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ABSTRACT Recent advances in the time-domain speech separation methods, particularly those specialized
in using attention mechanisms to model sequences, have significantly improved speech separation perfor-
mance. In this paper, we address monaural (one microphone) speaker separation, mainly in the case of two
concurrent speakers. We propose a dual-path hybrid attention network (DPHA-Net) for monaural speech
separation based on time-domain. The critical component of DPHA-Net, the DPHA module, comprises
multiple attentions and is designed to capture the short and long-term context information dependencies.
DPHAmodule consists of the multi-head self-attention (MHSA), element-wise attention (EA), and adaptive
feature fusion (AFF) units. We proposed an improved multi-stage aggregation training strategy during the
training. That strategy has proven very effective for audio separation in this paper. The results of experiments
on the benchmark WSJ0-2mix, WHAM! and Libri2Mix datasets show that our proposed DPHA-Net can
achieve the competitive performance. For the task of two speaker separation on the WSJ0-2mix dataset, our
proposed DPHA-Net is superior to the state of the art with a margin of 0.3 dB absolute improvement on the
SI-SNRi and a margin of 0.4 dB absolute improvement on the SDRi in the same condition.

INDEX TERMS Speech separation, hybrid attention, multi-stage aggregation training.

I. INTRODUCTION
Speech separation, commonly called the ‘‘cocktail party
problem’’, is a fundamental task in signal processing with
a wide range of applications [1], [2]. This task has been
shown to be difficult for computers, especially when only a
monaural recording of the mixed speech is available. Over the
last decade, the performance of speech separation has been
substantially improved by leveraging extensive training data
and increasing computing resources.

In general, the speech separation methods based on deep
learning can be divided into two categories: time-frequency
(T-F) domain and time-domain methods. For the method
based on the T-F domain, each mixture spectrogram calcu-
lated by short-time Fourier transform (STFT) is served as
the input of the separation model to approximate the clean
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spectrogram of individual sources. A parallel stacked hour-
glass network [3] was also proposed to learn the features
of a multi-band spectrogram, which is a fully convolutional
multi-scale end-to-end network for music separation. Com-
putational auditory scene analysis (CASA) [4] is a tradi-
tional approach for source separation, which is inspired by
human auditory scene analysis (ASA) mechanisms [5]. Deep
CASA [6], address talker-independent monaural speaker
separation from the perspectives of the deep learning and
CASA. Talker-independent speaker separation has to address
the permutation problem of how the output layers are tied
to the underlying speakers. DPCL avoids the permutation
problem due to the permutation-invariant property of affin-
ity matrices [7]. The deep clustering methods infer a set
of source representations via clustering to separate two or
three speaker speech waveforms [7], [8]. Along with either
the original [9]–[11] or modified [12]–[14] phase of mix-
ture audio, those estimated spectrogram of each source
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are converted into waveform by inverse short-time Fourier
transform (iSTFT).

For the method based on the time domain, the mix-
ture waveform is directly modeled by the separation frame-
work. Conv-TasNet [15], which is a fully convolutional
time-domain audio separation network, directly modeling
the mixture waveform using an encoder-separator-decoder
framework. Similar to Conv-TasNet, two methods [16],
[17] use U-Net architecture instead of dilated depth-wise
convolution in the separator module. A two-step train-
ing procedure for source separation [18], which can work
directly on the latent space and learn the ideal masks on
a separate step, yields a consistent performance improve-
ment under multiple sound separation tasks. In this paper,
we focus on monaural speech separation based on the time
domain.

A dual-path framework was firstly introduced in
DPRNN [19], which splits the long sequential input into
smaller chunks and applies intra- and inter-chunk operations
iteratively. Currently, several state-of-the-art time-domain
methods [20]–[24] are also followed with the dual-path
framework. The self-attention mechanism [26] is applied to
model the global dependency after chunk operation and ver-
ified that it can capture context dependency [20], [22]–[25].
The dual attention mechanism is proposed to capture global
dependencies in the spatial and channel dimensions [27] or
temporal and spectral dimensions [28], [29]. Kim and Hahn
proposed a two-stage based approach to boost the perfor-
mance of speech enhancement [30]. Li et al. proposed a
multi-stage architecture for the temporal action segmenta-
tion in videos. Each stage takes an initial prediction from
the previous stage and refines it [31]. Gao et al. pro-
posed a hierarchical constraint strategy to regularize the
training, which could effectively improve the separation
performance [32].

Inspired by the abovementioned methods, we propose
a dual-path hybrid attention network (DPHA-Net) with a
multi-stage aggregation training strategy (MAT) formonaural
speech separation. The key component of DPHA-Net, dual-
path hybrid attention (DPHA) module, comprises multiple
attentions mechanism. The module, via different types of
attention, captures the feature information dependency along
various dimensions. The DPHA modules are stacked itera-
tively, alternating between intra- and inter-chunk operations,
to obtain contextual information. We also design an adaptive
feature fusion unit to fuse multiple feature maps. In this study,
we also adopt the multi-stage training strategy but improve
its feature selective aggregation ability in significant ways,
resulting in what we call a multi-stage aggregation training
mechanism.

The rest of this paper is organized as follows. Section II
describes our proposed method, including the DPHAmodule
and multi-stage aggregation training mechanism. Section III
presents experimental setup. Section IV presents experimen-
tal results, comparisons and analysis. Conclusion and related
issues are discussed in Section V.

II. ALGORITHM DESCRIPTION
In this section, we introduce an end-to-end time-domain net-
work for two speaker separation. Specifically, we review the
pipeline at first and then start with the complete DPHA-Net
architecture and introduce the DPHA module and AFF
unit. Finally, we introduce a multi-stage aggregation training
strategy.

A. OVERALL PIPELINE
An algorithm dedicated to performing talker-independent
speaker separation aims to extract individual speech signals
of different speakers from a mixture. Considering each mix-
ture speech consists of C sources, the waveform of mixture
speech is formulated as:

x(t) =
∑C

i=1si(t) (1)

where x(t) ∈ R1×T denotes the waveform of mixture speech,
si(t) ∈ R1×T that of speaker i. T is the length of signal,
C the number of speakers. In this work, we focus on the
single-channel speech separation where C = 2. As shown
in Figure 1, the separation architecture we adopted is the
same pipeline as Conv-TasNet [15], performing end-to-end
audio source separation using a mask-based architecture with
adaptive encoder and decoder basis.

FIGURE 1. (Color Online). Diagram of End-to-End architecture.

B. NETWORK ARCHITECTURE
As shown in Figure 2, DPHA-Net consists of three parts:
encoding and chunking, separation processing, and decoding
and overlap-add. A time-domain mixture waveform, which
comprises speech of C = 2 speakers with the length of T ,
is transformed into a 2-D representation via an encoder and
further a 3-D representation via chunking processing. Subse-
quently, the 3-D representation is passed into stacked DPHA
modules to perform local modeling (intra-chunk) and global
modeling (inter-chunk) alternately and iteratively. The output
of the last DPHA module, together with previous fused rep-
resentations, are further fused to generate the final represen-
tation. Finally, this representation undergoes an overlap-add
method to estimate a multiplicative function (mask) for each
source. The output from the encoder is multiplied with the
mask and transformed back to C estimated waveforms with
a decoder. Figure 2 shows the flowchart of the network.

The encoder consists of a 1-D convolutional layer with E
output channels and a rectified linear unit (ReLU) activation
function. The mixture is transformed into a sequential input
x ∈ RE×I via an encoder, where E is the feature dimension,
and I is the number of time steps. Via a bottleneck layer (i.e.
1 × 1 convolution layer) with a global layer normalization
(GLN), x is transformed intom (RE×I

→ RN×I ). Thenm ∈
RN×I is split into overlapped S chunks with the length of J
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FIGURE 2. (Color Online). Diagram of DPHA-Net architecture. The purple dash lines represent the procedures that exist only during training.
Conv1×1 represents 1× 1 convolutional operation and here also represents the bottleneck layer. ⊗ the element-wise multiplication. The cubes
represent feature maps RN×J×S . The purple line box represents layer aggregation operation.

and hop size J/2. Those chunks are concatenated into a 3-D
tensor X ∈ RN×J×S .
In the part of separation processing, X is fed into a series

of DPHAmodules. As shown in Figure 2, there are six stages
(L = 6) in the part of separation processing. In each stage, the
output of the DPHAmodule, together with previous selective
aggregation representations, are further aggregated to gener-
ate the final representation. It undergoes a 2-D convolutional
layer, and then overlap-add operation at the chunk level and
frame level, respectively to generate sequences masks Mc ∈

RE×I , c = 1, . . . ,C for C sources.

Yc = x ⊗Mc (2)

C output embedding {Yc, c = 1, . . . ,C} of each stage are
decoded by a decoder which contains a 1-D transposed con-
volutional layer. The decoded representation with the size of
C×T representsC estimated waveformswith the length of T .

C. DPHA MODULE
As shown in Figure 3, the DPHA module consists of two
subblocks, one for intra-chunk modeling and the other for
inter-chunk modeling. Each subblock comprises three units:
multi-head self-attention (MHSA), element-wise attention
(EA), and adaptive feature fusion (AFF) units, and two opera-
tions: LN [33] and permutation. In each subblock, we employ
a MHSA unit followed by an EA unit and AFF unit. Multi-
head self-attention can model the relationship among each
group feature and capture the long-term dependencies in
different time steps [26].

Before being fed into the MHSA unit, 3-D representation
X is divided into a series of 2-D slices U ∈ RO×N , where
O = J for intra-chunk modeling and O = S for inter-chunk
modeling. Each 2-D slice is passed into three linear layers
and generate a query matrix Q, a key matrix K, and value

matrix V, respectively. Where Q,K,V ∈ RO×F , F is the
hidden layer dimension. The MSHA is calculated as the
follows:

Ah = Softmax(
Q>h Kh
√
F/H

)Vh (3)

A = Concat[A1, . . . ,AH ] ·W (4)

MHSA(X ) = P(X ,A(GLN (X ))) (5)

where Qh,Kh,Vh ∈ RO× F
H . h indices the attention head.

H is the number of attention heads, W ∈ RF×F the linear
transformation matrix,Concat[·] the concatenation operation
and Ah the result of self-attention operation. A is the result of
multi-head self-attention, and then passed into an FC layer
with PReLU activation for further transformation. P(·) the
concatenation operation along channel dimension and fol-
lowedwith 1×1 convolution.GLN (·) denotes the global layer
normalization operation [15] that the features X ∈ RN×I are
normalized over both the channel and time dimensions.

GLN (X ) =
X − µ
σ

γ + β,

µ =
1
NI

∑
NI

F, σ =

√
1
NI

∑
NI

(X − µ)2 + ε (6)

where γ, β ∈ RN×1 are trainable parameters, and ε is a small
constant for numerical stability. The GLN (·) significantly
improves the convergence of our proposed models proba-
bly because of the interdependence of the gradient statistics
between the channels [15].

The original DPRNN [19] applies a simple bidirectional
long short-term memory (BLSTM) layer. While Gated-
DPRNN [21] consists of two BLSTM layers where the
Hadamard product of their outputs is concatenated with the
input and then passed into a linear projection layer for dimen-
sion reduction. Inspired from these, the EA unit in DPHA-Net
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FIGURE 3. (Color Online). Diagram of the Dual-Path Hybrid Attention (DPHA) Module. ⊕ represents the element-wise addition.The
input cubes represent feature maps RN×J×S .The middle and output feature representations after permutation are RN×S×J and
RN×J×S , respectively.

our proposed consists of two gated recurrent unit (GRU) lay-
ers, but one path of GRU is followed by a sigmoid function.
The EA unit is used to capture the context dependencies
among different time steps, so it named as element-wise
attention. Two GRU and sigmoid function are denoted as
B1, B2 and σ (·), respectively. The result of the EA unit Z is
calculated as:

Z = P(B1(X )� σ (B2(X )),X ) (7)

where � denotes the element-wise product operation, P(·)
the concatenation operation along channel dimension and
followed with 1× 1 convolution.

D. ADAPTIVE FEATURE FUSION UNIT
In order to enhance the capability of feature extraction from
the relevant time frames and channels, we design an AFF unit
that can guide the network to pay suitable attention to the tem-
poral and channel-wise characteristics. As shown in Figure 4,
the part of feature extraction consists of two squeeze-and-
excitation (SE) operations [34]. Via the SE operation, each
branch focuses on discerning specific local region features
rather than being spread evenly over the whole feature map,
which leads to better robustness. The part of adaptive fusion
consists of three convolution operations to adaptively obtain
the learnable weights matrices. Z1 and Z3 are the output
from channel-wise attention and temporal attention opera-
tion, respectively. The original feature representation Z2, Z1
and Z3 are passed into learnable 1 × 1 convolutional layers,
respectively. At last, a summation operation of three branches
completes the adaptive feature fusion of triple path. The
output feature after AFF unit is calculated as following:

Ẑ =
∑3

i=1Conv1i(Zi) (8)

where Conv1i denotes 1× 1 convolution.

E. MULTI-STAGE AGGREGATION TRAINING STRATEGY
In previous speech separation methods
[15], [16], [18]–[20], [23], [24], the last stage obtained the
estimated signals to accomplish the separation task. In [21]
and [22], the multi-scale loss was used to calculate the result
of different separation stages during training, which requires
reconstructing the estimated audio after each stage.

In the dense connectedly network, the output of a layer
will never be modified once it is produced. Since shallow
features will be repeatedly processed by their following lay-
ers, exploiting them in deep layers might be inefficient or
redundant. Sparse feature reactivation (SFR) was proposed
to reduce the redundancy in dense connections and keep the
feature map always ‘‘fresh’’ at each dense layer [35]. Deep
Aggregation [36] was proposed to fuse information across
layers better and merge the feature iteratively and hierar-
chically that it makes the networks obtain better separation
performance with fewer parameters.

Inspired by these work, we proposed a multi-stage aggre-
gation training strategy, which consists of a multi-stage
training strategy (MSTS) and a feature-selective aggregation
mechanism (FSAM). Different from the SFR, the FSAM
only consists of the group convolution stage but without the
sparsification stage. The FSAM increases the utility of feature
reusing. Giving the input feature X0, the output of feature
aggregation operation X̃l is calculated as following:

X inl =


LA (X0) , l = 1
LA (X0,X1) , l = 2

LA
(
X̃2, · · · , X̃l−1,Xl−2,Xl−1

)
, 3 ≤ l ≤ L

(9)

Xl = Dl
(
X inl
)

(10)

X̃l =

{
X0, if l = 1
Rl (Xl−2,Xl−1) , 2 ≤ l ≤ L

(11)
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FIGURE 4. (Color Online). Diagram of the Adaptive Feature Fusion (AFF) Unit. The red dash box and blue one represent the feature extraction of
triple-path and adaptive feature fusion, respectively. fGAP (·) and fex

(
·, W

)
denote the global average pooling operation and gating mechanism

with a sigmoid activation operation. fscale (·) denotes element-wise multiplication between the feature map and scalar fex
(
·, W

)
. The input and

output feature representations are Z ∈ RN×J×S and Ẑ ∈ RN×J×S , respectively.

where l indices the stage, LA(·) the layer aggregation oper-
ation, Dl (·) the function defined by the l-th DPHA module,
and Rl (·) the feature selective function which consists of a
1 × 1 group convolution [37] followed by a LN and ReLU .
In each Rl (·), the input is divided into N/4 groups over
the channel dimension. The aggregation operation, LA(·),
is formulated as follows:

LA (X1, · · · ,Xn) = ReLU (BN (Conv([X1, · · · ,Xn]))) (12)

where [·] denotes that the feature maps {Xi, i ∈ [1, . . . , n]}
are concatenated along the channel dimension. Then, the
concatenated feature map is transformed via a convolution
layer with both the kernel size and stride size of 1, followed
by BN and ReLU activation functions. By this way, the aggre-
gations of features of different stages can enrich temporal
context information in deep features. The context information
between channels is enhanced by combining the feature chan-
nels of different levels. The following experimental results
validate our hypothesize: although the features produced by
early layers seem unimportant at deep layers in dense net-
works, they may have potential after being reactivated.

Similar to [38], a weighted loss function with utterance-
level permutation invariant training (uPIT) [39] is adopted.
The stages more deeper, the obtained semantic information
more closer to the separation task, thus we assign the larger
weights to the outputs of deeper layers in the weighted scale-
invariant source-to-noise ratio (SI-SNR) [15] loss function:

starget :=
〈ŝ,s〉s
‖s‖2

enoise := ŝ− starget

si− snr := 10 log10
‖starget‖

2

‖enoise‖2

(13)

Loss =

∑I
i=1i · Lsi−snr∑I

i=1 i
(14)

where s ∈ R1×T and ŝ ∈ R1×T are the original clean sources
and estimated sources, respectively. ‖s‖2 denotes the signal
power. i/

∑I
i=1i is the weight of loss at the i-th stage. The

waveforms of clean utterances are used as training targets
for calculating the loss of each stage. The intuition behind
this is that the output of the deeper stage can approximate
the separation task better. With this multi-stage aggregation
training strategy, the feature selective aggregationmechanism
can assist the network to adaptively select useful information.

III. EXPERIMENTAL SETUP
A. DATASET
We evaluated DPHA-Net on the two-speaker separation task
using WSJ0-2mix [7], WHAM! [41] and Libri2Mix [40],
respectively. TheWSJ0-2mix dataset has 30 hours of training
data and 10 hours of validation data. The dataset also has
5 hours of evaluation data which generated, in the same way,
using utterances from 18 unseen speakers in the validation
set si_dt_05 and evaluation set si_et_05. WHAM! added
noise to WSJ0-2mix, which was recorded in different scenes.
The Libri2Mix, derived from the LibriSpeech corpus [42]
with random extracts were selected for different speakers and
mixed with uniformly sampled Loudness Units relative to
Full Scale (LUFS) [43] between -25 and -33 dB, contains two
training sets (train-100, train-360), one dev set, and one test
set. We used the training data of WSJ0-2mix and WHAM!,
and train-100 set of Libri2Mix for training. All signals are
sampled at 8 kHz. We used the same test set to compare
different methods. Table 1 reports the dataset statistics.

B. MODEL CONFIGURATIONS
We trained the models for 200 epochs on 4-second long
segments with an Adam optimizer [44]. Batch size is set
to 8, and the initial learning rate 0.001. The learning rate is
decayed to 0.98 times if the accuracy of the validation set
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TABLE 1. Statistics of WSJ0-2mix, WHAM! and Libri2Mix.

TABLE 2. Hyperameters in DPHA-Net.

is not improved in 2 consecutive epochs. Gradient clipping
by a maximum gradient norm of 5 is always applied for
proper convergence. Early stopping is applied when no best
validation model is found for eight consecutive epochs. The
hyperparameters of DPHA-Net are listed in Table 2 and codes
implementation are available online.1

C. TRAINING OBJECTIVE AND EVALUATION METRICS
In this paper, the objective of training the end-to-end
system is the weighted SI-SNR, which is the Equa-
tion (14). We report the scale-invariant signal-to-noise ratio
improvement (SI-SNRi) [15], [45], signal-to-distortion ratio
improvement (SDRi) [46], perceptual evaluation of subjec-
tive quality (PESQ) [47] and short-time objective intelligibil-
ity (STOI) [48] as objective measures of separation accuracy.
The SDRi and SI-SNRi are defined as:

SDRi(ŝ, s, x) = SDR(ŝ, s)− SDR(x, s) (15)

SI − SNRi(ŝ, s, x) = SI − SNR(ŝ, s)− SI − SNR(x, s) (16)

where x is mixed speech, ŝ is the estimated target speech and
s is the reference target speech.

IV. EXPERIMENTAL RESULTS
In this section, we make a comparison among different meth-
ods of the two-speaker separation task on two datasets. For
the WSJ0-2mix dataset, the results of SDRi, SI-SNRi, PESQ
and STOI are listed, and for the Libri2Mix dataset, that of
the SDRi and SI-SNRi are listed according with compared
methods.

1https://github.com/wbQIU-xju/DPHA

TABLE 3. Comparison with 10 methods in the two-speaker condition on
the WSJ0-2mix dataset. ‘–’ means the corresponding result not reported.
‘*’ only SI-SNR and SDR (without improvement) are reported. Generally,
SI-SNRi and SDRi are smaller than SI-SNR and SDR.

TABLE 4. Comparison with 7 methods in the two-speaker condition on
the Libri2Mix dataset.

A. COMPARISON BETWEEN DPHA-NET WITH PREVIOUS
METHODS
We make a comparison between our proposed DPHA-Net
with some state-of-the-art models reported in the literature
recently.

Table 3 lists the results of the DPHA-Net and 10 compared
methods on the WSJ0-2mix dataset: Conv-TasNet [15], Two-
Step CTN [18], Deep CASA [6], A-FRCNN [17], DPRNN
[19], Sudo rm -rf [16], Gated-DPRNN [21], DPTNet [20],
GALR [23], SepFormer [24]. As can be seen, our proposed
DPHA-Net is superior to the compared methods by a certain
margin. In addition, SepFormer, whose performance is clos-
est to DPHA-Net, has quite a few parameters compared with
the DPHA-Net. As seen from Figure 5, the spectrogram of
separated speech by the DPHA-Net is more closer to clean
speech comparing with the Gated-DPRNN and DPRNN.

Table 4 lists the results of the DPHA-Net and 7 com-
paredmethods on the Libri2Mix dataset: DANET [10], Conv-
TasNet [15], SANet [8], GCD-TasNet [49], DPRNN [19],
DPTNet [20], A-FRCNN [17]. As we can seen, in general,
the proposed DPHA-Net is superior to compared methods
but slightly less than the A-FRCNN. Meanwhile, comparing
with the results of theWSJ0-2mix dataset, the separation per-
formance of the same method such as DPHA-Net, DPRNN
and DPTNet on the Libri2Mix dataset is not as excellent as
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FIGURE 5. (Color Online). Two-speaker separation results of different models in magnitude STFT on WSJ0-2mix test dataset.Three models are DPHA-Net,
Gated DPRNN and DPRNN. (a) Two-speaker clean speech magnitude spectrum. (b) The separated result of DPHA-Net. (c) The separated result of
Gated-DPRNN (GRNN). (d) The separated result of DPRNN.

TABLE 5. Comparison between our proposed method with four methods
using WHAM! dataset. ‘–’ means the corresponding result not reported.

the WSJ0-2mix dataset. It shows that the Libri2Mix dataset
is more challenging for the speech separation task [40].
Comparing with the A-FRCNN, the experimental results
of DPHA-Net is better than that of the A-FRCNN on the
WSJ0-2mix but slightly less than that of the A-FRCNN on
the Libri2Mix dataset.

Next, we verified the performance of the DPHA-Net under
the noisy condition on the WHAM! dataset. Table 5 lists the
results of the DPHA-Net and 4 compared methods on the
WHAM! dataset. As we can seen, the proposed DPHA-Net
is superior to compared methods but slightly less than Gated-
DPRNN. Meanwhile, on the WSJ0-2mix and Libri2Mix
datasets, the separation performance of DPHA-Net is both
excellent.

B. AN ABLATION STUDY FOR DPHA-NET
In order to understand the contribution of each of the various
components in the DPHA-Net, we perform an ablation study
in order to explore how to choice appropriate component to
construct the DPHA-Net models for the speaker separation
task. We choose the DPRNN2 as the baseline method. The
ablation experiments were performed on the WSJ0-2mix
dataset. The ablation results are listed in Table 6 and drawn

2https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-
speech-separation

TABLE 6. Ablation results of two-speaker separation on WSJ0-2mix. The
best scores are in bold.

in Figure 6 in the form of bar chart. Several variants of
DPHA-Net are compared in Table 6: (i) the DPHA-Net
without the adaptive feature fusion unit (‘‘–AFF’’); (ii) the
DPHA-Net model trained exploiting a weighted loss and
densely connected operation but without feature selective
aggregation mechanism(‘‘–FSAM’’); (iii) the DPHA-Net
trained exploitng a SI-SNR loss that is applied only at
the final output of the model while without feature selec-
tive aggregation operations (‘‘–MAT’’); (iv) the DPHA-Net
without element-wise attention (‘‘–EA’’); (v) the DPHA-Net
without mutli-head self-attention unit (‘‘–MHSA’’); (vi) the
DPHA-Net trained exploitng a SI-SNR loss that is applied
only at the final output of the model (‘‘–MSTS’’). Comparing
with the complete DPHA-Net, without MAT, the score of
SI-SNRi decreases by 2.95 dB, that of SDRi by 2.91 dB and
PESQ by 0.28.While without MSTS, the score of SI-SNRi
decreases by 2.7 dB, that of SDRi by 2.7 dB and PESQ by
0.22. While without FSAM, the score of SI-SNRi decreases
by 0.5 dB, that of SDRi by 0.5 dB. While without MSHA
unit, the score of SI-SNRi decreases by 1.0 dB, that of SDRi
by 1.0 dB and PESQ by 0.06.

As can be seen, each of the aforementioned components
contributes to the performance gain of the DPHA-Net, while
the multi-stage aggregation training strategy much more than
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FIGURE 6. (Color Online). Bar charts of ablation results of two-speaker separation. ‘‘w/o’’ is the abbreviation of
without, such as ‘‘w/o MSTS’’ denotes without the MSTS.

TABLE 7. Average SI-SNRi, SDRi, PESQ and STOI for DPHA-Net to different
gender combinations on WSJ0-2mix. The best scores are in bold.

the others. By multi-stage aggregation training, the model is
forced to approximate the more suitable separation network
and also estimate the signal in a more accurate scale closer to
the time-domain resolution leading to better results. This is
also consistent with other studies [21], [22], [31]. As shown in
Figure 6, the results of ablation experiments obviously verify
that the MAT is crucial for the DPHA-Net.

The separation performance with respect to different gen-
der combination and overall performance across all combina-
tions are reported in Table 7. From this table, we can clearly
see that our approach achieves much better SI-SNRi, SDRi,
PESQ and STOI on female-male combinations than same
gender conditions. The result also proved consistent with the
observation in [6].

C. SUBJECTIVE AND OBJECTIVE QUALITY EVALUATION OF
DPHA-NET
In addition to SDRi and SI-SNRi, we also compared the
DPHA-Net with DPRNN on the subjectiveand objective
quality. Since PESQ aims to predict the subjective quality
of speech, human quality evaluation can be consideredas the
ground truth [15]. Therefore, we conducted an experiment

TABLE 8. Mean opinion score (MOS,N=20) and PESQ for the 25 selected
utterances from the WSJ0-2mix test set.

in which we asked 20 normal hearing subjects to listen and
rate the quality of the separated speech sounds. We randomly
chose 25 two-speaker mixture utterances from the test set
of WSJ0-2mix dataset. The subjects were asked to rate the
quality of the clean utterances, the separated utterances by
DPHA-Net and the DPRNN, respectively on the scale of
0 to 5 (the scale is the same as PESQ). For example, a very
clean utterance was first given as the reference for the highest
possible score (i.e. 5). Then, according to the separated
speech they heard, the subjects randomly gave scores between
0 and 5.

Table 8 shows the results of human subjective quality
test, where the MOS score of DPHA is slightly better than
that of the DPRNN. Because the PESQ score is calculated
corresponding to the clean unterance, so the PESQ score of
the last row is maximum score, 4.5 while the MOS score is
lower than that of DPHA-Net.

D. CROSS VALIDATION ON DIFFERENT DATASET FOR
DPHA-NET
We also performed the experiments on the WSJ0-2mix
and Libri2Mix datasets to validate the robustness of pro-
posed DPHA-Net while the training and testing datasets

VOLUME 10, 2022 78761



W. Qiu, Y. Hu: Dual-Path Hybrid Attention Network for Monaural Speech Separation

TABLE 9. Comparison of different train/dev set on different test set in the
two-speaker condition on WSJ0-2mix and Libri2Mix. Where the number in
the table is arranged as: SI-SNRi (dB) / SDRi (dB) / STOI (%) / PESQ).

are inconsistent. In this experiment, we chose the complete
DPHA-Net as the main model. Table 9 lists four group
scores with different training and testing setup. Interestingly,
we found two obviously results: (1) When the training
and testing datasets are consistent, the results of experi-
ments on the Libri2mix dataset both lower than that on
the WSJ0-2mix dataset. (2) When the model is trained on
WSJ0-2mix training and validation dataset, the performance
difference between testing on the WSJ0-2mix and Libri2Mix
test datasets is more larger than comparing with when trained
on the Libri2Mix training and dev dataset. These results
show that maybe the WSJ0 dataset is more comfortable for
DPHA-Net. Overall, our proposed DPHA-Net model has cer-
tain robustness, matching our expectations. Furthermore, the
result on Libri2Mix also proves the conclusion in [40] that the
Libri2Mix dataset is more complicated than the WSJ0-2mix
for the task of two-speaker separation.

V. CONCLUSION
This paper introduces our proposed DPHA-Net for monaural
speech separation, which combines the advantages of atten-
tion mechanisms and multi-stage training strategy. For the
task of two-speaker separation in the without noisy condi-
tion, the DPHA-Net is superior to 10 compared methods on
the WSJ0-2mix dataset, and to 6 compared methods on the
Libri2Mix dataset, respectively. The results of ablation exper-
iments show the effectiveness of AFF, FSAM, EA, MHSA,
MSTS and MAT. The experimental results show that the
multi-stage aggregation training strategy with Feature Selec-
tive Aggregation Mechanism (FSAM) play an important role
in DPHA-Net.

In this paper, we performed the experiments on the task of
two-speaker separation, it did not consider the more natural
setting such as the number of speakers is unknown and rever-
berated conditions. We will focus on speech separation in
reverberated condition and the unknown number of speakers
in the future.
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