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ABSTRACT The traditional active contour models are sensitive to the speckle noise in the synthetic
aperture radar (SAR) images. In this paper, the Markov random field (MRF) theory is incorporated into
the fuzzy active contour model to detect the changes of multitemporal SAR images. In the proposed method,
neighboring information is considered to modify the pointwise prior probability for exploiting the mutual
and spatial information. In addition, we incorporate MRF into the fuzzy active contour model and get the
resulting MRF-based energy function. Finally, we drive the associated first variation of the energy function
to compute the fuzzy membership. Due to the introduction of MRF, the proposed MRF-based fuzzy active
contour model is robust to the speckle noise in the SAR images and can achieve accurate change detection
results. Experiments on four SAR image datasets demonstrate that the proposed MRF-based fuzzy active
contour model is able to accurately segment the difference image and has better performance in comparison
with other change detection techniques.

INDEX TERMS Fuzzy active contour model, Markov random field, change detection, synthetic aperture
radar.

I. INTRODUCTION
Multitemporal change detection (MTCD) in SAR images
captured at different dates over the same geographical
location is a significant application in image processing
field [1]–[3]. In the past few years, MTCD has attracted
widespread interest due to lots of real-world applications
in diverse academic disciplines, such as environmental
monitoring, damage assessment, agricultural surveys and
others [4]–[6]. The goal of MTCD is to generate an accurate
change map which represents the changed and unchanged
regions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenming Cao.

In general, a popular way of performing unsupervised
MTCD in SAR images consists of two stages [7], [8].
In the first place, a logarithmic or mean ratio operator is
used to compare two co-registered remote sensing images
acquired at different dates over the same area to generate a
so-called ‘‘difference image’’ (DI) [9]. Secondly, a certain
method is applied to segment the DI and generate a final
change map which is a binary image representing the
changed and unchanged regions. It can be clearly observed
from above that the change detection task here can be
formulated as an image segmentation issue. There are lots
of methods which have been widely employed in image
segmentation task, for instance, thresholding, clustering,
edge detection, region extraction [10]–[14]. Many methods
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based on these strategies have been proposed for MTCD
including Kittler and Illingworth thresholding algorithm
(K&I) [11], fuzzy c-means algorithm (FCM) [13], [15],
graph-cut algorithm [16] and others [17]–[19]. Among these
methods, active contour models (ACMs) perform better with
higher accuracy of segmentation [20]–[24] and allow to
be easily formulated by minimizing a predefined energy
function that incorporates various information of the image.

In light of the discrepancy presented in the ways of
forces impelling the evolution, ACMs mainly conclude
two categories, edge-based and region-based [25]–[30].
Caselles et al. proposed the geodesic ACM [31], which is
one of the most widely applied and classical ACM using
edge-based information through the level set method. For
boundary detection, a special and novel instance of the active
contours or energy-snakes approach is shown in this model,
which guides to generate a geodesic curve derived from the
image content in a fixed Riemannian space. However, these
edge-based ACMs could not find the correct boundaries of
the object when the images are filled with noise. For MTCD
in SAR images, as the edges of object regions in a difference
image are usually blurred, it is difficult for the edge-based
ACMs to capture the edges accurately.

To avoid suffering the disadvantage of the edge-based
ACMs, some region-based ACMs guiding the contour to
the object boundary by making use of the global intensity
information of the image have been proposed. Region-based
ACMs for segmentation are proposed and the primary idea
is to evolve the curve to the object boundary with the
global statistical information of the image, such that they can
overcome the shortcoming of the edge-based ACMs. In these
models which are based on the Mumford-Shah segmentation
model [32], images are partitioned into several smooth
regions with short boundaries in piece-wise. For example,
Chan and Vese (CV) has proposed an outstanding model
which is known as active contour without edges [33]. This
region-based ACM, which is the classical and widely used,
can detect contour without gradient information. Benifit-
ing from the approach, the optimization becomes easier
and can cope with the topology changes of segmentation
naturally. In order to assure the accuracy of segmentation
and the stability of evolution in CV model, the level set
function (LSF) is necessary to be maintained in a suitable
condition. It means that the LSF cannot be too sharp or too
flat in a neighborhood around the zero level set. Usually,
the procedure re-initialization [34] is periodically applied to
prevent the LSF from typically developing irregularities and
reshape the degraded LSF as a signed distance function (SDF)
in the course of evolution. But the introduction of the
re-initialization not only results in the conundrum of when
and how to launch the procedure [35] but gives rise to a large
amount of computation and non-negligible numerical errors.

Moreover, statistical approaches attract researchers’ atten-
tion for ACMs based segmentation. Zhu and Yuille pro-
posed region competition model (RC) [36] based on Bayes
and Minimum Description Length (MDL) criterion. Then

Cremers et al. reviewed the statistical active contour models
(SAC) [37] for level set segmentation. In order to reject
local minima, fuzzy systems have been incorporated into the
traditional ACMs [38]–[41]. To make the model more robust,
Krinidis and Chatzis has been inspired by the FCM algorithm
and proposed the fuzzy energy-based active contour model
(FEBAC) [40], in which the object-oriented membership of
each pixel in the image is defined with fuzzy logic. It has
been demonstrated that the resulting fuzzy energy is capable
of keeping away from local minima, which is a characteristic
of fuzzy ACMs [42]–[45].

With the view of relieving the effects of speckle noise
in the task of MTCD [46], neighboring information is
considered in most of change detection algorithms [13],
[47]. In this paper, we take Markov Random Field (MRF)
[48]–[51] into consideration to improve the region-based
active contour models. MRF models have been widely
employed in varieties of tasks in image processing field, such
as semantic segmentation, image restoration, edge detection
and others [52]–[54], because those models introduce the
mutual influences among the pixels in the image. Chatzis
and Varvarigou proposed a KL divergence based fuzzy
objective, which estimates the MRF prior [48] with a
mean-field-like approximation. To modify the membership
of each pixel, an additional term was added in the MRF
energy function [55]. The resulting MRF-based fuzzy
c-means algorithm (FCMA) was used to detect the changes
of multitemporal SAR images.

In this paper, we propose an MRF-based fuzzy active
contour (MRFFAC) model for change detection of SAR
images. First of all, we compare several energy functions
of region-based ACMs with some clustering techniques.
Then, a novel fuzzy ACM based on the MRF theory is
proposed, which is applied to detect the changed regions
of SAR image time-series. In the proposed approach, the
pointwise prior probability is modified to employ mutual and
spatial information. Then the MRF-based energy function is
proposed and its first variation of it is derived to formulate
the updating formula.

The contribution of this paper includes the following
three aspects: (1) A modified pointwise prior probability
is proposed to consider the mutual and spatial information,
which has the ability to measure the margin locating between
the changed class and unchanged class accurately. (2) The
MRF theory is successfully incorporated into the fuzzy ACM
and the associated updating formula is derived. The resulting
model is less sensitive to the speckle noise existing in the
SAR images and achieves superior performance for MTCD.
(3) We substantiate the superiority of MRFFAC on the four
SAR image change detection datasets. The organization of
the rest of this paper is as follows: a brief comparison between
several ACMs and unsupervised clustering techniques is
provided in Section 2. Secondly, Section 3 introduces the
proposed approach in details. Then, Section 4 describes the
experimental study. Finally, concluding remarks are given in
Section 5.
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II. BACKGROUND
The energy functions of region-based ACMs are very similar
to some traditional clustering algorithms, for example,
k-means algorithm, FCMA and so on. The comparisons
between ACMs and clustering algorithms will be described
in this section and these algorithms are also used as the
competing methods in the experiments.

A. k-MEANS ALGORITHM AND CV MODEL
Among the hard clustering approaches, the k-means algo-
rithm has been mostly applied to image segmentation. Its
energy function is described as:

E =
N∑
i=1

c∑
k=1

‖xi − vk‖2 (1)

where N denotes the total number of pixels in the image I , c
represents the number of clusters with a range from 2 to N , xi
is the i-th pixel in the image I , ‖·‖ is the Euclidean norm and
vk stands for the cluster centers or prototypes of the clusters.

In CV model, image segmentation can be considered as
seeking out an optimal contourC through the energy function
written as follows:

ECV (C) =
∫
inside(C)

|I (u, v)− c1|2dudv

+

∫
outside(C)

|I (u, v)− c2|2dudv (2)

where c1 and c2 are both constants which depend on C and
denotes the averages of the image regions respectively inside
and outside of the curve C .

Obviously, for k = 2, the energy function of k-means
algorithm (Eq. (1)) is very similar to CV model (Eq. (2)).
In order to minimize the energy function above (Eq. (2)),
the level set method is considered to be a suitable solution.
In detail, with the help of the zero level set of a Lipschitz
functionφ : �→ R, the curveC can be indicated in a definite
form, such that

ccinside(C) = {(u, v) ∈ � : φ(u, v) > 0}
outside(C) = {(u, v) ∈ � : φ(u, v) < 0}
C = {(u, v) ∈ � : φ(u, v) = 0}

(3)

Then the energy function ECV (C) described in the above
can be written as:

ECV (φ) =
∫
�

H (φ(u, v))|I (u, v)− c1|2dudv

+

∫
�

(1− H (φ(u, v)))|I (u, v)− c2|2dudv (4)

where H (·) is Heaviside function.

B. FUZZY C-MEANS ALGORITHM AND FEBAC MODEL
As an iterative clustering method, the FCMA minimizes the
weighted sum of squared error within group, and its objective

function Em is described as follows:

Em =
N∑
i=1

c∑
k=1

[
ζmki ‖xi − vk‖

2
]

(5)

where ζki represents the degree of membership that the pixel
xi of the image belongs to the k-th cluster, m is a weighting
exponent, ranging from 1 to∞.

Then, the objective function Em shown in Eq. (5) can be
minimized by updating the cluster center vk and degree of
the membership ζki orderly as follows:

vk =

N∑
i=1

umkixi

N∑
i=1

umki

(6)

ζki =
1

c∑
j=1

(
‖xi−vk‖2

‖xi−vj‖2

) 1
m−1

(7)

Algorithm 1 Algorithm of FEBAC.
1: Input: The image I .
2: Ouput: The segmentation result.
3: Initialization: Initialize a partition for the image.
4: Set the threshold for the degree of membership ζ at 0.5.
5: while not converged do
6: Compute v1 and v2 by
7:

v1 =

∫
�
[ζ (u, v)]mI (u, v)dudv∫
�
[ζ (u, v)]mdudv

(8)

8:

v2 =

∫
�
[1− ζ (u, v)]mI (x, y)dudv∫
�
[1− ζ (u, v)]mdudv

(9)

9: Calculate the new degree of membership by
10:

ζki(u, v) =
1

1+
(
λ1(I (u,v)−v1)2

λ2(I (u,v)−v2)2

) 1
m−1

(10)

11: Compute 4F , which represents the difference of the
energy obtained between the current and the last
iterations.

12: end while
13: Return the segmentation result.

The FEBAC model defines a pseudo level set, which can
be formulated similarly to Eq. (3) as follows:

ccinside(C) = {(u, v) ∈ � : ζ (u, v) > 0.5}
outside(C) = {(u, v) ∈ � : ζ (u, v) < 0.5}
C = {(u, v) ∈ � : ζ (u, v) = 0 }

(11)
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Inspired by Eq. (4), the FEBACmodel adds fuzzy logic into
CV model by replacing H (φ) with ζ . The energy function of
FEBAC is performed as follows:

E(u) =
∫
�

ζ (u, v)m|I (u, v)− c1|2dudv

+

∫
�

(1− ζ (u, v))m|I (u, v)− c2|2dudv (12)

The pseudo code of FEBAC is shown in Algorithm 1.
In the FEBAC model, a balanced and novel technique,
which has a unique ability to refuse the weak local minima
through figuring out the fuzzy energy alterations directly,
is provided. However, as shown in Algorithm 1, it updates
the membership ζ and the center c by Eq. (7) and Eq. (6),
which is very similar to the framework of FCM.

III. METHODOLOGY
As mentioned above, the generation and the analysis
of DI compose the main process of change detection.
Considering two SAR images having been coregistered
IA = {IA(u, v), 1 < u < H , 1 < v < W } and IB =

{IB(u, v), 1 < u < H , 1 < v < W }, either of which is of
size H × W , both are captured by a SAR sensor
respectively at t1 and t2. Then, DI is generated through
applying the log-ratio operator and denoted as ILR =

{ILR(u, v), 1 < u < H , 1 < v < W }. The next task is to ana-
lyze the DI. Motivated by the above descriptions, we design a
novel fuzzy ACM based on Markov Random Field to reduce
the effect of the speckle noise. First, the novel energy function
of MRF is introduced. Next, In this Section, we’ll detailedly
discribe the proposed algorithm,which is termed asMRFFAC
for short.

A. MODIFICATION ON THE ENERGY FUNCTION
OF THE MRF
For MTCD in SAR images, the identification of changed
regions is implemented by segmenting DI into the changed
class and unchanged class. We use the membership matrix
{φk |k = {c+, c−}} to represent the degree of the membership
of the image I in the k class. To avoid confusion, we define
the membership φ as:{

φc+ = φ

φc− = 1− φ
(13)

where u is the unchanged class and c is the changed class.
On the basis of the values of the membership matrix {φ}

and hard division with the threshold 0.5, we use u and c to
mark unchanged and changed pixels, respectively. Then we
obtain two sets {8k |k = {c+, c−}}:

{8k |k = {c+, c−}} =

{{
8c+

}
= {φ|φ ≥ 0.5}{

8c−
}
= {1− φ|φ < 0.5}

(14)

As described in the above, it’s necessary to find a robust
energy function that takes full advantage of the relationship
among neighbors. In an effort to propose an adequate energy

function, we design a convenient and the simplest approach,
getting themean of the degree of the membership of the entire
neighbors, through which the pointwise prior probability is of
high accuracy. And the energy function can be described as:

Eki = − ln (Pki) , k = {c+, c−} (15)

where

Pki = mean
j∈N ,j6=i

(
φkij|φkij ∈ {8k}

)
(16)

i is the index of the central pixel, and N is the neighborhood
system of the i-th pixel.

It can be derived from Eq. (16) that only the membership
of pixels which belongs to the same category as that of the
central one is utilized. The error engendered by the other
pixels will be reduced through adding the information gained
from classification. Whereas, two main drawbacks still exist.
First, the margin between the two classes is reduced by
utilizing the mean of the membership belonging to the same
class. Second, although using the mean of the membership
belonging to the same class, we have not considered the
membership belonging to the other class. In short, this
method is still sensitive to speckle noise because of the
narrow margin between the two classes and the absence of
the information of the other class.

In order to overcome such defects, we use mutual
and spatial information to represent the pointwise prior
probability. The degree of attenuation of the neighbors is
measured with the Euclidean distance from the central pixel
of the class. The summation of the memberships in the
neighborhood system with spatial distance can be calculated
by

ski =
∑

j∈N ,j6=i

1
dij + 1

(
φkij|φkij ∈ {8k}

)
(17)

where dij is the distance of the ith central pixel and its jth
neighborhood pixel.

So the modified pointwise prior probability can be
considered as:

Pki =
Dki −min(Dk)

max(Dk)−min(Dk)
(18)

where Dk =
{
Dki|Dki = ski − s({c+,c−}−k)i

}
, min(Dk) and

max(Dk) denote respectively the minimal and the maximal
value of the matrix Dk in the k-th class.
As an example, Fig. 1 shows an example to illustrate the

proposed strategy. As shown in Eq. (17) and Eq. (18), the
memberships of the pixels belonging to the two classes are
utilized. As a consequence of adding the mutual and spatial
information into the energy function, the margin between the
two classes is assigned by an appropriate way.

B. MRF-BASED FUZZY ACTIVE CONTOUR MODEL
For MTCD in SAR image series, the DI is partitioned into
changed region and unchanged region by a fuzzy ACM,
and then changes are identified. After the evolving curve
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FIGURE 1. Membership values and damping extent both displayed in
3× 3 window. (a) Membership Values (φ). (b) The degree of attenuation
of the neighboring pixels. If the central pixel A is labeled by U , and then
DUA can be calculated by DUA =

(
0.414U1+ 0.5U2+ 0.414U3+ 0.5U4

)
−(

0.414(1− C1)+ 0.5(1− C2)+ 0.414(1− C3)+ 0.5(1− C4)
)
.

C defined in the image domain �, a pseudo level set is
formulated through ultilizing the membership values φ and
the hard division mentioned. We define the pseudo level set
as follows: 

inside(C) = {z ∈ I : φ > 0.5}

outside(C) = {z ∈ I : φ < 0.5}

C = {z ∈ I : φ = 0.5}

(19)

The distribution characteristic of the log-ratio SAR image
is close to a normal distribution, and it has been explained
in [11] and [46]. Considering the intensities of each region
obeying a normal distribution, the conditional probability
{pki} is given by:

pki(zi|µk , σ 2
k ) =

1√
2πσ 2

k

exp

(
−
(zi − µk)2

2σ 2
k

)
(20)

where k = {c+, c−}.
The optimal estimate for the mean µk can be obtained by:

µc+ =

N∑
i=1
φizi

N∑
i=1
φi

µc− =

N∑
i=1

(1−φi)zi

N∑
i=1

(1−φi)

(21)

and the variance σk can be computed by:

σ 2
c+ =

N∑
i=1
φi(zi−µc+ )

2

N∑
i=1
φi

σ 2
c− =

N∑
i=1

(1−φi)(zi−µc− )
2

N∑
i=1

(1−φi)

(22)

Then generate the distance matrix {dk}

dk = −ln
[
pki(zi|µk , σ 2

k )
]

(23)

Finally, we get the following energy function:

E(φ) =
∫
�

exp
(
dc+

)
φ −

∫
�

exp
(
dc−

)
(1− φ) (24)

And it is minimized through alternating a gradient descent
method for the embedding functionφ. The first variation (also
called Gateaux derivative) of the function E is written as:

∂φ

∂t
= −

∂E
∂φ
= − exp

(
dc+

)
φ − exp

(
dc−

)
(1− φ) (25)

C. MRFFAC FOR CHANGE DETECTION
It is note that the relationship between intensity I of the
SAR image and the underlying backscattering coefficient X
is established through a multiplicative model:

I = RX (26)

where R denotes the normalized random variable of the
fading speckle noise. The difference image is acquired by
employing a ratio operator to the two SAR images pixel-by-
pixel. Then, the log-ratio difference image can be generated
by the equation as following:

ILR =

∣∣∣∣log IBIA
∣∣∣∣ = ∣∣∣∣log RBRA + log

XB
XA

∣∣∣∣ (27)

where IA and IB are the two SAR images, respectively.
As shown in Eq. (27), the originalmultiplicative speckle noise
is ingeniously converted to an additive one.

Algorithm 2 Algorithm of MRFFAC for MTCD in SAR
Images.
1: Input: The two image IA and IB.
2: Output: A binary change map.
3: Generate DI:
4: Through employing the log-ratio operator, generate the

DI by Eq. (27).
5: Initialization: The membership matrix

{
φ1i

}
is initial-

ized by using the original FCM algorithm and normalize
the difference image to [0,1].

6: Set r=1.
7: while not converged do
8: Establish the energy matrix Erki.
9: Acquire the pointwise prior probability matrix π rki by

Eq. (28).
10: Compute the fuzzy membership by Eq. (29).
11: Normalize φ by Eq. (30).
12: r = r + 1.
13: end while
14: Return the binary change map.

The proposed method shown in Algorithm 2 is composed
of the following procedures. In the first place of the iteration,
the membership matrix

{
φ1i

}
is initialized with the FCM

algorithm and the image I is normalized to [0,1]. In the
r th iteration, the energy matrix Erki is established. Ultilizing
Gibbs expression, we calculate the pixelwise prior probability
of the MRF, then acquire the pixelwise prior probability
matrix π rki in the r-th iteration:

π rki =
exp (−Erki)

exp (−Erc+i)+ exp (−Erc−i)
(28)
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FIGURE 2. Four datasets used in the experiments. The first column (a, e, i and m) and second column (b, f, j and n) exhibit the SAR images acquired at
different dates. The ground truth maps are shown in the third column (c, g, k and o). The fourth column (d, h, l and p) gives the description of these
datasets.

In the r-th iteration, we compute the fuzzy membership by
Eq. (29)

φr+1 = φr +1t{− exp(−dc+)φ
r

− exp(−dc− )(1− φ)
r
} (29)

where φr = πc+ , (1− φ)
r
= πc− .

Then we normalize φ by Eq. (30):

φ =


0, if φ ≤ 0
φ, if 0 < φ < 1
1, if φ ≥ 1

(30)

Finally, checking the stability of the solution, if the stop
condition is satisfied, we put an end to the algorithm and
output a change map.

IV. EXPERIMENTAL STUDIES
For the purpose of validating the effectiveness of the approach
proposed above, experiments for CD on four SAR image
datasets will be performed in this section. We use ratio
method to generate difference images. Finally, the DIs are
partitioned into changed class and unchanged class and the
region where changes are identified.

A. DATASETS AND QUANTITATIVE MEASURES
The first dataset includes two SAR images
(Fig. 2(a) and (b)), either of which is of size 290 × 350
and acquired by RADARSAT SAR sensor over Ottawa.
The second one is also composed of two SAR images
(Fig. 2(e) and (f), both with the size of 301×301), captured by
the European Remote Sensing 2 satellite SAR sensor over a
suburb of Bern, Switzerland, and the dates are respectively
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FIGURE 3. Illustration of the missed alarms, false alarms and Kappa
statistic: (a) is the change map obtained by a certain algorithm,
(b) represents the reference map, and (c) is the error map.

April and May 1999. The last two datasets are derived
from two SAR images, with the size of 7666 × 7692,
acquired by Radarsat-2 sensor over the district of Yellow
River Estuary, China, respectively in June 2008 and June
2009. On account of the unduly huge size of the two images,
the detail information is difficult to be shown in one page.
So two repressive areas, which are respectively of size
450 × 280 pixels ((Fig. 2(i) and (j))) and 306 × 291 pixels
((Fig. 2(m) and (n)), are selected to construct two datasets.
The quantitative analysis of the experimental results

involves four metrics. Fig. 3 shows the illustration of the
missed alarms, false alarms and Kappa statistic. Missed
alarms (MA) is denoted as the rectangle filled with red in
Fig. 3, and it means the number of unchanged pixels that miss
being classified when compared to the ground truth. False
alarms (FA) is denoted as the circle filled with green in Fig. 3,
and it means that the number of unchanged pixels which are
in the reference map but classified as the changed class in the
change map. Kappa statistic, as a measure of accuracy, takes
both commission errors and omission errors into account.
And the higher Kappa means the better result of CD. For
accuracy assessment, total error (TE) is considered in the
experiments. TE represents the total number of classification
errors which are caused by either missed alarms or false
alarms. Namely, it is the total number of the occurrences of
missed alarms and false alarms.

B. EXPERIMENTAL RESULTS
Aiming at verifying the performance of the change CD
method designed in this paper, we considered four real
multi-temporal SAR datasets and made a comparison with
the result acquired through the proposed approach with those
results of the k-means algorithm, the FCM algorithm, the
fuzzy local information c-means algorithm (FLICM) [47],
the improved Chan-Vese algorithm (ICV) [56], the fuzzy
energy-based contour model (FEBAC) [40], and expectation-
maximization-based level set method (EMLS) [22]. The
k-means algorithm, the FCM algorithm, the CV model,
and the FEBAC model have been described in Section II.
Comparing with the proposed method, which has been
employed to SAR images CD in [13], the progressive
FLICM [47] is selected here. In the difference image,

TABLE 1. Comparison of CD results about the Ottawa dataset obtained
through the seven algorithms.

the EMLS method respectively estimates the mean values
of pixels changed and unchanged through expectation-
maximization, and then improve the accuracy by adding two
new energy terms into the level set. In the experiments,
we first exhibit the binary change maps acquired by different
CDmethods. Furthermore, the miss alarms are marked by red
and the false alarms are marked by green. Therefore a color
image is associated with the binary map in the experiments.
Finally, we report the change detection results with metrics in
the tables.

1) RESULT ON THE OTTAWA DATASET
In this experiment, the dataset is composed of two SAR
images (Fig. 2(a) and (b)), captured over the city of Ottawa.
Fig. 4 shows the experimental results acquired by the seven
MTCD methods. It is obviously seen that the change maps
obtained by FEBAC contain lots of noise. Since lots of red
pixels exist in Fig. 4(l), the EMLS method missed detecting
many changed regions. It can be found that the change
maps obtained by FCM, FLICM, ICV, and the proposed
MRFFAC are close to the reference map shown in Fig. 4(o).
Furthermore, although the proposed MRFFAC model is able
to obtain satisfactory results, some changed regions are not
detected in the upper left corner of Fig. 4(m) and (n).
The CD results about the Ottawa dataset are reported in

Table 1. The total errors of FEBAC are larger than 19,000
since many regions unchanged are detected as the changed
ones. It is demonstrated that the FEBAC mode is sensitive to
noise to deal with the Ottawa dataset. As described in Table 1,
the total errors of the MRFFAC are a little less than that of
FLICM. The value of Kappa of the MRFFAC is larger than
the FLICM algorithm. In general, the effectiveness of the
proposed algorithm has been verified.

2) RESULT ON THE BERN DATASET
The dataset in this part is a section of two SAR images over
Bern, both comprised of 301× 301 pixels. The change maps
acquired by the seven MTCD methods are shown in Fig. 5.
Obviously, many unchanged regions are identified as changed
ones, on account of noise which is strewn across change maps
obtained by the ICV and FEBACmodels. To some extent, the
change maps generated by other five approaches are similar
to the ground truthmap in Fig. 5(o). However, the background
of change map acquired by the MRFFAC is relatively clear.
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FIGURE 4. Results for the Ottawa dataset obtained by (a) and (b): k-means, (c) and (d): FCM, (e) and (f): FLICM, (g) and (h): ICV, (i) and (j): FEBAC,
(k) and (l): EMLS, (m) and (n): proposed MRFFAC, and (o): reference image.

TABLE 2. Comparison of CD results on the Bern dataset obtained through
the seven algorithms.

The CD results obtained by the seven MTCD method on
the Bern dataset are shown in Table 2. As described in Table 2,
the total errors of FEBAC and ICV are larger than 30,000 and
4,500, respectively. The total errors of the other five methods
are less than 1,000. Table 2 show that the proposed MRFFAC
obtains almost the same results as FLICM. The Kappa
yielded by FLICM and MRFFAC are equal to 0.8568 and
0.8716, respectively. The proposed MRFFAC outperforms
FLICM obviously. To sum up, the proposed MRFFAC is

applicable to the most situations, no matter the changed area
is scattered (the Ottawa dataset) or centralized (the Bern
dataset).

3) RESULT ON THE COASTLINE AREA OF THE YELLOW RIVER
DATASET
A section (450×280 pixels) of two SAR images, obtained by
scanning over the local area of Yellow River, are investigated
in this experiment. Fig. 6 displays the changes maps, which
were acquired by the seven MTCD algorithms. It can be
clearly found that most of the CD methods aren’t successful
detecting changed regions since the two considered SAR
images consist of too much speckle noise. As shown in
Fig. 6, change maps obtained by FLICM, EMLS and the
proposed MRFFAC have very few green pixels. However,
some changed regions miss being detected by the EMLS
method.

The CD results with four metrics on the Coastline area of
the Yellow River dataset are shown in Table 3. As stated in
Table 3, the total errors obtained by k-means, FCM, ICV, and
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FIGURE 5. Change detection results for the Bern dataset obtained by (a) and (b): k-means, (c) and (d): FCM, (e) and (f): FLICM, (g) and (h): ICV,
(i) and (j): FEBAC, (k) and (l): EMLS, (m) and (n): proposed MRFFAC, and (o): reference image.

FIGURE 6. Change detection results for the Coastline area of the Yellow River dataset obtained by (a) and (b): k-means, (c) and (d): FCM, (e) and (f):
FLICM, (g) and (h): ICV, (i) and (j): FEBAC, (k) and (l): EMLS, (m) and (n): proposed MRFFAC, and (o): reference image.

FEBAC are larger than 28,000. The FA value of EMLS is
2593, which is larger than those of FLICM and MRFFAC.
Table 3 shows that the proposedMRFFAC and FLICM obtain

almost the similar total errors. It can be easily found that
the proposed MRFFAC is better than the FLICM due to its
conspicuously high values of Kappa.
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FIGURE 7. Change detection results about the farmland area of the Yellow River dataset obtained by (a) and (b): k-means, (c) and (d): FCM, (e) and
(f): FLICM, (g) and (h): ICV, (i) and (j): FEBAC, (k) and (l): EMLS, (m) and (n): proposed MRFFAC, and (o): reference image.

TABLE 3. Comparison of CD results on the Coastline area of the yellow
river dataset obtained through the seven algorithms.

4) RESULT ON THE FARMLAND AREA OF THE YELLOW
RIVER DATASET
In this experiment, the dataset is composed of of two SAR
images (both with the size of 306× 291) over Yellow River.
Fig. 7 exhibits change maps obtained by the seven MTCD
methods. it can be visually concluded that the change maps
obtained by k-means, FCM, ICV, and FEBAC contain lots of
noise since these maps have lots of green pixels. As a result,
many unchanged areas are detected in mistake for changed
ones. However, the change maps obtained by FLICM and
ICV contains lots of red pixels, which denotes that some
changed areas are not detected by the two methods. It can be
obviously found that change maps acquired by the MRFFAC
are better than those of other algorithms.

The CD experiment results acquired through the seven
methods are reported in Table 4. As shown in Table 4, some

TABLE 4. Comparison of CD results about the farmland area of the
yellow river dataset obtained through the seven algorithms.

vital regions having already changed fail being detected for
FLICM and EMLS (showing up as a relatively higher MA).
It can be found that the MA value obtained by MRFFAC
is lower than that of FLICM although the FA value of the
FLICM algorithm is 73. It can be obviously seen that the
FLICM could obtain lower FA but the result with higher
MA. Therefore, the proposed MRFFAC has the lowest total
errors. In comparison with the results of other algorithms,
the superiority of the proposed MRFFAC algorithm is clearly
observed.

V. CONCLUSION
In consideration of the existence of speckle noise in SAR
images, we introduce the log-ration operator to transform the
multiplicative noise to the additive noise. For the purpose of
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dealing with the complicated noise, the MRF theory has been
incorporated into the fuzzy ACM for CD in multitemporal
SAR images. In this paper, the proposed MRFFAC model
measures the degree of attenuation of the neighbors with the
Euclidean distance from the neighbour pixels to the central
one. Then the neighboring information has been considered
in MRFFAC to modify the pixelwise prior probability. The
MRF-based energy function and the updating formula have
been proposed to formulate the evolution of ACM. In the
proposed approach, the initial membership matrix is acquired
by the FCM algorithm. Then we establish the energy matrix,
compute the pixelwise prior probability, and calculate the
fuzzy membership during iterations.

Four datasets have been used in the SAR image CD
experiments. The proposed approach has achieved the lowest
total errors among seven CD algorithms. In the future,
we hope to improve the proposed approach in performance
and computational effort, and apply it to detect the change
regions of remote sensing images acquired by different
sensors.
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