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ABSTRACT The problem of cooperative arraying to jam is an important part of EW mission planning.
Aiming at the problem that multi-objective optimization algorithm is easy to fall into local optimum
and converge in three-objective optimization, a multi-aircraft jamming and cooperative arraying method
based on improved multi-objective Moth-flame optimization algorithm is proposed. Firstly, the simulation
environment is established by using digital elevation map and radar detection model. Then, based on the
multi-objective Moth-flame optimization algorithm, the population initialization is completed by using
Logistic-Tent chaotic map, which increases the diversity and uniformity of the solution and improves the
search ability of the algorithm; Then, the decision factor and Gaussian difference mutation are introduced,
which makes the algorithm not only accept the current solution with a certain probability, but also jump
out of the current solution and search again according to the disturbance, thus enhancing the search ability
of the algorithm; Finally, by comparing with NSGA-II, MOEA/D, MOPSO and NSMFO algorithms on
test functions of ZDT and DTLZ series, the performance of the algorithm is verified, and it is proved
that multi-objective Moth-flame optimization algorithm is better than other algorithms in both convergence
and diversity. In addition, compared with the NSMFO and MOEA/D algorithms in the arraying simulation
experiment. The values of the interference power, the width of the route safety zone and the detection area
of the radar obtained by the algorithm in this paper, are 117.9 kw, 46 km, and 1727 km2. Compared with
the results of the other two algorithms, the effectiveness of interference is improved by 39.8%, 22.8% and
41.9% respectively.

INDEX TERMS Cooperative arraying to jam, multi-objective optimization, multi-objective Moth-flame
optimization algorithm, chaotic mapping, Gaussian difference mutation, widespread reference points.

I. INTRODUCTION
In the current modern and information-based combat environ-
ment, the development of radar is changing with each passing
day, and its capabilities such as operating range, azimuth
angle, elevation angle, resolution and maneuverability are
constantly improving [1]–[5], which increases the difficulty
for combat aircraft to perform penetration and strike tasks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

In order to successfully complete the tasks of penetrating
and strike, it is necessary to have jammers to jam the radar,
so as to build a safe area suitable for combat aircraft to per-
form tasks. Because the current radar network construction
is intertwined, it is difficult to meet the needs of combat
tasks by using only a single jammer to jam the radar network.
Therefore, multiple jammers must be used to cooperate and
complete the jamming tasks together. Then, in the process
of executing the jamming task, how to make the jammer’s
operational efficiency higher and the operational design more
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reasonable has formed the problem of multi-aircraft jamming
and cooperative arraying.

To solve this problem, scholars at home and abroad have
carried out a certain degree of research, but most of the
research focuses on the allocation of jamming resources, and
the research on jammer ’s arraying is relatively few [6]–[7].
The most widely used method is multi-objective intelligent
optimization algorithm.

In real life, solving problems often requires not only
meeting one goal, so multi-objective optimization model
arises at the historic moment. In 1906, Vilfreto Pareto put
forward the famous Pareto optimization theory: ‘‘The opti-
mal allocation of the resources of a society is not attached
so long as it is possible to make at last one indepen-
dent better off in his own estimation while keeping others
as well off as before in their own estimation. ‘‘With the
wide spread of Pareto theory, multi-objective intelligent opti-
mization algorithms have been continuously proposed and
widely used in engineering fields. Common multi-objective
intelligent optimization algorithms include Non-dominated
Sorting Genetic Algorithm-II algorithm (NSGA-II), Multiple
Objective Particle Swarm Optimization (MOPSO), Multi-
objective Evolutionary Algorithm Based on Decomposition
(MOEA/D) and Non-dominated sorting moth flame opti-
mization (NSMFO) proposed in recent years.

NSGA-II algorithm was proposed by Kalyanmoy Deb
and his students in 1994. It adopts the strategies of‘‘non-
dominated quick sorting, congestion ranking and introducing
elites’’, which not only reduces the complexity of the algo-
rithm, but also improves the accuracy of the algorithm and
ensures the diversity of the population [8]. At the same time,
due to its slow convergence speed and easy to fall into local
optimum in the later stage of the algorithm, some scholars
have improved this kind of problem. Yang Shuai et al. put
forward that a novel crossover operator is designed to gener-
ate new offspring, and twomutation operators are proposed so
that the search process can jump out of the local optimal [9].

MOPSO algorithm was proposed by Coello in 2002. The
core features of MOPSO algorithm are non-dominated rank-
ing, congestion ranking and adaptive grid method when
updating [10]. However, due to the problem that it is easy
to fall into local optimum and the population diversity cannot
be effectively guaranteed in the later period, some scholars
have carried out research on it. Lingjie Li and others put
forward a new hybrid multi-objective particle swarm opti-
mization method (HMOPSO-ARA), which proposed adap-
tive resource allocation strategy, evolutionary search based
on files, selection strategy based on decomposition and a new
speed update formula, which effectively solved the problems
of local optimum and population diversity [11].

MOEA/D algorithm was proposed by Zhang Qingfu and
Li Hui in 2006, which creatively decomposes the multi-
objective optimization problem and greatly reduces the
complexity of the algorithm [12]. The algorithm utilizes the
neighborhood relationship among sub-problems and opti-
mizes them simultaneously in a cooperative way. Usually,

TABLE 1. Algorithm comparison.

the neighborhood relationship among sub-problems is deter-
mined by calculating the Euclidean distance between their
weight vectors. However, at the same time, MOEA/D algo-
rithm has the phenomena of repeated solutions and uneven
distribution in the later stage, and can’t balance the con-
vergence and population diversity of the algorithm well.
Therefore, some scholars have carried out research on this.
Xin Zhou and others put forward that ‘‘The discretized repro-
duction and adaptive neighborhood provide a larger search
range in solution space to overcome difficulties in duplication
and uneven distribution of solutions. Adaptive decomposition
method and improved hybrid environment selection promote
solutions converge to the optimal direction and further bal-
ance convergence and diversity.’’[13].

NSMFO algorithm was proposed by Vimal Savsani et al.
in 2017, It introduces the elite non-dominant ranking method
of NSGA-II algorithm and the crowding ranking method
of keeping population diversity, which solves the problem
that MFO algorithm cannot solve multi-objective optimiza-
tion [14]. At the same time, the algorithm performance test
and engineering experiment simulation are carried out, and
the experimental results show that the performance is better
than many classical multi-objective optimization algorithms.
However, due to the introduction of NSGA-II algorithm,
the algorithm is still unable to deal with the three-objective
problem.

To sum up, this paper selects NSMFO algorithm and
improves it from the following three aspects:

(1) Firstly, the diversity of initial population is increased
by Logistic-Tent chaotic map;

(2) The decision operator is introduced to allow the algo-
rithm to accept the current solution with a certain probability
or disturb the moth when the position is updated by Gaus-
sian difference mutation to produce a new solution, which
improves the optimization ability of the algorithm;

(3) Using widespread reference points instead of crowded
distance sorting, the problem that the algorithm can’t
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converge on three objectives due to the complexity of com-
putation is solved;

(4) The improved algorithm is tested on ZDT series
and DTLZ series, and compared with NSGA-II algorithm,
MOEA/D algorithm, MOPSO algorithm and NSMFO algo-
rithm. The experimental results show that LTG-NSMFO
algorithm is superior to other algorithms in convergence and
diversity

(5) The improved algorithm is used to simulate the multi-
aircraft jamming and cooperative arraying problem, and the
Pareto front of the problem is obtained. Then, two kinds of
jamming effects and jamming positions are given when the
jamming power is minimum and the route safety interval is
maximum.

The rest of the paper is organized as follows: In the second
section, the model of multi-aircraft jamming and cooperative
arraying is introduced. The third section introduces the algo-
rithm and its improvement process. In the fourth section, the
benchmark function is used to compare the performance of
the algorithm. In the fifth section, the simulation experiment
analysis of multi-aircraft jamming and cooperative arraying
is carried out. Finally, the sixth section gives the conclusion.

II. MODEL CONSTRUCTION
A. RADAR DETECTION MODEL UNDER TERRAIN SHADING
1) DIGITAL ELEVATION MODEL
Digital Elevation Model (DEM) refers to the way of simu-
lating the degree of ground undulation with limited elevation
data, which is generally divided into two types: Grid structure
and contour structure. In order to facilitate the construc-
tion and the solution of subsequent model, Grid structure is
adopted in this paper.

2) RADAR DETECTION MODEL
Radar detection area is the most intuitive index when describ-
ing radar performance, and radar detection area is directly
determined by radar detection radius. Usually, we use radar
equation to characterize radar detection model, and charac-
terize radar detection radius as shown in formula 1:

R =
(

PtG2σλ2

(4π )3(SNR)FnkToBnL

)1/4

(1)

R is the detection radius of radar; Pt is the maximum value
of radar transmission power; G is the radar antenna gain; σ is
the radar cross-sectional area of the target; λ is emission wave
length for radar; SNR is radar signal-to-noise ratio; Fn is noise
figure; k is the Boltzmann constant, k = 1.38 × 10−23J/K ;
T0 is the Ambient Kelvin temperature for radar operation;
Bn is the noise broadband; L is the system loss.

3) RADAR DETECTION RANGE UNDER TERRAIN SHADE
The radar detection range is usually spherical or hemispher-
ical, but due to the influence of terrain, the radar detection
range is obscured in some directions.

For example, in the figure 1, the enemy radar position coor-
dinates are (x0, y0, z0), the position coordinates of our combat

FIGURE 1. Radar detection diagram.

FIGURE 2. Radar detection model under terrain shading.

aircraft are (x1, y1, z1), the terrain position coordinates at a
certain altitude are (x2, y2, y2), the included angle of radar
observation targets is α0, and the included angle of radar
observation terrain is α1. If α0 > α1, the radar does not have
terrain shade in this direction; Otherwise, the radar cannot
detect the target aircraft.

α0 = arctan
(z1 − z0)√

(x1 − x0)2 + (y1 − y0)2
(2)

α1 = arctan
(z2 − z0)√

(x2 − x0)2 + (y2 − y0)2
(3)

According to the formula 2 and formula 3, every grid in the
digital elevation map is traversed, and if α0 < α1 exists in one
grid, there is terrain shading. Therefore, the radar detection
range under terrain shade is shown in the figure 2:

B. ELECTRONIC WARFARE JAMMING MODEL
1) JAMMING POWER
In the electronic warfare jamming model, the detection range
of radar will change because of jamming. In the case of
jamming, the expression of power received by radar receiver
is shown in formula 4:

Pradar_jammer =
PjGjG (ϕ) rjBr
(4π)2 R2j LjBj

(4)

In which, Pradar_jammer represents the received power of
the radar receiver; Pj indicates the jamming power of the
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FIGURE 3. Airline safety interval.

jammer; Gj indicates the antenna gain of the jammer in the
jamming direction; G (ϕ) represents the gain of the radar
antenna in the jamming direction of the jammer, and ϕ repre-
sents the included angle between the main lobe direction of
the radar antenna and the jammer; rj indicates the polarization
loss of the jammer; Br is the signal bandwidth of radar
receiver; Rj is the distance between radar and jammer; Lj
is the Comprehensive loss of jamming signals generated for
jammer; Bj is the bandwidth for jammer signals.
The gain expression of radar antenna in jamming direction

of jammer G (ϕ) is shown in formula 5:

G (ϕ) =


G 0 ≤ |ϕ| ≤ ϕ0.5
K
(
2
(
ϕ0.5

/
ϕ
))2 G ϕ0.5 ≤ |ϕ| ≤ 90◦

K
(
2
(
ϕ0.5

/
90◦

))2 G 90◦ ≤ |ϕ| ≤ 180◦

 (5)

In which, K is a constant, usually taken as (0.04, 0.1); G
is the gain for enemy radar antenna; ϕ0.5 is the lobe width of
enemy radar antenna at half power point.

Based on the above formula, the expression of detection
radius of enemy radar under the jamming of a single jammer
is shown in formula 6:

R =

 PtG2σλ2

(4π)3 LFnkT0BnKj +
4πLPjGjG(ϕ)rjBr

BjLjR2j


1/4

(6)

Among them, Kj is enemy radar jamming coefficient, and
other parameters are consistent with the symbolic meanings
in the above formula.

2) ROUTE SAFETY INTERVAL
Through the jamming of enemy radar by jammers, our pur-
pose is to build a route channel that can make combat aircraft
pass safely, so as to provide a safe search space for subsequent
route planning. Therefore, the width of safe channel is used
as one of the evaluation criteria of jamming effect. It is shown
in the figure 3:

3) THE AREA OF RADAR DETECTION
The detection area of radar is the most intuitive index of radar
detection capability. Generally speaking, radar is deployed

near an important asset, and its coverage area directly affects
the security of the assets it protects. At the same time, it also
affects the warning response time of the assets to the advent
of danger. Therefore, this paper takes the detection area of
radar as the third objective function, aiming to achieve better
suppression effect by minimizing the detection area of radar
as much as possible.

C. MULTI-OBJECTIVE OPTIMIZATION MODEL OF
JAMMING ARRAY
A typical multi-objective optimization problem is expressed
by mathematical expression as formula 7:

Z = F (X) =


max (min) f1 (x)
max (min) f2 (x)

...

max (min) fn (x)


s.t.φ (X) =


ϕ1 (x)
ϕ1 (x)
...

ϕ1 (x)

 ≤ Q =

q1
q2
...

qn


∀xi ∈ � (7)

Among them, Z = F (X) is the objective function;
s.t.φ (X) is a constraint condition, including equality con-
straint or inequality constraint; ∀xi ∈ � is the decision
space for variables. In the final analysis, the problem of
cooperative array of multi-aircraft jamming is also a multi-
objective optimization problem, aiming at jamming enemy
radar positions, obtaining route safety zone and ensuring the
safety of jammers to a certain extent.

Therefore, the multi-objective optimization model in this
paper is constructed as formula 8, as shown at the bottom of
the next page.

The first objective function: f1(x) = min(
Widthroute−safety−zone

)
represents the width of the route

safety zone. In order to solve the problem conveniently,
Firstly, the coordinates of the center point of the enemy radar
detection model at a certain height section are calculated, and
a straight line parallel to the x axis through the center point is
made. Then the distance from each point in the radar detection
range to the straight line after jamming is calculated, take the
nearest point in all distances, and maximize the minimum
distance through algorithm iteration, thus ensuring that the
width of the route safety zone meets the task requirements.

The second objective function: f2 (x) =
n∑
j=1

PjGjG(ϕ)rjBr
(4π)2R2j LjBj

represents the sum of jamming power of each jammer to
enemy radar. Because the jamming effect of jammer on
enemy radar has an upper limit, the jamming effect can be
continuously enhanced by increasing the jamming power
blindly. When the jamming power reaches the threshold, the
jamming effect will no longer increase, but the excessive jam-
ming power will cause the waste of jammer’s own resources
and increase the probability of jammer being discovered.
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Therefore, this paper aims to save jamming resources and
ensure the safety of jammers, and chooses minimizing jam-
ming power as the second objective function.

The third objective function: f3 (x) = min(
SRadar_detection_area

)
represents the detection area of the

enemy radar. In order to better achieve the effect of suppres-
sion through jamming and ensure the tasks that need to be
completed after the suppression is formed, this paper selects
the detection area of the radar as the objective function,
minimizes the detection area of the radar, and achieves the
purpose of improving the safety of subsequent tasks.

III. NSMFO ALGORITHM
A. BASIC MOTH-FLAME OPTIMIZATION ALGORITHM
Moth-flame optimization algorithm (MFO) is a new intelli-
gent optimization algorithm proposed by Seyedali Mirijalili
and others in 2015, which is mainly used to solve single-
objective optimization problems [15]. The basic Moth-flame
optimization algorithm population initialization, moth and
flame position update formula is shown in formula 9:

M =


m11 m12 · · · m1d
m21 m22 · · · m2d
...

...
. . .

...

mn1 mn2 · · · mnd


n×d

MF =


Mf 1
Mf 2
...

Mfn


1×n

F =


f11 f12 · · · f1d
f21 f22 · · · f2d
...

...
. . .

...

fn1 fn2 · · · fnd


n×d

FF =


Ff 1
Ff 2
...

Ffn


1×n

(9)

In the above formula, n is the number of moths and d is
the characteristic dimension of moths are expressed. M is
the initialization population of moth and MF is the fitness
matrix of moth population, which is obtained by solving
the value of population on the objective function; F is the
initialized population of flame and FF is the fitness matrix
of flame, which is obtained by sorting the fitness of moths,
that is, the matrix FF is the result of sorting the matrixMF in
ascending order, which also shows that flame F is the optimal
solution of mothsM in the current iterative search. The initial
flame set is the same size as the moth population set, but
it gradually decreases with the subsequent iteration, and its

FIGURE 4. Flame adaptive update strategy.

adaptive renewal mechanism is shown in formula 10:

flameno = round
(
N − iteration×

N − 1
max _iteration

)
(10)

N represents the maximum number of flames, iteration is
the current iteration times andmax _iteration is the maximum
iteration times of the algorithm. The change of flame number
with the iteration times of the algorithm is shown in the
figure 4:

MFO algorithm adopts the flying principle of moths under
artificial light source. According to the phototaxis of moths,
the flight mode of moths is fitted by logarithmic spiral curve,
and moths Mi move around their corresponding flames Fi in
logarithmic spiral curve. The updated formula for defining
moth position is shown in formula 11

S
(
Mi,Fj

)
= Di · ebt · cos (2π t)+ Fj (11)

Among them, S
(
Mi,Fj

)
is the updated position of moths

Mi, b is a constant parameter, and its value determines the
shape of logarithmic equiangular spiral, usually taken as 1;
Parameter t is the random numbers in the range [−1, 1], and
their values control the distance between moths and flames.
The smaller the value t is, the closer the distance between
moths and flames. By changing the values of parameters,
the position where moths finally arrive around flames is
adjusted, which reflects the local optimization ability of the
algorithm; Di =

∣∣Mi − Fj
∣∣ Is the Euclidean distance between

the flame j and the moth i: The moth’s trajectory is shown in
the figure 5:

Z = F (X) =


max f1 (x) = min

(
Widthroute−safety−zone

)
min f2 (x) =

n∑
j=1

PjGjG(ϕ)rjBr
(4π)2R2j LjBj

min f3 (x) = min
(
SRadar_detection_area

)


s.t.φ (X) =

{
ϕ1 (x) = sqrt

((
xj − x0i

)2
+
(
yj − y0i

)2
+
(
zj − z0i

)2)
≥ R

ϕ2 (x) =
{
zmin ≤ zj ≤ zmax

} }
x = 1, 2, 3 . . .Nradar ; j = 1, 2, 3 . . .Njammer (8)
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FIGURE 5. The trajectories of moths[16].

B. NON-DOMINANT SORTING MOTH FLAME
OPTIMIZATION ALGORITHM
Non-dominant sorting moth flame optimization (NSMFO)
takes multiple objective functions as optimization objects,
and optimizes these objective functions in order to achieve
the optimal state at the same time. Compared with MFO
algorithm, NSMFO algorithm introduces the non-dominated
quick sorting and congestion distance of NSGA-II algorithm
to optimize, which makes the algorithm have the ability
to deal with multi-objective problems. However, due to its
population initialization, And the updating mechanism has
not changed, and there are still some problems such as it is
easy to fall into local optimum. At the same time, due to
the screening method of crowding distance, the algorithm is
prone to repeat search and over-reservation on the boundary,
which makes the algorithm slow or even unable to converge
when dealing with the three-objective problem. Therefore,
the following optimization methods are proposed to optimize
NSMFO algorithm.

1) INITIALIZATION OF LOGISTIC-TENT CHAOTIC MAP
In the field of optimization, chaotic mapping is widely used
in intelligent optimization algorithms because of its ergod-
icity, randomness and nonlinearity [17]. At present, Logistic
chaotic map and Tent chaotic map are commonly used [18].
Logistic chaotic map has strong global ergodicity, but its
iterative sequence distribution is not well-distributed, while
Tent chaotic map has good ergodicity [19]–[20]. There-
fore, combining the characteristics of both, a Logistic-Tent
chaotic model is proposed to improve the NSMFO algorithm.
Logistic-Tent chaotic map formula is shown in formula 12:

xn+1 =


[
rxn (1− xn)+

(4−r)
2 xn

]
mod 1 if xn < 0.5[

rxn (1− xn)+
(4−r)(1−xn)

2

]
mod 1 if xn ≥ 0.5

(12)

The distribution of Logistic-Tent chaotic map is shown in
the figure 6:

As shown in Figure 6 and table 2, compared with the
‘‘Rand’’ initialization value, the distribution of the Logistic-
Tent chaos map is more well-distributed. Therefore, the
Logistic-Tent chaos map can make the distribution of the

FIGURE 6. (a) Logistic-Tent chaotic map distribution. (b) and (c)
Distribution histograms of the values of logistic-tent chaotic initialization
and Rand initialization in the interval 0–1.

TABLE 2. Comparison of initialization methods.

population in a given range more well-distributed, thus
enhancing the global search ability of the algorithm.

2) GAUSSIAN DIFFERENTIAL VARIATION
Because he moth in NSMFO algorithm uses logarithmic
equiangular spiral to change its position and its curve
characteristics, although the convergence speed of NSMFO
algorithm is fast, it is easy to fall into local optimum at
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TABLE 3. Gaussian difference variation pseudocode.

the same time. Therefore, Gaussian difference variation is
introduced to disturb the position of moths. At the same
time, a decision operator is introduced, which allows the
algorithm to accept the current inferior solution with a certain
probability, so that the algorithm can jump out of the local
optimal solution and search for the global optimal solution.

Let one of the moths, each mothM = [m11,m12, . . . ,m1d ]
chooses whether to produce variation according to the judg-
ment factor, and suppose that the i − th moth produces
Gaussian difference variation, and the expression is shown
in formula 13:

X (t + 1) = ω1 · f1 · (Xbest − X (t))

+ω2 · f2 · (Xrand − X (t)) (13)

where the ω1 and ω2 are the weight coefficients; f1 and f2
represent generating Gaussian distribution random numbers
with mean value of 0 and variance of 1; X (t + 1) is the
new position after Gaussian difference mutation; Xbest is the
optimal moth position in this iteration; Xrand is an arbitrarily
selected moth position; X (t) is the current position of the
moth.

The Gaussian differential mutation pseudo code is shown
in table 3:

3) WIDELY DISTRIBUTED REFERENCE POINTS
Widespread reference points are a group of well-distributed
points in the decision space [21]. The decision space is evenly
divided by reference vectors connected with ideal points.
The diversity of the algorithm is ensured by calculating the
distance between individuals in the population and each ref-
erence vector.

(1) Establish a reference point. Firstly, the reference points
are established on the hyperplane of (M − 1) dimensions, in
which, M represents the dimension of the target space and
P is the number of copies to be divided, H is the number of
reference points is determined by both of them. It is shown in
formula 14:

P = CH
M+H−1 (14)

The set of reference points is. Sj =
{

0
H ,

1
H , . . . ,

H
H

}
,

M∑
j=1

Sj = 1,

FIGURE 7. LTG-NSMFO algorithm pseudocode.

(2) Determine the position coordinates of the reference
point. When determining the position reference point coor-
dinates, a set of (M − 1) dimensions named x is first con-
structed, x ∈

{
0
H ,

1
H , . . . ,

H+M−2
H

}
then updated x according

to pairs xij = xij−
j−1
H , and finally the reference point position

coordinates are obtained.
(3) Conduct adaptive normalization of individual pop-

ulation. Firstly, the ideal point of the population z =(
zmin
1 , zmin

2 , . . . , zmin
n
)
is constructed, and then the objective

function is transformed according to f ′i (x) = fi (x) − zmin
i .

Then, the extra pointsASF (x, ω) corresponding to each coor-
dinate axis are obtained by solving, and then the hyperplane
is constructed. It is shown in formula 15:

ASF (x, ω) = maxMi=1 f
′
i (x)

/
ωi (15)

Finally, the intercept between hyperplane and coordinate
axis is used to normalize the objective function value adap-
tively. It is shown in formula 16:

f ni (x) =
(
f ′i (x)− z

min
i

)/(
ai − zmin

i

)
(16)

ai represents the intercept between the hyperplane and
the coordinate axis. And the function value of the point of
intersection between the normalized plane and the coordinate
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TABLE 4. LTG-NSMFO algorithm flow.

axis is 1, then the point on the normalized hyperplane are

satisfied
m∑
i=1

f ni = 1

(4) Construct the distance relationship between reference
point and individuals in the population. We connect the ref-
erence point with the origin and construct the ray. The dis-
tance between the iindividuals in the population and the ray
is regarded as the distance relationship between them. The
smaller the distance, the more the population can be selected.

(5) Select the fewer reference points as the basis for
individual selection of the last frontier population, and then
realize the selection in accordance to the level of front (l − 1)
frontier and the number of selected reference points.

C. LTG-NSMFO ALGORITHM FLOW
The flow chart of LTG-NSMFO algorithm is shown in the
figure 7:

The pseudocode for the LTG-NSMFO algorithm is shown
in the table 4:

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS
A. TEST FUNCTIONS
In order to test the effectiveness of this algorithm, eight
test functions are selected to test the performance of the
algorithm, including five double-objective test functions of
ZDT series: ZDT1, ZDT2, ZDT3, ZDT5 and ZDT6; And
three three-objective test functions of DTLZ series: DTLZ1,
DTLZ2 and DTLZ3. The specific expression of the test func-
tion is shown in the table 5 and table 6.

1) ZDT SERIES TEST FUNCTION

TABLE 5. ZDT series test functions.
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2) DTLZ SERIES TEST FUNCTION

TABLE 6. DTLZ series test functions.

B. EVALUATION INDICATORS
In order to evaluate the performance of different algorithms,
Inverted Generational Distance (IGD) is used as the evalua-
tion index. IGD is a standard to measure the performance of
the algorithm by calculating the average Euclidean distance
between the points obtained by the algorithm and the points
in the real pareto solution set. The smaller the IGD value,
the better the performance of the algorithm. It is shown in
formula 17:

IGD
(
P,P∗

)
=

∑
x∈P∗ min y∈Pdis (x, y)

|P∗|
(17)

dis (x, y) is theminimumEuclidean distance from individuals
to the real Pareto solution, |P∗| is the number of individuals
in the point set distributed on the real Pareto surface.

C. EXPERIMENTAL RESULTS
Parameter initialization of different algorithms is shown in
Table 7:

1. The test results of different algorithms on ZDT1 function
are shown in figure 8: (Dimension = 30):
2. The test results of different algorithms on ZDT2 function

are shown in figure 9: (Dimension = 30):

3. The test results of different algorithms on ZDT3 function
are shown in figure 10: (Dimension = 30):

4. The test results of different algorithms on ZDT4 function
are shown in figure 11: (Dimension = 10):

5. The test results of different algorithms on ZDT6 function
are shown in figure 12: (Dimension = 10):

6. The test results of different algorithms on DTLZ1 func-
tion are shown in figure 13: (Dimension = 7:)

7. The test results of different algorithms on DTLZ2 func-
tion are shown in figure 14: (Dimension = 10):

8. The test results of different algorithms on DTLZ3 func-
tion are shown in figure 15: (Dimension = 12):

From the figure 8-15 and table 8-9, it can be seen that
LTG-NSMFO algorithm can get better results with fewer
iterations than the other four algorithms, and its IGD value
is smaller than the other four algorithms, so its comprehen-
sive performance is better, which proves that LTG-NSMFO
algorithm has better convergence and diversity; In addition,
the convergence and diversity of the algorithm are also ver-
ified on the functions of DTLZ series with three objectives.
MOEA/D algorithm is based on decomposition, and NSMFO
algorithm is based on crowding distance, while LTG-NSMFO
algorithm is based on widespread reference points to sort the
solution after non-dominated sorting. Through comparative
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TABLE 7. Parameter Settings for different algorithms.

FIGURE 8. Test results of different algorithms on ZDT1 function. (a)–(e) Pareto frontier of MOEA/D, MOPSO, NSMFO, NSGA-II,
and LTG-NSMFO algorithms on ZDT1 test function, respectively.

experiments, it can be seen that LTG-NSMFO algorithm is
better in sorting, and can effectively solve the problem that
NSMFO algorithm can’t converge after repeated search on
the boundary. The effectiveness of LTG-NSMFO proposed
in this paper is proved.

V. SIMULATION EXPERIMENT ANALYSIS OF
MULTI-AIRCRAFT JAMMING AND
COOPERATIVE ARRAYING
The CPU of the simulation computer is Intel Core i7-9750H
CPU 2.60 GHz, the operating system is Windows 10, and
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FIGURE 9. Test results of different algorithms on ZDT2 function. (a)–(e) Pareto frontier of MOEA/D, MOPSO, NSMFO,
NSGA-II, and LTG-NSMFO algorithms on ZDT2 test function, respectively.

FIGURE 10. Test results of different algorithms on ZDT3 function. (a)–(e) Pareto frontier of MOEA/D, MOPSO, NSMFO,
NSGA-II, and LTG-NSMFO algorithms on ZDT3 test function, respectively.

the simulation software is MATLAB R2020a. The area of
335km × 335km is selected by the simulation experiment to
simulate the combat scene, and the satellite image and Grid
structure of this area are shown in the figure16:

The settings of algorithm parameters and initialization
parameters of the modelare shown in Table 10:

Four radars are deployed in this area, and their position
coordinates are shown in the above table. The minimum
jamming coefficient of these four radars is Kj = 5, and for all
these four radars, our side adopt the ‘‘one-to-one’’ jamming
strategy to jam enemy radars. The performance parameters of
radars and jammers are shown in the tables 11 and table 12.

In addition, radar antenna gain is G = 40; Jamming signal
bandwidth isBj = 2×106; Signal bandwidth of radar receiver
is Br = 2 × 106; Noise figure is Fn = 4; Temperature
is T = 291K .

According to the above description, the radar detection
range obtained under the condition of terrain shading is
shown in the figure 17. It can be clearly seen from the figure
that the four radars form a relatively strict detection network,
showing a situation of covering each other and surrounding
the central area, which makes it difficult for our aircraft
to penetrate. Therefore, it is necessary to suppress the four
radars with the help of jammers.

The figure 18 shows the Pareto solution set generated
by NSGA-II, MOEA/D and LTG-NSMFO algorithm after
300 iterations, which contains 50 solutions. And its distribu-
tion is relatively even, which shows the better search effect
of the algorithm. F (1) is the value of the first objective
function, which represents the sum of the distances from the
four radars to the center line and reflects the width value of the
route safety zone; F (2) is the value of the second objective
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FIGURE 11. Test results of different algorithms on ZDT4 function. (a)–(e) Pareto frontier of MOEA/D, MOPSO, NSMFO, NSGA-II,
and LTG-NSMFO algorithms on ZDT4 test function, respectively.

FIGURE 12. Test results of different algorithms on ZDT6 function. (a)–(e) Pareto frontier of MOEA/D, MOPSO, NSMFO, NSGA-II,
and LTG-NSMFO algorithms on ZDT6 test function.

FIGURE 13. Test results of different algorithms on DTLZ1 function. (a) Real Pareto front of DTLZ1 test function. (b)–(d) Pareto frontier of
MOEA/D, NSMFO, and LTG-NSMFO algorithms on DTLZ1 test function, respectively.

function. In order to facilitate the consistency of calculation,
the reciprocal of jamming power is selected; F (3) is the
value of the second objective function which represents the
detection area of radar; Its mathematical description is shown

in formula 18:

max f2 (x) =
n∑
j=1

(
1
/
PJ−power

)
(18)
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FIGURE 14. Test results of different algorithms on DTLZ2 function. (a) Real Pareto front of DTLZ2 test function. (b)–(d) Pareto
frontier of MOEA/D, NSMFO, and LTG-NSMFO algorithms on DTLZ2 test function, respectively.

FIGURE 15. Test results of different algorithms on DTLZ3 function. (a) Real Pareto front of DTLZ3 test function. (b)–(d) Pareto
frontier of MOEA/D, NSMFO, and LTG-NSMFO algorithms on DTLZ3 test function, respectively.

TABLE 8. Test results of different algorithms on ZDT series functions.

TABLE 9. Test results of different algorithms on DTLZ series functions.

Because there are 50 solutions in Pareto front, decision
makers need to make choices according to different situa-
tions. This paper gives three situations: one is the jamming
effect when the jamming power is minimum; the second one
is the jamming effect when the safety interval of the air route
is the maximum; The third one is the jamming effect when
the detection area of the radar is minimum. They are shown
in the figure 19, figure 20 and figure 21.

When the decision maker is more inclined to reduce the
jamming power to lower the risk of jammers from being dis-
covered, and at the same time, to ensure that there is a certain
channel to enable our aircraft to complete the penetration

task, the jamming effect is shown in the figure 19. At this
time, the minimum interval of route safety zone is 23 km.

At this time, the function values corresponding to the three
algorithms are shown in Table 13:

According to Figure 19 and Table 13, when the decision
maker hopes to complete the suppression task with a small
interference power, the channel widths obtained by the three
algorithms are all small. However, the LTG-NSMFO algo-
rithm has an ‘‘open-mouth’’ channel, which is more suitable
for the task in terms of width and shape. At the same time,
the interference power is reduced by 39.8% compared with
the other two algorithms
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TABLE 10. Algorithm parameter setting.

FIGURE 16. Topographic map of operational environment. (a) Satellite
map and (b) grid map of simulated terrain.

FIGURE 17. Terrain covered cases of radar detection range.

When the decision maker is more inclined to the interval
of route safety zone to ensure the flight safety of our combat
aircraft, the jamming effect is shown in the figure 20. At this
time, the minimum interval of route safety zone is 46 km, and
the jamming effect is obviously better than that of the case
one.

FIGURE 18. The pareto solutions distribution.

FIGURE 19. Support effect and location distribution of (a) LTG-NSMFO,
(b) MOEA/D, and (c) NSMFO algorithms when the jamming power is the
minimum.

FIGURE 20. Support effect and location distribution of (a) LTG-NSMFO,
(b) MOEA/D, and (c) NSMFO algorithms when the width of the airline
safety zone is the largest.

At this time, the function values corresponding to the three
algorithms are shown in Table 14:

According to Figure 20 and Table 14, when the decision
maker hopes to form a wider safe zone interval through
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FIGURE 21. Support effect and location distribution of (a) LTG-NSMFO,
(b) MOEA/D, and (c) NSMFO algorithms when the radar detection area is
the minimum.

TABLE 11. Performance parameters of the radar.

TABLE 12. Performance parameters of jammers.

TABLE 13. Performance parameters of jammers.

TABLE 14. Performance parameters of jammers.

suppression, the channel width obtained by LTG-NSMFO
algorithm is larger, which can form not only the horizontal
penetration area, but also the longitudinal penetration chan-
nel. Compared with the other two algorithms, the interval
value of the route safety zone increases by 22.8% on average.

When the decision maker is more inclined to reduce the
radar’s detection area to lower the risk of jammers from being
discovered, and at the same time, to ensure that there is a wide

TABLE 15. Performance parameters of jammers.

channel to enable our aircraft to complete the penetration
task, the jamming effect is shown in the figure 21. At this
time, the minimum interval of route safety zone is 38 km.

At this time, the function values corresponding to the three
algorithms are shown in Table 15:

According to Figure 21 and Table 15, when the decision
maker hopes to make the detection area of the enemy radar
as small as possible through interference suppression, the
suppression effect obtained by the LTG-NSMFO algorithm is
better. Compared with the other two algorithms, the detection
area of the enemy radar is reduced by an average of 41.9%.

VI. CONCLUSION
In this paper, the problem of multi-aircraft arraying to jam
is studied, and a jamming model based on LTG-NSMFO
algorithm is proposed. Firstly, the radar threat model is estab-
lished, and the radar detection model is optimized according
to the terrain shadi ng situation. Then, two objective functions
of multi-aircraft arraying are determined, one is the width of
route safety zone, the other is the size of jamming power, and
the multi-objective arraying model is established to provide
technical support for practical application in the future. At the
same time, the NSMFO algorithm has a slow convergence
speed in the search process, and even can’t converge when
dealing with the three-objective problem:

(1) The initialization of Logistic-tent chaotic map makes
the initial search of the algorithm more extensive, enhances
the global search ability of the algorithm, and accelerates the
convergence speed of the algorithm;

(2) The decision factor and Gaussian difference mutation
are introduced to produce disturbance when themoth position
is updated, so that the algorithm can not only accept the
current inferior solution with a certain probability, but also
jump out of the local optimum, thus enhancing the solving
ability of the algorithm;

(3) Using widely distributed reference points instead of
crowded distance sorting, the algorithm can effectively con-
verge when dealing with three-objective problems.

Finally, the test function proves that LTG-NSMFO algo-
rithm is better than MOEA/D, NSGA-II, MOPSO and
NSMFO algorithm, and can complete the task better in
multi-aircraft arraying to jam. In the next research, the pro-
posed algorithm is integrated into UAV mission planning
software, so as to realize engineering application.
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