m

i=1
ϕ (xi) (8)

where DX = {x1, . . . , xm} is a training set with m samples.
Actually, µX describes the relation between the expectations
of X in input space and in feature space.
Definition 2: Covariance of Embedded Distribution
Consider that stochastic variablesX and Y have probability

distribution PX and PY , respectively, in input space R with
their joint probability distribution PXY , and denote their pro-
jection operators by kernel function kF to RKHS F as ϕ and
φ. According to Definition 1, the embedded expectation of
their joint function f (X )g(Y ) in F has the form as

EF [f (X )g(Y )] = E
[
〈f , ϕ(X )〉F〈g, φ(Y )〉F

]
= E

[
〈f ⊗ g, ϕ(X )⊗ φ(Y )〉F⊗F

]
= 〈f ⊗ g,EF [ϕ(X )]⊗ φ(Y )〉F⊗F
= 〈f ⊗ g,CXY 〉F⊗F
= 〈f ,CXY g〉F (9)

where ⊗ represents tensor product, and define

CXY = E [ϕ(X )⊗ φ(Y )]

=

∫
ϕ(X )⊗ φ(Y )dPXY (x, y) (10)

as the embedded cross-covariance of X and Y in F. For given
kF, CXY is determined by PXY (x, y). Taking X = Y yields
embedded covariance of X as

CXX = E [ϕ(X )⊗ ϕ(X )]

=

∫
ϕ(X )⊗ ϕ(X )dPX (x) (11)

Similarly, CXY can be approximated by using finite sample
setDXY = {(x1, y1) , · · ·, (xm, ym)} and projected sample sets
ϒ = [ϕ (x1) , · · ·, ϕ (xm)] and 8 = [φ (y1) , · · ·, φ (ym)], as

ˆCXY =
1
m

∑m

i=1
ϕ (xi)⊗ φ (yi) =

1
m
ϒ8T (12)

Definition 3: Embedded Conditional Expectation
For arbitrary stochastic variables X ,Y ∈ R, denote their

conditional probability distribution as PY |X and project it into
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RKHS F with kernel function kF. Define expectation of the
distribution function g(Y ) under condition of X embedded in
F asEF[g(Y )|X ], then we have [19]

CXXEF[g(Y )|X ] = CXY g (13)

According to Definition 1, for X = x, there is

EF [g(Y )|x] =
∫
〈g(y), ϕ(x)〉FdPY |X (y|x)

= 〈EF [g(Y )|X ] , ϕ(x)〉F
= 〈C−1XXCXY g, ϕ(x)〉F
= 〈g,CYXC

−1
XXϕ(x)〉F

= 〈g, µY |x〉F (14)

where µY |x is the conditional expectation of Y under X
embedded in F, expressed as

µY |x := CYXC
−1
XXϕ(x) (15)

According to Definition 2 and (12), one can approximate
µY |x with finite samples. Taking its operator UY |X as the
conditional embedding operator, abbreviated to CEO,wemay
calculate it by

Ûϒ |X = ˆCYX
ˆ

C−1XX

=
1
m
8YT

(
1
m
ϒϒT

+ ςI
)−1

= 8YT
(
ϒϒT

+ ςmIm
)−1

(16)

where ς is the regular factor.
It is noticeable that for a kernel function in finite domain,

i.e., E [kF] < ∞, EF[g(Y )|X ]∈F is always formed, but not
for in continuous domain [18], [32]. In that case, (16) can be
replaced, by matrix inversion theory [33], with

ÛY |X = 8(K + ςmIm)−1ϒT (17)

where K represents ϒTϒ and Im is an m− dimensional unit
matrix. Clearly, K can be obtained with kernel function for
CEO calculation.

B. CEO-BASED KKF FOR STATE ESTIMATION
The CEO expresses the transition function of system states in
RKHS. It can be used to realize optimal state estimation based
on Kalman filtering in kernelized high-dimensional linear
space, forming CEO-based kernel Kalman filter. In the filter,
firstly we use training samples to learn the CEO, building sys-
tem state model in RKHS, and then complete state prediction
and recursive update in the kernel space.

1) MODEL LEARNING WITH CEO
To simplify description, consider a dynamic system that has
linear measurement, shown as in Fig. 1, in which xi and yi
are system state and measurement, and ξi and vi are process
and measurement noise, respectively. The nonlinear function

FIGURE 1. The dynamic system model in state space.

θ represents the state transition operator, and the system can
be expressed as

xi+1 = θ (xi, ξi) (18)

yi = xi + vi (19)

In the system having projected into RKHS, xi becomes
hidden states that are hard to obtain explicit expression or to
be estimated with the usual Kalman filter. Hence, we need to
use embeddedmeasurement to construct the kernel projection
of θ as state transfer operator, and to realize recursive learning
during measurement update.

Taking D =
{
y01, . . . , y

0
m+1

}
in yi as the initial training

data, according to (17), we may construct the state transfer
operator in RKHS using CEO as

Fi = 8(K + ςmIm)−1ϒT (20)

where ϒ =
[
ϕ
(
y01
)
, . . . , ϕ

(
y0m
)]
, 8 =

[
ϕ
(
y02
)
, . . . ,

ϕ
(
y0m+1

) ]
, and superscript 0 represents initial samples. Fi

can connect the embedded state estimate, noted as µ̂i, with
one-step prediction of the embedded state, noted as ˆµi+1, by

ˆµi+1 = Fiµ̂i (21)

Then, the dynamic system can be modeled in RKHS with
linearized state space form as

ˆµi+1 = Fiµ̂i + ξ̂i (22)

ϕ
(
yi
)
= H iµ̂i + v̂i (23)

where ξ̂i and v̂i are corresponding noises in RKHS. H i
describes the measurement matrix, which can be transformed
into unit matrix I .

2) ONE-STEP ESTIMATION IN RKHS
In (22) and (23), ξ̂i and v̂i are infinite dimensional with
limited power. Their statistic features can be determined by
Definition 2 [13], [15], [18]. Considering that they have lin-
earized form, we assume they are zero-mean Gaussian noises
with covariance q and r , respectively, and take

Qi = qI (24)

Ri = rI (25)

and H i = I for simplicity.
Given the initial measurement covariance and initial state

covariance in RKHSwith µ̂0 = ϕ
(
y0
)
and P0 = εI , one-step

estimation of a Kalman filter in kernel space has the following
steps.
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Step1: Calculate one-step prediction by

ˆµi− = Fi−1 ˆµi−1 = 8(K + ςmIm)−1ϒT
ˆµi−1 = 8ai

(26)

where ai = (K + ςmIm)−1ϒT
ˆµi−1.

Step2: Calculate one-step prediction covariance by

P i− = Fi−1P i−1FTi−1 + qI

= 8(K+ςmIm)−1ϒTP i−1ϒ
[
(K+ςmIm)−1

]T
8T
+qI

= 8P̃ i−8T
+ qI (27)

where P̃ i− = (K + ςmIm)−1ϒTP i−1ϒ
[
(K + ςmIm)−1

]T
.

Step3: Compute kernel Kalman filtering gain by

Gi = P i−HT
i

[
H iP i−HT

i + Ri
]−1

=

(
8P̃ i−8T

+ qI
) [
8P̃ i−8T

+ (q+ r) I
]−1

=

[
q

q+ r

[
8P̃ i−8T

+ (q+ r) I
]
+

r
q+ r

8P̃ i−8T
]

×

[
8P̃ i−8T

+ (q+ r) I
]−1

=
r

q+ r
8P̃ i−8T

[
8P̃ i−8T

+ (q+ r)I
]−1
+

q
q+ r

I

(28)

which can be reshaped, according to matrix theory, into iter-
ative form as

Gi =
r

q+ r
8
[
(q+ r) Im + P̃ i−8T8

]−1
P̃ i−8T

+
q

q+ r
I

=
r

q+ r
8G̃i8T

+
q

q+ r
I (29)

where G̃i =
[
(q+ r) Im + P̃ i−8T8

]−1
P̃ i−.

Step4: Update state estimation covariance by

P i = (I −H iGi)P i−

= 8

[
r

q+ r
P̃ i− −

r
q+ r

G̃i8T8P̃ i− −
qr

q+ r
G̃i

]
×8T

+

(
q−

q2

q+ r

)
I

= 8P̃ i8T
+

qr
q+ r

I (30)

where P̃ i = r
q+r P̃ i− −

r
q+r G̃i8

T8P̃ i− −
qr
q+r G̃i.

Step5: Update state estimation by

µ̂i = ˆµi− + Gi
(
ϕ
(
yi
)
− ˆµi−

)
= 8ai +

(
r

q+ r
8G̃i8T

+
q

q+ r
I
) (
ϕ
(
yi
)
−8ai

)
= 8

[(
r

q+ r
I −

r
q+ r

G̃i8T8

)
ai+

r
q+ r

G̃i8Tϕ
(
yi
)]

+
q

q+ r
ϕ
(
yi
)

= 8bi +
q

q+ r
ϕ
(
yi
)

(31)

where bi =
(

r
q+r I −

r
q+r G̃i8

T8
)
ai + r

q+r G̃i8
Tϕ
(
yi
)
.

Equations (26) to (31) complete the process of one-step
estimation in a kernel Kalman filter, where ai, P̃

−

i , G̃i, P̃ i,
and bi all can be expressed with inner product of embedded
variables so that they can be calculated conveniently by kernel
trick with given kernel function.

3) KKF ALGORITHM
For µ̂i in (31) which is defined in RKHS, it needs to revive
the state estimation x̂i in the original input space. This kind
of inverse kernel projection can be realized as the following
process [34].

According to (19), it has

x̂i = E [xi] = E [xi + vi] = E
[
yi
]

(32)

with

E
[
yi
]
=

[
E
(
y(1)i

)
, . . . ,E

(
y(j)i
)
, . . . ,E

(
y(
ny)
i

)]T
=
[
E
[
β1ϕ

(
yi
)]
, . . . ,E

[
βjϕ

(
yi
)]
, . . . ,E

[
βnyϕ

(
yi
)]]T
(33)

where j ∈ [1, ny] and ny is the number of training samples.
From (33) we may obtain

E
[
βjϕ

(
yi
)]
=
〈
βj, µi

〉
(34)

Then, x̂i can be rewritten as

x̂i =
[〈
β1, µ̂i

〉
, . . . ,

〈
βj, µ̂i

〉
, . . . ,

〈
βny , µ̂i

〉]T
= βTI µ̂i

(35)

where βj(y) = y(j) and βI =
[
β1, . . . , βny

]
. βI describes the

inverse projection and can be estimated by least squares as

β̂I (·) = 8
(
8T8

)−1
Y0T (36)

where Y0
=

[
y02, . . . , y

0
m+1

]
. Substituting (36) into (35)

yields the approximation of the state estimation in input
space, formed as

x̂i =
[
8
(
8T8

)−1
Y0T

]T (
8bi +

q
q+ r

ϕ (yi)
)

= Y0bi +
q

q+ r
yi (37)

Combining (26) to (31) with (37), we can get a complete
iterative cycle of the kernel Kalman filter. The flowchart of
the standard CEO-based KKF can be given as Algorithm 1.

IV. SLIDING WINDOW ADAPTIVE KKF FOR
SYSTEM UNCERTAINTY
If the θ of state equation (18) contains uncertain dynamics,
the projected state transfer operator F as (20) will take on
unknown time-variant characteristics, which is hard to be
reflected by using a given training sample set. Hence, in this
section, we introduce maximum correntropy criterion into the
KKF to optimize the kernelized filtering gain, balancing the
filter performance between optimality and robustness under
the uncertain dynamics, and then design a sliding window to
online update the training set, building the adaptability of the
KKF algorithm to the system uncertainty.
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Algorithm 1 KKF
Initialization
If i = 0, set

ϒ =
[
ϕ
(
y01
)
, . . . , ϕ

(
y0m
)]

8 =
[
ϕ
(
y02
)
, . . . , ϕ

(
y0m+1

)]
Y0
=
[
y02, . . . , y

0
m+1

]
K = ϒTϒ, M = 8T8,T = ϒT8

L = (K + ςmI)−1

µ0 = ϕ
(
y0
)

P0 = εI
ai+1 = LYTµ0

P̃
−

i+1 = λLKL
T

End if
Iterative Cycle
For i = 1, . . . , compute

G̃i =
[
(q+ r)Im + P̃

−

i M
]−1

P̃
−

i

P̃ i = r
q+r P̃

−

i −
r

q+r G̃iMP̃
−

i −
qr
q+r G̃i

bi =
[

r
q+r Im −

r
q+r G̃iM

]
ai + r

q+r G̃i8
Tϕ
(
yi
)

x̂i = Y0bi +
q

q+r yi
ai+1 = LY T8bi +

q
q+r LY

Tϕ
(
yi
)

P̃
−

i+1 = LTP̃ iTTLT +
qr
q+r LKL

T

End

A. KERNEL PARAMETER OPTIMIZATION
Clearly, correntropy quantifies statistical similarity between
two stochastic variables and can be described in RKHS by
their correlation function. According to (12), take Gaussian

kernel function as κσ (x, y) = exp
(
−

(x−y)2

2σ 2

)
where σ is an

inherent parameter showing kernel size, and the correntropy
between X = {xj} and Y = {yj} can be expressed as

(Ĉ(X ,Y )=
1
m

∑m

j=1
κσ (xj, yj),

1
m

∑m

j=1
κσ (xj−yj)

(38)

Maximizing (Ĉ(X ,Y ) generates

max J = Ĉ(X ,Y ) =
1
m

∑m

j=1
exp

(
−e2j /2σ

2
)

(39)

where ej = xj − yj.
Considering existence of stochastic uncertainties during

system process and measurement, we take the price as [24]

J=κσ

‖ϕ(yi)−µ̂i︸ ︷︷ ︸
ri

‖
2
R−1i

+κσ
‖ µ̂i−Fi−1µ̂i−1︸ ︷︷ ︸

qi

‖
2
P−1i−


(40)

where R−1i and P−1i− are weight matrices. The maximum J
satisfies

∂J/∂µ̂i = 0 (41)

from which the optimized system state µ̂i in RKHS with
covariance P i can be derived, as

µ̂i = µ̂i− + Gi(ϕ(yi)− µ̂i−) (42)

P i =
(
Ini − Gi

)
P i− (43)

In (42), Gi is the optimal kernel filtering gain for given σ of
the Gaussian kernel and has the form as

Gi = λiP i−[λiP i− + Ri]−1 (44)

λi =

κσ‖ϕ(yi)− µ̂i−1‖
2
R−1i

κσ‖µ̂i−1 − µ̂i−‖
2
P−1i−

(45)

where µ̂i− and P i− can be calculated iteratively by (26) and
(27), respectively.

It is clear to learn, by introducing λ, a gain optimization
factor, into the basic KKF as Algorithm 1, MCC establishes
quantitative relationship between the inherent kernel size σ
and the filtering performance, reaching the best balance of
optimality and robustness under meaning of correntropy.

B. KKF-MCC ALGORITHM
Taking (48) and (49) into (26) to (31) constructs the KKF
based on MCC, named KKF-MCC. Its one-step estimation
can be derived by the following steps.
Step1: Calculate one-step prediction covariance by

P i− = 8P̃ i−8T
+ qIm (46)

where

P̃ i− = �8P̃ i−8T�T
+

rq
λi−1q+ r

��T (47)

� =
(
ϒTϒ + ςmIm

)−1
ϒT (48)

Step2: Update state estimation covariance by

P i =
rq

λiq+ r
Im +8P̃ i8T (49)

where

P̃ i =
r

λiq+ r
P̃ i− −

λirq
λiq+ r

G̃i −
λir

λiq+ r
G̃i8T8P̃ i−

(50)

Step3: Compute kernel Kalman filtering gain by

Gi =
λiq

λiq+ r
Im +

λir
λiq+ r

8G̃i8T (51)

where

G̃i = [(λiq+ r) Im + λiP̃ i−8T8]−1P̃ i− (52)

Step4: Update state estimation by

µ̂i = 8si +
λiq

λiq+ r
ϕ(yi) (53)

where

si =
(

r
λiq+ r

Im −
λir

λiq+ r
G̃i8T8

)
wi

+
λir

λiq+ r
G̃i8Tϕ(yi) (54)
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Step5: Calculate one-step prediction by

µ̂i− = 8wi−1 (55)

where

wi−1 =
(
ϒTϒ + ςmIm

)−1
ϒT

 λiq
λiq+ r

ϕ(yi−1)

+8si−1

 (56)

Equations (46), (49), (51), (53), and (55) complete one-step
estimation of the KKF-MCC, where λi aims to control the
kernel-based filtering gain optimally. Substituting (53) and
(55) into (45) yields

λi = κσ (Ai)/κσ (Bi) (57)

where

Ai = ‖ϕ
(
yi
)
− µ̂i−1‖

2
R−1i
=

1
r
[ϕ(yi)

Tϕ
(
yi
)

−ϕ(yi)
Tµ̂i−1 −

ˆµTi−1ϕ(yi)+ µ̂
T
i−1µ̂i−1] (58)

Bi = ‖µ̂i−1 − µ̂i−‖
2
P−1i−

=
1
q
B1i −

1
q
B2i
(
q ˜P−1i− +8

T8
)−1

BT2i (59)

Let ei− = µ̂i−1 − µ̂i−. It has B1i = ei−T ei− = µ̂
T
i−µ̂i− +

µ̂
T
i−1µ̂i−1 − µ̂

T
i−µ̂i−1 − µ̂

T
i−1µ̂i− and B2i = ei−T8.

To present an entire iterative cycle of the KKF-MCC, the
state estimation should be brought from RKHS back to the
input space. Taking (37) into (35) and (36), we can finally
obtain the estimation result of KKF-MCC in the original state
space, formed as

x̂i = βTµ̂i

=

[
8si +

λiq
λiq+ r

ϕ
(
yi
)]T

8
(
8T8+ ςIm

)−1
Y0T

= Y08T8
(
8T8+ ςIm

)−1
si +

λiq
λiq+ r

yi (60)

In Algorithm 1, stochastic disturbances are assumed as
Gaussian noise in RKHS with given limited power, that is,
q and r are constant during filtering estimation. It probably
causes mismatch of noise distribution when system facing
sudden non-Gaussian disturbances, leading to undesired esti-
mation error. However, in the KKF-MCC algorithm, we can
use λ to balance the weight between q and r . Moreover,
because λ built based on kernel function contain high order
statistical information from the training data in input space,
robustness of the algorithm can be enhanced remarkably,
particularly to outlier and heavy-tailed noises. It is worthy to
notice that the KKF-MCC is an extension to Algorithm 1 that
is built on the MMSE criterion. For a Gaussian kernel with
σ → ∞, there is λ → 1, and KKF-MCC degenerates to
the KKF.

FIGURE 2. The framework of the kernel Kalman filtering algorithms.

C. SWA-KKF-MCC ALGORITHM
Built on MCC, the KKF algorithm gains robustness to noise
disturbance, however it still lacks adaptability to uncertain
dynamic change of system model. It is because the training
samples used to construct state transfer operator for the filter
has insufficient real-time information to reflect systemmodel
uncertainty, resulting in large approximation deviation of the
state transfer operator. For this reason, we design a dynamic
window into KKF-MCC to form a sliding window adaptive
KKF-MCC, named SWA-KKF-MCC. By renewing training
sample set recursively, the filter can real-time update kernel
size parameter and state transfer operator. For system input
samples that are periodic, state transfer operator is learnable.
The framework of such adaptive kernel learning filter can be
shown as Fig. 2.

Denote the training sample sets in the initial time as
ϒ1 =

[
ϕ
(
y01
)
, ϕ
(
y02
)
, . . . , ϕ

(
y0m
)]
, 81 =

[
ϕ
(
y02
)
, ϕ
(
y03
)
,

. . . , ϕ
(
y0m+1

)]
, and take the average of sample dis-

tance as Gaussian kernel size parameter, i.e., σ =

1
T (T−1)

∑T
i=1

∑T
j=1

∣∣∣y0i − y0j ∣∣∣ , i6=j. Then, the state trans-

fer operator can be online approximated by F1 =

81(K1 + ςmIm)−1ϒ1
T where K1 = ϒ1

Tϒ1. Given the
window length with T , the filter can update the training sets
after T iterative cycles with

ϒ2 =

[
ϕ
(
y01+T

)
, ϕ
(
y02+T

)
, . . . , ϕ

(
y0m+T

)]
(61)

82 =

[
ϕ
(
y02+T

)
, ϕ
(
y03+T

)
, . . . , ϕ

(
y0m+1+T

)]
(62)

and reconfigures the state transfer operator as

F2 = 82(K2 + ςmIm)−1ϒ2
T (63)

where K2 = ϒ2
Tϒ2.

Combining the tth sliding window and the iterative
cycle of KKF-MCC, we may describe the flowchart of the
SWA-KKF-MCC as Algorithm 2. In the SWA-KKF-MCC,
kernel size and state transfer operator in RKHS are updated
with dynamic window. For a Gaussian kernel function with
σ →∞, Algorithm 2 degenerates to an SWA-KKF.

V. NUMERICAL SIMULATIONS
To verify the effectiveness of the kernel filtering methods,
three scenarios (average sunspot prediction, hovering target
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Algorithm 2 SWA-KKF-MCC
Sliding Window Update
For t = 1, 2 . . ., set
Initialization
If i = 1, set

ϒt =
[
ϕ
(
y01+(t−1)T

)
, ϕ
(
y02+(t−1)T

)
, . . . , ϕ

(
y0m+(t−1)T

)]
8t =

[
ϕ
(
y02+(t−1)T

)
, ϕ
(
y03+(t−1)T

)
, . . . , ϕ

(
y0m+1+(t−1)T

)]
Y0
t = y02+(t−1)T , y

0
3+(t−1)T , . . . , y

0
m+1+(t−1)T

)]
K = ϒT

t ϒt ;M = 8
T
t 8t ;T = ϒ

T
t 8t

µ̂0 = ϕ(y0)

P̃0 = εIm
w1 = LϒT µ̂0

P̃1− = εLKLT

End if
The t th Iterative Cycle of KKF-MCC
For i = 1, 2 . . ., set

Zi = 8T ϕ(yi)
While i = 1
λi = 1

Else

Ai =
1
r

[
1− ϕ(yi)

T µ̂i−1

−
ˆ

µTi−1ϕ(yi)+ µ̂
T
i−1µ̂i−1

]

Bi =
1
qB1i −

1
qB2i

(
q ˜P−1i− +8

T8

)−1
B2iT

λi = κσ (Ai)/κσ (Bi)
End While
G̃i = ((λiq+ r)Im + λiP̃i−M)−1P̃i−

P̃i =
r

λiq+r
P̃i− −

λirq
λiq+r

G̃i −
λir
λiq+r

G̃iMP̃i−

si =
(

r
λiq+r

Im −
λir
λiq+r

G̃iM
)
wi +

λir
λiq+r

G̃iZi

wi+1 = LϒT8si +
λiq
λiq+r

LϒT ϕ(yi)

x̂i = Y0
tM(M + ςIm)

−1si +
λiq
λiq+r

yi

P̃i+1− = LTP̃iTTLT +
rq

λiq+r
LKLT

End
End

tracking, and hypersonic maneuvering target tracking) are
used as simulation cases, corresponding to low-, periodic-,
and high-dynamic system. In the first case, we employ real
data of monthly average sunspot to evaluate the prediction
performance of SWA-KKF-MCC in low-dynamic system
and to verify the optimization capability of using MCC.
In the second, we consider ground-based radar tracking of
a high-attitude flight target with hovering motion, which is to
verify the effectiveness of KKF-MCC for periodic-dynamic
system and the effect from inherent kernel size parameter,
illustrating advantage of KKF compared with model-based
Kalman filter (KF) and unscented Kalman filter (UKF). In the
third case, hypersonic target tracking is used to illustrate the
performance of SWA-KKF-MCC under C-type and S-type
target maneuver of a hypersonic cruise vehicle (HCV), ver-
ifying effectivity of applying the kernel filtering method
into non-cooperative target tracking. In the case, the target
flight trajectory is generated by our developed high-fidelity

FIGURE 3. Time-series data of monthly average sunspot from May
1982 to July 2021 based on the record of world data center: true
values (top) and measurement values (below).

simulation model integrated with CFD-based aerodynamic
experiment data, satisfying necessary physical constraints
such as overload, dynamic pressure and fuel consumption.
We use radar for detection and non-Gaussian α−stable noise
[35] in all cases to simulate environment noise that usually
has sharp impulse and heavy-tailed distribution.

A. PARAMETER ESTIMATION FOR LOW DYNAMIC SYSTEM
In practical observation data of average sunspot recorded by
the World Data Center [36], [37], we take 471 months data
from May 1982 to July 2021 as time-series true value of
average sunspot and α−stable noise, noted as A(α, β, γ, δ)
with probability density function

p(t) =



exp
(
jδt − γ |t|α

(
1− jβsgn(t)tan

(πα
2

)))
α 6=1

exp
(
jδt − γ |t|α

(
1+ jβsgn(t)

2
π
log |t|

))
α = 1

(64)

as measurement noise. Take α = 1.9, representing impulse
noise strength. Let β = 0, γ = 3.5, and δ = 0 to generate a
symmetric standard α−stable distribution and keep the input
signal-noise ratio, noted as SNRin, at 6.7dB. The true and
measurement values of monthly average sunspot are shown
in Fig. 3.

Use the first 50 months average sunspot as initial training
samples to predict the followed 10 months average number,
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FIGURE 4. The results of monthly average sunspot prediction.

FIGURE 5. Monthly average sunspot prediction error.

TABLE 1. Mean square error comparison of average sunspot prediction.

and slide window with length T = 50 to update the training
sample set for recursive prediction. Take ε = 0.001, q = 1,
and r = 3 in Algorithm 2, and let λ = 1 to yield an
SWA-KKF for comparing with the SWA-KKF-MCC.

The prediction results of using SWA-KKF-MCC and
SWA-KKF are compared as in Fig. 4 and Fig. 5. Clearly, both
algorithms are effective for such low-dynamic system with
α−stable noise. Compared with SWA-KKF, the MCC-based
SWA-KKF-MCC has better precision on restraining strong
impulse noise contained in the measurements. Table 1 com-
pares the mean square error (MSE) of the prediction errors
shown in Fig. 5. The MSE of using SWA-KKF-MCC is
decreased 14.2% than that of using SWA-KKF, indicating
that MCC can help KKF to increase the adaptability to non-
Gaussian noises.

B. TRAJECTORY TRACKING FOR PERIODICAL
HOVERING MOTION
Besides disturbance from stochastic noise, dynamical target
tracking usually has uncertain fast-changing characteristics.

FIGURE 6. The true trajectory and measurement trajectory of hovering
flight target.

FIGURE 7. Comparison of the hovering target tracking errors of using
various filtering algorithms.

In this case, we use KKF as the tracking algorithm to verify
its feasibility for data-driven model-free target tracking.

Consider that a high-altitude long-endurance flight target
hovers along a circle with true airspeed V = 500km/h at
height 20km. Take hovering radius R as V 2/(gtanη) where
slope angle η = 11.5

◦

and g is gravitational acceleration.
Use a ground-based radar to track the target trajectory and
assume that SNRin = 6dB and α−stable measurement noise
takes the same values as in (64). The true and measurement
target trajectories are shown in Fig. 6.

1) TRACKING PRECISION COMPARISON
Hovering maneuver yields periodic motion of the target so
that the target motion can be estimated by initial training set
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TABLE 2. Mean square error comparison of hovering target tracking.

FIGURE 8. Hovering target tracking error of KKF varying with q and r .

without dynamic window. Use the KKF of Algorithm 1 and
the KKF-MCC for the hovering target tracking and take the
number of the initial training samples as 200 with sampling
frequency 10Hz. The tracking error of these two filters that
learn the state transfer operator of hovering motion and the
error of the typical filters that are established on exact target
motion model are compared in Fig. 7.

From the figure we can see, KKF and KKF-MCC can be
independent with prior tracking model to realize motional
state estimation and can achieve better tracking precision
compared with KF and UKF, thanks to great tolerance of
the data-driven RKHS filters to nonlinear motion and non-
Gaussian noises. Table 2 gives the MSE of using vari-
ous filtering algorithms, which indicates that for nonlinear
non-Gaussian target tracking, KF gets the largestMSE among
the compared filters and UKF reduces the tracking error
through unscented transformation. Based on kernel rule and
MCC, KKF-MCC gets the best precision, increasing 38.7%
than KF, and establishes the robustness to stochastic noise
disturbance. Furthermore, KKF-MCC gains superiority on
dynamic performance of filtering estimation. As shown in
the zoomed figure of Fig. 7, convergence speed of KKF and
KKF-MCC is remarkably less than that of KF and UKF,
implying tracking robustness to assumption deviation and
system disturbance. KKF-MCC has better performance than
KKF due to utilization of high order statistical information by
MCC for kernel optimization.

2) KERNEL PARAMETER ANALYSIS
In KKF-MCC, λ in (57) describing system noise intensity
ratio is optimizable by self-tuning q and r under MCC with

FIGURE 9. MSE comparison of hovering target tracking using KKF and
KKF-MCC varying with r/q.

FIGURE 10. The HCV trajectories with maneuver: C-type at cruise
phase (top) and S-type at descending phase (below).

given kernel size σ . However, for the basic KKF, q and r
are assumed as constant, match quality of which may affect
the tracking performance significantly. Fig. 8 quantifies the
effect from variant q and r to tracking error of using KKF
under SNRin = 6dB. It indicates that KKF obtains the best
tracking precision when r/q = 3 and this ratio is optimized
in KKF-MCC byMCC during tracking process to balance the
performance. Fig. 9 compares the tracking errorMSE of KKF
and KKF-MCC with variant r/q. Clearly, tracking precision
of KKF-MCC is much stable than that of KKF, also because
r/q in KKF-MCC has been online optimized during tracking.

C. MANEUVERING TARGET TRACKING OF
HYPERSONIC VEHICLE
For nonperiodic maneuvering target tracking, we use
SWA-KKF and SWA-KKF-MCC that have a sliding window
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FIGURE 11. The hypersonic maneuvering target racking error using KKF:
C-type (top) and S-type (below).

to update training samples as the tracking algorithm. Consider
that an HCV flying with constant speed Mach 6 and height
20km, performing C-type maneuver in lateral plane during
cruising phase and S-type maneuver in normal plane during
descending phase. The HCV flight trajectory is provided by
the high-fidelity simulation model in [38] with CFD-based
aerodynamic data [39] and USSA76 atmospheric standard
[40], optimized under multiple constraints that are overload,
dynamic pressure and thrust force. On the trajectory adding
an α−stable noise with the same parameter values as in (64)
gives simulated measurement. Take the initial state variance
ε = 0.001 and SNRin = 50dB. The true trajectory and the
radar-observed trajectory with C-type and S-type maneuver
can be simulated as shown in Fig. 10.

1) TRACKING PRECISION COMPARISON
To demonstrate necessity of the sliding window for kernel fil-
tering, the basic KKF is first used as tracking algorithm with
tracking error of the hypersonic maneuvering target shown
in Fig. 11. The results of SWA-KKF and SWA-KKF-MCC
and the model-based KF and UKF are compared in Fig. 12,
with their tracking error MSE shown in Table 3. Obviously,
Fig. 11 indicates that the basic KKF lacks an updating mech-
anism to measurement training samples and cannot adapt to
the uncertain target maneuver, leading to worsened quality of
learning the tracking model and raised sensitivity of tracking
error to the changes of target motion. Fig. 12 shows that
SWA-KKF and SWA-KKF-MCC, where the sliding window

FIGURE 12. Comparison of hypersonic target tracking errors: C-type (top)
and S-type (below).

TABLE 3. Mean square error comparison of the hypersonic maneuvering
target tracking error.

length is taken as T = 50, can realize precise tracking
with fast convergence speed facing initial deviation and
non-cooperative target maneuver, better than the tracking
performance of using KF and UKF. Based on kernel opti-
mization, SWA-KKF-MCC further improves the estimation
precision. As shown in Table 3, the tracking error MSE
increases 38.9% and 32.3% during C-type and S-type target
maneuver, respectively, compared with KF.

Regarding the objective of non-cooperative maneuvering
target tracking is essentially the state estimation by signal
denoising for non-Gaussian nonlinear dynamic system with
model uncertainty, we may evaluate efficiency of tracking
algorithms quantitatively with output SNR relative to input
SNR. Fig. 13 shows the output SNR varyingwith SNRin. It can
be drawn from the figure that for given SNRin, SWA-KKF
and SWA-KKF-MCC gain larger output SNR than KF and
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FIGURE 13. Comparison of the tracking algorithm output SNR: C-type
(top) and S-type (below).

UKF, implying higher filter efficiency increasing with SNRin.
For the two windowed filters, SWA-KKF-MCC has the best
tracking efficiency under the meaning of SNR.

2) SLIDING WINDOW ANALYSIS
The sliding window updates measurement training sample
set, affecting modeling quality of state transfer operator and
filtering efficiency of tracking algorithm. Fig. 14 explicates
the filtering efficiency of SWA-KKF and SWA-KKF-MCC
varying with the window length, where SNRin = 10. From
the figure we can see, for the case with C-type maneuver,
both get the highest efficiency when the window length is
50, while for the case with S-type maneuver, it should be
40 to optimize filter efficiency. It is because higher frequency
of updating the state transfer operator is required for more
fierce change of the S-type maneuvering trajectory than that
of C-type. Additionally, for both types of target maneuver,
SWA-KKF-MCC is less sensitive to the window size than
SWA-KKF. That means SWA-KKF-MCC has more stable
filtering precision for various window size, implying better
tracking robustness to time resolution. SWA-KKF is lack of
optimization mechanism to the kernel filter gain, resulting
in performance reduction. Also, Fig. 14 demonstrates that
filtering efficiency decreases for both big window and small
window. It is easy to know that for small window training
samples are insufficient to provide enough prior knowledge
of driving the filter. For big window length, importance of
the early samples in window becomes weak, also leading

FIGURE 14. The tracking algorithm output SNR varying with window
length: C-type (top) and S-type (below).

to dropped effectiveness of prior knowledge. Particularly for
a target that has uncertain maneuver, early samples in big
window may cut down adaptability of the filtering gain and
degenerate both tracking precision and tracking accuracy.

VI. CONCLUSION
Based on theory of nonlinear kernel projection to RKHS,
in this paper, adaptive kernel learning filter SWA-KKF-MCC
is proposed for solving dynamic filtering and system state
estimation problem of non-Gaussian nonlinear system with
model uncertainty. The filtering algorithm firstly kernelizes
the Kalman filter to perform high-dimensional linearized
optimal estimation in RKHS to deal with system nonlinear
property, then employs a conditional embedding technique
to construct learning mechanism of state transfer operator
in RKHS, eliminating dependency to the prior knowledge
of the system model. For non-Gaussian noise disturbance,
MCC having high-order statistical information is integrated
to optimize the kernel function and the kernel filtering gain,
balancing filtering robustness and optimality. For uncertain
dynamics of system model, a window function is designed
to update the input training sample set recursively, building
environmental adaptability. The simulations on time-series
prediction and maneuvering target tracking have shown that
the given SWA-KKF-MCC has superior filtering precision
and convergence speed in low-, periodic- and high-dynamic
systems with adaptability to nonlinear, non-Gaussian and
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uncertain system properties and robustness to impulse noise
and window length resolution.
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