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ABSTRACT Edge computing is proposed as a technical enabler for meeting emerging network technologies
(such as 5G and Industrial Internet of Things), stringent application requirements and key performance
indicators (KPIs). It aims to alleviate the problems associated with centralized cloud computing systems
by placing computational resources to the network’s edge, closer to the users. However, the complexity
of distributed edge infrastructures grows when hosting containerized workloads as microservices, resulting
in hard to detect and troubleshoot outages on critical use cases such as industrial automation processes.
Observability aims to support operators in managing and operating complex distributed infrastructures
and microservices architectures by instrumenting end-to-end runtime performance. To the best of our
knowledge, no survey article has been recently proposed for distributed edge and containerizedmicroservices
observability. Thus, this article surveys and classifies state-of-the-art solutions from various communities.
Besides surveying state-of-the-art, this article also discusses the observability concept, requirements, and
design considerations. Finally, we discuss open research issues as well as future research directions that will
inspire additional research in this area.

INDEX TERMS Automation, cloud-native, containers, DevOps, edge, Industrial Internet of Things (IIoT),
microservices, monitoring, observability, operation, software-defined infrastructure, visibility.

I. INTRODUCTION
Cloud-native technologies [1] empower organizations to
build and run applications in modern, scalable and dynamic
distributed Information Technology (IT) infrastructures.
This approach exemplifies containers, microservices, and
immutable infrastructures. These techniques ultimately aim
at leading to more robust, maintainable, and loosely coupled
ecosystems. Combined with automation, these techniques
also enable developers to make changes more frequently
and predictably with minimal effort. The Cloud Native
Computing Foundation (CNCF) [1] is ambitious to accelerate
the adoption of this paradigm bymaintaining an ecosystem of
open-source, vendor-neutral projects.

The associate editor coordinating the review of this manuscript and
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The emergence of microservices architectures [2] together
with the Development and Operations (DevOps) design
philosophy [3] have made considerable changes to the way
user applications are developed, deployed, and managed.
Compared to a typical monolithic application, where the
entire application is built as a single unified system,
a microservices architecture decomposes the application
into several independent executable pieces that coherently
interoperate to provide specific application functionalities.
Techniques like lightweight RESTful Application Program-
ming Interfaces (APIs) [4] are extensively adopted to
facilitate runtime communication among microservices.

As IT infrastructures continue to grow and become more
distributed [5], enticed by a prospect of faster innovation, cost
reduction, and boost agility, many businesses are migrating
their traditional monolithic applications to microservices.
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For smooth execution, the requirement to monitor1 these
infrastructures at different levels of the software stack appears
to be seamlessly crucial with the introduction of distributed
environments and the transition to microservices.

Monitoring is by no means a new problem or new
requirement [7]. Traditional monitoring tools, however,
do fall short of meeting the challenges posed by oper-
ation monitoring demands of containerized microservices
deployed over distributed IT infrastructures [8]. With the
emergence of Industrial Internet of Things (IIoT), edge, and
cloud combinations, where mission critical IIoT applications
are hosted, introduce significant complexity for operators.
In these setups, multi-site resource islands are connected
via heterogeneous networks requiring several operation
monitoring tools to manage aspects such as users, application
data, tenants, nodes, or networks. Naive monitoring of bare-
metal servers, virtual machine (VM) instances, or application
container metrics without understanding the topological
relationships between these various entities is incomplete
for diverse operations (Ops) teams when troubleshooting
performance issues [9].

Even though monitoring has served as a core function
of IT for the last few decades, it started to prove itself
limited due to various factors, including agile development
methodologies, cloud-native deployments, and new DevOps
practices. These factors have altered how the entire IT
ecosystem (e.g., infrastructures, systems, and applications)
should be monitored to respond promptly to incidents. For
example, most edge infrastructures are orchestrated through
Kubernetes [10], which is intended to abstract a lot of the
underlying complexity. However, the platform itself consists
of multiple independent projects as well as interconnected
components. As such, simply lifting and applying traditional
monitoring tools does not work out of the box for several rea-
sons, e.g., several influencing components are hosted outside
the containerized application, the underlying environment is
more dynamic, and applications have more rapid deployment
cycles. To this end, observability is an emerging set of
practices combined with tools that goes beyondmonitoring to
provide insight into the internal state of a system by analyzing
its external outputs [11]. The core of the observability is to
quickly learnwhat is happeningwithin the IT infrastructure to
avoid extended outages, and during an outage, quickly enable
so-called root cause analysis of the problem. For example, the
Mean Time to Resolution (MTTR) metric measures outages,
and the observability objective is to drive MTTR value as
close to zero as possible.

Despite the systematic literature review on monitoring
technologies, only a few studies such as [7], [12], [13]
survey this field. In addition, no recent studies have surveyed
latest distributed IT systems and microservices observability-
related ramifications. Furthermore, considerable develop-
ments have occurred since then [2], [14], [15], and

1Monitoring is a method of gaining visibility into different parts of an
end-to-end system to diagnose different types of operational issues [6].

several aspects of distributed IT systems and application
patterns have revamped. Thus, to better understand and tackle
the observability problem, we first survey relevant works
for modern distributed IT infrastructures and microservices
observability. Next, we detail various observability principles
to highlight fundamental requirements and challenges in
this domain. Finally, we present open issues and challenges
in the observability research domain. In summary, the key
contributions of this paper are as follows:

• We provide a detailed review of state-of-the-art mon-
itoring and observability contributions available in
recent literature from both academic and industrial
communities for delivering monitoring in distributed
IT systems that are mostly realized via Linux-based
systems and hosts microservices.

• Based on the literature survey, we extract key require-
ments and define fundamental characteristics that an
operable observability system should exhibit.

• Highlight open issues and future research directions
to promote further research in this exciting area of
observability.

The rest of this paper is structured in line with these
contributions. We first provide the background knowledge
on distributed systems and application architecture patterns,
highlight differences between monitoring and observability,
and investigate related work (Section II). Next, we review
state-of-the-art in observability landscape (Section III). After
that, we outline requirements for realizing an observability
system (Section IV) followed by details about open issues
and challenges in this area (Section V). Finally, we present
our final thoughts on the findings (Section VI).

II. BACKGROUND AND RELATED WORK
Establishing end-to-end runtime performance insights for
today’s dynamic, complex distributed IT environments
is critical for guaranteeing containerized microservices
agreed-upon Service Level Agreements (SLAs) [16]. How-
ever, the terms monitoring and observability are often mixed
up, even though they are complementary concepts. In short,
the term observability got significant traction in software
engineering around 2018, as a natural evolution ofmonitoring
practices. This section details how distributed IT systems
have evolved (Section II-A), how application patterns have
changed driven by the possibilities offered in the underlying
distributed infrastructure (Section II-B), the fundamental
differences betweenmonitoring and observability (Section II-
C), the complexities associated with traditional monitoring
approaches (Section II-D), and the related surveys that are
available in the literature (Section II-E).

A. DISTRIBUTED IT SYSTEMS EVOLUTION
Adistributed infrastructure consists of numerous components
installed on disparate networked computers and commu-
nicate and coordinate by passing messages. The need to
achieve excellent Quality of Service (QoS) to facilitate good
Quality of Experience (QoE) is one of the notable factors
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that has brought substantial evolution in the distributed
infrastructures [14]. An overall trend to illustrate how
computing systems have evolved over time is depicted in
Fig. 1.

Cloud computing [17], [18] is one such big paradigm that
gained traction in the mid-2000s with the introduction of
the Amazon Web Services (AWS). It has since picked the
interest of both service providers and consumers, owing to
its pay-per-use service model, which eliminates the upfront
cost of purchasing physical hardware while also masking
network connectivity complexity among other factors that
make applications hosted on these systems more resilient
and easily managed. It offers on-demand IT resources by
dynamically scaling its provisioning power. The unprece-
dented development of diverse applications and increasing
smart mobile devices for supporting IoT has lately posed
substantial constraints on the centralized paradigm of cloud
computing in terms of latency, bandwidth, and connectivity.
To address centralized cloud computing constraints, research
interests are shifting towards distributed paradigms [19].

Edge computing [15] is a good example of a decentralized
paradigm. It aims to move data processing to the network’s
edge, near where data is generated and also consumed.
This approach leverages an edge device computing power
to process data without sending it to a private datacenter
or a cloud service provider’s network. Conceptually, edge
computing focuses on running several services at the network
edge to overcome the associated limitations of centralized
datacentres where cloud computing services are hosted.
Therefore, it is more than just a cloud extension and also
functions as an integration platform for cloud and a multitude
of services to facilitate and ensure successful system
interaction [20].

The cloud computing era introduced application develop-
ers to the concept of cloud-native [21], a model in which
developers are more concerned with how applications are
created, deployed, and maintained at hyper-scale rather than
where they are physically deployed. As a result, application
developers are able to fully concentrate on continuous,
agile software delivery with a ground assumption that
infrastructure is always present. At the edge, cloud-native
extends this basic assumption to enable agile development
regardless of network topology, geography, or hardware
diversity. It also offers a similar developer experience as a
cloud datacenter, by supporting an incredibly diverse, highly
dispersed edge environment and automatically accounting for
new conditions without changing how developers work.

These paradigms nevertheless require further research
due to the required resource management and control
that demands the massive traffic to be supported by the
network. Edge nodes, for example, are often equipped with
limited computational and storage capacity, which makes
them unsuitable for supporting large-scale user requests.
On the other hand, cloud resources are often located far
from consumers, making cloud servers unable to offer
services requiring low latency. A rapid development of these

technological paradigms are also leading to an explosion of
new applications and services, putting a strain on what Ops
teams are able to monitor and control.

B. APPLICATION ARCHITECTURE PATTERNS EVOLUTION
In recent years, the software architecture landscape has
also significantly changed. Software application architec-
ture refers to the fundamental structures of a software
system and the discipline of creating such structures and
systems [22]. A principal shift is the breakdown of large
monolithic and coarse-grained applications into fine-grained
deployment units named microservices, communicating pre-
dominantly by way of synchronous Representational State
Transfer (REST) and asynchronous events [23].

1) STATIC MONOLITHIC ARCHITECTURE
Monolithic architecture is regarded as a traditional method
of developing applications. A monolithic application tightly
integrates three disparate functional components into a single
deployable unit:

• A database is comprised of many tables typically in a
relational database management system.

• A client-side User Interface (UI) typically consisting
of HyperText Markup Language (HTML) pages and
JavaScript running in a web browser.

• A server-side application mostly handling Hypertext
Transfer Protocol (HTTP) requests, executing domain-
specific logic, retrieving data from the database, and
populating, e.g., the HTML views.

In summary, ‘‘a single logical executable’’ is what makes a
monolith architecture. To make any changes to such a system,
a software developer must build and deploy an updated
version of the server-side application.

2) ELASTIC MICROSERVICES ARCHITECTURE
Microservices is an architectural approach in which an appli-
cation is structured as a collection of highly maintainable
and testable services that are loosely coupled, independently
deployable, organized around business capabilities, and
managed by a small Ops team.

The advantages of this architecture are numerous, but
drawbacks are equally apparent: Aspects of formerly soft-
ware development that were routine, including debugging,
profiling, and performance management, are now orders of
magnitude more complex to realise. For example, software
built as amonolithmakes the task of generating and collecting
observability data such as logs, or traces part of the applica-
tion developer’s responsibility. In a microservice architecture
however the application and infrastructure domains are
commonly responsibility of different teams, often with
limited access and understanding of other areas. For instance,
the Ops team does not have access to how the application
generates its performance-related data. The application can
still generate data, but its collection in a certain backend as
well as collection of data from the infrastructure running
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FIGURE 1. IT technologies have experienced a rapid evolution as well as significant form-factor changes.

the application, are responsibilities of a different, e.g., Ops
team. Furthermore, in an extensive system, components
will suffer minor outages at any given time, potentially
affecting a subset of users, typically without the operator’s
knowledge.

Thus, as developers split applications into smaller units
called microservices, ship them in containers across dis-
tributed cloud providers, and redeploy them continuously
under the watchful eye of the DevOps team, the demand
for fine-grained observability becomes more critical. The
methodologies for designing and maintaining distributed
systems continuously improve, making observability into
our services and infrastructure more essential than ever for
smooth operations.

C. DIFFERENCE BETWEEN MONITORING AND
OBSERVABILITY
Due to this rapid evolution in distributed IT systems
and application patterns, several new terminologies and
approaches have surfaced in the operations management
domain. One critical new concept is observability that is
defined as ‘‘the ability to measure the internal state of a
system only by its external outputs’’. These external outputs
are primarily known as telemetry data such as logs, traces
and metrics, for a distributed system like microservices.
It contains information such as the resource consumption
of a machine, different log-level data generated by the
applications running on a machine, and several others.
Observability provides high-level overviews of the system’s
health and granular insights into the system’s implicit failure
modes. Furthermore, an observable system provides ample
context about its inner workings, allowing deeper, systemic
faults to be discovered.

In DevOps, it is frequent to hear about monitoring
with observability. They both aim to maintain the system’s
reliability, whereas they have a subtle difference and, in fact,
an association between them. In short, observability is not a
replacement for monitoring, nor does it eliminate the need for
monitoring; they work together.

FIGURE 2. Observability vs monitoring. Monitoring is about testing
hypotheses and observability is exploring new discoveries.

While monitoring is a process of keeping track of a
system’s health, using a predefined set of metrics and logs,
it implies that we are looking for a specific collection of
failures. However, in a distributed system, many changes
are dynamic, also happening in parallel, and can occur
regularly. As a result, we end up with issues that do not
fall into the category of the issues that we were looking for.
Thus, the monitoring system may miss them. To implement
observability, monitoring is a prerequisite. Monitoring alerts
operators about operational failures, whereas observability
assists in determining where and why the failure occurred and
what triggered the issue. Fig. 2 depicts the difference between
the scope of both terms.

In other words, one can say that observability also permits
so-calledWhiteboxmonitoring [24], i.e., monitoring in which
the design, code internals, and application structure are
all known, the application reports about its inside. On the
other hand, simple monitoring solutions allow for so-called
Blackbox monitoring [24] and metrics collection. The tester
does not know the application’s internal details nor structure,
it observes it from the outside. This type of monitoring is
useful identifying symptoms of a problem but it does not help
finding about the original triggers, e.g., error rate is up or the
server cannot be reached.
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D. COMPLEXITY OF TRADITIONAL MONITORING
APPROACHES
Modern IT systems have become increasingly complex in
four distinct ways (i.e., modular, distributed, dynamic, and
ephemeral). This composite complexity gradient presents a
significant challenge to conventional monitoring technology.

These four dimensions of complexity mean that IT systems
are being composed of a growing number of ever more dif-
ferentiated, autonomous components. In the past, monitoring
technology has been tailored according to the nature of the
monitored components. Since networks, servers, storage, and
applications were purchased and implemented independently,
the monitoring technologies also fragmented into tools
for network monitoring, infrastructure monitoring, storage
monitoring, and application monitoring. This specialization
was motivated by two factors. First, each component type
produced unique data types in distinct situations. As a
result, it was logical to tailor data ingestion technologies
to the context in which data was collected. Second, the
components interacted with one another infrequently and in
predictable ways. Therefore, integrating observations from
one component with observations from another was not
required. Meaning root cause analysis rarely required looking
anywhere else for troubleshooting.

Now imagine the hyper-scale and complexity of today’s IT
systems. The modern IT infrastructure concept has weakened
the original motivation for specialization. The quantity of
diverse components has just outgrown the ability to monitor
them individually. Architectural layers have been multiplied,
but the function and behavior of components within each
architectural layer (e.g., containers or not) have also changed
radically. In particular, the principles for interpreting the
self-describing data generated by one component cannot be
applied to another.

Monitoring is a relatively deterministic problem in
static, monolithic applications. In a monolithic architecture,
an application is frequently in one of two states (up or
down) that directly impact customer experience. For instance,
Ops teams managing monolithic applications, often, set up
Nagios [25] checks to acquire insights into the application
performance. They can access logs from a single log file from
the application hosting server to troubleshoot. Furthermore,
applications are typically deployed over single runtime such
as the Java Virtual Machine (JVM), enabling rich telemetry
down to the application code level (e.g., active threads).

Nevertheless, in microservices, the interconnections of
diverse components have become significantlymore complex
because of multiplication and differentiation. The interdepen-
dence between components have surprisingly grown stronger.
This fact means the root cause of a performance glitch in one
component often originates from a state alteration of one or
more other components. A specialized, component-specific
monitoring context would produce only local information.
This data would not be sufficient for an Ops team to pinpoint
the cause of a problem, let alone anticipate its reappearance
in the future.

E. RELATED WORK
To the best of our knowledge, there is no other survey
covering the same scope as ours, however, there are a number
ofmonitoring surveys available [7], [26]–[29]. The remainder
of this section discusses the selected surveys that are closely
associated with our study.

In [7], Aceto et al. reviewed the essential characteristics of
cloud monitoring systems and indicated open issues. Authors
assessed the need for robustness, scalability, and flexibility.
Despite the fact they cover important monitoring issues, it is
outdated considering recent advances in distributed systems.
Rodrigo et al. discussed enterprise system resource and
application monitoring from performance and architectural
perspectives [30]. The authors concentrate on topics such
as monitoring metrics, resource scheduling, and new trends
such as cloud elasticity and load prediction algorithms.
In comparison to these studies, we survey high-level and
low-level telemetry solutions from various communities to
enable an operable observability system design for futuristic
distributed systems.

Hassan et al. [13] presented a brief overview of the
various tools and automated solutions used for monitoring
cloud applications and discussed a thematic taxonomy for
categorizing existing cloud monitoring solutions according
to predefined criteria. Bula et al. [31] characterize various
phases of cloud monitoring activities and present a compar-
ative analysis of the state-of-the-art works of these phases.
Both of these studies focus on cloud monitoring, whereas our
study includes recent academic and industrial literature and
covers a broader scope, including edge and microservices.

Niedermaier et al. [32] research the challenges, require-
ments, and current best practices in terms of monitoring and
observability of distributed systems and possible solutions.
They discovered that monitoring and observability of dis-
tributed systems is no longer only a technical issue instead
it evolved into a more cross-cutting and strategic one, vital to
the sustainability of service. Tamburi et al. [12] investigated
three main aspects (a) monitoring practices and tools adopted
in the industry, (b) themagnitude and complexity of industrial
monitoring challenges, and (c) the role of system design in
monitoring strategies to throw light on the state of monitoring
practices in the industry. Both of these studies concentrated
on the general and cultural aspects of monitoring in industry.
In contrast, our research focuses on what solutions are
available for a specific problem domain from both industry
and academics.

III. STATE-OF-THE-ART ON OBSERVABILITY
Our research investigates the challenges, requirements, and
current best practices and solutions in monitoring2 and
observability landscape. Because of the rapid evolution
of distributed IT systems and shifts in application design
patterns, as explained through Section II, we discern that the

2We use the term monitoring because it is still used in most academic
studies, whereas the term observability is more commonly used in industry.
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majority of related work in the monitoring and observability
landscape becomes quickly obsolete. Therefore, we focus on
surveying papers primarily published after the year 2015.

We identified relevant literature by querying well-known
scholarly databases for the key termsmonitoring, observabil-
ity, distributed systems (cloud and edge), and microservices
with different combinations. The most relevant returned
articles were then carefully read and critically analyzed.
The scholarly databases that we queried involved: Google
Scholar, IEEE Xplore, ScienceDirect, and ACM Digital
Library. In addition, we investigated online materials
from various open-source and commercial monitor-
ing/observability vendors to develop a better understanding
of their product offerings and capabilities.

This section subsequently provides a brief review of state-
of-the-art from both academia (Section III-A) and industry
(Section III-B), highlighting particular features of proposed
solutions. Also, a detailed comparison is provided in Table 1,
where the Table 1 columns are described as follows. The
scope of work determines the type of distributed environment
and application architecture for which the monitoring work is
proposed. Multi-tenancy refers to support for independently
monitoring different tenants’ resources and applications.
Multi-layermonitoring covers at least two out of: application
performance, platform performance, system performance,
and network performance. Instruments indicate the type of
data taken into account for a particular monitoring system.
The bare minimum for open-source is project hosting on
GitHub or a similar platform. The rest of this section is
organized based on contributing community and then on the
scope column from Table 1.

A. CONTRIBUTIONS FROM ACADEMIA
Recent years have witnessed many efforts from academia
in developing novel edge monitoring techniques. Edge
Monitoring Framework for Multi-Cloud Environments
(EMMCS) [33] monitors edge computing infrastructure
and employs RESTful microservices. This framework uses
Simple Network Management Protocol (SNMP) agents to
gather metrics and handles all monitoring jobs at the edge
of each cloud to boost network transmission and data
processing at the central monitoring server. ZerOps4E [34] is
an Artificial Intelligence for IT Operations (AIOps) platform
applicable in heterogeneous, distributed environments. The
overhead of ZerOps4E is assessed on edge devices, and
performance trials on the applicability of platform showed
encouraging results. Flexible monitoring solution at the edge
(FMonE) [35] is proposed to allow monitoring workflows
that comply with the demands of edge computing for
gathering system-level performance metrics.

Lately, researchers have invested efforts in build-
ing novel cloud monitoring techniques. For private
clouds, SmartX Multi-View Visibility Framework (MVF)
[77]–[81] proposed to unify the multi-layer visibility of
physical and virtual resources for timely detection and
mitigation of various operational issues. In [36], an extension

of SmartX MVF with flow-centric visibility is presented for
the simultaneous monitoring of physical-virtual resources
and flows classification for secure operation of private clouds.
In addition, Ahmad et al. [82] presented a setup of distributed
resources with cloud-native edge capabilities and a solution
for persistently maintaining monitoring data collections in a
variety of environments. Hababeh et al. proposed a practical
multivariate control framework for monitoring cloud systems
performance in [38]. It capitalizes cloud system performance
metrics, gathers and renders them as graphs, stores the
graphical data, and makes the data available on-demand
without third-party software. Syed et al. [41] focused on
collecting data from the host Operating System (OS) non-
intrusively and linked data with the cloud controller via the
proc filesystem (procfs) of the host OS. Then, this data was
linked to information with the monitoring dashboard on the
cloud controller node.

A few academic studies proposed monitoring solutions
for multi-cloud systems. A multi-cloud strategy is one in
which an organization uses two or more cloud computing
platforms. Cross-Layer Multi-Cloud Application Monitoring
and Benchmarking as-a-Service (CLAMBS) [37] introduced
a solution for QoS monitoring and benchmarking of cloud
applications deployed in multi-cloud environments. It can
monitor and benchmark individual application components
that are distributed across cloud layers and cloud providers.
Multi-virtualization and Multi-cloud monitoring in cloud-
based Cyber-PhysicAl systems (M2CPA) [39] keeps track of
the performance of application components that are operating
over diverse virtualization platforms and deployed across
multiple clouds. Chhetri et al. [40] proposed CL-SLAM,
a Cross-Layer SLA Monitoring Framework for Cloud
Service-based Applications (CSBAs). It offers visibility into
CSBA performance, visual analytics to establish correla-
tions and interdependencies among cross-layer performance
metrics, temporal characterization of CSBA performance,
proactive monitoring detection, root-cause analysis of SLA
breach, and support for reactive and proactive adaptation
in support of quality assured CSBA provision. A couple of
frameworks also focused on self-adaptive monitoring [42]
and network-aware monitoring [43] for cloud environments.

Cloud datacenter network faults are hard to debug due to
their scale as well as complexity, and some studies attempt
to address such challenges. Kannan et al. [83] proposed a
system, SyNDB, for transient faults that provide packet-
level visibility, retrospection, and correlation. It uses data-
plane time synchronization and data-plane storage (SRAM)
to temporarily store packet records to aid in network
debugging. SyNDB offers ability to examine the sequence
of events preceding the occurrence of a network fault.
Abranches et al. [84] developed a software-based network
monitoring framework that significantly reduces network
analytics resource consumption by consolidating tasks rele-
vant to all applications and activating only when necessary.
They identify Extended Berkeley Packet Filter (eBPF) and
Express Data Path (XDP) as a natural fit for such and
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TABLE 1. A detailed breakdown of the various monitoring works available in the literature.

build a system prototype on top of these technologies.
Their findings show that combining conditional execution
of analytics tasks with modern packet I/O reduces resource
footprint of continuous network analytics. Zhang. et al. [85]
describe a system namedMimicNet for accurate performance
estimates for large datacenters. Authors claim that it gives
users the familiar abstraction of a packet-level simulation for
a portion of the network, while leveraging redundancy and
recent advances in machine learning to approximate slices of
the network that are not instantly observable.

Academicians put forward a number of investigations
focusing on IoT and 5Gmonitoring. Trihinas et al. introduced
a lightweight, adaptive monitoring framework for smart
IoT devices with limited processing capabilities [49]. This
framework dynamically adjusts the monitoring intensity,
based on a low-cost adaptive and probabilistic learning

model capturing the progression and variability of the data
stream at runtime. A framework for IoT system monitoring
and management that combines AllJoyn open-source project
(interconnecting IoT devices), MongoDB (Big Data storage),
and Storm (real-time data analytics) is proposed in [50].
This work also highlighted how the proposed system helps
addressing the limitations of AllJoyn in terms of large-scale
smart environment monitoring and Big data storage and
analytics. CHARISMA [51] discusses the key features of
monitoring as well as the main requirements to resource
monitoring systems for future 5G deployments and services.
Furthermore, the major components of a generic architecture
for monitoring, both physical and virtual resources, whether
software-defined or legacy, are described and explored.
Perez et al. [52] presented a monitoring architecture for
the distribution and ingestion of metrics and KPIs for
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5G multi-site platforms, where disparate verticals from
different stakeholders are applied over a shared infrastruc-
ture. The authors also evaluated the performance of the
publish-subscribe model to verify that it suited the provisions
of these scenarios.

There are numerous research initiatives that attempted to
realize microservices monitoring. A black-box monitoring
approach to track microservices at scale, concentrating
on architectural metrics, power consumption, application,
and network performance is discussed in [55]. The solu-
tion claims to be transparent to applications and gener-
ates less overhead than state-of-the-art black-box systems.
Cinque et al. [56] presented their proposal for a unique moni-
toring frameworkwith non-intrusive techniques based on pas-
sive tracing and log analysis to address challenges in current
application performance monitoring. A generic monitoring
framework Multi-microservices Multi-virtualization Multi-
cloud (M3) [57] is introduced to monitor the performance
of microservices deployed over heterogeneous virtualiza-
tion platforms in a multi-cloud environment. milliScope
(mScope) [58] is a millisecond granularity software-based
resource and event monitoring framework offering both low
overhead at high frequency and high accuracy matching other
available monitoring tools. Laghari et al. [59] conducted a
study on the QoE framework for cloud computing to monitor
end-users’ video streaming services.

Discussions regarding performance-oriented solutions
leveraging eBPF for microservices monitoring dominated
research in recent years. ViperProbe [61] proposed a
scalable eBPF-based dynamic and adaptive microservices
metrics collection framework. Authors claim that ViperProbe
can effectively decrease the set of gathered metrics by
assessing the performance profile of microservice patterns
before deployment, enhancing those metrics’ efficiency and
effectiveness. Cassagnes et al. [62] discussed lessons learned
after using eBPF tomonitor and profile performance. Authors
in [86] and [63] showed how eBPF enabled the development
of a new generation of runtime security monitoring tools that
outperform legacy tools in terms of performance, context, and
overall signal to noise ratio. A protocol-independent network
monitoring at the kernel level for the Alibaba Kubernetes
cluster is proposed in [64]. By non-intrusive collection of
user application L7/L4 layers based on eBPF, authors claim
a significant throughput per second can be attained without
modifying the kernel nor the application.

B. CONTRIBUTIONS FROM INDUSTRY
Several vendors have emerged with acquisitions and targeted
solutions developed in the observability space. For example,
IBM acquisition includes Instana [45], and Splunk [46]
acquisitions include cloud performance monitoring specialist
Flowmill. The rest of this section categorizes monitoring
and observability solutions from various vendors into two
broad categories (Open Source Software and Closed Source
Software) and briefly highlights key features.

1) OPEN SOURCE SOFTWARE (OSS) FROM INDUSTRY
The industry made significant investments in develop-
ing novel cloud monitoring solutions in recent years.
Monasca [44] is an open-source monitoring-as-a-service
multi-tenant, scalable, and fault-tolerant solution that inte-
grates with OpenStack. It offers a RESTful API for high-
speed metrics processing and querying as well as streaming
alarm and notification engines. Another open-source project
with broad traction is OpenTelemetry for gathering telemetry
data from cloud-native applications and their infrastructure to
monitor overall health and performance [66]. OpenTelemetry
originated from a merger of OpenCensus and OpenTracing.
This project aims at standardizing how telemetry data is
produced and collected in distributed systems. It is a member
of the CNCF and gaining widespread acceptance as an
emerging industry standard for handling of observability data.

The industry has two cutting-edge solutions for monitor-
ing data visualization that are open-source. First, Grafana
Labs [53] has developed an open-source monitoring and
observability platform. No matter where metrics are stored,
Grafana enables query, view, alert, and understands their
meaning quickly. Second, the ELK Stack [54] is a collec-
tion of three open-source products, namely Elasticsearch,
Logstash, and Kibana. The ELK stack provides centralized
logging to aid server or application problems discovery from
one place.

There are also several open-source software focusing on
microservices monitoring. Apache SkyWalking [65] is an
open-source observability tool designed to facilitate operators
to identify issues, receive critical alerts, and monitor system
health. Consul [67] is a service mesh solution providing a
full-featured control plane with service discovery, configura-
tion, and segmentation functionality. Cilium [60] is the eBPF-
based open-source solution to secure network connectivity
among services that are deployed with Linux container
management platforms such as Docker and Kubernetes [10].
Hubble is the low-level observability layer of Cilium for
obtaining cluster-wide visibility into the communication and
behavior of services and the networking infrastructure.

There are a number of open-source tools available looking
into how to build your own observability solution from the
ground up. In addition to the solutions discussed following
this section, we acknowledge that there are numerous
alternatives out in the market. Because it is unfeasible to
cover all of them in this article, we share a link to the
rest of the CNCF observability projects [87] that are at
various stages of maturity (e.g., graduated, incubating, and
sandbox).

Prometheus [88] is a CNCF project that offers a multi-
dimensional time-series system for resources and services
monitoring. It collects metrics from configured targets at
predefined intervals, evaluates rule expressions, displays the
results, and can send alerts. Lately, the ELK stack also
extended its capabilities to gather metrics by providing
Beats [89], lightweight data shippers and installed on servers
to capture various types of operational data, e.g., Metricbeat.
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Loki [90] is a Prometheus-inspired horizontally scalable,
multi-tenant log aggregation system. It indexes a set of labels
for each log stream rather than the contents of the logs.
Fluentd [91] is an another open source data collector that
unifies data collection and consumption. Logstash [54] is also
a server-side pipeline that ingests data from multiple sources,
transforms it, and sends it to the preferred stash.

Distributed tracing first proposed via Microsoft’s Mag-
pie [92] and X-Trace [93], which introduced some of the
concepts known today as distributed tracing. Later, Google’s
Dapper [94] introduced the ability to sample events to
reduce overhead and improve application-level transparency.
Jaeger [69] is a popular distributed tracing implementation
following OpenTracing. It provides a framework for dis-
tributed transaction monitoring and root-cause analysis.

2) CLOSED SOURCE SOFTWARE (CSS) FROM INDUSTRY
Several vendors begun to offer observability solutions
with varying capabilities for cloud-based infrastructures.
Instana [45] offers an observability platform with automated
application monitoring. For Instana, it does not matter where
applications are deployed, whether on-premises or in public
or private clouds, including mobile devices. Splunk [46] is
an infrastructure monitoring, troubleshooting, and incident
response solution. All sample architecture of Splunk uses
full-fidelity data for better results, and the real-time streaming
feature analyzes all data as it arrives to reduce MTTR.

Public cloud providers have created their own extend-
able (via APIs, Software Development Kits (SDKs), and
backends) monitoring tools supporting both platforms and
applications: Microsoft Azure leverages its own Azure Mon-
itor [95] system. It can collect, analyze, and act on telemetry
data fromAzure and on-premises environments. AzureMoni-
tor can monitor a web application’s availability, performance,
and usage as well as analyze and optimize the performance
of its underlying infrastructure. Amazon CloudWatch [96]
is used to monitor Amazon Web Services (AWS) resources
and applications deployed on AWS. It maintains a metrics
repository for visibility into resource utilization, application
performance, and operational health, i.e., it also covers the
whole stack from application to the supporting infrastructure.
Stackdriver was acquired by Google in 2014 and later
renamed to Google Cloud Operations Suite [97]. It offers
several components, covering several of the observability
dimensions, such as CloudMonitoring, Cloud Trace or Cloud
Logging. Each of them offers a comprehensive view of
system metrics and application logs or traces. For example,
Cloud Monitoring collects system-level metrics whereas
Cloud Logging collects log data from applications, and Cloud
Trace collects distributed tracing data.

There are also several other solutions towards microser-
vices monitoring. Dynatrace [70] established itself as a
dependable Application Performance Monitoring (APM)
solution provider. Dynatrace solution comes in two fla-
vors: First full-SaaS (Software-as-a-Service) and second
distributed-SaaS. Datadog [71] is a data observability service

for cloud-based applications leveraging SaaS-based data
analytics platform to monitor servers and applications using
an agent and API calls. This agent runs inside the user’s
Kubernetes cluster to collect metrics, traces, and logs in real-
time. New Relic One [72] is a cloud-based observability
solution combining infrastructure, mobile, and native client
monitoring, along with APM. Users can correlate cloud-
based servers’ performance to application logs and config-
uration changes with infrastructure monitoring.

A couple of other vendors focus on detecting and diag-
nosing microservices’ operational troubles. Sumo Logic [74]
is a multi-tenant, SaaS-based, cloud-native observability
platform. Initially, it started as log management and big
data analytics solution, which later incorporated metrics and
tracing to expand the offering into a complete observability
platform. Zebrium [73] is an AIOps observability platform
using unsupervised machine learning to detect and diagnose
software issues. There is no requirement to set up the system
manually. It is ready to detect incidents after training on
corporate topology and baseline the system. The system does
not only assist end-users in determining the root cause of
problems, but it also proactively discovers faults and delivers
root cause reports.

Finally, there is a growing list of vendors, such as
SolarWinds [75], Scalyr [47], NetBeez [48], and newcomer
Honeycomb [76] attempting to provide off-the-shelf instru-
mentation and observability. However, negligible amounts
of internal implementation details are available for these
closed source solutions and platforms. This limitation leaves
significant room for academia community to cover.

IV. REQUIREMENTS TO REALIZE OBSERVABILITY
It is critical to comprehend several challenges to realize
an effective end-to-end runtime performance observability
system. This section explains the major features of an
observability system, based on the findings and guidelines
from the literature survey. First of all, Section IV-A focuses
on the core telemetry data types that must be measured,
collected, and processed by an observability system about
distributed IT infrastructures and microservices runtime
performance. Most of the proposals in Section III are directed
towards one or more of these data types. Our literature
review shows that this data is also crucial for creating various
signals to alert operators about potential failures or aid
operational diagnostic processes. This is referred as golden
signals. In addition, we ascertain some basic functionalities
and characteristics that are essential for an observability
system to process collected data and accelerate troubleshoot-
ing. These functions and characteristics are detailed in
Sections IV-B and IV-C.

A. DATA REQUIRED FOR OBSERVABILITY SYSTEM
There are three main data types, often called three pillars
of observability (logs, metrics, and traces), and tackled
at various levels by most vendors delivering observability
systems. It is important to highlight that these are not the only
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types of telemetry data available, but they are certainly the
most widespread when it comes to observability. Different
APM vendors often add their differentiation to these types
of telemetry data. For example, some vendors add user expe-
rience and others add events, while others list dependencies,
arguing that knowing how each application depends on other
components is essential for troubleshooting. Fig. 3 shows the
potential data types that we can capture for an end-to-end
runtime performance observability and remediation of the
entire distributed system. Also, we point out that telemetry
data from a single application is insufficient; the entire
IT environment, including their connectivity points, should
contribute telemetry data. When each application provides
the correct information, operators can promptly determine
where, what, and when an operational glitch occurred or it is
about to start occurring. Following in this section, we discuss
various types of data and measurements derived from
them.

Logs are structured and unstructured lines of text that
a system generates when a specific part of code executes.
In general, a log is a record of an event within an application.
Logs help uncover unpredictable and emergent behaviors
displayed by components of microservices. They are easy
to generate, they indicate different severity levels [98],
e.g., warning or error logs and instrument because most
application frameworks, languages, and libraries have built-in
support for logging. Virtually every component of a dis-
tributed system produces logs and events at any point to
offer detailed information about a system such as a fault and
the precise time it occurred. By analyzing the logs, one can
troubleshoot the code and figure out where and why an error
occurred. Logs-based monitoring is focused in [56].

FIGURE 3. Three fundamental pillars of observability (red) plus other
data considered vital for observability by different vendors (green).

Metrics are numerical representations of data that Ops
teams use to determine the overall behavior of a system,

service, or network component over time. Ametric comprises
a set of attributes (e.g., timestamp, name, label, and value)
that convey information about SLAs, they can also be used
to describe applications or system performance, e.g., in form
of application-specific defined metrics. Unlike an event log,
metrics are measured values derived from system runtime
performance. They are real time-savers, because operators
can correlate them across the entire infrastructure, from
application to network components, to get a holistic view of
system health and performance. Also, metrics data are easier
to query and store. Application-level performance metrics
may include the number of application instances, average
response time, requests processed per second, etc. System-
level performance metrics examples are system uptime, CPU
usage, and memory utilization. Network-level performance
metrics may involve latency, number of successful or termi-
nated TCP connections, and HTTP requests, etc. Metrics-
based monitoring is focused in [35]. Typically, these metrics
are used to trigger alerts whenever a system value exceeds a
certain threshold.

Traces depicts the entire journey of a request or action as
it moves through various components of a distributed system.
While it is agreed that logs and metrics effectively determine
an individual system’s behavior and performance, they are
rarely helpful in understanding the lifecycle of a request in a
distributed IT system, e.g., understand causality in a number
of microservice calls. Operators apply the tracing technique
to view and understand the entire lifecycle of a request
across multiple systems. Traces make it possible to profile
systems, primarily containerized applications and microser-
vices. Operators can measure the overall system health
by analyzing trace data, pinpointing bottlenecks, resolv-
ing performance issues faster, and prioritizing high-value
areas for optimization. Trace-based monitoring is focused
in [93].

1) MEASUREMENTS FROM TELEMETRY DATA
Information from the three types of telemetry data (logs,
metrics, and traces) is combined to provide four Site
Reliability Engineering (SRE) golden signals of observability
(latency, traffic, errors, and saturation) [99]. These metrics
focus on the end-to-end runtime performance of user requests
and applications. In addition, these metrics also serve as
a foundation for Alerting to inform the Ops teams when
something is wrong, troubleshooting to help isolating and
fixing the problem, and Tuning and Capacity Planning to
assist in improving the setup over time.

Latency (request service time) tracks the time it takes for
an application to process a particular request successfully.
It is a measure used to identify performance issues in an
application, e.g., a bottleneck microservice. When measuring
latency, operators need to specify a threshold for a successful
request, then monitor the results against latency failing
requests. This way, they can quickly identify which services
are underperforming, discover incidents more quickly, and
timely respond to incidents.
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Traffic (user demand) tracks the number of requests
flowing through an application per unit of time. Depending
on the application operators are tracking, traffic can have
a variety of values. For example, they can utilize HTTP
requests per second or bandwidth consumption to measure
the traffic for a particular web application. One technique
to monitor traffic in a distributed system is viewing
the number of network conversations. By monitoring the
traffic in an application, operators can observe how the
application acts throughout a rise and plan for a spike in
demand.

Errors (rate of failed requests) tracks the rate of failed
requests in a system. The most common errors are explicit
error (such as HTTP 500), implicit error (such as HTTP
200 success response that does not deliver the right content),
and policy violation when the request takes longer than
the agreed timeout interval. Because no system is 100%
error-free, one must always track errors to determine if
something is wrong. It is critical to report server and
client errors separately when tracking those errors. That
way, the Ops team can properly understand different error
types and get to the root cause of specific problems much
faster.

Saturation (overall system capacity) measures how
much a server or network resource is being loaded. It is
a metric that indicates how active a service is and is
often used as an early indicator of system slowdowns
and failures. System metrics such as CPU, disk space,
and memory use are common signs of production system
saturation. When measuring saturation, try to select metrics
that limit performance of a system. For example, operators
can use CPU load for processor-intensive applications and
memory for memory-intensive applications. They set a
utilization benchmark, as every service has a limit after which
performance decreases.

To understand these concepts better, consider a simple
example of the three pillars, how they interact to create the
four golden signals, and how they differentiate observability
from monitoring. Consider a server with a full disk. A basic
monitoring tool will only show us a Blackbox view of
an application, e.g., the error rate is up. It will only
alert reactively one day that a particular disk is 95% full.
Nevertheless, it provides no relevant meta-information: why
did it fill up, how quickly it reached 95% and is this merely
a temporary increase in disk utilization that will or will not
reduce later?

Long before it reaches the alarming 95% threshold,
an observability system can use its Whitebox Point of
View (PoV) to proactively gather and present metrics
showing a dashboard suggesting a significant week-over-
week increase in disk utilization. With access to application
and system logs, operators can pinpoint the exact program
driving the spike. Finally, fine-grained tracing will reveal that
the applications disk write activity abruptly spiked precisely
five weeks ago when one of the changes during the upgrade
was verbose flag set for all of the apps logging.

B. BASIC FUNCTIONALITIES FROM AN OBSERVABILITY
SYSTEM
An observability system is more than just data exposure.
Other functionalities that are considered crucial in delivering
observability are broken down into three dimensions (i.e.,
referred as F*) and discussed below in details.

F1) Correlation: The key for observability tools is to
identify a significant anomaly from a potential number of
other anomalies and link that issue to other pertinent data
from log files, traces, or metrics [42], [73], [79]. For example,
a state-of-the-art observability system should gather, process,
analyze, and provide findings in a second interval via the
user interface. Then, by showing correlated information in
the context of the anomaly observed, the user should quickly
determine the potential root cause of a particular problem.

F2) Topology:As stated in the Section IV-A, some vendors
also include dependency graphs in their list of required data.
We agree that topology information is vital to understand the
relationships between components in dynamic, distributed
cloud-native environments [81], [100]. This process should
be complemented by continual automatic detection of an
application’s components and continuous baselining of all
data. For instance, proprietary tools deploy specialized agents
to detect what is running inside the container or the JVM and
automatically inject the correct instrumentation.

F3) Incident response: Finally, the observability system
should handle issues without manual intervention through
automatic remediation using machine learning [34], [101].
It needs to be generally more granular than in a traditional
monitoring system. We list here three categories of events:
Change: An event signalling a change in the environment

such as a configuration update, Pod start/stop, or deployment.
Issue: An event indicates a service or infrastructure

component is in an unhealthy state, such as an insufficient
number of Kubernetes replica sets or a high systemCPU load.
Incident: A breach of a KPI on an edge service or an

infrastructure issue is referred to as an incident. An incident
occurs when user experience or service deteriorates. To offer
context and facilitate root cause analysis, we link relevant
issues and changes to the occurrence.

Based on these events, one can define an alert to notify
changes, issues, or incidents to an external app, which can
inform an Ops team or initiate an automated response [102].

C. KEY CHARACTERISTICS OF AN OBSERVABILITY SYSTEM
Observability system should be the Ops team’s single source
of truth as they troubleshoot, debug, and optimize the
distributed IT environment. For example, a single unified
view allowing connected context and performing accurate
analytics can help operators detect and resolve operational
issues quickly, based on infrastructure and application logs,
distributed tracing, metrics, all the way to the end-user
experience, without needing new tools or switching between
them. Thus, defining the key system characteristics (i.e.,
referred as C*) is paramount before entering the design phase
to deliver a maintainable observability system.
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C1) Connected context: When operators access metrics
about the health of one of their microservices, they should
be able to observe how that service affects other services or
components of the entire distributed system, as well as how
those workloads are affected by the Kubernetes cluster that
hosts them, and vice versa.

C2) Easier and faster exploration: Consider having
all telemetry data in one view in near real-time from
everywhere. That view should offer a pretty innovative
design. Because for the Ops team to efficiently traverse large,
complex, distributed systems and instantly comprehend and
prioritize any performance issues, they will need intuitive
visualizations that require zero-touch configuration.

C3) A single source of truth: It includes storing, alerting,
and analyzing telemetry data using unified APIs, irrespective
of data placement, which could be distributed across multiple
nodes in an edge cluster. Usually, operators search for a
platform capable of ingesting metrics, events, logs, and traces
from diverse sources, including proprietary and open-source
agents, APIs, and built-in instrumentation. However, data
access via such unified APIs should be scalable enough to
handle the ingest load on the busiest days.

C4) Allow capturing arbitrarily wide events: Complex
distributed environments and microservices that must be up
and operating at all times, or that must be fixed as rapidly
as possible will require a large number of events that answer
questions beyond ‘‘is it broken?’’. In such a case, metrics and
logs should set up the core. Besides, adding traces should
save effort when debugging various operational problems
if the production environment consists of several intricate
intertwined components.

C5) Decouple data sources from sinks: By decoupling
sources and sinks, it should become easy to introduce or
change tools and reroute data without impacting production
systems. For instance, a messaging bus introduction into the
observability system should completely decouple source and
sink and no longer interact with each other directly.

V. DISCUSSION AND OPEN ISSUES
Research on observability is still in its early stages, primarily
led by industry, and requires further development and
experimental evaluation. The rest of this section discusses the
compelling open issues in this domain.

A. INFRASTRUCTURE HETEROGENEITY
The most challenging aspect of edge performance observ-
ability is the emergence of new, more complex architectures
ranging from containers, virtual machines, and clusters [103].
The heterogeneity in these areas results in lack of under-
standing of the overall system, its individual components,
and the processed requests. More devices send data, which
necessitates more data processing, resulting in more layers
of computing at the edge. These layers are created and
maintained by various development teams and operational
teams. For instance, sensors on a factory floor may send data
to a single gateway, which may then send it to the private or

public cloud. Similarly, a single, smart garage may collect
data from all the structure and process it at a single gateway
before sending it to a single cloud application. Furthermore,
systems usually contain both legacy and modern applica-
tions running in parallel, necessitating additional tooling to
integrate legacy applications. To ensure that each layer is
operative, an end-to-end view of computing service requests
is required. However, the heterogeneity of the infrastructure
and the rate of innovation puts observability systems to
the test. Developers, for instance, can select the best
technology for distributed systems, but technological hetero-
geneity then makes consistent use of observability systems
challenging.

B. NEW DEMANDING USE CASES
The ability to track critical business transactions at the
edge and correlate those requests with their impact on an
organization’s profit and loss will be the ultimate key to
success in an IoT-dependent environment. In the case of
consumer devices, a user’s level of satisfaction with their new
car, home entertainment system, and others may influence
future purchasing decisions or lead to negative reviews.
Factories will be able to predict and schedule maintenance to
maximize production. As IoT-enabling microservices grow,
so will the applications at the edge and the need to monitor
the business logic that resides there. For better or worse,
actions at the edge will increasingly influence business
outcomes, determining whether SLAs are met or violated,
user relationships are strengthened or strained, and new
business is excelling or declining. These are all diverse
application scenarios in which an observability system must
timely support dynamic configurations and decision-making
based on collected data [104], [105].

C. VAST AMOUNT OF DATA
An observability platform is expected to handle massive
amounts of data. The management and timely processing
of such massive amounts is a critical issue that necessitates
additional research. The identified challenge could be
prioritizing user alerts and drawing meaningful conclusions
from collected metrics, logs, and traces data. Furthermore,
identifying the location of faults and the responsibilities to
fix them is extremely difficult for operational problems in
which one request is being handled by multiple application
components developed by different teams. Also, several
complexities are encountered by operators when correlating
metrics and timestamped logs from multiple services, which
is frequently accompanied by insufficient metadata. Simi-
larly, the combined use of system and distributed tracing
to inspect what happens inside and across microservices
remains an open research problem. Furthermore, defining
appropriate measurement intervals/points and an ample
data amount that is efficiently processable and analyzable
by resource-constrained edge systems are also intriguing
research topics.
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D. ALL-IN-ONE OBSERVABILITY PLATFORM
Platforms that offer all observability functions as a single
product are pivotal. However, survey in Section III reveals
that such open solutions are mostly nonexistent. In the
best-case scenario, the market offers solutions, providing
basic monitoring functionalities (e.g., performance measure-
ment or logging). Often one has to expand the existing
tools by integrating other solutions. This can include new
standards, technologies, and pre-existing solutions. Con-
sequently, comprehensive solutions in this context repre-
sent various independent tools and technologies integrated
together. To achieve a true all-encompassing observability
solution, isolated solutions must be avoided or substituted
with standard observability platforms, open standards, and
modern technologies in the future. Open standards for
instrumentation are the primary focus of projects such
as OpenTelemetry [66]. However, more efforts on open
standards and integrated technologies for data processing are
worth further investigations.

E. SECURITY AND COMPLIANCE CONCERNS
One of the major benefits of hosting microservices over
distributed systems is their accessibility from anywhere,
allowing development teams and application users to connect
regardless of their locality. Unfortunately, if observability
system is not properly configured, many of the technologies
with which users interact, such as APIs, are vulnerable to
security attacks. Because of vulnerabilities, it is critical to use
web application firewalls to ensure that all requests originate
from legitimate traffic, ensuring that web applications and
operations that rely on APIs are always protected. Fur-
thermore, there is considerable concern among application
providers and platform/infrastructure providers about what
data can be shared and how to ensure application users’
privacy is not compromised, the so-called data in-flight
and data at-rest scenarios. In this aspect, new measures
for secured data access and measures addressing data
usage compliance, such as access control [106], must be
investigated further considering the new stream of use cases.

F. ORGANIZATIONAL CULTURE AND INDIVIDUALS
MINDSET CHANGE
An overly ambitious plan to replace all current tools with
a new observability platform may not be the best strategy.
Depending on the nature of the organization’s current
estate, many legacy applications are often not designed
for the observability approach. An observability solution,
on the other hand, should be aimed at the increasingly
rapid and distributed cloud-native application deployments.
These changing environments are more likely to employ
DevOps practices, making automated data collection for
observability a far advanced solution. It is also more
likely that the developers will be able to incorporate the
required instrumentation into their software, allowing it to
be fully observable. To summarize, the three pillars do

not automatically combine to achieve observability; people,
processes, and system design primitives must also be aligned
around a set of shared goals.

VI. CONCLUSION
Observability in cloud-native space (i.e., distributed con-
tainerized edge infrastructures and microservices) is an area
that is yet to be fully realized. It plays a vital role in efficiently
managing various edge operational areas, including SLA
validation, resource provisioning, and optimization.

This paper provides a detailed survey of state of the art
in distributed IT environments and microservices observ-
ability. Our research goal was to investigate the challenges,
requirements, and current best practices and solutions in the
observability of distributed systems. Therefore, we surveyed
the most relevant research and recently published articles.
We highlighted diverse types of telemetry data that should aid
in resolving operational issues. This telemetry data provide
valuable signals (e.g., latency, traffic, errors, and saturation)
to serve as a foundation for alerting, troubleshooting, and
capacity planning. We determined and discussed the funda-
mental functionalities and characteristics that we considered
crucial in delivering observability. Finally, we discussed
open research issues or challenges in the domain of observ-
ability. These issues are primarily related to heterogeneous
infrastructures and microservices architectures realization
in various use case scenarios. There is also an interesting
organizational culture and individual mindset aspect that can
affect the adoption of new observability tools and practices.

In the future work, we aim to work on practical
aspects, such as designing and evaluating an observability
framework based on the presented considerations in this
survey. Specifically, we will target a Kubernetes-based edge
infrastructure that hosts containerized microservices. This
includes integrating telemetry data collection solutions and
various plugins for flexible processing of telemetry data.
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