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ABSTRACT Accurate underwater target detection and recognition in complex marine environments has
always been a challenge. There is a lot of information in underwater target radiation noise that is important
for underwater target recognition. However, the traditional underwater target radiation noise process is
inefficient and inaccurate, severely limiting underwater target recognition. This paper proposed a new
method for underwater target recognition based on compressed sensing multiscale entropy. For starters,
compressing a signal improves its signal-to-noise ratio and broadens its linear spectrum. The multiscale
sample entropy for the signal is then calculated after it has been denoised, and the most separated sample
entropy is chosen by comparing the different scales of sample entropy to achieve effective underwater target
radiation noise recognition. The experimental results show that the feature extraction method proposed in the
paper can classify underwater target radiation noise quickly and effectively, improving recognition efficiency.

INDEX TERMS Compressed sensing, multiscale sample entropy, underwater target radiation noise, feature
extraction.

I. INTRODUCTION
Humans have explored the seas off the coast with the contin-
uous development of science, technology and the social econ-
omy. Classification and recognition of underwater targets are
important elements of future duplication. At the same time,
with the advancement of science and technology, the signal-
to-noise ratio of the underwater target radiation noise is low,
which will gradually increase the difficulty of the underwater
target classification and recognition. Meanwhile, the marine
environment seriously affects sonar’s underwater target radi-
ation noise, and the signal-to-noise ratio is extremely low.
So the traditional underwater target radiation noise recog-
nition method cannot meet the complex sea conditions by
using limited features to identify the target radiation noise.
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Consequently, in the face of complex sea conditions and
the continuous improvement of underwater acoustic target
radiation noise, it is more necessary to extract a high-speed
and high-precision underwater target radiation noise feature
extraction method.

Many researchers have conducted useful investigations
in recent years, primarily focusing on wavelet denoising,
Fast Fourier Transform (FFT), and multiscale decomposition
methods to improve the signal-to-noise ratio of underwater
target radiation noise. Zhao et al. [1]–[8] proposed a wavelet
relative energy criterion, and the results show that after the
node segmentation threshold process, the noise band signal
and the target band signal can be effectively separated. This
method outperforms the global single denoising method in
terms of separation and denoising. Kumar et al. [3] created a
signal denoising method for underwater wireless communi-
cation that makes use of the fast Fourier transform and the
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Morlet wavelet, which is based on the continuous wavelet
transform. According to the results, the proposed method
improves the signal-to-noise ratio by about 12 dB. Despite
the fact that the wavelet threshold denoising method is widely
used in underwater acoustic signal processing, no response
standard specifies the wavelet base or threshold. The choice
of different wavelet bases and thresholds has a significant
impact on the denoising effect, which causes the underwater
target radiation noise recognition to produce a large error.
In terms of Fourier analysis, He et al. [9], [10] discussed
separating forward-scattered waves from direct blasts in the
doppler domain using the sliding Blackman window in con-
junction with a fast Fourier transform. Liu et al. [11]–[13]
developed a constant virtual alarm detection approach in
marine clutter by exploiting the multiscale Hurst index’s
sensitivity to target at the appropriate fractional Fourier trans-
form. The multiscale Hurst index of the sea clutter fraction
Fourier transform spectrum may distinguish between sea
clutter and target, effectively enhancing the signal-to-noise
ratio, according to experimental data. Although the Fourier
transform performs well in underwater acoustic signal pro-
cessing, in practical applications, picking the signal’s window
frequency at the same time limits the Fourier transform’s
application. In multi-scale decomposition and denoising,
Yang et al. [14]–[18] integrated Spearman variational modal
decomposition, spatial recursive sample entropy, wavelet
threshold denoising, and the Savitzky-Golay filter for ship
denoising in multi-scale decomposition and denoising. The
results demonstrate that this strategy may boost SNR by 8 dB
to 13 dB and attract a cleaner and smoother chaotic phase
waveform, effectively suppressing marine environment noise
in ship radiation noise. In underwater signal processing, the
multiscale decomposition method can better characterize the
underwater acoustic signal. However, when the denoising
treatment is used, the radiated noise line spectrum cannot
be completely recovered, limiting the implementation of the
multiscale approach. In recent years, the compressed sensing
method [19], [20] has been frequently used in underwater
acoustic signal denoising. Kim et al. [21] investigated the
tone signal produced by the mechanical component of the
underwater target. The results demonstrate that it obtained
better reconstruction accuracy than the classic Fourier trans-
form threshold approach at a low signal-to-noise ratio. Based
on compression sensing and wavelet change, Zhao et al. [22]
developed a filtering strategy for weak signal noise detected
in the underwater environment. Furthermore, the experimen-
tal results suggest that the method performs well and has a
wide range of engineering applications.

Entropy-based approaches have recently been found to be
more advantageous in hydroacoustic signal processing [23],
[24]. Based on hierarchical entropy, Li et al. [25] suggested
a method for extracting ship radiated noise features. Fur-
thermore, simulated signal testing is used to characterize
the various aspects of traditional entropy. The results sug-
gest that the differences of this method are primarily cen-
tered in the signal with better high-frequency performance,

which can be employed for ship identification in underwa-
ter acoustic signal processing. Feng et al. [26] successfully
distinguished planetary gearbox defects by combining the
phase angle recovered from planetary gear vibrations with
sample entropy as a fault detection method for planetary
gearboxes under non-smooth operation conditions. Huo et al.
[27] offer a new entropy measurement approach for rolling
bearing failures that is based on fine-to-coarse multiscale
permutation entropy (F2CMPE), Laplacian score (LS), and
support vector machine (SVM). Rong et al. [28] introduced a
unique recursivemaximum correntropy-based evolving fuzzy
system that eliminates the convergence difficulty caused by
the learning scale in gradient-based learning and evaluates the
system’s convergence performance. Li et al. [29] proposed a
method for performing rolling bearing fault states and iden-
tifying fault classes based on refined composite multiscale
permutation entropy (RCMPE) and a support vector machine,
thereby improving the coarse-grained signal identification
process. The multiscale permutation entropy causes the loss
of key information in the identification of coarse-grained
fault signals, resulting in more accurate fault information
identification with better robustness and scalability.

To extract the underwater target radiation noise feature,
this research suggested a method that combines compressed
sensing denoising with multiscale sample entropy. First, the
original signal is compressed, sensing denoising and provid-
ing a sparse representation of the original signal’s frequency
domain, and then the signal is reconstructed to improve
the signal-to-noise ratio. The multiscale sample entropy of
the signal after denoising was then determined, and the
undersea target radiation noise was categorised and detected
using the multiscale sample entropy. The method suggested
in this paper is fast, has a high identification rate, and is
very straightforward to analyze raw data. As a result, it is
favourable to the algorithm’s general applicability.

The remainder of this paper is structured as follows: The
basic theory is provided in section II, signal denoising in
section III, entropy extraction from multiscale samples in
section IV, results and discussion in section V, and conclusion
in section VII.

II. METHOD
A. COMPRESSED SENSING DENOISIN
Compressed sensing is a new data sampling theory that dif-
fers from the Nyquil theorem in that it can produce high-
dimensional signals at a lower sampling rate. It is a novel
concept in the field of future signal processing.

Set an N -dimension signal x ∈ RN×1, and transform the
signal x with an observation matrix ϕ ∈ RM×N , where each
line of ϕ is multiplied with the original signal x to obtain
an observation value, which contains part of the information
of the original signal. Finally, M observations are obtained
to form the M-dimension vector y ∈RM×1, then y is the
observation vector, as shown in Equation 1.

y = ϕx (1)
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If the observation vector y has enough information in x, the
original signal x can be retrieved from it. When the number of
equations in the observation vector y is less than the number
of unknowns in the original signal x, the number of solutions
is unlimited. In this scenario, the observation vector y cannot
determine the initial signal x uniquely. To employ the com-
pressive sensing principle for signal acquisition, sparse rep-
resentation must be introduced prior to signal reconstruction.

Suppose that there exists a set of orthogonal basis, expand
the original signal x on the basis, namely: {9i}

N
i=1 (ψ i is the

N-dimensional column vector)

x =
N∑
i=1

θi9i (2)

where θi = 〈x, 9i〉 = 9T
i x is the expansion coefficient? It

can be obtained:

x = 9θ (3)

where 9 = [91, 92, . . . 9N ] ∈ RN×N is the orthogonal
basis, θ = [θ1, θ2, . . . θN ]T is the corresponding expansion
coefficient vector, substitute Equation 3 into Equation 1, let
89 = Acs, where ACS is the compressed sensing information
operator, then:

y = 89θ = Acsθ (4)

where θ is sparse, θ can be reconstructed from y. After
obtaining θ , the original signal x can be recovered according
to Equation 3.

Process flow for compression-sensing denoising:
1) First, assess whether the target radiated noise signal in

the water possesses compressibility or sparsity using sparsity-
based Discrete Cosine Transform (DCT) and Fast Fourier
Transform (FFT).

2) Create several measurement sparse matrices and mea-
sure the sparse matrix to acquire the measurement amount f2.
3) The measurement amount is sparsely represented by

DCT discrete cosine and FFT Fourier base following the
measurement matrix operation.

4) After sparse base transformation and coding measure-
ment, use the Orthogonal Matching Pursuit (OMP) recovery
algorithm to reconstruct the signal f2.

5) After compressed sensing processing, Fourier trans-
forms the original simulated signal and the reconstructed
signal.

6) Finally, the reconstructed signal’s signal-to-noise ratio
is determined using the signal-to-noise ratio function.

According to the obtained spectrogram, the compressed
sensing denoising process is also analyzed according to the
calculation of the signal-to-noise ratio reconstructed by the
OMP recovery algorithm, and the most suitable measurement
matrix and sparse matrix are selected based on the spectrum
analysis and the size analysis of the signal-to-noise ratio that
is finally calculated. The ship’s radiation noise signal has
been improved.

FIGURE 1. Multiscale sample entropy analysis process.

TABLE 1. The data simulation parameters of underwater target radiated
noise.

B. MULTISCALE SAMPLE ENTROPY
Set a target radiated noise signal X = [x1, x2,. . . .xN ], and
coarsely grain the underwater target radiation noise signals
[30]. Then obtain a coarsely granulated time-series signal.

y(τ )j =
1
τ

∑jτ

i=(j−1)τ+1
xi,1 ≤ j ≤ N

/
τ (5)

where N is the length of the original underwater target radi-
ation noise signal; τ is the scale factor; 1≤ j ≤ N/τ ; y(τ )j is
the subsequence with a scale of τ .

When the scale factor is set to one, the signal remains the
same. Every coarse-grained signal has a length equal to the
original signal length divided by the scale factor. The sample
entropy for each coarse-grained signal is then calculated,
and the scale factor function is plotted. Figure 1 depicts the
multiscale sample entropy analysis process. Process flow for
multiscale sample entropy extraction:

1) Separate a set of underwater target radiation noise sig-
nals into coarse-grained signals f3 of length N ;

2) Calculate the entropy of each coarse granulated signal
f3 sample of length N ;
3) Compare the entropy separability of samples under

different scale factors;
4) Use the most separable scale factor as the classifica-

tion and identification feature of underwater target radiation
noise.

III. UNDERWATER TARGET RADIATED NOISE
COMPRESSED SENSING DENOISING
Three types of underwater target radiation noise with varying
speeds, propeller speed, and displacement are simulated to
demonstrate the superiority of the suggested method in this
research. These data are sufficient to reflect radiation noise
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FIGURE 2. Simulating the underwater target radiation noise.

TABLE 2. Calculation results of the different measurement matrices.

under the same operating conditions of different underwater
targets and the same underwater target, and the data simula-
tion settings are presented in Table 1. The sample time is one
second, and the sampling frequency is 50 KHz. The underwa-
ter target radiation noise in this article differs from the actual
underwater target radiation noise, which is more complex
than the actual signal. Because the authors were unable to
complete the real signal capture, simulated underwater target
radiation noise was utilized in this research to validate the
method’s practicality. Figure 2 depicts a simulation of under-
water target radiation noise.

To extract underwater target radiated noise features, first
denoise the ship radiated noise using compression sensing.
Compression sensing is a distinct signal sampling approach
that uses the Nyquist-specific observation matrix to retrieve
underwater target radiated noise without distortion once the
original signal x is sparsely represented. The results of
the underwater target radiation denoising have been pub-
lished [31]. Table 2 displays the hysteresis and signal-to-noise
ratio results of the various measurement matrices.

It can be seen from the [31], employing the sparse ran-
dom matrix as a measurement matrix improves calcula-
tion time marginally when compared to other measurement
matrices. Its signal-to-noise ratio index, on the other hand,
achieved 85.48 dB, which was much higher than the other

FIGURE 3. Sample entropy at different scales of three different water
target radiated nois.

measurement matrices. The linear spectrum of the first type
of underwater target radiation noise is not visible after the
Fourier transforms directly when using the sparse random
matrix as the measurement matrix to address the first under-
water target radiation noise. The linear energy is improved
after the compressed sensing denoising treatment described
in this research, and it can identify the undersea target radia-
tion noise.

IV. EXTRACTION OF THE UNDERWATER TARGET
RADIATION NOISE FEATURES
The selection of multiscale entropy parameters is also differ-
ent for different signals, and it is necessary to study according
to the corresponding signals; paper [32] recommends choos-
ing 2 for the dimension m and 0.1-0.25std for the similar
tolerance r , where std is the original signal’s standard devi-
ation. In this study, the dimension m is chosen by 2, the
dimension r is chosen by 0.2 standard deviation, and the scale
is determined. As shown in Figure 3.

Figure 3 shows that the multiscale sample entropy of three
underwater target radiation noise signals is quite similar when
the scale factor is between 1 and 5. When the scale factor is 3,
there are obvious changes in the multiscale entropy of three
separate underwater target radiation noise signals. As a result,
when the scale factor is 3, the multiscale sample entropy of
three independent underwater target radiation noise signals
exhibits evident separability and may be employed as a fea-
ture of underwater target radiation noise signal classification
and identification.

V. RESULTS AND DISCUSSION
To validate the suggested method’s superiority, the three
undersea target radiation noises were first compressed and
noise decreased. The three undersea target radiation sounds
were then split, each signal into 40 segments, and the time
series statistical features andmultiple entropy features of each
segment calculated and derived; these features are displayed
in Table 3. Figure 4 depicts the categorization comparison
findings.
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FIGURE 4. a) Three types of signal classification using time series
statistical features as classification features. b) Classification of three
signals using entropy features as classification features.

TABLE 3. List of various features extracted.

Multiple temporal statistical variables were examined as
classification features for the three signals, as shown in
Figure 4a, and it was discovered that the three signal samples
varied significantly and there was a large crossover, prohibit-
ing accurate classification identification of the three signals.
As shown in Figure 4b, even though multiple entropies were
used as classification features for the three signals, the three
signal samples still fluctuated greatly and could not achieve
accurate classification recognition of the signals; thus, using
entropies as features cannot achieve accurate classification
recognition.

Following compression and noise reduction, the three sig-
nals were segmented, with each signal split into 40 segments
and each segment extracted with a scale factor of 3 as its

FIGURE 5. Classification with multi-scale entropy as three signal features.

multiscale entropy as a feature; the results are displayed in
Figure 5.

As shown in Figure 5, the underwater target radiated noise
after compressed sensing denoising process has a smooth
arrangement of multi-scale sample entropy, which can reflect
the difference in complexity of the original signal and has
obvious differentiability. Therefore, the multi-scale entropy
can be used as the underwater target radiation noise classifi-
cation and identification feature.

VI. CONCLUSION
This study presents a novel form of mixed compressive
sensing denoising approach for underwater target radiated
noise features, as well as a multiscale sample entropy extrac-
tion method. It sparsely represents the original signal in
the frequency domain using compressed sensing and recon-
structs the signal using the observation matrix. It significantly
enhances the original signal’s signal-to-noise ratio while also
employing multiscale sample entropy as a signal feature for
underwater target radiated noise. It enables the categorization
and identification of underwater target radiated noise while
also improving classification accuracy. This approach pro-
vides the following advantages after experimental verifica-
tion of analogue signals:

Combining compression sensing denoising and multiscale
sample entropy to recover the features of underwater target
radiated noise simplifies andminimizes the computation cost.

When compared to previous methods, the suggested
method lowers reliance on the operator and prior knowledge
while increasing the accuracy of the extraction of the under-
water target radiated noise feature.

Experiment findings suggest that the feature extraction
method described in this paper may effectively increase the
identification efficiency of underwater target radiation noise.

The approach suggested in this paper enhances signal pro-
cessing timeliness and underwater target recognition accu-
racy. Because the noise in this work is simulated, the
researchers will continue to gather actual water target radi-
ation noise to test the practicality of the method presented in
this paper in true underwater target radiation.
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