
Received 16 May 2022, accepted 18 July 2022, date of publication 21 July 2022, date of current version 27 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192858

Multihop Question Answering by Using
Sequential Path Expansion With Backtracking
IYAD ALAGHA
Faculty of Information Technology, Islamic University of Gaza, Gaza 00972, Palestine

e-mail: ialagha@iugaza.edu.ps

ABSTRACT Multi-hop question answering from knowledge graphs has gained a growing attention in the
past few years due to its vast applications inAI. Existing approaches in this regardmostly rely on exhaustively
traversing all paths in the graph until reaching a candidate answer entity, leading to high time complexity
and reasoning errors when training the model. Recently, a few works have tried to reduce the search space by
proposing sequential-decision techniques so that only the path that is likely to lead to the answer is traced.
However, the sequential decision on the relations is likely to accumulate errors due to the potential incorrect
matchingwith the question. Alternatively, this work proposes amethod that leverages sequencematching and
a backtracking algorithm to identify the correct path to the answer while minimizing the accumulated error.
The process starts from the question entity and grows the path iteratively by reasoning over the outgoing
relations. The aim is to find the relation with the highest similarity to the question and to transit through it
to the next entity. Meanwhile, a termination/backtracking check is performed at each iteration to validate
the path and act accordingly either by proceeding to the next entity, stopping the process, or backtracking
to correct a wrongly expanded path. The proposed method does not require setting a maximum number
of hops in advance and uses a compare-aggregate model with attention mechanism for effective sequence
matching. Experimental results show that our method significantly outperforms existing methods on three
benchmarking datasets.

INDEX TERMS Multi-hop question answering, knowledge graph, backtracking, deep learning.

I. INTRODUCTION
Open-domain question answering (QA) is the process of find-
ing answers to questions represented in natural languages.
This topic has recently sparked a significant progress due to
the exploitation of large-scale graph structured Knowledge
Bases (KBs) such as Freebase [1] and DBpedia [2].
A KB-QA system often takes a natural language question
as input, and refers to an underlying KB to find a relevant
answer. KB-QA systems have applications in several AI
domains, such as virtual assistants and chatbots.

A typical KB can be viewed as a knowledge graph (KG)
consisting of nodes and edges, where nodes denote domain
entities, and edges denote the relations between entities (see
Fig. 1). Facts in the KB are typically represented by triples

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

showing relations between pairs of entities. Given a natural
language question, a KB-QA system can answer the question
by searching the graph for the triple(s) that best match with
the input question. This process is generally based on the
following assumptions: First, it is assumed that the question
contains a word that maps to a specific graph entity, which
we call the question entity. Second, it is assumed that the
answer to the question exists in the KB as another entity. The
question and answer entities should be linked through one
or more paths. Answering a question can be seen as a graph
traversal that starts from the question entity and explores the
neighboring paths until an answer entity is reached.

KB-QA falls into two categories [3]: single-relation QA
and multi-relation QA. Single-relation QA focuses on simple
questions that can be answered by finding one fact triple
in the KB. For example, the question (‘‘Who directed ‘Texi
Driver’?’’) can be answered from the triple (‘‘Texti Dirver’’,

76842 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7516-4902

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

FIGURE 1. An excerpt of a knowledge graph.

‘‘directed_by’’,’’Martin Scorsese’’) from the graph in Fig. 1.
Single-relation QA has been widely explored in several
studies [4]–[7]. Multi-relation QA requires reasoning over
multiple triples to answer the question. For example, the
question (‘‘Who starred in films for the screenwriter of Taxi
Driver?’’) can be answered through a path of 3 hops, i.e.

(Texi Driver
written_by
−→ Paul Schrader

written_by
←− Rolling Thunder

starred_actors
−→ TommyLee Johns) whereas each arrow indicates a

hop. In general, multi-relation questions are harder to answer
because the answer entity lies away from the question entity,
leading to a larger search space. Note that although the edges
in Fig. 1 are directed, we assume that they can be traversed
in both directions, and that inverse relations exit but are not
shown for simplicity.

In recent years, a few works have proposed relation-
chain-based methods for multi-relation QA over knowledge
graphs [8]–[11]. These methods aim to extract a path from
the question entity to the answer entity by iteratively taking
steps forwards on the KB. They start from the question entity
and traverse all outgoing paths over a predefined number of
hops. Then, candidate answers are extracted and ranked based
on their similarity to the question. The main problem with
these methods is the large number of paths that need to be
explored, and that number grows exponentially with the path
length. This does not only increase the burden of searching
the graph and training the model, but also makes it difficult
for the model to rank the candidate answers because it has to
learn how to distinguish the correct answer from too many
wrong candidates [12].

To reduce the time complexity, some works have recently
proposed sequential-decision based methods that attempt to
reduce the search space by eliminating paths that most likely
will not lead to an answer [8], [12], [13]. The selection of a
particular path depends on the similarity of its constituents,
i.e., relations and entities with the question [13]. The process
starts from the question entity and explores its outbound

relations to find that path that best matches the question.
It then hops to the next entity through the selected relation.
This process is repeated, and the path grows iteratively until
a candidate answer is reached. Fig. 2 shows an example
that applies this process to the graph in Fig. 1 to answer
the question:’’Who starred films for the screenwriter of Taxi
Driver?’’. Faded parts in Fig. 2 denote pruned paths.

Despite the potential of sequential decision-based methods
for QA, we believe that the main problem lies in the
possibility of pruning away paths that may lead to a correct
answer. It can mistakenly make the decision to follow a
wrong path only because its starting components match the
question well, but the subsequent components do not. Take
the following question as an example: ‘‘The films that share
directors with the film ‘Taxi Driver’ were in which genres?’’.
The only correct path in Fig. 1 that answers this question is:

Taxi Driver
directed_by
−→ Martin Scorses

directed_by
←− The Aviator

has_genre
−→ Drama. However, a method may decide to take

the path: Taxi Driver
has_genre
−→ . . . instead because the word

‘‘genre’’ is included in the question. This problem is likely
to occur at the first hop when there are not enough features
to make effective reasoning. As the decision to keep or skip
a path is taken sequentially, the error is likely to accumulate
as the number of hops increase. Experimental results from
related works [8], [13], [14] have reported good performance
with simple questions that contain one and two relations
(1-hop and 2-hop questions), but the performance declines
with complex questions that comprise three or more relations.

In this work, we propose a method for multi-hop QA
that addresses the aforementioned limitations by focusing on
two aspects: 1) reducing the time complexity by optimizing
the search space and eliminating false candidate answers as
possible: Instead of using an exhaustive search on the KG,
our method attempts to predict a single path that leads to
a candidate answer and expands iteratively. 2) resolving the
problem of false judgement on relations at early stages. Our

VOLUME 10, 2022 76843

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

FIGURE 2. Sequential path expansion to answer the question: ‘‘who starred films for the screenwriter of Taxi Driver?’’ based on the KG in Fig 1.

main contribution is to propose an iterative path expansion
approach based on backtracking in the KG to revert a false
decision on relations. It tracks the changes in the quality of
the path iteratively until its similarity to the question starts to
decline. This indicates that the path may be falsely extended,
and thus an action is taken to backtrack and try another
route to seek an answer. In addition, our method proposes
a termination check to determine when to stop iterations
automatically.

The following section reviews related works and highlights
the differences with existing works where possible.

II. RELATED WORKS
Methods for KB-QA are generally classified into two types:
semantic parsing methods and embedding-based methods.
Semantic parting methods aim to map natural language
sentences to machine interpretable meaning representations
such as executable queries [15], [16] or logical forms
[17], [18]. The generated query can then be executed on
the KB to retrieve the answer. Recently, many of these
approaches have used neural networks to improve semantic
parsing [19]–[23]. Semantic parsing methods mainly rely
on hand-crafted rules or templates, and cannot effectively
handle complex queries that do not map to the predefined
logical forms. Embedding-based methods, under which this
work falls, attempt to convert the entities/relations of the KB
to low-dimensional vectors, so that the original structures
and relations in the KG are preserved in these learned
vectors [24], [25]. Subsequently, a given question can be
answered by taking the embedding vector of the question
as input to predict its corresponding entity/relation from the
embedding space of the KB.

With the progress of deep learning, the use of neural
networks to promote QA over knowledge graphs (QA-KG)
has received tremendous attention. Several works [26]–[30]
conducted the QA-KG task by first generating deep embed-
ded representations of questions and KG constituents, that
is, graph relations or entities. The KG constituents are
then ranked on the basis on their semantic similarities with
the embedding of the question. Finally, the top ranked
constituent is chosen as a correct answer. In general,
existing deep-learning based approaches for QA-KG differ
in three aspects: 1) the deep learning model, 2) the
method for extracting candidate answers from the graph,

and 3) the method for ranking candidate answers. With
respect to the deep learning model, a variety of models
have been used to generate embedded representations of
questions and candidate answers using convolutional neural
networks [3], [31], LSTM networks [8], [13], [32], GRU
networks [28], [33], [34], or transformers [35], [36]. Some
studies [37], [38] showed that attention-based models such
as BiLSTMwith attention and transformers outperform other
models and reduce training time.

When it comes to searching the KG for candidate answers,
there are two lines of work: The first line comprises exhaus-
tive search methods that systematically enumerate all paths to
retrieve all candidate answers, and then check whether each
candidate satisfies the question statement [3], [8], [39], [40].
However, processing through all relations is not practical
for large-scale graphs, as explained earlier. One way to
reduce the exhaustive searches is to limit the search space by
setting the maximum number of hops in advance. However,
this decision become unrealistic with complicated questions
whose answer entities lie beyond the predefined number of
hops. Das et al. [41] used case-based reasoning approach that
retrieves similar k-nearest neighbor queries from the training
set. Then, the subgraph neighborhoods containing entities
present in those queries are extracted and searched for the
answer entities. However, reasoning over multiple subgraphs
increases the complexity of the search process and the model
training. Niu et al. [42] proposed a model that incorporates
path information with KG embeddings for multi-relational
KBQA. The model uses a path representation mechanism to
evaluate the ambipolar correlation between a path embedding
and a multi-relational question embedding. However, pre-
training the KG embeddings and then training the KB-QA
model is computationally experience.

The other line of work includes methods that iteratively
grow candidate paths and skip those paths that are unlikely
to lead to correct answers. For example, Chen et al. [12]
proposed an approach that extracts relations connected to
the question entity and then predicts the most relevant
relation to transit to the next entity. This process is repeated
until a candidate answer is reached. They also proposed
a termination mechanism to avoid setting the maximum
number of hops. Similarly, Lan et al. [13] trained their model
to iteratively grow the path that is semantically most similar
to the question. They also proposed an approach to avoid

76844 VOLUME 10, 2022

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

revisiting ranked paths when measuring the similarity to
the question after each iteration. Shi et al. [43] proposed
a generic approach that can handle QA from background
knowledge represented in both graph and text forms. Their
approach infers the answer by transferring entity scores along
relation scores of multiple steps. He et al. [44] highlighted the
problem of spurious relation paths, which are paths that lead
to the correct answers but through incorrect relations. They
used two different models to tackle this issue: one to find
the correct answer, while the other tries to learn intermediate
supervision signals to improve the reasoning of the first
model.

Recently, reinforcement learning (RL) has shown a great
potential to model reasoning systems, and thus several works
formulated multi-hop KBQA as a RL task [45]–[48]. The
idea is to set up a policy network to teach agents how to
sequentially extend its inference path until it reaches a target
entity. However, RL-based methods do not often improve
performance because they lack effective supervision signals
at intermediate steps and ignore semantic features of KG
reasoning such as the semantic meaning of entities and
relations [44]. Some works [14], [48] tried to overcome this
limitation by exploiting embedding-based models to capture
semantic features and use them to estimate the reward for
target entities. Liao et al. [49] proposed a RL-based reasoner
with two components: a stop signal that forces the model to
stop after finding the answer and prevents it from hopping
further, and a worth-trying signal that uses experiences from
failed reasoning paths to amplify rewards.

A common problem of the aforementioned works has been
clarified in the Introduction, which is the accumulated error
in the process of progressive reasoning over relations. The
method proposed in this work is also classified as an iterative
path expansion method. It formulates the multi-relation QA
as a sequential decision problem where candidate relations
are ranked at each hop. It extends the former efforts by
proposing a mechanism to iteratively validate the path and
correct it if it has been wrongly extended by using a
backtracking algorithm. In addition, our method proposes a
termination check to determine when to stop iterations. This
eliminates the need to set the number of hops to be known in
advance, as in many works [3], [8], [29].

When candidate answers are selected, the next step is
to rank them, and the top ranked result is chosen as the
correct answer. In KB-QA, the ranking process is performed
either at the final stage after selecting all candidate answers,
or iteratively after each hop to select the next path to
follow. In both cases, ranking is carried out by matching the
question with candidate answers or paths. Several works on
multi-relation KB-QA [8], [40] transform the question and
the candidate answer to embedding vectors, and then the
similarity between the two vectors is calculated by using one
of the commonly-used similarity measures such as the dot
product, cosine and Euclidean distance. However, it has been
found that using a single vector to encode an entire sequence
is not sufficient to capture all important information from

the sequence [50]. Yu et al. [39] proposed a HR-BiLSTM
model to match the question with candidate answers at the
word level and token level. Xu et al. [51] used the slot filling
method to transform the questions into structured information
about the intents and used it to improve the accuracy of the
ranking. Bordes et al. [26] took advantage of the subgraphs
surrounding the candidate answers as features to include in
the ranking process. Dong et al. [31] used multi-column
convolutional neural networks to analyze additional aspects
such as the answer type, path and context information, and
used them to compute the score for the question-answer
pair. Alternatively, this work uses the compare-aggregate
model [52] with more effective comparison methods and
the attention mechanism. The compare-aggregate model
has been shown to generally outperform previous models
and can better capture semantic similarity between textual
sequences [52].

III. PROBLEM DEFINITION
Formally, a knowledge graph KG is represented as G =
(E,R), where E denotes the set of entities, and R denotes the
set of relations between entities. Both E and R are associated
with textual descriptions consisting of one or more words.
KG is denoted as a set of triples, where a triple (e, r, è) ∈
G represents a fact in real life such as (The Wolf Man,
has_genre, Horror).

A question entity eq ∈ E is a graph entity that corresponds
to themain topic or keyword in a question q. It is assumed that
the question entity is known in advanced and thus its detection
is out of the scope of this work. The entities in the question
can often be detected by using an entity linking tool such as
S-mart [53].

An answer entity ea ∈ E is a graph entity that answers
the question. eq is supposed to be linked with ea through a
path consisting of one or more hops. For example, given the
question and the graph shown in Fig. 2, the question entity
is ‘‘Taxi Driver’’. The answer entity that we aim to find is
‘‘Tommy Lee Johns’’, which is 3 hops away from eq. Note
that multiple paths may originate from eq, but the paths that
lead to ea are unknown in advance.
Give a question q in natural language, the goal is to

search the KG for an answer entity ea that is located away
from eq by one or more hops. For the multi-hop QA task,
we aim to train a model by providing it with a set of
(q, eq, ea) pairs. The model should learn how to efficiently
find the answer path pa that link eq with ea from a potential
large number of candidate paths. In this work, pa can be
represented as the sequence (eq, r1, e1; r2; e2; . . . ; ea), where
[;] denotes the concatenation operation. It starts with the
question entity eq, ends with the answer entity ea, and
contains all the intermediate relations and entities in between.
The combination of textual descriptions of the relations and
entities along the answer path should correspond to what is
expressed in the question.

Our method focuses on predicting the path that is likely to
lead to the answer entity. Meanwhile, it aims to optimize this

VOLUME 10, 2022 76845

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

task by 1) reducing the search space by eliminating irrelevant
paths, 2) resolving the errors that occur due to false reasoning
over relations, and 3) terminating the process automatically at
the right time without having to set the maximum number of
hops in advance.

IV. METHOD OVERVIEW
A KG-QA task can be seen as a graph traversal that starts
from the question entity et and scores all outgoing routes by
matching them to the question. Then the method transitions
to the next entity through the route with the highest similarity
score. The next iteration starts from the new entity, and
repeats the same process to decide the best route to the move
forward. Throughout iterations, we maintain the path that
starts from the question entity eq and extend it iteratively by
concatenating the most related relation-entity pair to its end.
That is, the path to the candidate answer is built incrementally
by a sequence of candidate extension steps.

After each iteration, the method performs a check to decide
whether to proceed to the next iteration, stop, or backtrack to
choose an alternative extension route: The method proceeds
as along as the path sequence becomes better aligned with
the question as it is expanded, and should stop when the
alignment maximizes and can no longer been improved.
In the latter case, themethod should terminate, and the answer
is the last entity of the path, i.e. ea = tail(p), where p is the
path to the answer entity. Otherwise, the method may find
out that a transition in the path has been falsely made due
to incorrect relation matching, and that it becomes no longer
possible to reach an answer through the current path. In this
case, the method should perform backtracking to consider
another route for path expansion.

Our method follows an iterative approach whereas three
steps are carried out in each iteration that are: 1) path
extraction, 2) path ranking and pruning, and 3) termina-
tion/backtracking check. These steps are explained in what
follows.

A. PATH EXTRACTION
To elaborate the path extraction step, we need first to define
the following terms that are visually depicted in Fig. 3:

The candidate path p: It is the set of entities and relations
along the path from the question entity eq to et , where et is
the entity at iteration t . Let us represent p as the sequence
(eq; r1; e1; r2; e2; . . . ; rt−1; et), where rt−1, et ∈ G. p = (eq)
is the path at the beginning of the process before making any
hop. p in our method grows incrementally, hop after hop, until
eventually formulating the answer path pa that has ea in its
tail.

The candidate extension relation set Rt : it is the set of all
outgoing relations of the current entity et . Rt is represented
as the set {r1, r2, . . . , rk}, where k is the number of relations
originating from et . At each iteration t , we aim to find the best
relation ri∈ Rt to extend p and move forward to next entity.
The path after iteration t becomes p = p ⊕

(
ri; è

)
, where ⊕

denotes the concatenation operator.

FIGURE 3. Symbols related to path extraction used in the proposed
method.

A candidate path set P t : At iteration t, candidate relations
in Rt should be scored and ranked based on their semantic
similarity to the question, and top-ranked relation is used for
path expansion while other relations are skipped. Sequence
matching can be used to match candidate relations with the
question. However, each relation often corresponds to a single
word that is inappropriate to compare with the sequence of
the whole question. Thus, each relation ri∈ Rt along with its
target entity are concatenated with a copy of p to create a
set of candidate paths at iteration t , formally represented as
the set Pt = {p1, p2, p3, . . . , pk}, where k = |Rt |. That is,
pi = p⊕

(
ri; è

)
. Note that every pi ∈ Pt shares the same prefix

that is p and only differs in the last relation-entity pair (ri; ei).
For example, assuming that ‘‘Taxi_Driver’’ in Fig. 1 is the
question entity eq, then the candidate path set in the first iter-
ation is P1={(‘‘Taxi_Driver’’;’’starred_actors’’;’’Robert_ De
_Niro’’), (‘‘Taxi_Driver’’;’’written_by’’;’’Paul_Schrader’’),
(‘‘Taxi Driver’’;’’directed_by’’;’’Martin_Scorsese’’)}

B. PATH RANKING AND PRUNING
In each iteration, the set Pt is constructed, and each pi ∈ Pt is
scored based on its semantic similarity to the question q. The
top-scored pi will become the candidate answer path p. The
matching process is handled by the Question-Path Matching
module (see Fig. 4) which consists of three layers: the encoder
layer, the alignment layer, and the comparison layer.

The encoder layer represents q and each p ∈ Pt as
d-dimensional matrices. First, each word in the question and
the candidate path is converted to embedding vectors by
using GloVe. Then, a BiLSTM model with average pooling
is used to create more composite embeddings for both q
and p. Let q̀ = (q̀1, q̀2, . . . , q̀i, . . . , q̀n) be the output of the
BiLSTM structure representing the question’s embedding,
where q̀i is the vector embedding of the i-th word in q. Let
p̀ = (ẁ1, ẁ2, . . . , ẁj, . . . , ẁm) be the output of the BiLSTM
structure for p, where ẁj is the vector embedding of the j-th
word in p.
The alignment layer takes q̀ and p̀ from the encoder

as input, and uses attentive BiLSTM structure to compute
an aligned representation of the path sequence as output.

76846 VOLUME 10, 2022

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

FIGURE 4. The sequential path expansion with backtracking method.

A question-to-answer attention mechanism is used to signify
which words in the path sequence have the closest similarity
to one of the query words and are hence critical for answering
the question. The attention weights on the path words are
calculated as follows:

uq̀i = tanh(Wq̀i + b) (1)

uẁj = tanh(Wẁj + b) (2)

αi,j =
exp(uTq̀iuẁj)∑n
j=1 exp(

T
q̀i
uẁj̀)

(3)

ai =
∑n

j=1
αi,j · ẁj (4)

where each q̀i ∈ q̀ and ẁj ∈ p̀ are fed into a layer with
tanh as its activation function to get uq̀i and uẁj respectively.
W and b are parameters to be learned. αi,j is the attention
weight that demonstrates how well the i-th word in the
question matches the j-th word in the candidate path. ai is
the attention-weighted sum that represents the part of the
path that best matches the j-th word in the question. The
expectation is that the words on the candidate path that are
more important with regard to the input question should have
larger weights.

The goal of the comparison layer is to match each q̀i,
which represents the i-th word in the question with ai, which

represents a weighted version of the candidate path. Let
F
(
q̀i, ai

)
be the comparison function that transforms q̀i and

ai into a matching vector ci that represents the comparison
result. F

(
q̀i, ai

)
uses the comparison functions proposed

by [54].

ci = F
(
q̀i, a

)
= ReLU (W

[
(q̀i − ai)� (q̀i − a)

q̀i � ai

]
+ b)

(5)

where � represents element-wise multiplication of two
vectors. This function uses both vector subtraction and
multiplication for sequence matching. Existing studies [52]
show that this function performs better than common
comparison functions such as the cosine and Euclidean
distance. The functionF (.) is a standard neural network layer
that consists of a linear transformation followed ReLU as
an activation function, where W and b are parameters to be
learned.

After we apply the comparison function to each pair of
q̀i and ai to obtain the sequence: (c1, c2, . . . , c|q|). Finally,
we aggregate this sequence of vectors by using BiLSTM,
followed by 1-max pooling to obtain a single vector:

c̄ = max _pool(BiLSTM (c1, c2, . . . , cn)) (6)

VOLUME 10, 2022 76847

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

where c̄t encodes the complete matching vector between each
path p ∈ Pt and the question q at iteration t .

Assume that there are k sibling relations originating from
the entity et as shown in Fig. 3. The set Pt will consist of k
candidate paths that differ only in the last relation-entity pair.
Let the sequence (c̄1, c̄2, . . . , c̄k) be the matching vectors of
paths in Pt , each calculated using Equation 6. The probability
for us to choose pi ∈ Pt to be the answer path is computed
using a SoftMax function:

Pr(pi) =
exp(c̄i)∑k

i=1 exp(barci)
(7)

Finally, Let ptopt be the path with highest probability at
iteration t . ptopt is retrieved using the following:

ptopt = argmax1≤i≤kPr(pi) (8)

C. TERMINATION AND BACKTRACKING
After selecting the top-scored path at iteration t , we need
to take one of three actions: either to proceed, terminate,
or backtrack. Intuitively, the proceed action means to transit
from et to the next entity through the top-scored path, and
repeat the process explained in the previous sections. The
terminate action means that the method should stop either
because it has reached a candidate answer when the current
path pmatches the question q well. Alternatively, the method
may find out that p cannot be completed to an answer possibly
due to incorrect matching in the preceding steps. This means
that none of the outgoing relations of the current entity et can
give rise to the matching score of p. In this case, p should be
corrected thorough backtracking, which entails dismissing et ,
and stepping back to et−1 to test the next top-ranked relation
of et−1. The termination/backtracking actions are explained
in what follows:

The method proceeds as long as the similarity between
the path p and the question q increases iteratively. This
indicates that p is becoming more similar to the question
as it is expanded. When the similarity score maximizes and
then starts to drop at iteration t , the method should stop or
backtrack.

To determine when the similarity between p and q
maximizes, the top matching score vector c̄t of p

top
t from

Equation 6 should be converted to a single value to ease our
termination checking. c̄t can be converted to a single value
representing the final matching score by using the following
equation:

st = σ (W T c̄t + b) (9)

where σ is a sigmoid function. W and b are parameters
to be learned. st is the matching score of the path p at
iteration t , where st ∈ [0, 1]. As the method progresses,
it maintains st and st−1, which are the last two matching
scores of the expanded path at the current and previous
iterations respectively. When st becomes lower than st−1, this
indicates one of two things: either the method has found the
best matching path and cannot find a better one, or the path is

incorrectly expanded from the previous iteration. The former
condition demands a stop action, while the latter demands
backtracking to try an alternative extension route.

To decide whether to stop or backtrack, we need to estimate
the minimum distance from the question entity et and the
answer entity ea. This distance can be roughly estimated by
counting the number of relations and entities in the question
as proposed by [55]. A part of speed tagging is performed
over the question text by using a POS tagger from HanLP.1

Each possible entity or relation will be labeled as NN or NNP.
Then the distance D between et and ea is estimated as the
following:

D =

2− hop count (NN + NNP) ≥ 2
3− hop count (NN + NNP) ≥ 4
2− hop/3− hop count (NN + NNP)= 3

(10)

Let δ (st , st−1,D) be the check function that takes the
matching scores of the path at iterations t, t − 1 respectively
and D to decide whether to proceed, terminate or backtrack.
δ (st , st−1,D) is defined as the following:

δ (st , st−1,D =)

×

proceed st > st−1
terminate (st < st−1 ∧ t ≥ D)

∨(∀ri ∈ Rt−1 : ri is visited)
backtrack st < st−1 ∧ t < D

(11)

The estimated length D is used as the following: D is
ignored as long as st > st−1. If st starts to decrease after
exceeding D, the method will terminate concluding that the
path respective to st−1 is the best-matching path. If st drops
before exceeding D hops, this means that the answer still
lies ahead but the current path may no longer lead to it.
The current path may have been expanded due to incorrect
reasoning. Thus, the method will dismiss the current entity et
and step back to the previous entity et−1 to try an alternative
sibling path. If all outgoing relations of et−1 are visited and no
result can result in an improved path score, then the method
will terminate with a conclusion that the path respective to
et−1 is the best-matching path as it can never obtain a path
with a better similarity score.
To illustrate in example how backtracking can improve

the performance, we refer to the question discussed in the
introduction, which is: ‘‘the films that share directors with the
film ‘Taxi Driver’ were in which genres?’’. The distance D
for this question is estimated as 3-hop based on Equation 10.
Assume that the model decides in the first iteration to take the
wrong path ‘‘Taxi Driver

has_genre
−→ . . .’’ instead of the correct

path ‘‘Taxi Driver
directed_by
−→ . . .’’, and moves to the entity

titled ‘‘Crime’’. From the second iteration, the method will
soon find out, based on the matching results, that no relation
can improve the score of the path as its context becomes less
like the question. In this case, the condition to backtrack is

1https://hanlp.hankcs.com/

76848 VOLUME 10, 2022

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

satisfied (refer to Equation 11), and the method should
dismiss the ‘‘Crime’’ entity and step back to the ‘‘Taxi
Driver’’ entity to test an alternative unvisited path.
Algorithm 1 shows our path expansion method along with
the termination/backtracking mechanism.

D. LOSS FUNCTION
We compute the cross-entropy loss as the following:

loss (z, y) = −
1
D

∑D

t=1
[yt ∗ log (st)+(1−yt) log(1− st)]

(12)

whereD is the estimated length of the path from Equation 10.
The gradient approach is adopted to minimize the cross-
entropy between the predicted path score st from Equation 9
and the target yt .

V. EVALUATION
A. DATASETS
To evaluate the proposed method for multi-hop KG-QA,
we conducted experiments on three benchmarking datasets
that are:
• MetaQA[40]2: MetaQA (MoviE Text Audio QA)
contains more that 400k questions for both single and
multi-hop reasoning in the domain of movies. It has
1-hop, 2-hop and 3-hop questions with answers. Along
with the QA data, MetaQA provides a knowledge
graph consisting of 43k entities, 135k triples, and nine
relations. We used the textual version of the dataset that
is called ‘‘vanilla’’.

• PathQuestion[8]3: is built by [8], and consists of two
datasets: PathQuestion (PQ) and PathQuestion-Large
(PQL). All questions require 2- or 3-hop relation path
to reach answer entities, and are answerable through
subsets of Freebase knowledge graph. The questions
in PQL are more difficult to answer than those in
PQ because PQL utilizes a larger knowledge base and
provides fewer training instances.

• WorldCup2014[56]4: It contains about 8000 questions
with answers related to the 2014 World Cup. Questions
are a mixture of 1-hop and 2-hop questions.

Statistics for the three datasets are shown in Table 1. Note
that the three datasets differ in scale, domain, and complexity,
a thing that helps us to better validate the effectiveness of our
method.

B. EXPERIMENTAL SETTINGS
All word embedding vectors were obtained by using
GloVe [57], with a dimension of 300. The ADAM opti-
mizer [58] was used for parameter optimization, including
gradient clipping by norm at a threshold of 5 and a learning
rate of 0.001. All hyper-parameters were tuned on the

2https://github.com/yuyuz/MetaQA
3https://github.com/zmtkeke/IRN/tree/master/PathQuestion
4https://github.com/zmtkeke/IRN

Algorithm 1 Multi-Hop KG-QA by Using Sequential Path
Expansion With Backtracking
Initialize:
t ← 1 B Iteration number
p← (eq) B p is the accumulated path
et ← eq B et is the current entity at the t-th iteration,
initialized with eq
st ← 0 B st is the matching score of the path at the t-th
iteration
st−1 ← 0 B st−1 is the matching score of the path at the
previous iteration
Function: Expand_path(G, q, et , D)
Input: A knowledge graph G, question q, question entity et ,
the estimated distance D from eq to ea
Output: Answer entity ea
Begin
Rt ← {r1, r2, . . . , ri, . . . , rk} BRt is the set of outgoing
relations of et
Pt ← ∅
for each ri ∈ Rt ∧ ri is unvisited do
pi← p⊕ (ri; èi) B èi is the destination entity of ri
Pt ← Pt ∪ {pi BPt is the candidate path set at t -th

iteration
end for
st ← score elements in Pt and obtain the top score from
Equation 9
ptopt ← Gettop – scored path from Equation 8
if st > st−1 then B Condition to proceed to the next entity
p← ptopt
et ← tail(p)
st−1← st
t ← t + 1
Expand_path (G, q, et , D)

else if (st < st−1)∧ (t < D)∧ (et 6= eq) thenB Condition to
backtrack

Retrieve rt−1 and et−1 from G B Not detailed for
simplicity

Retrieve st−2 if exists from the score history, or set as 0 if
does not exist
p← p	 (rt−1; et) B	 denotes de-concatenate operation
et ← et−1
st−1← st−2
t ← t − 1
Expand_path (G, q, et ,D)

else if (st < st−1 ∧ t ≥ D) ∨ (∀ri ∈ Rt−1 : riisvisited) then
ea← tail(pt−1) B Condition to terminate
return ea

end if
End

development data. The batch size was set at 48. Hidden
dimensions in the model were set to 200, and the dropout
ratio was set to 0.2. We partitioned the entire dataset into the
train/valid/test subsets as shown in Table 1. Note that the three
datasets have topic entities annotated, thus no entity linking
was required.

VOLUME 10, 2022 76849

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

TABLE 1. Statistics of benchmark datasets.

Following previous works [8], [14], [59], we measure
the performance of models by the Hits@1 score, where the
predicted answer is considered correct if it exactly matches
the gold one. When a question has multiple answers, the
predicted answer is considered correct if it matches any of
the answers.

C. BASELINE
We compared our method with the following methods from
the literature:
• RL-MHR: This is the RL-based method that uses stop
and worth-trying signals to teach the agent when to stop,
and is proposed by [41].

• TransferNet: This is the iterative method proposed
by [45], which infers the next relation to hop along by
transferring entity scores along of multiple steps.

• UHop-HR: this is the Unrestricted-Hop Relation
Extraction Framework proposed by [12]. We imple-
mented UHop on top of HR-BiLSTEMmodel and called
it UHop-HR for short.

• ISM: This is the iterative matching model proposed
by [13].

• IRN: This is the Interpretable Reasoning Network
proposed by [8].

• HR-BiLSTM: This method uses hierarchical matching
between questions and KB relations, and is proposed
by [39]

• Ours: This is our sequential path expansion method
that uses a compare-aggregate model for sequence
matching and a termination/backtracking check to
decide when to stop or consider another branch for path
expansion.

Note that the IRN and HR-BiLSTM methods are based
on an exhaustive search by traversing all paths in the KG
over a predefined number of hops. They require setting
the maximum number of hops in order to stop. Therefore,
we implemented themwith T=3 hops. In contract, RL-MHR.
TransferNet, UHop-HR and ISM are similar to our method
in that they are sequential decision-based methods based
on hop-by-hop relation extraction. They also do not require
setting the number of hops as they implement mechanisms
for termination.

TABLE 2. Test results (% Hits@1) on vanilla of metaqa dataset.

D. RESULTS AND DISCUSSION
Table 2, 3 and 4 summarize the comparison results between
the baseline methods on the three datasets. The columns
in each table show the Hits@1 scores for questions with
different lengths of hops separately and when they are
mixed together. Results show that our method achieves
accurate results, and outperforms all other methods in most
cases. In general, the methods that are based on exhaustive
search, i.e. IRN, HR-BiLSTM, give less accurate results as
compared to the sequential decision-basedmethods including
RL-HMR, TransferNet, UHop-HR and ISM. This result is
due to the fact that exhaustive search methods attempt to
enumerate all paths, resulting in too many wrong paths
mixed inside the training data. Thus, it is difficult for the
model to distinguish the correct paths from the many wrong
paths. What supports this conclusion is the poor perfor-
mance of exhaustive search-based methods, which is much
observable with MetaQA. In particular, MetaQA dataset has
the largest KB as compared to other datasets, a thing that
leads to a larger search space and more competing wrong
answers.

When comparing our method with other sequential
decision-based methods, we notice that all methods result
in high accuracy values for 1-hop questions on all datasets
without significant differences (p = 0.08). However, the
difference becomes more noticeable when the complexity
of the question increases. Our method clearly outperforms
other methods with 3-hop questions. This can be particularly
observed in the performance results on 3-hop questions in

76850 VOLUME 10, 2022

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

TABLE 3. Test results (% Hits@1) on pq and pql of pathquestion dataset.

TABLE 4. Test results (% Hits@1) on worldcup2014 dataset.

MetaQA and QuestionPath, with a significant difference at
p < 0.05. The difference is insignificant (p = 0.1) in
the WorldCup2014 since it is the simplest dataset in terms
of the complexity of questions, and does not contain 3-hop
questions.

In 3-hop questions, there is more possibility to prune away
correct relations during the iterative reasoning process. This
makes it difficult to reach a correct answer entity with incor-
rect intermediate relations. This claim is supported by looking
at the experimental results of related works [8], [13], [14],
all of which reported that the error generated in sequential
decisions accumulates as the complexity of the question
increases. The superiority of our method over other methods
in the case of 3-hop questions can be attributed to the low
accumulated error as a result of the termination/ backtracking
check carried out at each hop. Once the similarity between
the path and the question begins to decline, our method can
backtrack to consider an alternative branch to move forward.

To have a deeper insight on this difference, we analyzed
the error cases in RL-HMR, TransferNet, UHop-HR and
ISM, and found that the majority of errors (62%) occurred
due to incorrect relation matching at the first hop. This
is due to the lack of enough features for effective rea-
soning at the beginning of the path expansion process.
Furthermore, we inspected sample 3-hop questions that
were incorrectly answered by the former methods and
found that many were of 3-hop questions whose question
entities are connected to the answer entities via multiple
paths. Other methods answered them incorrectly because

FIGURE 5. Comparison of hop number accuracy by RL-MHR, UHop-HR,
ISM and our method across the three datasets.

they took paths that did not lead to an answer entity.
For example, the question: ‘‘Who starred films for the
screenwriter of ‘Taxi Driver’?’’ requires taking the relation

path: (Texi Driver
written_by
−→ Paul Schrader

written_by
←− Rolling

Thunder
starred_actors
−→ Tommy Lee Johns) to be answered cor-

rectly (refer to Fig. 1). However, other methods took the

path (Taxi Driver
starred_actors
−→ Robert De Niro) instead due

to incorrect sequence matching between the path and the
question. In fact, our method behaved similarly with this
question in the first iteration, but this mistake was spotted and
corrected by the backtracking check.

ISM is almost the second best performing method across
all datasets, followed byUHop-HR, followed by TransferNet,
and finally RL-HMR. In fact, all the former methods except
RL-HMR employ attention layers for effective matching
between the relation path and the question embeddings. This
indicates that the methods that use the attention mechanism
can result in more accurate results than the non-attentive
methods.

In addition, we compared the accuracy of our termination
check mechanism with similar stop mechanisms used in
RL-MHR, UHop-HR, ISM. The termination accuracy is
estimated on the basis of the ability to detect the hop
number accurately. Fig. 5 shows the accuracy results on hop
numbers across the three datasets. In general, all methods
perform well and can detect the hop number accurately on
the WorldCup2014 because it is the simplest dataset without
3-hop questions. Our method surpasses others on MetaQA
and QuestionPath datasets, in particular, with a significant
difference at p < 0.05.
Inspection of erroneous results has again attributed this

difference to the false decision on paths, especiallywith 3-hop
questions that have multiple answer paths. The decision to
take a shorter wrong path for several questions caused the
other models to obtain an early stop signal. Such scenarios
occurred a lot in PathQuestion and MetaQA datasets.

In fact, the stop mechanisms implemented in UHop-HR,
ISM rely on the change in the similarity score of the question
with the relation path, and trigger the stop signal when
it is not possible to reach a better similarity any more.

VOLUME 10, 2022 76851

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

However, this does not apply in the first hop when there is
no prior similarity score to compare with. RL-MHR resulted
in the second highest termination accuracy because it uses
an RL-reasoner to train the agent when to stop based on the
search history. However, RL-based methods heavily rely on
the terminal reward to bias the search. Thus, the agent can still
be misled and hop to a false relation due to sparse or delayed
rewards [44].

VI. ABLATION STUDIES
We performed model ablation studies to reveal the contri-
bution of each component in our method. We compared
between different modified versions of our method, which are
summarized in Table 5.
• V-NONE: all core features are dismissed from this
version of our method as the following: The path
ranking and pruning mechanism is dismissed so that
the method should search all paths to find candidate
answers. The compare-aggregate model with attention
is disabled. Instead, the question and path sequences
are projected into single vectors, and compared by
using the cosine measure. This version also runs no
termination/backtracking check.

• V-Rank: This version is similar to V-NONE but with
path ranking and pruning feature enabled.

• V-ComAgg: This version is similar to V-NONE, but
uses the compare-aggregate model with attention mech-
anism and multiply-subtract comparison functions.

• V-Rank-ComAgg: This version performs path ranking
and pruning, and uses the compare-aggregate model
with attention. Only the termination/path validation
check is removed.

• V-Rank-Stop-Backtrack: This version performs path
ranking and pruning and performs termination/
backtracking check. Only the compare-aggregate model
with attention is removed and replaced with cosine sim-
ilarity between vector representations as in V-NONE.

• V-ours: Our method with all features enabled.
Note that the termination/backtracking check cannot be tested
independently of the path ranking and pruning because the
ranking scores are required to trigger the stop/backtrack
events.

Table 6 shows the performance results in terms of Hits@1
score of the five versions on the three datasets. In general,
the V-NONE model, which solely relies on exhaustive
search of candidate paths, performs worse than all over
versions. V-ComAgg performs better than the V-NONE
model, indicating the advantage of using the compare-
aggregate model. The encoding of question-path sequences
independently as embedding vectors in V_NONE is likely not
sufficient to capture all the important information, as in the
attentive model.

When path ranking and pruning is enabled in V-Rank-
ComAgg, the accuracy increases significantly compared to
the accuracy of V-NONE and V-ComAgg (the difference is
significant at p < 0.05). This indicates that path pruning

TABLE 5. Variants of our method used in the ablation study.

TABLE 6. Ablation experiment results in terms of the Hits@1 score of the
five variants over the three datasets.

is effective not only in reducing the search complexity, but
also in improving the accuracy by eliminating many of the
false-positive paths from the training process. V-Rank-Stop-
Backtrack, which has the termination/backtracking check
enabled, performs better than the previous versions, and the
difference is obvious in MetaQA and QuestionPath, which
include 3-hop questions. Our overall method is better than
V-Rank-Stop-Backtrack with a significant difference, show-
ing that the combination of all features is the most effective.

VII. LIMITATION ANALYSIS
In general, the datasets used in this study and existing
works consist of questions that are generated from textual
templates. Most of the patterns of these templates can be
easily captured by using a deep learningmodel with sufficient
training data. Inspection of the errors generated by our
method showed that about 78% of the errors came from
incorrect termination without detecting the correct answer
path, especially in the PQL2 dataset. Although the introduced
backtrackingmechanism could reduce this error, it sometimes
does not help when the model predicts incorrect relations
due to insufficient training samples. We conclude that having
no sufficient samples of the predicted length for training
still impairs performance. In addition, complex questions
that involve constrained relations or numerical operations
cannot be easily answered by traversal-based methods. When
questions become complicated from both semantic and
syntactic aspects, models will need additional capabilities of
natural language understanding and generalization.

76852 VOLUME 10, 2022

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

VIII. CONCLUSION AND FUTURE WORK
In this work, we proposed a deep learning-based method for
multi-hop question answering over knowledge graphs. Our
method attempts to reduce the search space by progressively
tracing the path that is more similar to the question. To resolve
the problem of accumulated error due to incorrect reasoning
over relations, we proposed a novel termination/backtracking
mechanism that validates the answer path as it expanded to
decide whether to stop, backtrack or proceed. The proposed
method also uses a compare-aggregate model for more effec-
tive semantic matching between the question and the candi-
date paths. Ourmethod also employs the attentionmechanism
to decide which part of a given path should be focused on in
the current iteration. Comparisonwith other baselinemethods
from the literature over three benchmark datasets has shown
that the backtracking mechanism can effectively reduce the
errors. Our method remarkably outperforms similar methods
especially with 3-hop questions which are more error-prone
due to the longer distance of hops needed to reach the answer
entity.

In our future work, our aim is to investigate how to improve
the model to handle complex questions with constraints.
We will attempt to reduce errors in relation matching at the
first hop by using dependency parsing and linguistic analysis
of the question.

REFERENCES
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, ‘‘Freebase: A

collaboratively created graph database for structuring human knowledge,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2008,
pp. 1247–1250.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
‘‘DBpedia: A nucleus for aweb of open data,’’ in The SemanticWeb. Berlin,
Germany: Springer, 2007, pp. 722–735.

[3] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze, ‘‘Simple
question answering by attentive convolutional neural network,’’ 2016,
arXiv:1606.03391.

[4] A. Bordes, N. Usunier, S. Chopra, and J. Weston, ‘‘Large-scale sim-
ple question answering with memory networks,’’ 2015, arXiv:1506.
02075.

[5] D. Savenkov and E. Agichtein, ‘‘EviNets: Neural networks for combining
evidence signals for factoid question answering,’’ in Proc. 55th Annu.
Meeting Assoc. Comput. Linguistics, 2017, pp. 299–304.

[6] C. Ran, W. Shen, J. Wang, and X. Zhu, ‘‘Domain-specific knowledge base
enrichment usingWikipedia tables,’’ inProc. IEEE Int. Conf. DataMining,
Nov. 2015, pp. 349–358.

[7] W.-T. Yih, X. He, and C. Meek, ‘‘Semantic parsing for single-relation
question answering,’’ in Proc. 52nd Annu. Meeting Assoc. Comput.
Linguistics, vol. 2, 2014, pp. 643–648.

[8] M. Zhou, M. Huang, and X. Zhu, ‘‘An interpretable reasoning network for
multi-relation question answering,’’ 2018, arXiv:1801.04726.

[9] M. Ding, C. Zhou, Q. Chen, H. Yang, and J. Tang, ‘‘Cognitive graph for
multi-hop reading comprehension at scale,’’ 2019, arXiv:1905.05460.

[10] S. Kundu, T. Khot, A. Sabharwal, and P. Clark, ‘‘Exploiting explicit paths
for multi-hop reading comprehension,’’ 2018, arXiv:1811.01127.

[11] Y. Cao, M. Fang, and D. Tao, ‘‘BAG: Bi-directional attention entity graph
convolutional network for multi-hop reasoning question answering,’’ 2019,
arXiv:1904.04969.

[12] Z.-Y. Chen, C.-H. Chang, Y.-P. Chen, J. Nayak, and L.-W. Ku, ‘‘UHop:
An unrestricted-hop relation extraction framework for knowledge-based
question answering,’’ 2019, arXiv:1904.01246.

[13] Y. Lan, S. Wang, and J. Jiang, ‘‘Multi-hop knowledge base question
answering with an iterative sequence matching model,’’ in Proc. IEEE Int.
Conf. Data Mining (ICDM), Nov. 2019, pp. 359–368.

[14] Y. Qiu, Y. Wang, X. Jin, and K. Zhang, ‘‘Stepwise reasoning for
multi-relation question answering over knowledge graph with weak
supervision,’’ in Proc. 13th Int. Conf. Web Search Data Mining, Jan. 2020,
pp. 474–482.

[15] M. A. Borroto, F. Ricca, and B. Cuteri, ‘‘A system for translating
natural language questions into SPARQL queries with neural networks:
Preliminary results,’’ inProc. 29th Italian Symp. Adv. Database Syst., 2021,
pp. 1–12.

[16] N. Bhutani, X. Zheng, and H. V. Jagadish, ‘‘Learning to answer complex
questions over knowledge bases with query composition,’’ in Proc. 28th
ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 739–748.

[17] K. Roberts and B. G. Patra, ‘‘A semantic parsing method for mapping
clinical questions to logical forms,’’ in Proc. AMIA Annu. Symp., 2017,
pp. 1478–1487.

[18] S. Reddy, O. Täckström, M. Collins, T. Kwiatkowski, D. Das,
M. Steedman, and M. Lapata, ‘‘Transforming dependency structures to
logical forms for semantic parsing,’’ Trans. Assoc. Comput. Linguistics,
vol. 4, pp. 127–140, Dec. 2016.

[19] P. Jain and M. Lapata, ‘‘Memory-based semantic parsing,’’ Trans. Assoc.
Comput. Linguistics, vol. 9, pp. 1197–1212, Nov. 2021.

[20] V. Zhong, C. Xiong, and R. Socher, ‘‘Seq2SQL: Generating structured
queries from natural language using reinforcement learning,’’ 2017,
arXiv:1709.00103.

[21] T. Yu, R. Zhang, K.Yang,M.Yasunaga, D.Wang, Z. Li, J.Ma, I. Li, Q. Yao,
S. Roman, Z. Zhang, and D. Radev, ‘‘Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-SQL
task,’’ 2018, arXiv:1809.08887.

[22] P. Kapanipathi, I. Abdelaziz, S. Ravishankar, S. Roukos, A. Gray,
R. Astudillo, M. Chang, C. Cornelio, S. Dana, A. Fokoue, and D. Garg,
‘‘Leveraging abstract meaning representation for knowledge base question
answering,’’ 2020, arXiv:2012.01707.

[23] S. Chen, Q. Liu, Z. Yu, C.-Y. Lin, J.-G. Lou, and F. Jiang, ‘‘ReTraCk: A
flexible and efficient framework for knowledge base question answering,’’
in Proc. 59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint
Conf. Natural Lang. Process., Syst. Demonstrations, 2021, pp. 325–336.

[24] X. Huang, J. Zhang, D. Li, and P. Li, ‘‘Knowledge graph embedding
based question answering,’’ in Proc. 12th ACM Int. Conf. Web Search Data
Mining, Jan. 2019, pp. 105–113.

[25] A. Saxena, A. Tripathi, and P. Talukdar, ‘‘Improving multi-hop ques-
tion answering over knowledge graphs using knowledge base embed-
dings,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics, 2020,
pp. 4498–4507.

[26] A. Bordes, S. Chopra, and J. Weston, ‘‘Question answering with subgraph
embeddings,’’ 2014, arXiv:1406.3676.

[27] R. Das, M. Zaheer, S. Reddy, and A. McCallum, ‘‘Question answering on
knowledge bases and text using universal schema and memory networks,’’
2017, arXiv:1704.08384.

[28] D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer, ‘‘Neural network-
based question answering over knowledge graphs on word and char-
acter level,’’ in Proc. 26th Int. Conf. World Wide Web, Apr. 2017,
pp. 1211–1220.

[29] M.-C. Yang, D.-G. Lee, S.-Y. Park, and H.-C. Rim, ‘‘Knowledge-based
question answering using the semantic embedding space,’’ Expert Syst.
Appl., vol. 42, no. 23, pp. 9086–9104, Dec. 2015.

[30] K. Qin, Y. Wang, C. Li, K. Gunaratna, H. Jin, V. Pavlu, and
J. A. Aslam, ‘‘A complex KBQA system using multiple reasoning paths,’’
2020, arXiv:2005.10970.

[31] L. Dong, F. Wei, M. Zhou, and K. Xu, ‘‘Question answering over freebase
with multi-column convolutional neural networks,’’ in Proc. 53rd Annu.
Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang.
Process., vol. 1, 2015, pp. 260–269.

[32] L. Chen, G. Zeng, Q. Zhang, X. Chen, and D. Wu, ‘‘Question answering
over knowledgebase with attention-based LSTM networks and knowledge
embeddings,’’ in Proc. IEEE 16th Int. Conf. Cognit. Informat. Cognit.
Comput. (ICCI*CC), Jul. 2017, pp. 243–246.

[33] Z. Dai, L. Li, and W. Xu, ‘‘CFO: Conditional focused neural question
answering with large-scale knowledge bases,’’ 2016, arXiv:1606.01994.

[34] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and
C. D. Manning, ‘‘HotpotQA: A dataset for diverse, explainable multi-hop
question answering,’’ 2018, arXiv:1809.09600.

[35] Y. Feng, X. Chen, B. Y. Lin, P. Wang, J. Yan, and X. Ren, ‘‘Scalable multi-
hop relational reasoning for knowledge-aware question answering,’’ 2020,
arXiv:2005.00646.

VOLUME 10, 2022 76853

I. Alagha: Multihop Question Answering by Using Sequential Path Expansion With Backtracking

[36] R. Das, A. Godbole, D. Kavarthapu, Z. Gong, A. Singhal, M. Yu, X. Guo,
T. Gao, H. Zamani, M. Zaheer, and A. McCallum, ‘‘Multi-step entity-
centric information retrieval for multi-hop question answering,’’ in Proc.
2nd Workshop Mach. Reading Question Answering, 2019, pp. 113–118.

[37] M. Tan, C. dos Santos, B. Xiang, andB. Zhou, ‘‘LSTM-based deep learning
models for non-factoid answer selection,’’ 2015, arXiv:1511.04108.

[38] K. Nishida, K. Nishida, M. Nagata, A. Otsuka, I. Saito, H. Asano, and
J. Tomita, ‘‘Answering while summarizing: Multi-task learning for multi-
hop QA with evidence extraction,’’ 2019, arXiv:1905.08511.

[39] M. Yu, W. Yin, K. S. Hasan, C. dos Santos, B. Xiang, and B. Zhou,
‘‘Improved neural relation detection for knowledge base question answer-
ing,’’ 2017, arXiv:1704.06194.

[40] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song, ‘‘Variational
reasoning for question answering with knowledge graph,’’ in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 6069–6076.

[41] R. Das, A. Godbole, A. Naik, E. Tower, R. Jia, M. Zaheer, H. Hajishirzi,
and A. McCallum, ‘‘Knowledge base question answering by case-based
reasoning over subgraphs,’’ 2022, arXiv:2202.10610.

[42] G. Niu, Y. Li, C. Tang, Z. Hu, S. Yang, P. Li, C. Wang, H. Wang, and
J. Sun, ‘‘Path-enhanced multi-relational question answering with knowl-
edge graph embeddings,’’ 2021, arXiv:2110.15622.

[43] J. Shi, S. Cao, L. Hou, J. Li, and H. Zhang, ‘‘TransferNet: An effective
and transparent framework for multi-hop question answering over relation
graph,’’ 2021, arXiv:2104.07302.

[44] G. He, Y. Lan, J. Jiang, W. X. Zhao, and J.-R. Wen, ‘‘Improving
multi-hop knowledge base question answering by learning intermediate
supervision signals,’’ in Proc. 14th ACM Int. Conf. Web Search Data
Mining, Mar. 2021, pp. 553–561.

[45] R. Koner, H. Li, M. Hildebrandt, D. Das, V. Tresp, and S. Günnemann,
‘‘Graphhopper: Multi-hop scene graph reasoning for visual question
answering,’’ in Proc. Int. Semantic Web Conf. Albany, NY, USA: Springer,
2021, pp. 111–127.

[46] G. Wan and B. Du, ‘‘GaussianPath: A Bayesian multi-hop reasoning
framework for knowledge graph reasoning,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 35, no. 5, 2021, pp. 4393–4401.

[47] W. Xiong, T. Hoang, and W. Y. Wang, ‘‘DeepPath: A reinforcement learn-
ing method for knowledge graph reasoning,’’ 2017, arXiv:1707.06690.

[48] X.V. Lin, R. Socher, andC.Xiong, ‘‘Multi-hop knowledge graph reasoning
with reward shaping,’’ 2018, arXiv:1808.10568.

[49] J. Liao, X. Zhao, J. Tang, W. Zeng, and Z. Tan, ‘‘To hop or not, that is the
question: Towards effective multi-hop reasoning over knowledge graphs,’’
World Wide Web, vol. 24, no. 5, pp. 1837–1856, Sep. 2021.

[50] F. Hill, A. Bordes, S. Chopra, and J. Weston, ‘‘The goldilocks principle:
Reading children’s books with explicit memory representations,’’ 2015,
arXiv:1511.02301.

[51] Z. Xu, H.-T. Zheng, Z. Fu, and W. Wang, ‘‘Enhancing question
understanding and representation for knowledge base relation detection,’’
in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 1362–1367.

[52] S. Wang and J. Jiang, ‘‘A compare-aggregate model for matching text
sequences,’’ 2016, arXiv:1611.01747.

[53] Y. Yang and M.-W. Chang, ‘‘S-MART: Novel tree-based structured learn-
ing algorithms applied to tweet entity linking,’’ 2016, arXiv:1609.08075.

[54] K. S. Tai, R. Socher, and C. D. Manning, ‘‘Improved semantic
representations from tree-structured long short-term memory networks,’’
2015, arXiv:1503.00075.

[55] J. Lu, Z. Zhang, X. Yang, and J. Feng, ‘‘Efficient subgraph pruning &
embedding for multi-relation QA over knowledge graph,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2021, pp. 1–8.

[56] L. Zhang, J. Winn, and R. Tomioka, ‘‘Gaussian attention model and its
application to knowledge base embedding and question answering,’’ 2016,
arXiv:1611.02266.

[57] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[58] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[59] X. Li, M. Alazab, Q. Li, K. Yu, and Q. Yin, ‘‘Question-aware memory
network for multi-hop question answering in human-robot interaction,’’
2021, arXiv:2104.13173.

IYAD ALAGHA received the Ph.D. degree in
computer science from the University of Durham,
U.K., in 2009. He worked as a Research Associate
at the University of Durham, from 2009 to 2012,
in the field of technology enhanced learning.
In 2012, he joined as the Faculty of IT, Islamic
University of Gaza, as a Lecturer. He was the Dean
of the Faculty, from 2019 to 2021. He is currently
an Associate Professor with the Department of
Software Development. He has published articles

in several international journals and conferences. His research interests
include deep learning, data analytics, NLP, and semantic web technologies.
Besides his academic and research experience, he works as a senior android
developer and a trainer. He also works as an IT consultant and a curriculum
developer for several institutions.

76854 VOLUME 10, 2022

