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ABSTRACT The unprecedented global spread of the coronavirus pandemic COVID-19 has significantly
promoted novel Internet-of-things (IoT)-based solutions to prevent, combat, monitor, or predict virus spread
in the population. The proliferation of these technologies has fostered their utilization for different practical
use-cases to offer reinforced control, discipline, and safety. This paper proposes an end-to-end smart
navigation framework that uses Social IoT (SIoT) and Artificial Intelligence (AI) techniques to ensure
pedestrians’ navigation safety through a given geographical area. The aim is to mitigate the risks of exposure
to the virus and impose social distancing practices while avoiding high-risk areas identified from the SIoT
data. First, we create weighted graphs representing the social relations connecting the different IoT devices
in the area of interest. Second, we regroup the devices into communities according to their SIoT relations that
consider their locations and owners’ friendship levels. Next, we extract CCTV recorded videos to estimate
the level of social distancing practice on different roads using a computer vision model. Accordingly, the
road segments are assigned weights representing their safety levels based on the extracted data. Afterward,
a graph-based routing algorithm is executed to recommend the route to follow while achieving a trade-off
between speed and safety. Finally, the proposed framework is generalized to enable multi-user coordinated
navigation. The feasibility of the proposed approach on real-world maps and IoT datasets is corroborated
in our simulation results showing an ability to balance safety and travel distance, which can be adjusted
according to the user’s preferences.

INDEX TERMS Navigation, smart city, artificial intelligence, social Internet of Things, COVID-19, graph
analytic.

I. INTRODUCTION
Since early 2020, the world has faced an unprecedented
pandemic that severely impaired countries and shaped global
healthcare and economic crises. Several measures were taken
to limit the virus exposure and its rapid spread [1]. Virolo-
gists have highly recommendedmany precautionary practices
such as hand cleaning, mask-wearing, social distancing, and
close contact avoidance to mitigate the spread of COVID-19
and its variants. Moreover, several technological solutions
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have been tested and implemented to tackle the COVID-19
crisis [2]–[4] all over the world. One of the most promising
approaches is to exploit heterogeneous and ubiquitous sys-
tems such as the Internet of Things (IoT) to monitor spread,
contact tracing, and crowded gatherings. IoT can provide
low-cost and efficient solutions to help practice social dis-
tancing and limit the spread of the infection [5], [6]. Thus,
the main advantage of using IoT technology in healthcare
and crowd monitoring applications is to produce intelligent
tools that encourage the practice of social distancing with-
out austerity measures such as strict lock-downs and travel
restrictions.
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The current capabilities of smartphones and wearable
devices and the existing 5G broadband technology can boost
the development of IoT-based solutions in a prompt and
large-scale manner to combat pandemics [7]. Many exam-
ples of IoT-based solutions have been proposed in litera-
ture [8], [9]. For instance, the smart disease surveillance
systems had demonstrated an efficient degree of control for
the pandemic’s spread within the city of Wuhan and other
major cities in China [10]. Despite the significant issues
of privacy, South Korea’s exemplary accomplishments for
relatively containing COVID-19 are due, in part, to the
commissioning of a coherent information system that tracks
visitors and confirmed patients with an alerting system of
potential infections [11]. The system provides the community
with essential information to assess the spread. Furthermore,
Taiwan uses various IoT technologies, such as tracking the
citizens and travelers through their mobile phone locations.
Thus, if citizens are exposed to a high-risk area of getting
infected, they will be altered. Also, if a traveler comes from a
high-risk area and violates the self-quarantine procedure, the
residents in that area will be notified through a text message
to alert them [12].

One of the main approaches that can help mitigate the
spread of infectious viruses such as COVID-19 and its vari-
ants is to encourage the practice of social distancing between
people. Most of the existing techniques are designed to mon-
itor the practice of physical distancing in different areas.
However, they do not provide concrete guidance for users
to maintain sufficient distance and avoid close contact with
other people, specifically in private zones where it is easier
to impose measures on the residents. On the other hand, the
built-in capabilities of connected devices such as GPS, ther-
mometers, and other sensors, can be exploited to approach
social distancing adequately. For instance, in constructions
or industrial zones, wearables can guide workers to maintain
a safe distance from their peers by generating alerts if social
distancing is violated. It also allows for tracking virus spread
when an infected person has been detected in the working
area and helps avoid the complete shutdown [11].

The emergent concept of Social IoT (SIoT) [13] can
be a valuable tool to leverage the traditional IoT systems
and enable a better understanding of the ubiquitous IoT
network [14]. SIoT is developed to help understand the
interactions between the devices and their users and model
them with different social relations. These relationships
can be established between machine-to-machine, human-to-
machine, and human-to-human connections [15] and trans-
form the IoT network into a socially connected network of
devices that can be effectively analyzed using graph analytic
tools such as community detection [16], [17] and machine
learning [18], [19]. By leveraging the SIoT, providing new
applications to encounter the virus spread can emerge and
minimize the pandemic’s negative impacts.

In this paper, we propose a smart navigation framework
that exploits the SIoT data to provide pedestrians, and even
cyclists, with safe routing bypassing areas where the risk of

COVID-19 transmission is high. In other words, the frame-
work recommends a walking route that guarantees social dis-
tancing and avoiding close contact. The proposed approach
includes four phases. The first phase, or the pre-processing
phase, identifies the IoT devices in the area of interest and
establishes social graphs interconnecting these devices using
different SIoT relations. Our approach focuses primarily on
two social relations: 1) a distance-based relation that identi-
fies crowded and highly dense IoT devices and 2) a device
friendship relation that allows labeling streets where the user
may possess a high chance of meeting a close social IoT
friend (e.g., potential socially connected co-worker). The
second phase applies the Louvain community detection algo-
rithm to the previously generated graphs to determine the
different communities of IoT devices that share strong char-
acteristics for each SIoT relation. In addition to the commu-
nity detection part, this phase exploits CCTV video cameras
registered in the IoT database to detect the pedestrian flow in a
real-timemanner and extract safety-related information about
the crowds in the street or walking zones, including the offline
pedestrians in the decision-making during the navigation.
The output of this phase is to compute two different weights
associated with each component of this phase. According
to the previously calculated weights, the third phase intends
to assign scores to each street or segment of a street in
the area of interest, reflecting the safety level of that map
segment. Finally, in the last phase, the citymap is transformed
into a weighted undirected graph to which we apply the
Dijkstra algorithm [20] as a routing algorithm to determine
a route characterized by a certain level of safety. A weighted
objective function balancing between the shortest and safest
routes is developed. The framework will then deliver the
trajectories to the user, e.g., via a mobile application for
the best path to follow to reach a destination. The proposed
routing approach considers the mobility of IoT devices and
may update the recommended route regularly by repeating
the process, as mentioned earlier.

The proposed smart navigation framework is supported by
two low complexity algorithms enabling the routing for a
multi-user system where the trajectories for different users
are simultaneously determined in order to achieve a bal-
ance between safety and speed. The proposed framework is
designed to promote the preservation of social distancing by
proposing safe routes with a low risk to its users. It exploits
the collected IoT data and the social relationships among the
devices to autonomously determine the status of the area of
interest and define routes for the different users interested in
safe navigation. Industrial zones, campuses, or indoor areas
such as offices andmalls can be equippedwith such smart ser-
vices promoting additional safety to its personnel/users. In a
nutshell, the contributions of this paper can be summarized
as follows:
• We design an end-to-end smart navigation framework
that leverages the SIoT features to develop a routing
strategy for pedestrians allowing them to navigate safely
through a given geographical area.
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• We develop interrelated graph analytic and artificial
intelligence approaches, including:
F a community detection approach to cluster IoT

devices according to their social relations,
F a computer vision-based pedestrian tracking for

crowd counting and social distancing practice
measuring,

F aGraphConvolutionalWeight Completion (GCWC)
algorithm to predict the status of roads missing IoT
information,

F and a graph-based routing strategy to enable
single-user navigation in a weighted graph.

These approaches are applied to the data extracted from
a SIoT dataset to identify risky roads and high-density
areas to guarantee safe navigation on the map.

• We propose low complexity routing approaches
for multi-user systems to guarantee safe naviga-
tion for pedestrians sharing a common environment
simultaneously.

• We apply the proposed framework to a real-world
dataset and offlinemap, andwe validate the performance
of the proposed end-to-end navigation framework using
two different practical scenarios.

The remainder of this paper is as follows. In Section II,
We examined the related work and recent study employ-
ing AI and IoT devices to combat pandemics, especially
Covid-19. In Section III, we discuss the objectives and archi-
tecture of the proposed framework with an overview of the
data flow. Section IV describes the used dataset and the cre-
ation of various social relations between the IoT devices.
Moreover, the computer vision camera collection phase and
the updated social relations weights. Section V investigates
the multi-user navigation scenario where low complex nav-
igation algorithms are developed. In Section VI, we present
the results of the proposed framework. Finally, we conclude
our work and give some possible directions and future works
in Section VII.

II. RELATED WORK
Generally, the widespread of IoT combined with AI advance-
ment has been exploited in many other applications in dif-
ferent smart cities and health-related applications [21]. For
example, Life First Emergency Traffic Control (LiFE) is an
AI-based emergency traffic control using the IoT sensors’
aggregated data. LiFE serves emergency vehicles to navigate
congested intersections during rush hours, opening the traffic
signals to provide the fastest way to reach the incident. Not
only that, IoT and navigation in the smart city have been
utilized for applications such as finding the paths where the
cyclist is trying to find clean air areas based on aggregated
data of air quality and providing this information to the
user [22]. The pedestrians in a smart city can also benefit
from the sensors distributed with user-defined functions that
aim to reduce the exposure to pollution and get the low
average temperature routes for the user [23]. An example
that has been widely adopted starting from 2020 is applying

biometric sensing machines that utilize computer vision to
identify symptomatic people and prevent them from get-
ting to crowded public places and spreading the virus [24].
In general, IoT, as well as AI, can provide cost-efficient and
practical solutions to assist in practicing social distancing and
hence, limiting the spread of infections [6], [25].

This heterogeneous IoT data leveraged with AI technology
is currently used to contend with the outbreak effects and
prevent its spread [31]. For instance, computer vision and
deep learning can provide real-time social distancing moni-
toring by measuring people’s physical gaps. Some applica-
tions have been utilizing the AI and IoT sensors in social
distancing, where machine learning algorithms with inputs
from live cameras in public spaces assist in monitoring the
social distancing practice [32]. Furthermore, other methods
are used to identify citizens’ locations in smart cities by using
the energy consumption before and during the lockdown.
Thus, the trained machine-learning algorithms based on the
energy consumption profiles provide decision-makers with
tools to predict the population behavior based on different
social distancing policies [33]. Other studies investigated
the population response to COVID-19 and its corresponding
interventions by proposing anAI-based early-warning detect-
ing system in time series of visits to points of interest of
essential and non-essential services [34]. The authors of [13]
proposed a particle swarm optimization algorithm applied
to the emerging Social IoT concept to simulate how the
coronavirus spreads. This work aims to assist the government
in finding practical control strategies to combat the spreading
of the virus.

Different applications have been developed to monitor and
prevent the spread of COVID-19 by essentially focusing on
utilizing IoT devices [35]. The analysis of the generated data
from IoT devices is essential while considering trust and
relation levels among the connected devices, which results
in trustworthy services in SIoT [36]. Device monitoring can
be the first stage of providing an actionable IoT system for
the users. For instance, recommending routes for IoT users in
a real-time manner could be devised based on the collected
data. As such, the authors of [22] have developed a path
planning strategy to avoid poor air quality and highly polluted
areas. They provided a web-based application for the users
based on IoT sensors in smart cities. This work can be used
to avoid high-risk infection areas using the appropriate IoT
sensors to help mitigate the spread of viruses.

In Table 1, we examine recent studies investigating the nav-
igation and route recommendation for users while exploiting
the IoT data to help on mitigating the spread of infection,
especially COVID-19 [26]–[30]. We found that majority of
selected studies focus exclusively on indoor navigation, while
the other concern only on out-door navigation. As a result,
these studies limit the generalization of the proposedmethods
to navigate in out-door and in-door environments. Moreover,
it is noticeable that these methods utilize a limited number of
IoT devices, such as proximity sensors or cameras, without
capturing multiple sources of IoT devices to leverage them in
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TABLE 1. Qualitative comparison of our proposed framework with recent relevant studies.

routing recommendations and social distancing. Therefore,
in our study, we offer a more generic approach utilizing
heterogeneous IoT devices applicable for indoor and out-door
environments, exploiting the social relationships among the
devices and simultaneously determining routes for multiple
users.

III. OBJECTIVES AND SMART NAVIGATION FRAMEWORK
ARCHITECTURE
In this section, we define the objectives of the proposed end-
to-end smart navigation framework and present its different
phases.

The objective is to serve users requesting routes to avoid
the areas in which the risk of infection is relatively high. The
risk level of the determined routes is based on the data pro-
vided by IoT devices connected to the platform, e.g., smart-
phones, personal computers, CCTVs in the area of interest.
The navigation decision is subject to the SIoT social relations
connecting the users of interest to other IoT devices and their
owners. Additionally, the video frames generated by CCTV
cameras are used to also predict risky routes. The framework
also considers the traveled distance to balance between the
route’s safety and navigation speed. Therefore, three inputs
are required to determine the safest/fastest route:
• Offline map: this input consists of an undirected graph

representing the different paths of the area of interest. The
vertices and the edges correspond to the intersections and path
segments in the map, respectively.
• User-related information: it contains real-time informa-

tion about the IoT devices for all users connected to the
IoT database. The information includes the devices’ current
locations, owners, and types.
• CCTV camera input: the framework has access to CCTV

cameras connected to the platform on some path segments or
intersections that provide real-time videos helping assess the
situation in the covered areas.

The different phases of the proposed smart navigation
approach and their interconnections are presented in Fig. 1.
The framework starts with a pre-processing phase that pro-
cesses existing information in the IoT database to gen-
erate a graph representing the offline map, including the
CCTV locations and their coverage, as well as other graphs
reflecting the SIoT relations among the connected devices.
In this study, we investigate two social relations, precisely the
Co-LOcation/co-work-basedRelation (CLOR) and the Social
Friendship and Ownership Relation (SFOR), which will be
introduced later. The SIoT relations will be represented by
two different graphs where the vertices represent the IoT
devices, and the weighted edges represent the strength of the
SIoT relation between the devices.

The second phase is composed of two sub-phases. The
first one is the community detection sub-phase. It intends
to analyze the graphs devised from the IoT devices’ social
relations to determine communities for each social relation
as follows:
• CLOR communities: the devices that belong to the same

CLOR community are physically co-located. Indeed, the
number of devices in a CLOR community determines the
density level of the corresponding geographical region.
• SFOR communities: the owners of the devices belonging

to the same SFOR community share mutual and high friend-
ship levels. Hence, there is a risk of close contact if these
devices get close to each other.

In addition to helping understand the SIoT network, the
community detection sub-phase helps reduce the complexity
of the problem by avoiding processing the vast and complex
IoT network individually. Instead, it allows the framework to
deal with communities of socially connected IoT devices.

The second sub-phase of Phase 2 involves a computer
vision module to process the video frames generated by
the CCTV cameras to identify high-risk areas where social
distancing is not perfectly practiced. Indeed, we assume that
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FIGURE 1. The proposed SIoT-based smart navigation framework recommending a safe route to the user while avoiding close
contact and maintaining social distancing.

not all users are connected to the IoT platform. Hence, this
sub-phase helps better assess the situation in covered areas
and identifies any contamination risk due to the crowd behav-
ior. In fact, in many smart cities and industrial zones, CCTV
cameras already exist on most roads to provide reliable and
high-quality visual information in a real-time manner. The
goal of the computer vision module is to estimate the number
of pedestrians for each street by counting the pedestrians’
entry to the selected street and the social-distancing disobe-
dience rate. Consequently, we can determine the congestion
levels of the monitored path segments and assign a weight for
that street for navigation purposes.

In the next phase (i.e., Phase 3), we assign to each edge
of the offline map a weight reflecting the traveled distance
and the path segment’s risk level based on the computations
of Phase 2 (i.e., SIoT-related weighs and computer vision-
related weights). In other words, the weight of each edge
incorporates the travel speed and the risk levels based on the
outcome of Phase 2. However, some streets are not monitored
by CCTV cameras. Therefore, we propose to estimate their
weights using an intelligent graph theory algorithm, namely
the Graph Convolutional Weight Completion (GCWC) algo-
rithm, to assess the missing information of segments in which
we cannot directly determine the number of pedestrians and
measure the social distancing violation level. GCWC will
output a graph with different risk levels of virus exposure for
each path segment.

Finally, in the last phase of the framework, we develop a
navigation algorithm applied to the weighted graph obtained
from Phase 3. The navigation algorithm searches routes for
either a single user or multiple users simultaneously. The
route recommendation strategy will then select routes with
a minimum sum of weights balancing between safety and
speed. Therefore, it determines the most suitable path to
recommend to the users of interest, given their preferences
(speed and safety).

IV. DATASET AND SMART NAVIGATION FRAMEWORK
COMPONENTS
This section presents in detail the different phases of the
proposed SIoT-driven navigation framework. It first intro-
duces the SIoT dataset and the original graph representing
the offline map. Then, it delves into the IoT-based methods
employed to determine the risky areas in themap. Afterwards,
it describes the edges’ weights computation method, and
finally, it closes the loop by presenting the route recommen-
dation approach for a single user.

A. PHASE 1: DATA PRE-PROCESSING
The data pre-processing phase consists in extracting the infor-
mation that are useful for the development of the proposed
navigation framework. The data source includes the IoT
dataset, from which we extract the IoT devices’ features and
the SIoT relations, and the offline map from which we extract
the potential paths for navigation.

1) IoT DATASET
The proposed framework requires the following information
as an input to achieve its goals:
• IoT devices information: The targeted devices are the

environment sensors and the high computational devices
such as smartphones, smartwatches, and personal computers.
The devices’ information includes two types of ownership:
public-owned, usually the city authority, and private-owned
devices owned by the citizens and organizations in the city
or the area of interest. Each IoT device is labeled as static
or mobile to indicate its mobility. Other information that
are also used includes the geographical position, owner,
type, etc.
• CCTV video cameras: In addition to the set of informa-

tion described above, the CCTV cameras, as particular IoT
devices for our framework, are used to provide high-quality
visual information about the monitored path segments.
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FIGURE 2. Overview of the pre-processing phase.

They are also identified by other information, such as the
geographical locations of the cameras, their field of view, and
the exact time and date of the recording.

In this study, we apply our framework to a dataset that
comprises real-world IoT objects from the city of Santander,
Spain, as well as simulated devices like smartphones, tablets,
and personal computers by Marche et al. [37]. The frame-
work can be applied to any other dataset providing sufficient
similar information about the IoT devices.

2) SOCIAL IoT RELATIONS
In this study, two SIoT relations are investigated to generate
graphs representing the strength of the relationships between
the different devices. Each SIoT relation is used to deduce
parameters that may impact the navigation of the user. They
are defined and generated as follows:
• CLOR relation: By setting a defined threshold for

the distance between the devices, we can specify whether
the devices belong to a distinct cluster. Hence, a relation
is established between them based on the distance separat-
ing them. This relation aids in identifying crowded areas
where there is a risk of limited social distancing among
these devices. Therefore, it is mandatory to avoid pass-
ing through these overcrowded areas labeled as high-risk
areas.
• SFOR relation: To create SFOR relations, we first

consider that the same person’s two devices are strongly
connected. Then, we establish additional SFOR relations
using social media networks or other friendship indicators
of devices owned by different owners. For example, if two
owners are friends in the social network, then the SFOR
relation between their devices can be modeled by an edge
with a weight reflecting the number of people to reach each
owner. Thus, the SFOR relations can be used to avoid users’
friends or friends of a friend.

The CLOR and SFOR topologies are undirected and
weighted networks. The nodes in these graphs are heteroge-
neous IoT devices. The edges between these devices represent

FIGURE 3. Overview of the SIoT relation evaluation and community
detection sub-phase.

the SIoT relations stated previously. These graphs do not
include self-loop edges to the node.

3) PATH NETWORK GRAPH STRUCTURE
On the other hand, the framework requires knowledge about
the offline map, specifically the streets and intersections.
In this study, we model the path map network of the area
of interest as a graph, denoted by G = (V ,E), where each
node or vertex, v ∈ V represents an intersection of two or
multiple path segments. An edge e ∈ E connecting two
vertices denotes the path between two intersections. Each
edge is given a weight, denoted by ωe or ωu,v representing
the length of the path corresponding to edge e connecting
vertices u and v. We denote by � the weighted adjacency
matrix associated to graph G where �u,v = ωu,v. If two
intersections u and v are not directly linked then �u,v = 0.
Additionally, we divide long path segments with lengths
higher than a threshold length Lth into multiple segments
where each segment of the road is labeled solely and can be
later assigned a different weight. The number of segments for
a road of length Lroad can be expressed as dLroadLth

e. Note that
a path segment can correspond to a street, a walkway, or a
corridor in an indoor environment.

In Fig. 2, an illustration of the pre-processing phase con-
verting the raw data of the IoT dataset and the offline map
into multiple graphs reflecting different relations among the
IoT devices is presented. The output of this phase includes
a street network graph, the locations of the CCTV and their
corresponding covered path segments (or edges), and the
locations of IoT devices and their features. The latter output
will be employed in Phase 2 to determine graphs associated
to the SIoT relations.

B. PHASE 2: SIoT SAFETY-RELATED DATA EXTRACTION
PHASE
This objective of this phase is to extract safety-related infor-
mation from the IoT dataset and connect it to the offline
map. To this end, two sub-phases are proposed. The first
one focuses on the IoT features and their social relations to
determine risky zones/streets for the user of internet, while
the second sub-phase uses the CCTV cameras to identify
crowded path segments where social distance obedience is
not respected.
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FIGURE 4. Overview of the computer vision tracking system.

FIGURE 5. Illustrative example showing the extraction of the Pedestrians’
behaviors parameters from a CCTV recording in a three-way junction.

1) SIoT RELATION EVALUATION AND COMMUNITY
DETECTION
This sub-phase exploits the SIoT paradigm by clustering
the IoT devices, in the investigated area, into communities
based on their social relationships. In this part, the devices
are grouped into communities based on the primary relation
(CLOR and SFOR) graphs obtained from the pre-processing
data phase (Phase 1).

By creating social IoT relations, we propose to reduce the
problem’s complexity by employing a community detection
algorithm, namely Louvain, that can be used to calculate
the effects of the different SIoT communities on the routing
recommendation method. A community detection algorithm,
in general, converts the complex graph into distinguished
clusters of nodes that share strong relations. To this end,
we apply the Louvain method [38], which is a greedy opti-
mization method that attempts to maximize the ‘‘modularity’’
of a partition of the network [38]. The main advantage of
using the Louvain is the running time of O(n log n), which is

considerably faster compared to similar methods [14], [39],
[40]. The community detection outcomes in our framework
will be used in Phase 3.
The Louvain method applied to the CLOR graph will

assign the co-located devices into a set of communities.
In SFOR communities, the devices are not necessarily geo-
graphically co-located. Contrary to CLOR, they are sparsely
distributed in the geographical area. However, the owners of
these devices may know each other and can meet each other.
Therefore, it is recommended that a given pedestrian does
not pass by devices belonging to the same SFOR community
that his/her device is assigned to for safety reasons and better
social distancing practice. Fig. 3 depicts an illustration of
the community detection reflecting the SIoT relations of the
network.

The performance of the community detection algorithm is
investigated using three metrics:
• Modularity score: it is a metric designed to measure the

strength of the division of a network into modules.
• Coverage score: The coverage of clustering is given

as the fraction of the weight of all intra-cluster edges with
respect to the total weight of all edges in the whole graph [41].
• Performance score: The performance of a partition is

the ratio of the number of intra-community edges added to
inter-community non-edges with the total number of potential
edges.

2) COMPUTER VISION PHASE
This sub-phase is dedicated to identifying safety information
from the existing CCTV cameras available in the area and
connected to the IoT server. CCTV cameras are employed
to extract reliable information about pedestrians’ density and
flow for each covered road. To this end, we employ computer
vision algorithms to extract the information from CCTV
input frames. The algorithm will predict several features,
such as the disobedience of the social distancing rule, the
average number of people on that road at an exact timestamp,
and the frequency of people entering and leaving the road.
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The employed computer vision framework is presented in
Fig. 4 where the collected frames are fed into YOuLookOnce
version 5 (YOLOv5) [42], [43], which is a Convolutional
Neural Network (CNN) based object detector. The last layers
of the YOLOv5 are fine-tuned to detect only pedestrians and
neglect other environmental objects. YOLOv5 is considered
one of the most efficient algorithms for object detection due
to its fast running time, accuracy, and ability to detect small
objects in very crowded areas.

The detection of objects is not enough to ensure accurate
results. Therefore, we propose to track every object to avoid
counting a pedestrian more than once. The tracking process
consists in the association of two detected objects in two
adjacent frames. After detecting pedestrians, the estimated
bounding box of each person is fed to the Kalman filter
to update the target state. The Kalman filter is an optimal
recursive Bayesian stochastic method that propagates condi-
tional probability density of the system state based on the
actual state [44]. The next step is the matching process,
which consists in assigning every new detection to exist
targets [45]. Consider the following example: two pedestrians
are detected in the first frame and have been assigned the tags
ID1 and ID2, respectively.When the video evolves, the object
detector, YOLOv5, detects two pedestrians, and during the
matching step, the framework recognizes each pedestrian’s
ID in relation to the previous frame. The framework matching
process uses the Hungarian algorithm. The algorithm exploits
two metrics to ensure the matching:
• The Mahalanobis distance: calculated between the pre-

dicted Kalman states and the newly arrived measurements
and aims to incorporate motion information in the matching
process.
• Deep appearance descriptors: those are the semantic

descriptors of an image, extracted by a specific convolutional
neural network that is intent on extracting the low-level image
features.

Finally, the bounding box associated with the target IDs is
used to estimate the number of people going on each road, the
frequency of accessing a road and detecting any disobedience
of the social distancing rule.

In Fig. 5, we illustrate a snapshot of a video regarding the
movement of pedestrians in a three-road intersection. The
pedestrians are detected using YoloV5 in bounding boxes
and tracked using the Kalman filter. The recorded trajectory
of each pedestrian is highlighted with the same color used
in the bounding boxes. Cyan lines are placed at the edges
of the road segments to count the number of pedestrians
entering or exiting that road. Finally, the distance separating
the centers of two bounding boxes (highlighted by the white
color) helps determine whether social distancing is practiced
or not.

Fig. 6 displays four different outcomes employed in the
smart navigation algorithms. Fig. 6a illustrates offline map.
Fig. 6b and Fig. 6c show the communities obtained from the
CLOR and SFOR graphs by applying the Louvain method,
respectively. Finally, Fig. 6d displays the roads of a street

network map that are monitored with CCTV cameras denoted
by the red color.

C. PHASE 3: MAP SEGMENT SAFETY SCORE
COMPUTATION
In this phase, we propose computing the road weights given
their surrounding SIoT communities’ statuses and the associ-
ated computer vision predicted parameters (pedestrian count-
ing and social distancing disobedience detection). To do so,
we assign to each road segment e a weight that is balanced
by a coefficient α (∈ [0, 1]) representing the level of safety
set by the pedestrian of interest. Setting a value of α → 0,
the pedestrian intends to determine the shortest path to reach
the destination with low consideration of risks. However,
if α → 1, the pedestrian is looking to follow the safest
trajectory independently of the expected traveled distance.
Values of α ∈]0, 1[ achieve a trade-off between both routing
strategies. The edge’s weight of the road network, denoted
by ωe, can be expressed as follows:

ωe = (1− α)ωdiste + α ω
sft
e , (1)

where ωdiste is the weight reflecting the expected traveled

distance when crossing edge e, while ωsfte =
ωSIoTe +ωCV

2 is
the weight reflecting the safety level of the edge which is
measured using the weights deduced from the SIoT commu-
nity detection part, ωSIoTe , and the ones estimated from the
computer vision partωCVe . The weightsωdiste are a normalized
value of the segment e’s length.

1) SIoT WEIGHTS COMPUTATION
The values of Social IoT weights ωSIoTe are measured by
combining the impact of the surrounding CLOR communities
and devices belonging to the same SFOR community of the
pedestrian’s device as follows:

ωSIoTe =
ωCLORe + ωSFORe

2
, (2)

where the CLOR weights ωCLORe are calculated using the
following expression:

ωCLORe =

∑
c∈CCLORe

γc

|CCLORe |
, (3)

where CCLORe is the set of CLOR communities that intersect
with the edge e. The cardinality of this set is denoted by
|CCLORe |. The CLOR communities are modeled as polygons
that circumscribe devices belonging to each community with
an outer offset ρ. We denote these polygons by Pc,∀c ∈
CCLOR where CCLOR denotes the set of all CLOR communities
obtained using the Louvain method. Thus, the set CCLORe can
be defined as: CCLORe = {c ∈ CCLOR |Pc ∩ {e} 6= ∅} where
∅ is the empty set. The offset parameter ρ is added to all
polygons associated with the CLOR communities to ensure a
safe social distance for the navigating user. Finally, γc denotes
the density of community c and is calculated as follows:

γc =
Nc
Ac
, (4)
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FIGURE 6. Outcomes of Phase 2 of the proposed smart navigation framework.

where Nc is the number of devices in community c and Ac is
the surface of the area of Pc.

Similarly, the SFOR weights can be computed as follows:

ωSFORe =

∑
u∈Cu∗,e

�SFOR
u,u∗

|Cu∗,e|
. (5)

The Cu∗,e is a set of devices that are in SFOR rela-
tion with the devices u∗ of the user pedestrian and their
d(u, e) ≤ dth. It corresponds to the SFOR community to
which the user device u∗ belongs. Moreover, the user device
distance is denoted as dth that measures the edge e distance.
The coefficient �SFOR

u,u∗ is obtained from the SFOR graph,
and it measures the strength of the SFOR relation between
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device u and u∗. The parameter dth denotes the allowed
distance in which the user owning the IoT devices will try
to avoid any device within the same SFOR community.

In general, the SIoT weight of an edge e significantly
increases if it is surrounded by high-density CLOR communi-
ties and/or many devices belonging to the same SFOR com-
munity of the user of interest. Therefore, in the navigation
phase, we aim to select the edges with lower risk, i.e., the
trajectory that minimizes the sum of ωSIoTe for a user looking
for a safe walk.

2) COMPUTER VISION WEIGHTS COMPUTATION
For each road, we assign a weight based on the previously dis-
cussed features in the computer vision sub-phase of Phase 2.
Those weights are calculated as follows:

ωCVe =
ωPFe + ω

SD
e

2
, (6)

where ωPFe is the number of pedestrians accessing the inves-
tigated road per second (i.e., the frequency of pedestrians
accessing the road) and ωSDe is the ratio of people who
disrespect the social distancing rule in that road. The latter
weight will be assigned to each edge monitored by a CCTV
(i.e., the edges colored in red in Fig. 6d). Those weights are
calculated at each timestamp as the average of the weights
calculated for each frame during the timestamp. So far, the
CV weights are only available on the roads or intersec-
tions monitored using CCTV cameras registered in the IoT
database. Other non-monitored roads lack this data and are
not assigned any CV weights. Consequently, we propose an
AI-based solution to impute the missing features extracted in
the computer vision part and hence, predict CV weights for
non-monitored roads based on the monitored roads’ features.
To assign predicted weights to the edges not supported by
CCTV cameras, we exploit the Graph Convolutional Neural
Network (GCNN) approach [46]. This graph-based artificial
intelligence exploits the topology of the road network graph
and the correlations of weights among adjacent edges to
estimate stochastic weights for all edges.

This process adopts the intuition of the auto-encoder.
Indeed, the street roads graph is provided as input to be fed
into a GCNN, followed by a pooling layer that will embed the
graph into a lower-dimensional space, which can be regarded
as the encoding process. Finally, we decode the output of
the encoder using a fully connected layer and thus obtain
an estimated fully weighted graph. During the embedding
phase, a new weighted embedded graph is created. The edges
of the embedded graph are weighted and the problem of the
missing weights is solved. The decoding phase will restore
the initial graph but with different weights for all edges with
no exception. Hence, a full graph containing the predicted
wCV
e weights is obtained.

D. PHASE 4: ROUTE RECOMMENDATION
At this stage, a weighted graph is generated. The weights,
computed in the previous Phase and specifically using (1),

a balance between speed and safety. Onemethod to determine
a road based on the safety preference of the user is using
Dijkstra’s algorithm. The parameter α will decide the safety
level of the determined road. Our framework can dynamically
recommend new paths to the user based on his/her current
location while considering the mobility of other IoT devices.
Hence, it needs to update the CLOR and SFOR communities
after a specific time period as well as the computer vision fea-
tures to provide real-time factors. Consequently, the selected
path is updated from one-time slot to another. In other words,
Phases 2 to 4 will be repeated for each time slot until the user
reaches his/her destination.

V. MULTI-USER NAVIGATION
A multi-user functioning is required to obtain an efficient
navigation framework for a group of people sharing a com-
mon space and aiming to practice safety measures or nav-
igation restrictions. Generally, the multi-agent concept is
omnipresent in the navigation realm, such as organizing the
cities’ traffic flow and multi vehicles’ shortest path selec-
tion. In this section, we propose to make the model more
practical by considering the multi-agent scenarios. For exam-
ple, it can be used in industrial areas or campuses to assist
workers/students in navigating and enhancing pedestrians’
protection and decreasing the probability of getting infected
in the investigated regions.

A centralized architecture characterizes the framework
where every user is identified independently. Each user is
defined with a unique ID and has his/her attributes such as the
navigation speed, estimated from his/her navigation history,
and the exact instant of his/her last connection. In multi-
user navigation framework, we aim to synchronize the users’
trajectories in a real-time manner to avoid the presence of
many users at the same place simultaneously and hence, push
towards a better social distancing practice within the area of
interest. At each timestamp, the framework must validate the
following constraint for all users:

|ATu − ATv| < 1t , (7)

where ATu is the arrival time of user u to intersection u and
1t is the necessary period of time to avoid conflicts between
users. Next, we present two Dijkstra-based heuristic algo-
rithms that adopt different strategies for choosing the optimal
path. The first algorithm, referred to as Priority Based Iter-
ative Navigation Algorithm (PINA), determines a trajectory
for a prioritized user then adjusts on the following user. The
second algorithm, namely Step-by-step Iterative Navigation
Algorithm (SINA), discovers the simultaneous steps taken
by each pedestrian at each iteration to make the subsequent
decision.

A. PRIORITY BASED ITERATIVE NAVIGATION ALGORITHM
(PINA)
The PINA algorithm avoids any conflict by redirecting the
user to the second selected path. To this end, a priority
between users is mandatory for this algorithm to avoid
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Algorithm 1 Priority Based Iterative Navigation Algorithm
(PINA)
1: Inputs: Initial point and destination ({Stj,Dej}, j ∈
{1, · · · ,N }) where N total number of the users.

2: Initialization Phase:
3: Initial path for each user j; PAj = Dijkstra(Stj,Dej).
4: Set SPj = Stj and DPj = Dej.
5: for u in U do
6: Calculate the arrival time ATu for higher priority users
∈ {1, . . . , u− 1}.

7: Determine the list of segments L where conflicts with
higher priority users are detected.

8: Block those segments during the arrival instants
plus/minus gap time1t to prevent collision for the rest
of users.

9: Update path for user u using Dijkstra(SPu,DPu).
10: Navigate the user u using the updated path.
11: end for

the problem of conflicting with other users while avoiding
another one. The users will be ordered, e.g., according to
the First-In-First-Out (FIFO) concept. After determining the
priority levels of all users, the safest trajectory is determined
for the user with the highest priority in the examined area.
To do so, Dijkstra’s algorithm was applied to the weighted
street network graph as described in Section IV-D. Then,
the trajectory of the lower priority user will be calculated
based on the trajectories of the users with higher priority
to avoid conflicts. Hence, arriving at an intersection of the
map must respect condition (7). Hence, delays are counted
in these intersections. In case of conflict, all roads leading to
the targeted locations are closed, and a second trajectory is
calculated. The intersections are not permanently closed but
denoted inaccessible until the previous user passes, consider-
ing the time gap1t . The algorithm describing this process is
given in Algorithm 1. The selected path for each user needs to
consider the potential risk of collision with all previous users.
Thus, some roads are blocked for the current user during a
specific period; consequently, the user will select a second
optimized path that avoids crossing with the other users with
higher priority. Then, the user moves one phase ahead and
updates its current location till reaching its destination.

B. STEP-BY-STEP ITERATIVE NAVIGATION ALGORITHM
(SINA)
SINA recognizes the next step to be chosen by each user
simultaneously. At every iteration, each user will take an
action and move towards its destination. The framework will
assist the user to reach its destination by traveling through the
safest possible route by choosing between two actions: wait
or navigate. The SINA aims to satisfy all the users and provide
them with the safest trajectory without any specific pre-
ordering. Indeed, When simultaneously reaching the same
intersection, the FIFO principle is applied between the users.
Consequently, the user arriving first to the intersection enters

Algorithm 2 Step-by-Step Iterative Navigation Algorithm
(SINA)
1: Inputs: Initial point and destination {Stj,Dej}, j ∈
{1, · · · ,N } where N total number of the users.

2: Initialization Phase:
3: Set SPj = Stj and DPj = Dej.
4: Find initial path for each user j using Dijkstra(SPj, DPj).
5: for T = 1, . . . , T̄ do
6: Determine the list L of intersections at which the

condition (7) is not verified.
7: for l in L do
8: Determine the list U of users heading to the inter-

section l.
9: Calculate the arrival time ATu of each user u ∈ U to

the intersection l.
10: Find û = argminu∈U (ATu).
11: Freeze the navigation of users u in U \ {û} for a

period of1t and update their starting point SPj = l.

12: Update path for user u using Dijkstra(SPu,DPu).
13: end for
14: end for

the road segment, while the second user waits if necessary.
The algorithm starts with an initialization phase where it
determines the fastest paths of each user usingDijkstra’s algo-
rithm assuming solo trips. Finally, the algorithm converges
when all the users reach their destinations. The pseudo-code
of the SINA algorithm is given in Algorithm 2.
In Fig. 7, we highlight the differences between the PINA

and SINA algorithms. With PINA, the trajectory of the high-
est priority user, namely user 1, is already determined, and the
second user with lower priority, user 2, will need to determine
its trajectory accordingly. Hence, two options are possible at
intersection K1 either user 2 will wait to enter K1 after a time
gap 1t or choose another path. With SINA, user 2 arriving
first to the intersection K1 will have the priority to enter to
the segment (K1,K2). User 1 will then be forced to wait.

VI. RESULTS & DISCUSSIONS
A. DATASET AND MAP DESCRIPTION
In our simulations, we use a 16 RAM laptop occupied with
an RTX 2070 graphic card. The laptop development environ-
ment is based on Python 3.7 under the anaconda platform
(i.e., responsible for managing python packages). To pre-
process the dataset and the offline map (Phase 1), we first
select a 6 × 6 km2 area in the city of Santander, Spain, that
we identify as the ’’downtown’’. Afterward, we extract the
city map using the OpenStreetMap project,1 and we convert
its road into a road graph using the OSMnx method [47], and
Networkx2 libraries. The PSMnx is responsible for communi-
cating with OpenStreetMap and extracting all the information

1https://www.openstreetmap.org
2https://networkx.org/
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FIGURE 7. Comparison between the two proposed heuristic navigation
approaches a) PINA and b) SINA. With PINA, user 2 needs to wait before
entering K1 or go through K3 instead since priority is given to user 1. With
SINA, there is no priority among the users. User 1 is arriving later, hence
he needs to yield to user 2 to enter K1 safely.

needed to create the graph. On the other side, the Networkx
library is used to manipulate the graph in each section of
the framework using its flexibility. Afterward, we project the
devices in the selected area from a real-world IoT dataset
provided in [37]. The dataset includes 16216 devices cov-
ering the whole city. The devices vary from simple sensors
such as street lights, environmental sensors, and highly com-
putational devices like smartphones and personal comput-
ers. Private and public entities own the devices. The local
authorities usually own public devices. For the private-owned
devices, there are static and mobile devices. In our simu-
lations, we select mobile devices owned by private entities
that are most likely owned by human beings, such as smart-
phones, smartwatches, tablets, personal computers, etc. The
remaining devices from the previous selection process result
in 1312 personal IoT devices. We have also performed the
same process on another smaller part of the city, specifically
the city’s harbor, and identified it as the ’’Harbor area’’,
to mimic an industrial zone. In this case, we extract the data
of 917 IoT devices. In Fig. 8, we illustrate the two investigated
zones in our study.

B. CLUSTERING AND COMMUNITY DETECTION
In this Section, we evaluate the performance of sub-phase 1
of Phase 2. The selected devices will have SFOR and CLOR
SIoT relations. We create a fully connected network for
CLOR relations. After that, we set a threshold of dth = 1 km
between the devices. Thus, if devices are higher than the
threshold value, we drop the edges connecting two devices;
otherwise, they will get the inverse value of the devices
separated by less than 1 km. The community detection algo-
rithm applied to the CLOR will return a set of relatively
high-density communities to determine high-risk infection
areas with the limited practice of social distancing. For the
SFOR relations, we apply the social network of the own-
ers of the IoT devices to determine the edges between the
devices. Because we lack information about the owners’
social network, we employ the Watts–Strogatz generator [48]
to create a graph that can exhibit a social network between
the owners. In the SFOR, the relations of devices with the
same owner are assigned an edge of 1, while the direct

FIGURE 8. The city of Santander, Spain with normalized geographical
coordinates where IoT devices are deployed according to the Iot dataset
of [37]. The largest area delimited with the red box is the downtown
while the smallest area delimited with the blue box is the Harbor
area.

friends-owned devices will have an edge of 0.5. Other devices
are given weights computed while considering the minimum
number of hops needed for one of the vertices (owners) to
reach the other vertices. We restricted the relations to three
friends of friends since they are socially far away from each
other.

As shown earlier, Fig. 6b and Fig. 6c show real-world
communities obtained from the SIoT graphs by applying the
Louvain method. It results in 56 CLOR communities drawn
by colored polygons and having different density levels,
as illustrated in Fig. 6b. The CLOR communities are classi-
fied, based on their densities, into five classes. A high-density
community is located approximately at the center of the map.
Other blue-colored CLOR communities with a lower density
are considered a risky area and require to be bypassed by
the user for safety. The medium and low-risk areas might be
avoided, but they will be recommended to the user if there are
no other paths. The SFOR-based relation clustering results in
10 communities with diverse devices spread over the map.
Each community has different symbols and colors as shown
in Fig. 6c. The user of interest will belong to one of these com-
munities and needs to avoid close contact with them. To inves-
tigate the efficiency of the Louvain algorithm, we calculate
the modularity, coverage, and performance score, defined in
Section IV-B1. Indeed, the calculated validation scores of
communities in two investigated areas, namely the downtown
of the City of Santander and the harbor area, are presented
in Table 2 and Table 3 and show high-quality measures for
CLOR and SFOR. It is clear that all metrics are presenting
results very close to 1, which validates the efficiency of the
obtained communities.

VOLUME 10, 2022 76835



H. Friji et al.: End-to-End Smart IoT-Driven Navigation for Social Distancing Enforcement

TABLE 2. Validation results of the CLOR communities.

TABLE 3. Validation results of the SFOR communities.

FIGURE 9. Street network after assigning to each road a computer vision
weight.

C. COMPUTER VISION & WEIGHT LINK PREDICTION
In this section, we depict the output of sub-phase 2 of Phase,
including the predicted weights using the GCNN method in
Phase 3. Recall in Fig. 6d, we have plotted the network of
roads that are monitored with CCTV cameras, colored in
red, where we collected information about the behavior of
pedestrians. Nevertheless, the streets unequipped with CCTV
cameras are colored in black. We proceed by computing the
computer vision weights, as explained in Section IV-C2, and
update the graph edge weights by following the mathematical
formulation as explained in Section IV-C for the CCTVmon-
itored roads. The navigation algorithm requires all edges to
be weighed. Therefore, we estimate the weight of the edges
that represents the roads with no cameras using the weight
link prediction on the graph as described in Section IV-C2.
The obtained graph network after the imputation process is

presented in Fig. 9 with a color bar that classifies the roads
into five classes based on the computer vision weights.

D. SINGLE-USER NAVIGATION
This section analyzes the outcomes of the proposed frame-
work after applying Phase 4 for a single-user navigation.
Fig. 10 illustrates two examples of the recommended routes
for the user given same starting points and destinations for
three values of α after applying Dijkstra’s algorithm using the
computed weights. If α = 0, the framework will recommend
the shortest path (the red route), otherwise, if α = 1, the safest
path with minimum exposure to the virus is recommended
(the green). However, for α = 0.5, a trade-off between both
metrics is provided (the blue route). In Fig. 10, it is clear
that along the green route, the user is avoiding most of the
high-density areas surrounding them. It just crosses some of
the low-density regions. Furthermore, it avoids getting closer
to other SFOR-related devices unless it is forced to do it. This
leads to a long route of 2.77 km. With the red route, the user
neglects the risk of contamination and crosses all the high-
density areas. The corresponding traveled distance is equal
to 2.1 km. Finally, the algorithm avoids the red zone for the
blue route and tolerates passing by some blue areas. The result
of this case is a traveled distance of 2.4 km.

Our framework can be adapted to a dynamic scenario
by considering the real-time mobility of the IoT network.
In Fig. 11, we plot the routes for three consecutive time slots.
In each time slot, IoT devices may change their locations
or quit the area. Other devices may appear in the system.
Consequently, the CLOR relations are affected as well as
their corresponding communities. The positions of devices
in SFOR are also subject to modifications. In the dynamic
scenario, the shortest path will remain intact. The algorithm
is only aware of the distance to be crossed. On the other hand,
in the proposed framework that considers the safety weights,
the trajectory is regularly updated given the locations of the
devices at each time slot. Accordingly, the user starting at the
left bottom corner of the map will notice that its trajectory
is partially updated at a time slot (t1) since several SFOR
devices left the area. The user can cross in the middle of
the map to reach its destination. The navigation algorithm is
executed again in the next time slot (t2). Notice that the user
is forced to go around it to reach its destination. As long as
he/she is moving, the user is getting closer to the destination,
especially if a correct value of α is chosen. Choosing α close
to 1 may lead to non-practical results as the user will always
try to maintain safe trajectories and may never reach the
targeted destination. Therefore, a balanced choice of α is
required to achieve a tradeoff between safety and rapidity.
Accordingly, our proposed algorithm exploits the Dijkstra
algorithm to choose the best path locally. Still, it gives dif-
ferent results from the one obtained by applying Dijkstra
globally (from initial departure to the final destination).

In Fig. 12, we conduct a Monte Carlo simulation and
plot the Pareto curve investigating the impact of the safety
coefficient α defined in (1), while analyzing the effect of the
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FIGURE 10. Two examples showing the different paths recommended to the user for different values of α.

FIGURE 11. Street network after assigning to each road a computer vision weight.

social distancing factor ρ (introduced in Section IV-C) on
the selected path. Fig. 12 plots the average travel distance
achieved over 100 scenarios versus different values of α
for two choices of ρ (the social distancing outer offset).
A higher value of ρ indicates an increasing preventive nav-
igation strategy leading to trajectories a little bit far away
from the CLOR communities. The figure shows that the travel
distance increases if α increases, moving from 1.6 km to
over 2.6 km, while the cumulative safety score is almost
linearly decreasing. A compromise between safety and speed
can be achieved for α around 0.44. By increasing the outer
offset ρ, a more strict social distancing is applied, and hence,
the traveled distance increases even for the exact value of α.

For instance, for α = 0.44, the distance changes from 1.9 km
to 2.3 km, slightly improving the safety score.

E. MULTI-USER NAVIGATION
This section investigates and compares the performance of
the two proposed multi-user navigation algorithms, PINA
and SINA, in the harbor area of 1 × 1 km2 area. This new
map assumes that six workers navigate from different starting
points to the same destination. The trajectories of all workers
are shown in Fig. 13 for the PINA and SINA algorithms,
respectively. The proposed approach avoids users’ simultane-
ous presence at the same intersection or any situation where
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FIGURE 12. A trade-off between the safety factor and destination amount
for the proposed framework.

the inter-user distance is less than two meters (e.g., small
roundabouts).

The PINA results shown in Fig. 13(a) indicate that the
framework changes the path of the user at each conflicting
intersection and minimizes the risk by avoiding high-risk
areas deduced from the CLOR communities and keeping a
safe distance from socially connected users identified from
the SFOR communities. Note that the workers’ priority for
the PINA is ordered according to their alphabetical indices.
In other words, ID A has the highest priority and ID E has
the lowest one. On the other hand, in Fig. 13(b), we plot the
trajectories of the users obtained with the SINA algorithm.
We also highlight the four conflicting intersections where the
FIFO principle is applied between users using the warning
sign symbols. With the SINA navigation, some workers will

TABLE 4. Comparison between the PINA and SINA algorithms: Navigation
time in seconds and safety score.

need to wait to allow other passes to the following road
segments.

To further investigate the SINA-based navigation,
we present, in Fig. 14, the cumulative navigation time of each
user. The y-axis denotes different users’ IDs, while the x-axis
measures the duration to reach the destination in Seconds and
the time spent to cross each road segment. For each user,
the rhombus symbolizes the beginning and end of a crossed
road segment or the beginning and end of waiting events. The
length of the lines between the rhombus corresponds to the
navigation time spent per road segment or the waiting time.
The alphabetic letters above each line, e.g., A1, A2, B1, B2,
specify the different road segments illustrated in Fig. 13(b).
Additionally, the letter W-i denotes awaiting event due to
conflict with user ID X where X ∈ {A, . . . ,F}. Fig. 14 shows
that some users reach their destination with no waiting time
(IDB, IDD, and IDE). Those users are prioritized users using
the FIFO principle because they reached the intersections
earlier. However, other users have waiting times, and the
algorithm imposes this to avoid conflicts and enforce social
distancing.

Table 4 compares the risk score and the navigation time
in seconds of both algorithms for each user. We can notice

FIGURE 13. Navigation paths for six users A, B, C, D, E, and F using the multi-user navigation algorithm.
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FIGURE 14. Time schedule for six users using the SINA algorithm. The length of each segment (connecting two rhombuses) indicates the time
needed to navigate or wait. The labels on each line (e.g., E1) indicate the road segments crossed by a user. W-X indicates the waiting action to yield
to the user X.

that PINA outperforms SINA in terms of navigation time
due to the absence of the waiting process (e.g., users A, C,
and F reach their destinations faster with PINA than with
SINA, while the other users witness the same navigation
time). However, SINA outperforms PINA in terms of risk
score fpr the same safety coefficient α. Indeed, the waiting
process in SINA is helpful if the users aim to navigate 100%
safely. However, PINA is a suitable alternative if the users
prefer to go quicker and avoid the waiting process. Finally,
the user’s decision is based on the trade-off between speed
and safety.

VII. CONCLUSION
Ubiquitous IoT networks can provide real-time solutions to
combat pandemic spread, such as COVID-19. In this paper,
we have proposed an end-to-end smart navigation framework
that helps enforce the practice of social distancing to combat
the spread of viral viruses. The framework suggests a trajec-
tory for pedestrians to reach their destination while avoiding
areas with a high risk of exposure to the virus. Starting from
an offline map and an IoT database, the smart navigation
framework utilizes IoT devices’ features, graph theory, and
artificial intelligence techniques to determine risky areas, i.e.,
high-density areas, zones where social distancing is not prac-
ticed, or high-level of contamination to help people protect
themselves in public areas or working zones. The framework
operates in a real-timemanner based on the user’s needswhile
considering the network dynamics, i.e., mobility of devices
and pedestrians. Accordingly, with themulti-agent navigation
option, the proposed framework is accommodated for vari-
ous practical use cases, including synchronizing pedestrians’
navigation in private areas such as campuses and industrial
workplaces. We have validated our results on real maps using
a real-world IoT dataset. We have successfully generated safe

trajectories given the IoT collected data while reaching a
trade-off between safety and Speed.

In future work, we propose to investigate the scalability
of the framework to incorporate larger datasets and integrate
other IoT types of data and social relations to introduce a
better trust management system and ensure an additional
level of privacy, which remains one of the main challenging
paradigms in these frameworks. We will also focus on devel-
oping a web-based dashboard and a mobile application that
allows the effective use of real-world data and the direct appli-
cation of the proposed framework in practice. The web-based
dashboard can give city planners and authorities high-level
insights about the precaution measures to adopt in the inves-
tigated areas given the real-time IoT data. At the same time,
the mobile application can operate as a personal navigation
assistant allowing its users to practice social distancing.
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