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ABSTRACT Manta ray foraging optimization (MRFO) algorithm is relatively a novel bio-inspired
optimization technique directed to given real-world engineering problems. In this present work, wind
turbines layout (WTs) inside a wind farm is considered a real nonlinear optimization problem. In spite of
the better convergence of MRFO, it gets stuck into local optima for large problems. The chaotic sequences
are among the performed techniques used to tackle this shortcoming and improve the global search ability.
Therefore, ten chaotic maps have been embedded into MRFO. To affirm the performance of the suggested
chaotic approach CMRFO, it was first assessed using the IEEE CEC-2017 benchmark functions. This
examination has been systematically compared to eight well-known optimization algorithms and the original
MRFO. The non-parametric Wilcoxon statistical analysis significantly demonstrates the superiority of
CMRFO as it ranks first in most test suites. Secondly, the MRFO and its best enhanced chaotic version were
tested on the complex problem of finding the optimal locations of wind turbines within a wind farm. Besides,
the application of the CMRFO to the wind farm layout optimization (WFLO) problem aims to minimize the
cost per unit power output and increase the wind-farm efficiency and the electrical power engendered by all
WTs. Two representative scenarios of the problem have been dealt with a square-shaped farm installed on
an area of 2 km × 2 km, including variable wind direction with steady wind speed, and both wind direction
and speed are variable. The WFLO outcomes reveal the CMRFO capability to find the optimal locations of
WTs, which generates a maximum power for the minimum cost compared to three stochastic approaches and
other previous studies. At last, the suggested CMRFO with Singer chaotic sequence has been successfully
enhanced by accelerating the convergence and providing better accuracy to find the global optimum.

INDEX TERMS Chaotic sequences, manta ray foraging optimization, stochastic optimization, wake effect,
wind farm layout, wind turbines.

NOMENCLATURE
a Axial induction factor.
ABC Artificial bee colony.
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AOA Arithmetic optimization algorithm.
BWOA Black widow optimization algorithm.
C Chaotic variables.
CEC-2017 Congress on evolutionary computation 2017.
CMRFO Chaotic manta ray foraging optimization.
d Dimension of the problem.
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D Rotor diameter.
DDOA Dynamic differential annealed optimization.
α Entrainment constant.
h Hub height.

HHO Harris hawks optimization.
Lb Lower bound.
LFD Levy flight distribution.
MRFO Manta ray foraging optimization.
N Population size.
r Rotor radius.
r1 Downstream rotor radius.
r2 Wake region radius.
SCA Sine cosine algorithm.
SSA Salp swarm algorithm.
T Maximum iteration.
Ub Upper bound.
u∞ Free incident wind speed.
WFLO Wind farm layout optimization.
WTs Wind turbines.

I. INTRODUCTION
The development of renewable energy is a priority of the
worldwide energy strategy marked by reducing electrical
power output costs. Besides, renewable energy plays an
important role in future necessities by keeping a clean,
safe and better environment, and that is why often denoted
as clean energy or green energy. Generally, solar, wind,
biomass, hydroelectric, and geothermal power are all referred
to as clean sources. Over the last two decades, wind energy
has increasingly received worldwide attention among other
various kinds of energies and has become an important power
source. The global world wind energy installed capacity
was 539.1 GW at the end of 2017 and is predicted to
achieve 840 GW by 2022 [1]. Generally, in the field of
renewable energy, wind power is usually produced by wind
turbines that convert kinetic energy into electrical power.
Therefore, one of the techniques used to raise the rate of
wind power production is to improve wind farm planning by
optimizing the placement of wind turbines in a wind park.

As wind farm layout optimization is a complicated task,
many extensive efforts have been addressed using meta-
heuristic optimization algorithms to maximize the energy
output and efficiency at a minimum cost per unit. It is worth
noting that the first optimization approach used for theWFLO
problem is outlined in the work of Mosetti et al. in 1994 [2].
They employed the wake model developed by Jensen [3].
This approach is called a genetic algorithm; it extracts a
maximum output power at a minimum cost per unit value.
For the same algorithm applied by Mosetti, several works
employed GA and its variants [4]–[12]. Referring to [13],
the authors attempted to solve the power produced by a wind
farm using the particle swarm optimization approach (PSO).
This last was developed by many researchers in order to
find the improved layout of the wind farm as demonstrated
in [14] – [18]. The main objectives of all these studies are

focused on enhancing the power output in wind farm layouts.
In this regard, more computation intelligence approaches
have been improved and introduced to solve this problem
such as: evolutionary algorithm (EA) [19], monte carlo
simulation [20], greedy algorithm [21], simulated annealing
(SA) [22], sequential convex programming [23], random
search algorithm (RSA) [24]–[27], multi-objective random
search algorithm (MORSA) [28], ant colony (AC) [29],
ant lion optimization (ALO) [30], sparrow search algorithm
(SSA) [31], single-objective hybrid optimizer (SOHO) [32],
binary invasive weed optimization (BIWO) [33], [34];
differential evolution(DE) [35], Jaya algorithm [36], integer
programming [37], success history based adaptive differen-
tial evolution (L-SHADE) [38], cuckoo search (CS) [39],
[40]; biogeography-based optimization (BBO) [41], multi-
team perturbation-guiding jaya (MTPG-Jaya) [42], water
cycle optimization (WCO) [43], dynastic optimization algo-
rithm (DOA) [44], binary most valuable player algorithm
(BMVPA) [45], adaptive neuro-fuzzy inference system
(ANFIS) [46], extended pattern search algorithm (EPS) [47].

In this present study, the optimal wind turbine layout
was for the first time performed based on a modified
new inspired evolutionary algorithm recently developed in
2020 by Zhao et al. [48]; named manta ray foraging
optimization (MRFO). In that respect, many previous pieces
of research focused on the application of MRFO and its
variants in numerous research areas, including electrical
engineering. For instance, the authors in [49] have examined
the global maximum power point (GMPP) of partially shaded
MJSC PV array applying the MRFO algorithm. In addition,
fahd et al. [50] applied the standard MRFO to perform
the dynamic operation for connecting PV into the grid
system. Regarding the work of Selem et al. [51], the MRFO
was applied to define the unknown electrical parameters
of proton exchange membrane fuel cells (PEMFC) stacks,
which is considered a constrained optimization problem.
El-Hameed et al. [52] used MRFO to solve the solar module
parameters identifications of three diode equivalent models
(3DeM). In the field of speech emotion feature selection,
Chattopadhyay et al. [53] utilized MRFO to recognize
emotion from speech signals in order to select the reliable
features for classification and discard the redundant ones.
Besides, in an attempt to ameliorate the performance of the
suggested approach, Dalia et al. [54] introduced a modified
MRFO by using fractional-order optimization algorithms in
order to enhance its exploitation ability. Furthermore, another
alteration occurred by merging MRFO with the simulated
annealing algorithm (SA) to tune the parameters for the
proportional-integral-derivative (PID) controller. In their
work, the SA was integrated as the initial population of
MRFO with the aim of raising its convergence speed [55].
Referring to [56], a binary version of MRFO has been
proposed using four S-Shaped and four V-Shaped transfer
functions for the feature selection problem. In the bio-medical
area, Karrupusamy utilized a hybrid MRFO to identify the
issue in existing brain tumors by using a convolutional neural
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FIGURE 1. Manta ray body form.

network as a classifier that classifies the features and supplies
optimal classification results [57]. Within the scope of
COVID-19, a hybrid MRFO with differential evolution (DE)
was employed as a methodology for diagnosing the disease
based on the lungs x-ray images of the potential patients [58].
As opposed to the single optimization algorithm, a multi-
objective manta ray foraging optimization (MO-MRFO)
based weighted sum was utilized to perform the allocation
and size of distributed generations (DG) [59]. In their
work, the objective functions were converted to a single
objective optimization problem using the weighted factors.
In this sense, Shaheen et al. have applied MO-MRFO to
handle the OPF problem for hybrid AC and multi-terminal
direct current (MTDC) power grids [60]. Additionally, in an
effort to resolve the optimal power flow incorporating
wind/solar/small-hydro power, a multi-objective version of
MRFO is suggested in [61].

Along these lines, the significant powerful features of
MRFO and its borrowed evolutionary algorithms mentioned
above, motivated us to improve a novel variant of MRFO
based on chaos sequences, named chaotic manta ray foraging
optimization (CMRFO), for solving the complex wind
farm layout design issue. However, no research in the
literature extends the MRFO algorithm to deal with the
WFLO problem. Besides, it is widely known that combining
the meta-heuristic methods with chaotic maps increases
the algorithms’ performance and convergence speed. It is
seen from the literature review that there are many works
which used chaotic maps such as, chaotic grasshopper
optimization algorithm (GOA) [62], bat algorithm (BA) [63],
bird swarm algorithm (BSA) [64], crow search algorithm
(CSA) [65], genetic algorithm (GA) [66], big bang–big
crunch algorithm (BB–BC) [67], krill herd algorithm
(KHA) [68], artificial immune system optimization algorithm
(AIS) [69], atom search optimization (ASO) [70], dragonfly
algorithm (DA) [71], and gravitational search algorithm
(GSA) [72], harmony search algorithm (HSA) [73], imperial-
ist competitive algorithm (ICA) [74], grey wolf optimization
(GWO) [75], particle swarm optimization (PSO) [76],
moth-flame optimization (MFO) [77], salp swarm algo-
rithm (SSA) [78], symbiotic organisms search algorithm
(SOS) [79], cuckoo search algorithm (CSA) [80], electro-
magnetic field optimization (EFO) [81], biogeography-based
optimization (BBO) [82], etc.

The principal contributions of this current paper can be
summarized as follows:
• A selected of ten different chaotic maps have been
integrated into MRFO.

• A set of twenty-nine benchmark problems of CEC-2017
is implemented to show the performance of CMRFO,
including composite, hybrid, multimodal and unimodal
functions.

• The best chaotic sequence is applied to the WFLO
problem for the first time.

• The suggested approach is compared with the standard
MRFO and other existing stochastic algorithms.

The remaining parts of this work are structured as
follows: Section II introduces the fundamental mathematical
formulations of the WFLO problem, including the wind
turbine, wind farm, wake model, power product and cost per
unit. A brief description of MRFO is provided in Section III,
besides the concepts, steps and implementation of chaotic
MRFO. Section IV deals with the experiments conducted in
this current study. In closing, Section V concludes the study
with a conclusion and a discussion of the future work of
MRFO.

II. OPTIMIZATION METHODOLOGY
A. MANTA RAY FORAGING OPTIMIZATION (MRFO)
As its name signifies, the MRFO is a bio-inspired algorithm
simulating the feeding behavior of manta ray marine
creatures [83]. Their cephalic fin movements and body turns
to make them as elegant marine critters; they swim as birds
freely fly. In spite of the colossal statue of these fascinating
creatures, they feed on some tiny organisms (planktons)
living in the sea; accordingly, they are considered the gentle
giants of the sea [84]. According to their species, Manta rays
can survive in tropical, subtropical and temperate oceans.
Therefore, there are two species of manta ray in nature,
the giant manta ray and the reef manta. The first kind is
called Mantas birostris; they are considered the giant of the
two oceanic species; they can reach up to 9 m in width
and have a dark color around the mouth. On the other side,
Mantas alfredi is the resident in reef manta, reaching a width
up to 4.5 m. The shape of a manta ray is illustrated in
Fig.1. Generally, depending on the number of mantas and
their swimming behavior, there are eight intelligent manta
foraging strategies: chain, cyclone, somersault, surface,
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FIGURE 2. Simulation model of manta ray foraging behaviors.

sideways, piggy-back, straight, and bottom feedings [85].
In terms of MRF optimization, three main mechanisms were
addressed: chain, somersault, and cyclone feeding. Fig. 2.
illustrates these three foraging behaviors [48]. Furthermore,
the manta rays are assumed to search agents which explore
the planktons’ location and proceed towards them. Then
the planktons at significant concentration represent the best
solution.

In the manner of the population-based optimization
algorithms, MRFO is first initialized by a random process as
introduced in below [48]:

xi = Lbi + rand× (Ubi − Lbi), i = 1, 2, . . . ,N (1)

where Ub and Lb are the maximum and minimum bounds
of variables in the search space, rand is a random number
between 0 and 1, and rand ∈ [0,1].

The details of the three main behaviors are explicated and
mathematically modeled in the following subsections.

1) CHAIN FORAGING
In chain feeding, the mantas foraging in the group, forming a
line of dozen individuals lining up head-to-tail in horizontal
movement with a fully open mouth. The female manta rays
piggyback the smaller males in order to match the beating
of the female’s pectoral fins. The manta chain is divided
into the leader, which is the manta at the front of the
chain, and the followers. Therefore, the missed planktons
by the previous manta rays will be consumed by the next
ones. During the feeding process, each individual updates its
position towards the best plankton source and towards the
manta ray in front of the current individual until it reaches the
best position. The following equations represent the position
updating equations [48]:

x t+1i,j =



x ti,j + r1
(
x tbest,j − x

t
i,j

)
+α

(
x tbest,j − x

t
i,j

)
, i = 1

x ti,j + r2
(
x ti−1,j − x

t
i,j

)
+α

(
x tbest,j − x

t
i,j

)
, i = 2, . . . ,N

(2)

where xi,j is the position of ith manta ray in jth dimension, r1
and r2 are the random vector in range [0-1], x tbest,j is the best
plankton concentration position, α is a weight coefficient that

is expressed as [48]:

α = 2r3
√
| log(r4)| (3)

where r3 and r4 introduce the random vector in range [0-1].

2) CYCLONE FORAGING
This attitude was observed in manta alfredi species. It seems
to be the previous feeding strategy, except that the chain
moves in a spiral shape after the mantas find out the
high concentration site of plankton. Along with this spiral
behavior, each manta swims toward the one in front of it.

This spiral movement is mathematically formulated
as [48]:

x t+1i,j =



xbest,j + r5
(
x tbest,j − x

t
i,j

)
+β

(
x tbest,j − x

t
i,j

)
, i = 1

xbest,j + r6
(
x ti−1,j − x

t
i,j

)
+β

(
x tbest,j − x

t
i,j

)
, i = 2, . . . ,N

(4)

where r5 and r6 present the random value in [0-1], β is the
weight coefficient that is formulated as [48]:

β = 2er7
T−t+1
T sin (2πr7) (5)

where r7 denotes the random vector in range [0-1], T and t
are the maximum and current iteration, respectively.

In the field of searching mechanisms, cyclone foraging
possesses improved intensification and diversification pro-
cesses. The exploitation potential increases based on the
best plankton region found as mantas reference positions.
In addition, the cyclone behavior boosts the exploration
process by enforcing each manta to update its position to
a new random one that is far away from the current best
position. This exploration phase incites the MRFO algorithm
to achieve the overall optimal solution in accordance with the
mathematical equations described below [48]:

xrand,j = Lbj + r8
(
Ubj − Lbj

)
(6)

x t+1i,j =



xrand,j + r9
(
xrand,j − x ti,j

)
+β

(
xrand,j − x ti,j

)
, i = 1

xrand,j + r10
(
x ti−1,j − x

t
ij

)
+β

(
xrand,j − x ti,j

)
, i = 2, . . . ,N

(7)
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Algorithm 1Manta Ray Foraging Optimization
1: Function x = MRFO(N , T , f (x), Ub, Lb, d)
2: Generate a uniform random initial population of mantas x respect to Ub and Lb using:
3: xi = Lbi + rand× (Ubi − Lbi), i = 1, 2, . . . ,N
4: Compute the fitness function of each manta
5: Find the best solution xbest which is the plankton with high concentration in the initial population
6: while t < T (stopping criteria) do
7: for i = 1 : N (each manta in the population) do
8: if rand(0, 1) < 0.5 then
9: %%Cyclone foraging

10: if t/T < rand(0,1) then
11: Update the mantas’ position using (6) and (7)
12: else
13: Update the mantas’ position using (4)
14: end if
15: else
16: %%Chain foraging
17: Update the mantas’ position using (2)
18: end if
19: Evaluate new solution of each manta f

(
x t+1i

)
20: if new solutions are better, f

(
x t+1i

)
< f (xbest) then

21: Update them in the population, xbest = x t+1i
22: end if
23: end for
24: %%Somersault foraging
25: for i = 1 : N (each manta in the population) do
26: Update the mantas’ position using (8)
27: Evaluate new solution of each manta f

(
x t+1i

)
28: if new solutions are better, f

(
x t+1i

)
< f (xbest) then

29: Update them in the population, xbest = x t+1i
30: end if
31: end for
32: end while
33: Output the best solution found

where xrand,j is the random position generated inside the
search space.

3) SOMERSAULT FORAGING
As a final behavior, each manta feeds individually by
somersaulting around itself, which increase the plankton
intake considering a common pivot point for all manta bunch.
Then, each individual updates their position around the pivot.
The mathematical equation of somersault feeding is given as
follows [48]:

x t+1i,j = x ti,j + S
(
r11xbest,j − r12x ti,j)

)
, i = 1, 2, . . . ,N (8)

where r11, r12 depict the random values between 0 and 1.
S is the somersault factor, S = 2.

MRFO’s diversification and intensification phases are
balanced using the value of the variations t/T , which is

gradually increasing. The expression (t/T > rand) denotes
the exploration stage; reversibly, exploitation process is
adopted. Themain steps followed inMRFO are demonstrated
in Algorithm 1.

B. CHAOTIC MANTA RAY FORAGING OPTIMIZATION
(CMRFO)
1) CHAOTIC THEORY
Chaos is one of the universal mathematical phenomena.
It appears in some nonlinear dynamical systems. In fact,
these systems are characterized by a high sensitivity to
their primary conditions, in which slight variations in the
initial conditions can radically lead to significant outcomes
after several cycles in the system. This effect is known
as the butterfly effect, which was founded by Lorenz in
1963 [86]. Chaos refers to a deterministic random-like pro-
cess. Although the systemmodel is deterministic, its behavior
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FIGURE 3. Visualization of chaotic maps.

TABLE 1. Descriptions of the Chaotic maps.

appears stochastic. This means that the future behavior of
such systems is entirely determined by their initial chaotic
variables, without any random variable being involved. The
chaotic systems exhibit the following characteristics: non-
linearity, ergodicity, determinism, hypersensitivity, unpre-
dictability, and irregularity. The chaotic dynamical systems
study can be formulated with a discrete function of dimension
1 as follows [87]:

x(k + 1) = f (x(k)), x ∈ R, k ∈ N∗ (9)

Lately, chaos maps have been widely employed for
adjusting the stochastic algorithm parameters, due to the fact
that chaos often offers high searching behavior compared to
stochastic variables.

2) DIFFERENT CHAOTIC SEQUENCES FOR MRFO
In this section, the chaotic maps employed for improving
the MRFO are first presented, and then the steps followed
for embedding them are described. Ten chaotic variants are
considered in this article as: Chebyshev [88], Logistic [89],
Piecewise [82], Sine [82], Singer [82], Sinusoidal [82],
Tent [90], Lozi [91], Henon [66], Quadratic [92]. Further-
more, there are more maps have been used to improve the
suggested approach but have not been presented due to the
worst results found. The visualization of all chaotic maps

utilized is shown in Fig. 3. The mathematical formulations
for all these chaotic variants are listed in Table 1, their ranges
are shifted to be in the interval of (0,1) with an initial value
of 0.7 (x0 = 0.7).
It is widely known that in any nature-inspired optimiza-

tion algorithm, there is always a scope for modifications,
avoiding the premature convergences to escape from different
local optima and exploring more accurate solutions. From
this perspective, the chaos maps dynamical features were
widely used to overcome these shortcomings, enhance the
intensification and diversification processes, and appraise the
performance of stochastic algorithms. For this purpose, using
the chaotic mapping mechanism with the standard MRFO
in both search strategies and speed parameters achieves
its ability to find the global optimum for the complex
high-dimensional problem. The chaotic manta ray foraging
optimization CMRFO was generated by substituting random
values in the basic MRFOwith a chaotic variables, especially
the random values r1, r2, r5, r6, r8, and r11 as explained in
Algorithm 2.

III. PROBLEM FORMULATION
In this section, the wind farm mathematical modeling will be
discussed. Like the assumptions done in the previous works,
the Jensen wake model [3] is considered in this study; in

78350 VOLUME 10, 2022



F. Daqaq et al.: Enhanced Chaotic Manta Ray Foraging Algorithm

Algorithm 2 Chaotic Manta Ray Foraging Optimization
1: Function x = CMRFO(N , T , f (x), Ub, Lb, d , C)
2: Generate a uniform random initial population of mantas x respect to Ub and Lb using:
3: xi = Lbi + rand× (Ubi − Lbi), i = 1, 2, . . . ,N
4: Compute the fitness function of each manta
5: Find the best solution xbest which is the plankton with high concentration in the initial population
6: while t < T (stopping criteria) do
7: for i = 1 : N (each manta in the population) do
8: if rand(0, 1) < 0.5 then
9: %%Cyclone foraging

10: if t/T < rand(0, 1) then
11: xrand = Lb+ C(t) (Ub−Lb)

12: x t+1i =

{
xrand + r9

(
xrand − x ti

)
+ β

(
xrand − x ti

)
, i = 1

xrand + r10
(
x ti−1 − x

t
i

)
+ β

(
xrand − x ti

)
, i = 2, . . . ,N

13: else
14: x t+1i =

{
xbest + C(t)

(
xbest − x ti

)
+ β

(
xbest − x ti

)
, i = 1

xbest + C(t)
(
x ti−1 − x

t
i

)
+ β

(
xbest − x ti

)
, i = 2, . . . ,N

15: end if
16: else
17: %%Chain foraging

18: x t+1i =

{
x ti + C(t)

(
xbest − x ti

)
+ α

(
xbest − x ti

)
, i = 1

x ti + C(t)
(
x ti−1 − x

t
i

)
+ α

(
xbest − x ti

)
, i = 2, . . . ,N

19: end if
20: Evaluate new solution of each manta f

(
x t+1i

)
21: if new solutions are better, f

(
x t+1i

)
< f (xbest) then

22: Update them in the population, xbest = x t+1i
23: end if
24: end for
25: %%Somersault foraging
26: for i = 1 : N (each manta in the population) do
27: x t+1i = x ti + S

(
C(t)xbest − r12x ti )

)
, i = 1, 2, . . . ,N

28: Evaluate new solution of each manta f
(
x t+1i

)
29: if new solutions are better, f

(
x t+1i

)
< f (xbest) then

30: Update them in the population, xbest = x t+1i
31: end if
32: end for
33: end while
34: Output the best solution found

addition to a square-shaped wind farm area (2 km × 2 km)
partitioned into 100 possible turbine positions, each cell
dimension is taken to be 200 m × 200 m, and each wind
turbine is installed at the center of each cell with a hub height
of 60 m and a rotor diameter of 40 m. The wind farm grid
model in use is presented in Fig. 4(a).

A. WAKE MODEL
As mentioned previously, the wake model utilized for
computing the extracted actual power from turbines and
getting a wind velocity decay is the Jensens wake effect
model, which is assumed to be the most used analytical
model. In this model, the momentum is conserved inside
the wake. After the wind flows through the turbine, the

wind speed decreases and the turbulence intensity increases,
forming the wake. As depicted in Fig. 4(b)., the wake region
can be modelled as a conical region.

The wind speed inside the wake region subject to only one
wake is expressed as [4]:

u = u∞

1− 2a(
1+ α x

r1

)2
 (10)

where, a = 1−
√
1−CT
2 , α = 0.5

ln(h/z0)
, r1 = r

√
1−a
1−2a

u∞ is the free incident wind speed, a is the axial induction
factor, α the entrainment constant, x is the distance between
upstream and downstream turbine, CT is the wind turbine
thrust coefficient, r1 is the downstream rotor radius, r is the
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FIGURE 4. Schematic of wind farm layout and Jensen wake effect model.

rotor radius, h is the hub height of the turbines, z0 is the
surface roughness of wind farm.

The radius of the wake region r2 is a function of downwind
distance x [4]:

r2 = αx + r1 (11)

When multiple wakes flow, the wind speed of N turbines
NT can be calculated as below [4]:

ui = u∞

1−
√√√√ NT∑

i=1

(
1−

u
u∞

)2
 (12)

B. POWER GENERATION MODEL
The power generated by ith in kW turbine is given by [38]:

Pi = 0.5ρπr2u3i
Cp
1000

, i = 1, 2, . . . .,NT (13)

where ρ, r , ui, and Cp are the air density (1.225 kg/m3), rotor
radius, the wind speed approaching the wind turbine i, and
power coefficient, respectively.

The total power output in a wind park is equal to the sum
of the product of each turbine power [38]:

Ptotal =
350∑
k=0

NT∑
i=1

fkPi (ui) (14)

where NT is the total turbines number, fk is the wind
probability distribution for awind speed at a specific direction
k and

∑350
k=0 fk = 1.

The farm efficiency is described by the following for-
mula [38]:

η =
Ptotal

Ptotal,max
(15)

where Ptotal,max is the maximum output power generated
without any wake.

C. COST MODEL
The cost of a wind farm utilized by Mosetti et al. [2] is the
same as applied in this paper. This cost is modelled by a

TABLE 2. Simulation data.

simple function that is related only to the number of turbines
placed in the wind park.

Its mathematical expression can be represented by [2]:

Cost = NT

(
2
3
+

1
3
exp

(
−0.00174 N 2

T

))
(16)

The objective function to be optimized in this work is the
minimization of the cost per unit power generated, it can be
defined as follows [38]:

Objective Function =
Cost
Ptotal

(17)

This considered cost model depends only on the number of
turbines installed. Their design variables have a dimension of
100. Each element vector adopts 100 discrete integer values
of either 0 or 1 (Xi,j ∈ {0, 1} where i, j = 1, 2, . . . , 100).
A value of ‘‘1’’ means the location has a turbine, while
‘‘0’’ indicates the location is empty. Hence, the output
configuration has an unfixed number of wind turbines up
to 100 WTs. During the CMRFO optimization process, any
fraction value of design variables is rounded off to the nearest
integer value.

In the following section, two experiences have been carried
out to demonstrate that CMRFO performs better than the
original approach.

IV. RESULTS AND DISCUSSION
For evaluating the performance of an optimization algorithm,
various benchmark functions must be employed. To this
end, the authors of this paper have utilized CEC-2017
functions [94] existed in literature. Besides, a complex
real-world optimization problem named wind farm layout
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TABLE 3. Parameters settings of the tested algorithms.

optimization (WFLO). The wind turbine properties based
on preview studies are shown in Table 2. The employed
benchmark tests comprise unimodal, multimodal, hybrid, and
composite functions. This diversity of benchmark classifi-
cation can help prove the reliability and ability to explore,
exploit, and converge towards the global optimum solution
of the proposed algorithm. Furthermore, the outcomes of the
proposed CMRFO and MRFO on CEC-2017 test functions
for a number of population size and maximum iterations
of 50 and 1000, respectively, are compared to 8 significant
novel approaches, named ABC [95], AOA [96], HHO [97],
SCA [98], BWOA [99], DDOA [100], LFD [101], and
SSA [102]. Table 3 provides the parameter settings of all these
algorithms. Statistical testings such as min, mean, standard
deviation, and Wilcoxon signed-rank test have been carried
out over 50 independent runs.

All simulations and analyses are implemented on a
personal computer core i5 with 4GB-RAM Processor
@1:8GHz under Microsoft Windows 10 operating system
using MATLAB 2020a programming software.

A. EVALUATION OF CMRFO ON CEC-2017 TEST ANALYSIS
In this study, the performance of CMRFO has been assessed
using different sets of well-known functions, including the
CEC-2017, in which some of them have global optima and
others have more than one local optima. The descriptions of
these selected functions, including lower, upper boundaries
and minimum values, are summarized in Table 4. Function
F1 represents a unimodal function, F3 to F9 represent
multimodal functions, F10 to F19 represent hybrid functions,
whereas F20 to F30 represent composite functions. In this
experiment, the mentioned benchmark tests (F1-F30) have
been addressed with various variants of CMRFO. It is worth
mentioning that the unimodal functions are more suitable
for assessing the potential performances of algorithms’

exploitation, whereas the exploration capability can be
generally checked using themultimodal functions. Dissimilar
to the stated type of functions, the complex and challenging
benchmark tests under the name of hybrid and composition
examine the local optima avoidance. These functions are
particularly appropriate for testing the algorithms’ ability to
solve real-world problems.

Based on the statistical mean in Table 8, it can be
observed that MRFO occupied the last average rank over
its variants. The optimal findings are shown in bold text
and underlined. Furthermore, these outcomes obviously show
that CMRFO with the singer (CMRFO5) and quadratic
(CMRFO10) chaotic maps outperform the standard MRFO
in most CEC-2017 functions. As it can be seen, CMRFO5
holds the first rank for F3, F4, F5, F7, F8, F13, F14, F18,
F19, F20, F21, F22, F24, F26, and F27; besides, it secures
the second rank for F11, F12, F16, F17, F25, F29, and F30,
also the third position for F12, F28. Additionally, CMRFO5
performs better than MRFO for F1, F10, F15, F23, and
F28. The quadratic map CMRFO10 reaches first place for
F11, F16, F28, F29, and second for F9, F20, F21, and
F22. Then, CMRF2, CMRF3, CMRF6, CMRF7, CMRF8,
and CMRF9 present their best results only (F6, F23), F10,
F25, F1, F12, F15, respectively. Moreover, to prove the
significant differences between the CMRFO variants, the
Wilcoxon rank-sum test [103] is employed; it is considered
a non-parametric test that is used to determine whether two
independent sets of obtained results are different statistically
or not. In this context, a significance level of less than 5%
signifies that the algorithms are different. According to the
p-values in Table 8, the singer CMRFO5 shows the ability to
outstrip the MRFO in most tests suites significantly.

Table 9 outlines the statistical results corresponding to
their min, mean and std of fitness values of the winner
CMRFO5 and the state-of-the-art algorithms mentioned
above. The optimal outcomes are shown in bold text and
underlined. Over the 29 considered functions, CMRFO5
performs better in 20 test suites; it attains the lowest mean
fitness value for the various types of benchmark functions.
Additionally, it can be seen that the novel developed
algorithms LFD and AOA achieve the worst results in most
cases.

In order to analyze the convergence performance of the
algorithms, the convergence curve for 1000 iterations and
50 populations is used as a qualitative metric. The best
fitness values of all competitive algorithms have been plotted
according to the best run. It is obvious from Fig. 5. that
CMRFO5 has a steady and speed convergence acceleration
toward the global optimum. Despite the fact that CMRFO5
fails to reach the optimum results for some functions, it holds
second place afterwards: ABC for F6, F9, F11, F30, BWOA
for F7, F8, HHO for F25, and SSA for F27, with a very small
difference. Furthermore, to assert the converging capability
and stability of the winner chaotic map CMRFO5 compared
to the competitors mentioned above, intensive statistical
analyses have been investigated regarding the empirical
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TABLE 4. Descriptions of the benchmark functions CEC-2017.

distribution of the results. The box plots of all approaches
executed fifty times are depicted in Fig. 6. It is obvious
from the smallest interquartile ranges and medians that the
proposed CMRFO5 optimizer has consistent stability in most
CEC2017 benchmark functions.

According to the Wilcoxon test, Table 5 reveals the
p-values of all comparative algorithms along with the higher
T+ and T– values. It is apparent that most of the obtained
p-values are less than the assumed significant level 5%
compared to other approaches. This signifies that CMRFO5
significantly improves the performance of the basic MRFO.
In summary, the reported results affirm the remarkable
influence of singer map CMRFO5 on the primary MRFO
and reveal its good exploration and exploitation capability in
dealing with various types of functions. Therefore, CMRFO5
is the recommended variant for dealing with the real-world
problem of wind farm layout optimizationWFLO, which will
be discussed in the next section.

B. EVALUATION OF CMRFO5 ON WFLO PROBLEM
The wind farm layout problem has been handled in this
work with the purpose of validating the performance of
the proposed chaotic approach CMRFO with singer map.
As previouslymentioned, this selectedwind farm has a square
shape split into 100 grids which aims to install the optimal
number of wind turbines out of 100 turbines in optimal
positioning, and the spacing distance between turbines is

at least 100 m. In this present study, the two scenarios
suggested by Mosetti and some latest studies have been
investigated, in which the first considers a variable wind
direction and steady wind speed, while the second case
assumes a variable wind direction and a variable wind speed.
The fitness function to be optimized is the minimization
of the cost per unit of power production, along with the
total power (KW) and efficiency. The simulation results are
implemented with a population size of 30 and a maximum
number of 300 iterations over 30 independent runs for each
case study. The computational results are compared to the
previous studies, including Mosetti, Grady and some newest
researches. It is worth noting that in most preceding works,
Mosetti and Grady are reputed for evaluating the performance
of the improved meta-heuristic algorithms. Additionally, the
outcomes of all rival approaches have been re-validated
according to their optimal placement plotted in their papers.

1) SCENARIO 1: CONSTANT WIND SPEED, VARIABLE
DIRECTION
In this case study, a single wind speed of 12 m/s blowing
from 36 rotational wind directions are considered; it varied
from 0◦ to 360◦ with 10◦ difference between two adjacent
directions and a uniform probability of occurrence. Com-
putational experiments of MRFO, its winner CMRFO5 and
the mentioned competitor methods, as well as the AOA,
SCA, SSA algorithms, are summarized in Table 6. The
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FIGURE 5. Comparison of convergence curves of CMRFO5 vs the state-of-the-art algorithms for CEC-2017 benchmark tests.
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FIGURE 5. (Continued.) Comparison of convergence curves of CMRFO5 vs the state-of-the-art algorithms for CEC-2017 benchmark tests.
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FIGURE 6. Box plots of CMRFO and the state-of-the-art algorithm for CEC2017 problems.
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FIGURE 6. (Continued.) Box plots of CMRFO and the state-of-the-art algorithm for CEC2017 problems.
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TABLE 5. Statistical comparisons of CMRFO5 vs recent state-of-the-art algorithms for CEC-2017 benchmark tests.

CMRFO5 achieved a power generation of 18337 KW with
86.28% efficiency for a cost equal to 0.0015306, while

MRFO produced a total power of 17880 KW and 86.23%
efficiency for a cost equal to 0.0015375. Along with these
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TABLE 6. Simulation results of WFLO problem for case 1.

FIGURE 7. Optimal configurations and Convergence curves of CMRFO5 vs MRFO, AOA, SCA, SSA for Case 1.

findings, it is observed that the cost per unit power is
improved compared to those reported in the literature and
the re-implemented approaches and has been decreased by
11.92% for Mosetti et al. [2], 2.19% for Grady et al. [4],
2.18% for Pookpunt et al. [14], 0.10% for Taleb et al. [30],
1% for Kalyan et al. [31], 0.23% for Biswas et al. [38],
0.46% for Hegazy et al. [43], and 1.95%, 2.48%, 1.5%
for AOA, SCA, and SSA, respectively. It is worth noting
that the results are compared for unfixed WTs. Total wind
turbines placed in this present case study are better than all
approaches; it is reported that 41 number of turbines with
a lower cost and a higher output total power. Moreover,
regarding these earlier researches reported in Table 6, it can
be seen that the Mosetti results found a better farm efficiency

of 93.75% and a worst total power output of 9234 KW for
a minimum number of wind turbines equal to 19 machines.
Furthermore, Pookpunt reaches the second rank in regard to
efficiency, which is equal to 87.06%, and a smaller power
output of 15796 KW for a number of wind turbines equal
to 35. Besides, the optimal layouts corresponding to 39 and
40 machines have close results with each other, except that
of Taleb et al. which gives a decreased cost with the lowest
total power. Along these lines, it is obvious that the increased
number of turbines affects an increase in power output and
a reduction in efficiency. Fig. 7. describes the corresponding
optimal configurations for CMRFO5, MRFO and the other
competitive algorithms AOA, SCA, and SSA. Furthermore,
the convergence curves of the fitness values for all approaches
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TABLE 7. Simulation results of WFLO problem for case 2.

FIGURE 8. Optimal configurations and Convergence curves of CMRFO5 vs MRFO, AOA, SCA, SSA for Case 2.

are illustrated in Fig. 7. As can be seen, this figure reveals that
CMRFO5 converges faster to lower fitness compared to the
other approaches.

2) SCENARIO 2: VARIABLE WIND SPEED, VARIABLE
DIRECTION
The variation of wind direction in this case study is identical
to that of the previous scenario; however, the wind speed
is assumed to be variable 8 m/s, 12 m/s, and 17 m/s, with
a different occurrence probability. As tabulated in Table 7,
CMRFO5 attains the best layout, which extracts a total
power output of 33052 KW for 40 wind turbines with
an efficiency of 86.34%, in addition to a best minimum
cost value of 0.0008317. Whereas the MRFO obtains a
fitness value equal to 0.0008360 with a power output
of 32884 KW and an efficiency of 85.90% for the same

wind turbines number as CMRFO5. Through the results
found, it can be clearly seen that according to the fitness
value, the proposed CMRFO5 algorithm yields better results
than the other approaches; it is reduced by 15.54%, 1.67%,
2.41%, 0.40%, 0.72%, 0.08%, 0.45%, 1.75%, 2.65%, and
1.45%, compared with Mosetti et al. [2], Grady et al. [4],
Pookpunt et al. [14], Taleb et al. [30], Kalyan et al. [31],
Biswas et al. [38], Hegazy et al. [43], AOA, SCA, and
SSA, respectively. According to the studies mentioned above,
Mosetti reported higher efficiency of up to 94.65% with
a lower total power output of 13588 KW for 15 turbines.
While, Pookpunt demonstrated better power output of up
to 36440 KW with the worst efficiency of 82.78% for a
number of turbines equal to 46 machines, which confirms
the relationship between the number of turbines in dealing
with the farm efficiency and the output power. Through these
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analyses, CMRFO5 was able to find the optimal layout
with a reasonable solution and a compromise between total
power output and efficiency. The optimal locations of the
current study for MRFO, CMRFO5 with singer map, and the
state-of-the-art algorithms AOA, SCA, and SSA are plotted
as depicted in Fig. 8. It can be evidently expected that
the suggested chaotic approach attempts to install the wind
turbines at the wind farm boundary. This is due to the low
wind frequencies from straight all directions (0◦, 90◦, 180◦,
and 270◦). This figure also shows the convergence curves of
cost per unit throughout the simulation proceeding for basic
MRFO; its variant CMRFO5, AOA, SCA, and SSA. To this
end, the singer CMRFO5 converges faster than the original
one and attains the minimum fitness value.

V. CONCLUSION
An optimal position of a wind turbine installed in a wind
farm increases the overall power output and farm efficiency
for a minimum cost. Accordingly, this study focuses on the
development of a new inspired optimization approach, known
as the manta ray foraging optimization MRFO algorithm,
which is recommended in most academic studies. This
algorithm was enhanced based on the chaotic sequences.
To use this chaotic method, some MRFO’s random values
were replaced by chaotic maps that help in balancing between
the intensification and diversification of algorithms and
avoiding any entrapment in local optima. Ten chaotic maps
have been embedded into the MRFO optimizer, supposedly
ten improvement cases. To demonstrate the effectiveness of
the proposed approaches, twenty-nine CEC-2017 benchmark
functions were applied, and the best performing chaotic map
out of ten chaotic sequences has been recommended to deal
with the real word problem wind farm layout optimization
WFLO, which includes two case studies. One with a constant
wind speed and variable direction and one with both wind
speed and direction are variables. Thus, the chaotic sequence
that was found to be suitable for enhancing the MRFO
is the singer map. Moreover, eight recent algorithms have
been considered for comparison, including ABC, AOA,
HHO, SCA, BWOA, DDOA, LFD, and SSA. Through the
analysis of the results found for both experiments: CEC-
2017 and WFLO problems, the CMRFO5 has the ability to
balance between exploration and exploitation, and then to
converge faster to the optimal solution, it is obviously that
CMRFO-singer is often higher than the re-implemented well-
known state-of-the-art algorithms, and those stated in the
literature, in terms of optimization results and convergence
speed. Further, the suggested approach provides an intriguing
configuration of wind turbines that extracts a higher total
output power and efficiency for the lowest cost. In accordance
with these remarkable outcomes, The technique developed in
this work is a useful approach forWF configuration. Thus, the
authors recommend CMRFO with singer sequence to handle
the WFLO for a realistic, higher dimensional problem that
exceeds 100 variables as considered in this research and to
deal with multiple types ofWTs with a fixed number ofWTs.
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APPENDIX A
COMPARISON RESULTS OF MRFO VS CMRFO5 AND
RECENT STATE-OF-THE-ART ALGORITHMS FOR
CEC-2017 BENCHMARK TESTS
See Tables 8 and 9.
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