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ABSTRACT The rapid advance of scientific research in data mining has led to the adaptation of conventional
pattern extraction methods to the context of time series analysis. The forecasting (or prediction) task has been
supported mainly by regression algorithms based on artificial neural networks, support vector machines,
and k-Nearest Neighbors (kNN). However, some studies provided empirical evidence that similarity-based
methods, i.e. variations of kNN, constitute a promising approach compared with more complex predictive
models from both machine learning and statistics. Although the scientific community has made great strides
in increasing the visibility of these easy-to-fit and impressively accurate algorithms, previous work has
failed to recognize the right invariances needed for this task. We propose a novel extension of kNN, namely
kNN - Time Series Prediction with Invariances (kNN-TSPI), that differs from the literature by combining
techniques to obtain amplitude and offset invariance, complexity invariance, and treatment of trivial matches.
Our predictor enables more meaningful matches between reference queries and data subsequences. From
a comprehensive evaluation with real-world datasets, we demonstrate that kNN-TSPI is a competitive
algorithm against two conventional similarity-based approaches and, most importantly, against 11 popular
predictors. To assist future research and provide a better understanding of similarity-basedmethod behaviors,
we also explore different settings of kNN-TSPI regarding invariances to distortions in time series, distance
measures, complexity-invariant distances, and ensemble functions. Results show that kNN-TSPI stands out
for its robustness and stability both concerning the parameter k and the accuracy of the projection horizon
trends.

INDEX TERMS Forecasting, multi-step-ahead prediction, pattern sequence similarity, univariate analysis.

I. INTRODUCTION
Time series data are omnipresent with applications in com-
puting, engineering, finances, medicine, and many other
areas of knowledge. Especially in the last 20 years,
where domain-driven data mining has become more promi-
nent in science and industry, machine learning regression
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methods have extensively explored time series modeling and
prediction1 [1]–[3].

In contrast to parametric predictors from classical statis-
tics, such as Autoregressive Integrated Moving Aver-
age (ARIMA) and Seasonal ARIMA (SARIMA) [4],
machine learning algorithms require no assumptions about
the data distribution nature. This characteristic makes them
more straightforward to adjust to complex data, especially

1The terms ‘‘prediction’’ and ‘‘forecast’’ are employed interchangeably
herein.
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those with nonlinear behavior. However, what makes non-
parametric methods even more attractive is the fact that their
adjustment needs little human intervention and interpretation.

Non-parametric algorithms typically use two approaches
to model and predict time series [5]: (i) global, which builds
a predictive model from a training procedure that uses all the
series observations as input; and (ii) local, which splits the
time series into subsequences. A selection criterion chooses
a subset of the subsequences to predict future observations.

Recently, some studies have evidenced the competitive
performance and the simplicity of the local approach meth-
ods to predict series with distinct properties and compo-
nents [1], [6], [7]. Most of these researchers have employed
similarity-based models, i.e., variations of the k-Nearest
Neighbors (kNN) algorithm. The idea behind kNN is finding
the k most similar examples to an unlabeled example given a
proper distancemeasure. For the classification task, the labels
of those k nearest examples will determine the output of the
new example [8].

For the prediction task, a generic local kNN method iden-
tifies the k most similar subsequences to a reference query
and then uses the next values of these subsequences (targets)
as input to an ensemble function, which computes the future
value of the series. This idea is quite intuitive since it assumes
that patterns that emerged in the past are likely to repeat
themselves in the future.

Although kNN has garnered much attention for temporal
data prediction due to its simplicity, some research questions
remain open. The first one refers to their sensitivity to the
number of neighbors k and the sliding window (or reference
query) length l. The second one is related to choosing an
adequate similarity measure to compare subsequences. The
challenge is efficiently searching similar patterns from large
series with low computational costs. The third one involves
determining the number of neighbors, which must be data-
driven rather than a fixed given number. The last one covers
choosing an ensemble function that enables issuing reliable
predictions.

Despite the incessant work of the machine learning com-
munity in sampling [9] and calibration methods [10], [11],
distance measures [12]–[15], and ensemble functions
[16], [17], we are confident that previous studies did not
identify the right invariances for the similarity-based pre-
diction task. To mitigate such an issue, we propose a novel
modification of the kNNalgorithm for temporal data forecast-
ing, namely kNN - Time Series Prediction with Invariances
(kNN-TSPI). Our method leads to more accurate and mean-
ingful results by combining techniques to obtain amplitude
and offset invariance, complexity invariance, and treatment
of trivial matches. The proper integration of these techniques
makes kNN-TSPI invariant to temporal distortions, allowing
it to discard information that does not favor matching percep-
tually similar subsequences in the search process.

Parmezan and Batista [7] is the first work to describe the
core idea of kNN-TSPI. The present paper gives more techni-
cal details on its properties and performance in an extensive

experimental evaluation. Unlike black-box models, kNN-
TSPI is simple to encode and embed into any device. More-
over, considering the state-of-the-art predictors, the proposed
method is highly competitive with the advantage of having
parameters that can be easily estimated only by observing the
data seasonality.

The main contributions that distinguish this article from
our previous study include:
• Formalization of a rigorous experimental setup. Our
assessment considers two multi-step-ahead projection
strategies on 55 real datasets with four performance
evaluation indexes and statistical significance tests.
Supported by this assessment, we present a reasoned
discussion of best practices for similarity-based time
series prediction;

• Comparison of the developed method with previous
similarity-based predictors. We compare kNN-TSPI
with kNN according to the global and local approaches.
We analyze the results regarding predictive perfor-
mance, parameter sensitivity, and computational com-
plexity. We show that kNN-TSPI is robust and stable
both concerning the parameter value k and the projection
horizon trends;

• Empirical demonstration that our method is competitive
against traditional predictors. In particular, we compare
kNN-TSPI with six machine learning regression algo-
rithms and five statistical models;

• Evaluation of different aspects that impact the pre-
dictive quality of similarity-based methods. Among
the inspected factors are invariances to distortion in
time series, distancemeasures, complexity-invariant dis-
tances, and ensemble functions. Understanding these
particularities is the key to improving the kNN-TSPI’s
performance in particular scenarios.

We also highlight the importance of empirical assessments
in a set of publicly available data. The 55 datasets considered
in this work correspond to real-world problems archived at
the ICMC-USP Time Series Prediction Repository [18].

The remainder of this article is structured as follows:
Section II describes the related work. Section III provides
the background and definitions of temporal data prediction
by similarity. Section IV presents our kNNproposal to predict
time series, while Section V specifies the experimental evalu-
ation protocol. We show results and discussion in Section VI.
Lastly, Section VII punctuates our research line’s achieve-
ments and remaining challenges.

II. RELATED WORK
A few studies carried out in the last ten years showed
that the similarity-based methods are accurate predictors for
highly nonlinear and complex series [1], [6], [7], [19], [20].
Also, several research papers have noted the potential of this
machine learning paradigm in other relevant data analysis
tasks such as classification and clustering. For instance, the
kNN algorithm has been successfully used for decades to
perform time series classification [21]. Moreover, substantial
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evidence exists that the outcomes obtained by the simple
1-NN with Dynamic Time Warping (DTW) are hard to over-
come, even by more sophisticated inductors, such as random
forests and Support Vector Machines (SVM) [22]. An empir-
ical study in time series clustering indicates that the distance
measure choice is more crucial than selecting the clustering
method, with DTW obtaining outstanding performance [23].
A survey on time series anomaly detection showed that
algorithms based on similarity search produce the highest
general results [24]. We suppose that the performance merit
of similarity-based methods is mostly due to the continuous
research on distance invariances such as warping, rotation,
and occlusion [25], [26].

Despite the increase in the number of methodologies pro-
posed for applying kNN to time series prediction, questions
remain as to how to determine the algorithm’s parameters,
what distance measure to choose, and how to combine the k
nearest neighbors for a final decision [19]. In this direction,
many studies have been carried out to get more insights into
the performance of kNN for temporal data forecasting.

Sovilj et al. [27] introduced a framework that employs
input processing before building the predictive model. One
and multi-step-ahead predictions were made using optimally
pruned extreme learning machine and Optimally Pruned kNN
(OP-kNN). The results indicated that only OP-kNN benefited
from the projection adopting the genetic procedure and the
delta test.

Huang and Shyu [28] designed a kNN based on Least
Squares Support Vector Machines (LS-SVM) to perform
long-term time series prediction. The proposal outperformed
the traditional LS-SVM and multi-input multi-output local
learning approaches. To reduce the training complexity of
an LS-SVM, Shi and Zhou [29] developed a kNN scheme
for multi-step-ahead time series forecasting. Experiments on
chaotic datasets demonstrated that the proposed approach
overcomes single-step methods.

The study conducted by Bedo et al. [30] presented a
new financial prediction approach based on the sim-
ilarity between time series subsequences employing a
database-driven architecture. This approach outperformed
boosted kNN, ARIMA, and Multilayer Perceptron (MLP).
Differently, Wei et al. [31] designed a kNN based neuro-
fuzzy predictor that provided more accurate results
than original neuro-fuzzy, ARIMA, and Artificial Neural
Networks (ANN).

De LaVega et al. [32] developed a framework for temporal
data forecasting that integrates kNN and differential evolu-
tion. Empirical results showed that kNN appeared to be more
effective than ARIMA, mainly when the projection horizon
ranged from short to moderate. In contrast, Flores et al. [33]
introduced the fuzzy version of the kNN predictor. The exper-
imental protocol tested the method on chaotic time series and,
in agreement with the authors, its results were satisfactory
compared with the crisp version of kNN and ARIMA.
While Marcacini et al. [6] proposed an approach incor-

porating Websensors – models that represent knowledge

extracted from text news of a particular domain as well as the
temporal evolution of this knowledge – into the DTW dis-
tance to improve kNN forecasts, Talavera-Llames et al. [34]
presented an algorithm based on weighted nearest neighbors
for big data time series. Yu et al. [20] created a similarity-
based model for predicting short-term traffic conditions that
proved competitive with SVM and ANN.

Wang and Koprinska [35] faced a new Distance Weighted
kNN method with seven predictors, including a standard
kNN, SVM, and ARIMA. The two lazy algorithms achieved
the highest performances. Chen and Kartini [36] found sim-
ilar results in a study covering a novel methodology for
the very short-term forecast of hourly global solar irradi-
ance. This proposal combines kNN with an ANN model.
Tang et al. [37] proposed a complex weighted kNN that inte-
grates empirical mode decomposition and principal compo-
nent analysis for financial time series forecasting.

Although similarity-based time series prediction has been
investigated in the immediate past, we are sure that pre-
vious studies have not identified the right combination of
invariances needed for this task. Section IV addresses this
issue by proposing a method that integrates three techniques
to become invariant to amplitude, offset, and complexity
and invulnerable to trivial matches. Our solution efficiently
handles eventual errors introduced by temporal distortions
in the search process for the k most perceptually similar
subsequences to a reference query. Correctly identifying the
k nearest subsequences is critical because their subsequent
values are used to estimate future observations.

III. BACKGROUND AND DEFINITIONS
This section presents the central concepts and definitions of
time series prediction by similarity, with a brief review of
distance measures and ensemble functions. Our work also
evaluates the impact of these distance measures and ensemble
functions in the similarity search process adopted by local
kNN predictors.

A. PREDICTION BY SIMILARITY
Time series prediction via similarity search, as well as any
other machine learning technique for this same task, can be
conducted according to two main approaches [5]: (i) global
and (ii) local.

The global approach uses the whole training data series
to construct a prediction model. Generally, a transposition
is made to transform the sequential data into an attribute-
value table that will feed some machine learning regressor.
We portray the global approach in Fig. 1.

In the example of Fig. 1, we consider a time series Z
with a number of observations m = 15. To transpose the
sequence into the attribute-value table, we iteratively shift
a sliding window of length l = 5 along the observations
storing all the consecutive subsequences. Each subsequence
obtained from the sliding window refers to a pair (Xi, yi)
where: Xi = (xi1, . . . , xil) and corresponds to the temporal
pattern of length l; and yi represents the next value to Xi,
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FIGURE 1. In the global approach, the data sequence is converted to an
attribute-value table.

observed at time l + 1. Thus, the attribute-value table is
constituted by the set of pairs (Xij, yij), where j ∈ [1,m− l].

We then define a prediction horizon h = 3 and, based
on it, we partition the table into a training set to create the
model and a test set to assess the built model. At this moment,
we must choose a strategy to predict the series values some
periods ahead (h > 1). The simplest strategy is the classical
multi-step – also diffused as recursive in econometrics –,
where the prediction of h > 1 is carried out h successive
times adopting a prediction model with h = 1 [38]. Once the
model is extrapolated, we can use the projected value or the
respective actual value to estimate the subsequent prediction.
We named the strategy as multi-step-ahead with approximate
iteration when a model is fed back with predicted values.
Conversely, when a model is fed back with actual values, it is
called multi-step-ahead with updated iteration.

To assess the accuracy achieved by a given model, we need
to compare the predicted values ŷk with their actual values yk,
in which k ∈ [1, h]. An illustration of the multi-step-ahead
prediction strategy, with approximate and updated iterations,
is shown in Fig. 2.

FIGURE 2. Multi-step-ahead prediction strategy with approximate and
updated iterations.

An advantage of the global approach is its low complex-
ity of implementation. However, it is also susceptible to
some drawbacks. For instance, the strategy considers that
the pairs (Xij, yij) are independent and identically distributed,
which leads to a loss of temporal information on the part
of the predictive model. Algorithms that typically employ
the global approach are those based on ANN [39]–[41] and
SVM [2], [42].

On the other hand, the local approach consists of machine
learning algorithms adapted to include temporal information
during the forecasting process. In short, the methods split the
sequential data into subsequences whose the closest or the
most important values linked to the current value are fused
to project the future observation. We can use approximation

functions such as simple and weighted average to combine
such values. Some variations of the kNN predictor follow this
approach [19], [20].

To better understand the differences between global and
local approaches for time series prediction, we describe the
global kNN regressor and the local kNN predictor in Sec-
tions III-A1 and III-A2, respectively.

1) THE k-NEAREST NEIGHBORS ALGORITHM
kNN is a non-parametric method used for classification and
regression. It is a lazy learner because, instead of learning
a discriminative function from the training data, it stores all
the examples to generalize when performing a query. Specif-
ically, given some features of a new example to be classified
or regressed, kNN retrieves the k training examples closest to
the new example according to some similarity measure. For
classification, the final output is set by the majority class of
the k nearest examples; for regression, the predicted value is
given by the average of these examples [8]. Fig. 3 exemplifies
the execution of kNN with k = 1, 3, and 5 for the classi-
fication of a new example EN from a training set composed
of 12 examples, seven positive (+) and five negatives (−),
described by the features A1 and A2.

FIGURE 3. Example of kNN with three different values for the
parameter k .

As we can see in Fig. 3, the number of nearest neighbors
directly influences the algorithm’s result. For example, for
k = 1 and k = 3, example EN would be classified as
‘‘positive’’, whereas, for k = 5, EN would be ‘‘negative’’.
The distance measure, in turn, must be selected based on the
explanatory variables of the problem [43]. kNN demands low
computational effort during the training phase, but the cost to
classify new examples can be high since the method requires
a full scan across all training set examples.

The kNN algorithm to predict temporal data is applied, fol-
lowing the global approach, in agreement with Fig. 1, where
the explanatory variables are lagged values of the explained
variable. The kNN regressor can be easily modified to deal
locally with time series [16]. This adaptation, referenced
in this paper as kNN-TSP, explicitly includes the temporal
information into the prediction process.
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FIGURE 4. Example of kNN-TSP considering three nearest neighbors
(k = 3) and a sliding window with 30 observations (l = 30).

2) THE k-NEAREST NEIGHBORS - TIME SERIES
PREDICTION ALGORITHM
The general idea of kNN-TSP is intuitive and straightforward.
Given a time series Z = (z1, z2, . . . , zm) where zt ∈ <, the
aim is to project the value zm+h, where h is the projection
horizon. For simplicity but without any loss of generality,
we will adopt a unitary horizon (h = 1) to represent the
prediction of the next unseen observation zm+1 – also denoted
as ẑ(m, 1) – in the time series.
kNN-TSP uses the last l observations of the series as query

Q and searches for the k most similar subsequences to Q,
employing a sliding window of length l. Let S(1)1..l, . . . , S

(k)
1..l be

the k most similar subsequences; themethod captures the next
values of each subsequence S(j)l+1 with 1 ≤ j ≤ k to estimate

ẑ(m, 1). To do so, the targets S(j)l+1 are passed to an ensemble
function f , such as the Mean of Absolute Values (MAV) (1),
which intends to approximate the value of ẑ(m, 1).

fMAV(R) =
1
k

k∑
j=1

R(j) (1)

In (1), f refers to the ensemble function used to combine
the k observations stored in R. This equation represents the
most simple way to fuse values since it considers that all pat-
terns within the time series are equally likely to be observed
in the future.

Fig. 4 comprises an example of how kNN-TSP works,
taking into account three neighbors (k = 3) and a sliding
window with 30 observations (l = 30). We organize the
pieces of information depicted in this figure as follows: the
gray dotted line represents the entire time series; the yellow
line symbolizes the query window; the black dashed line
indicates the most similar subsequences found by the simi-
larity search using the Euclidean distance; the black circles
express the values employed for making the projection; and
the red square denotes the observation we are willing to
predict.

kNN-TSP defines an observation from the last l historical
values. The dependence is restricted to a limited number of
past observations since values that happened a long time ago
usually do not influence the current value.

Algorithm 1: kNN-TSP
// Z represents a time series with m

observations
// l refers to the search window length
// k indicates the number of nearest neighbors
// d expresses the distance measure
// f corresponds to the ensemble function
Input: Z , l, k, d, f
Output: ẑ(m, 1)

1 begin
/* S(i)1..l contains the subsequence of length l

which starts at observation i of the time
series Z */

2 S ← generate_subsequences
(
Z1..(m−l), l

)
;

// Obtaining the query Q
3 Q← Z(m−l+1)..m;

// D(i) stores the distance between Q and S(i)

4 D← d(Q, S);
// Choosing the k most similar subsequences

5 P← search_nearest_neighbors(S,D, k);

// Getting the next value P
(j)
l+1 of each

nearest subsequence P(j)

6 R←
{
P(1)l+1, . . . ,P

(k)
l+1

}
;

// Calculation of a prediction
7 ẑ(m, 1)← f (R);
8 return ẑ(m, 1);
9 end

Algorithm 1 presents the pseudocode of kNN-TSP. In the
2nd line, the variable S stores all subsequences of length l
extracted from the time series Z . In the 3rd line, the method
adopts the last subsequence of length l as a reference query
(Q). The 4th line calculates the similarities (distances ∈
D) between the query Q and all subsequences previously
assigned to S. From the distance values, in the 5th line, the
algorithm searches for the k most similar subsequences to
the query Q. In the 6th line, a variable R is used to store the
subsequent values of each of the k most similar subsequences
contained in P. Finally, in the 7th line, the ensemble function
f (1) combines the values held in R to obtain an estimate of
the future value.

The parameters k and l of Algorithm 1 are intuitive.We can
easily estimate them by employing a training-testing vali-
dation procedure [44]. Furthermore, the value of l could be
proportional to the number of values that form a seasonal
station in the time series since the nearest neighbors would be
more meaningful in predicting. The distance measure d and
the ensemble function f are fixed statically before k and l.
Choosing an appropriate distance measure and selecting an
ensemble function are vital decisions to build an accurate
predictor, and any similarity-based approach requires both.
For this reason, we present a more detailed discussion about
them in Sections III-B and III-C, distance measures and
ensemble functions, respectively.
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B. DISTANCE MEASURES
Similarity is a concept extensively used in a wide range
of applications. We can understand it as an estimate of
the similitude degree between two objects given a distance
function [45], [46].

In time series prediction via machine learning models,
quantifying how similar are two data subsequences to decide
whether they belong to the same feature space is a highly
subjective task that suffers influence by different factors.
According to Hetland [47], the application domain and the
method chosen to calculate the similarity are among the
possible factors. The study formalized in Batista et al. [26]
goes further, i.e., it demonstrates that the performance of a
similarity measure is related to the ability of this metric to
capture the invariance required by the application domain
correctly.

In what follows, we describe some of the most pop-
ular distance measures for time series. For the sake of
organization, we categorize these metrics into two groups:
(i) non-elastic distances, which include measures that per-
form a linear alignment between sequences; and (ii) elastic
distances, which consider metrics that carry out a nonlinear
alignment between series to calculate their similarity. As far
as we know, this set of distances has never been empirically
analyzed from a time series prediction perspective.

1) NON-ELASTIC DISTANCES
The vast number of available distance estimates reflects part
of the researchers’ efforts to explore the concept of similarity
between pairs of objects [21], [26], [48]. These measures
may be readily adapted or applied directly to compare time
series [14].

Since each distance estimate contains specific particular-
ities, the choice of one over the other is often conducted
empirically on a particular problem. Still, a common property
among them is linear alignment (Fig. 5).

FIGURE 5. Example of alignment between two temporal data sequences
using the Euclidean distance.

In Fig. 5, the similarity degree between the sequencesQ =
(q1, q2, . . . , ql) and C = (c1, c2, . . . , cl), both of length l,
results from the squared differences between pairs of obser-
vations aligned on the time axis. We obtained this alignment
using the Euclidean distance, derived from (2) [49].

Lp(Q,C) =

(
l∑
i=1

|qi − ci|p
) 1

p

(2)

TABLE 1. Description of non-elastic distances for time series.

Equation (2), typically known as the Lp norm or
Minkowski metric, works with two l-dimensional vectors and
a constant p ≥ 0. Its computational cost depends on the values
of l and p, so that the larger these constants, the greater the
number of operations to be computed. The value assumed
by p gives rise to several distance measures with specific
behaviors. For instance, p = 1 expresses the Manhattan
(or City Block) distance, while p = 2 refers to the Euclidean
distance.

Table 1 lists themost popular distance functions that follow
linear alignment. These non-elastic distances are organized
into six categories according to their syntactic and semantic
similarities.

Due to the simplicity of interpretation and coding, the
Lp category contemplates distances that often guide the
similarity search in real applications. A drawback of these
measures is that they are sensitive to outliers and small
distortions in the time axis of the series [50]. The met-
rics labeled as L̂1 are weighted versions of the Manhattan
distance. The L̂2 category, in turn, covers measures sim-
ilar to the Euclidean distance. Metrics belonging to the
inner product category explicitly use scalar multiplication
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TABLE 2. Distance measures and their implementation issues.

in their definitions. The information category involves dis-
tances from the communication theory area; they are based
on the concept of information entropy, i.e., on the uncertainty
estimation of a probability distribution [44]. Average Dis-
tance is a hybrid distance that averages the Manhattan (L1)
and Chebychev (L∞) measures.
We must point out that even when the sequences are ade-

quately normalized, some distance functions may involve
undefined terms or terms that lead to a final score that is not
in <. Table 2 exhibits the metrics whose terms can lead to
implementation issues. In this table, x is a non-zero value
observed.

In our experiments, we get around the problems punctuated
in Table 2 in the following way [48]: we consider the result of
operations 0÷ 0 and 0 log(0) to be zero. In cases of division
by zero and logarithm of zero, we replace 0 by ε, a value
extremely small and positive.

All the distance estimates indicated in Table 1 have linear
time complexity, i.e., O(m), where m is the size of the time
series.

2) ELASTIC DISTANCES
Unlike the non-elastic distance measures discussed in
Section III-B1, elastic functions allow the alignment between
two time series distorted on the time axis. Some examples of
elastic distances are DTW, Longest Common Subsequence
Similarity [51], Edit Distance with Real Penalty [52], Spa-
tial Assembling Distance [53], Time Warp Edit [54], and
Move-Split-Merge [55]. DTW is probably the most popular
and accurate distance function for temporal data in related
tasks such as classification and clustering. Therefore, we only
focus our review and experimental evaluation on this measure
as elastic distance.

DTW allows two time series visually similar but distorted
on the time axis to be aligned for later point-to-point compar-
ison [56]. As we shall explain in what follows, the inputs of
DTW are two vector series, while the output is the aggregated
distance between them.

Let be two sequences Q = (q1, q2, . . . , qn) and C =
(c1, c2, . . . , cm), of length n and m, respectively. To compare
them using DTW, we need to generate a matrix of size n×m
in which the element of index (i, j) contains the distance d ,
typically the Euclidean, between the observations qi and cj.
In practical terms, each cell (i, j) of the matrix corresponds to

the alignment between the observations represented therein,
as shown in Fig. 6.

An adjustment path R̄ = (r1, . . . , rt ), where max(n,m) ≤
t < m + n − 1, is a set of contiguous elements of the
matrix that defines a mapping between Q and C . There are
many possible adjustment paths, but the path to be chosen
is the one that minimizes the deformation cost, i.e., whose
cumulative distance along the path is minimal. Equation (3)
sets the optimal path, where ri indicates the ith element of the
adjustment path.

DTW (Q,C) = min
R̄

(
t∑
i=1

ri

)
(3)

The mentioned path is subject to three other constraints:
• Boundary constraint: The adjustment path need to begin
and end at diagonally opposite corner cells of the matrix,
i.e., r1 = (1, 1) and rt = (n,m);

• Continuity constraint: Matches must be performed in
one-unit steps. Therefore, a match never jumps one or
more observations;

• Monotonicity constraint: The relative order of the obser-
vations needs to be preserved so that the data sequence
will not be able to ‘‘go back’’ in the cumulative cost
matrix path. In other words, this restriction forces the
points in the matrix to be monotonically spaced in time.

We can measure the cumulative distances applying a
dynamic programming algorithm, which implements the fol-
lowing recurrence relation:

DTW (i, j) = d(qi, cj)+min


DTW (i− 1, j)
DTW (i, j− 1)
DTW (i− 1, j− 1)

(4)

In (4), we sum the result accumulated in the current cell
with the shortest distance from its three adjacent ones: the
cell to the left, upper, or upper right diagonal. The number of
iterations required to perform these calculations gives DTW
anO(n×m) complexity. However, it is possible to reduce this
computational time cost by using a ‘‘warping’’ window. Such
a window limits how much the adjustment path can move
away from the leading diagonal of the matrix [57], [58].

We considered in our experimental assessment DTW with
the Sakoe-Chiba band [57]. The warping window length has
been set to correspond to 10% of the length of the subse-
quences.

C. ENSEMBLE FUNCTIONS
As we explained in Algorithm 1, after kNN-TSP returns the
set P with the k most similar subsequences P(1)1..l, . . . ,P

(k)
1..l of

length l from a query Q, the local similarity-based method
uses the next observation of each subsequence P(j)l+1, where
1 ≤ j ≤ k , to predict the value zm+1 of a series Z with
size m. Thus, we need an ensemble function f that combines
the subsequent values of the different nearest subsequences
to output a new observation. Although the mean of these
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FIGURE 6. Schematization of a cumulative cost matrix resulting from the DTW application with the
adjustment path highlighted (modified from [56]).

values is a good data fusion measure, we may choose to
employ other ensemble functions, such as median, Distance
Weighted (DW), and Mean of Relative Values (MRV).

The ensemble function DW, defined by (5) [44], weighs
the subsequent observations P(j)l+1 by the distances between
the reference query Q and the data subsequences P(j)1..l .

fDW (P) =

∑k
j=1 wjP

(j)
l+1∑k

j=1 wj
(5)

Different mathematical relationships can determine the
weights wj of (5), but the following expression gives a
usual way:

wj =
1

d
(
Q,P(j)1..l

)2
MRV (6) [16], in turn, computes the future value based on

the sum of the last value zm sampled from the time series
with the average of the differences between the last value
P(j)l of each most similar subsequence and the value P(j)l+1 that
succeeds it.

fMRV(P) = zm +

∑k
j=1

(
P(j)l+1 − P

(j)
l

)
k

(6)

MRV is more pertinent when there is variance in amplitude
and offset since it projects values taking patterns at different
trend levels into account.

IV. PROPOSED METHOD: k-NEAREST NEIGHBORS - TIME
SERIES PREDICTION WITH INVARIANCES
We have identified that the naive procedure of similarity
search adopted by the original kNN-TSP has two main lim-
itations that still need to be overcome: (i) occurrence of
incorrect matches due to the absence of mechanisms that
deal with invariances to amplitude, offset, and complexity;
and (ii) undesirable results because of the occurrence of

FIGURE 7. Example of variance to amplitude and offset. Popular
distances measures such as Euclidean and DTW indicate that Q is more
similar to S(2) than S(1).

trivial matches. We discuss such issues and their impact
individually in what follows.

To better illustrate how the amplitude and offset variances
can be a critical problem for time series prediction, we show
an example in Fig. 7 with a query Q and two subsequences,
S(1) and S(2). In this example, we can conclude from a visual
analysis that S(1) is very similar to Q but with a small offset
increase of ten units. On the other hand, S(2) is a simple
straight line that differs from the behavior ofQ. However, the
Euclidean distance (d) outputs not intuitive results indicating
that the most similar subsequence to Q is S(2) – d(Q, S(2)) =
84.26 –, while d(Q, S(1)) = 114.54. The same wrong
match happens when we employ the well-known DTW dis-
tance measure. Such an unexpected result occurs because the
small offset differences are accumulated during the matching
of the subsequences, leading to a final value higher than
awaited.

We need to reinforce that amplitude and offset can be
essential features to characterize subsequences in some cases.
However, in most similarity-based search applications, incor-
rect matches are returned if the search does not address
amplitude and offset invariances. This problem arises because
the occurrence of different subsequences in the same offset is
rare and even small differences in the offset are sufficient to
increase the values of a distance metric and lead to incorrect
matches, as represented in Fig. 7.
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A simple way to deal with amplitude and offset is
to perform the z-normalization of the series, making the
sequence have a zero average and unit standard deviation. The
z-normalization is given by (7), where z′t and zt are, in this
order, the normalized value and the original observation of
the time series Z at time t . The other terms correspond to
the average (µ) and standard deviation (σ ) of a sequence
covering zt .

z′t =
zt − µ
σ

(7)

The second issue approached in our proposal is the com-
plexity invariance. The problem here is when a pair of sub-
sequences with a similarly shaped but complex pattern is
considered unmatched by a distance measure due to the data
morphology.

Fig. 8 exemplifies the dilemma of variance to complexity.
In this figure, we used z-normalized versions of the query
in Fig. 7 and introduce some data corruptions in a small
proportion, such as noise, phase differences, and amplitude
distortion. Even so,Q and S(1) still resemble each other. Note
that this setting is more realistic than the one portrayed in
Fig. 7 since, in most application domains, we expect that one
event of interest will generate similar subsequences but never
exact copies. Once again, the Euclidean distance is counter-
intuitive and indicates that Q is more similar to S(2) than S(1).
This error is justified because time series with simple shapes
like the straight line S(2) generally match well with com-
plex shapes. Differently, sequences with complex behaviors
are typically described by various characteristics, including
peaks and valleys, that make them difficult to match, even
when the patterns are similar to the human eye.

FIGURE 8. Example of variance to complexity. The Euclidean distance
demonstrates that Q is more similar to S(2) than S(1) due to peaks and
valleys in S(1).

An efficient solution to treat such variance is to employ
the Complexity-Invariant Distance (CID) [26].We present the
CID measure and its complexity estimate in Section IV-A.

The last issue contemplated by our proposal is the disregard
of trivial matches [59]. A trivial match is a subsequence
drawn from a sliding window that begins at observation m
and which is very similar to the subsequences starting at time
m + 1 (or m − 1). These subsequences are trivial matches
because they share all but two values. Fig. 9 reproduces this
idea, where we display three subsequences that are essentially
the same despite a shift in one unit to the left and right
between them. In this scenario, the distances between the
query Q and the subsequences S(1) and S(2) are so small that

FIGURE 9. Examples of trivial matches. The distances between the query
Q (red subsequence) and their respective left (black subsequence) and
right (yellow subsequence) shifted versions by one observation are
minimal, leading to undesired matches.

the search procedure will tend to choose S(1) and S(2) as two
of the k most similar subsequences to Q.

Trivial matches are especially problematic when we want
to use the k most similar subsequences to a given query, rather
than the single most similar subsequence, aiming to include
diversity and reduce errors in searching for temporal patterns.
A similarity search with little diversity will almost always
return exact copies of the query subsequencewith someminor
variations. An easy solution to obtain the desired diversity is
to exclude trivial matches by iterative checking.

Given a subsequence S(1)i..(i+l−1) and a subsequence

S(2)j..(j+l−1), such that j > i, it is said that S(2) is a trivial match of

S(1) if |j−i| ≤ l. Obviously, this condition implies identifying
trivial matches for their subsequent exclusion.

To mitigate the problems faced by kNN-TSP, we propose
in this paper a new extension that employs the three solutions
discussed above to improve the search for similar subse-
quences. Algorithm 2 presents our method kNN-TSPI. The
time complexity of this similarity-based predictor isO(m×l),
where m is the size of the time series and l is the length of the
search window.

In the 2nd line of Algorithm 2, we store all subsequences
of length l extracted from the time series Z in the variable S.
Then, in the 3rd line, all the collected subsequences are
z-normalized, and their respective computed averages and
standard deviations are reserved for later use. In the 4th line,
we memorize the reference query Q. In the 5th line, we cal-
culate the similarities (complexity-invariant distances ∈ D)
between the normalized query Q and all z-normalized sub-
sequences through the CID measure. To make the similarity
search invariant to amplitude and offset, the z-normalization
is performed both on the query Q and the sliding window,
not on the whole time series. In the 6th line, we search
for the k most similar subsequences. With the treatment of
trivial matches, we guarantee that the k nearest subsequences
returned do not overlap with the queryQ or each other.We get
the next value of eachmost similar subsequence in the 7th line
and, in the 8th line, we normalized them employing the aver-
ages and standard deviations previously computed from their
source subsequences. Such normalization has the purpose
of making the value P(j)l+1 have the same distribution as the
subsequence P(j)1..l . Afterward, in the 9th line, the subsequent
z-normalized values are mapped to the query values space in
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Algorithm 2: kNN-TSPI
// Z represents a time series with m

observations
// l refers to the search window length
// k indicates the number of nearest neighbors
Input: Z , l, k
Output: ẑ(m, 1)

1 begin
/* S(i)1..l contains the subsequence of length l

which starts at observation i of the time
series Z */

2 S ← generate_subsequences
(
Z1..(m−l), l

)
;

/* S(i)
′
is the z-normalization of the

subsequence S(i). The average and standard
deviation used for normalization are also
allocated for reuse */

3 [S ′, σ, µ]← z_scores(S);
// Obtaining the query Q

4 Q← Z(m−l+1)..m;
/* D(i) stores the complexity-invariant

distance between Q and S(i), both
z-normalized */

5 D← CID(z_scores(Q), S ′);
// Choosing the k most similar subsequences

(non-trivial matches)
6 P← search_nearest_neighbors(S,D, k);

// Getting the next value P
(j)
l+1 of each

nearest subsequence P(j)

7 R←
{
P(1)l+1, . . . ,P

(k)
l+1

}
;

/* Normalization in z-scores of each value
R(j) using the average and standard
deviation of their respective subsequence
P
(j)
1..l */

8 R′ ←

R(1) − µ
(
P(1)1..l

)
σ
(
P(1)1..l

) , . . . ,
R(k) − µ

(
P(k)1..l

)
σ
(
P(k)1..l

)
;

// Mapping the z-normalizations to the
values of the query Q (8)

9 R← map_query_values(Q,R′);
// Calculation of a prediction

10 ẑ(m, 1)← f (R);
11 return ẑ(m, 1);
12 end

agreement with (8) and used by the ensemble function f (1)
to estimate the future value.

R = σ (Q)× R′ + µ(Q) (8)

In (8), σ and µ correspond, in this order, to the standard
deviation and the average of the reference queryQ. This equa-
tion comprises the inverse function of the z-normalization and
allows mapping, to the value space of the subsequence Q, the
content of the variable R′ that was previously z-normalized.

A. COMPLEXITY-INVARIANT DISTANCE MEASURES
Temporal data commonly presents inopportune distortions.
These undesirable effects may cause distance measures to
fail to adequately capture the similarity between time series.
Thus, when sequential data exhibit distortions in the time
axis, traditional metrics to measure the similitude between
pairs of objects end up associating too large distances with
similar objects [26].

FIGURE 10. Example of the need for invariance to complexity. In terms of
Euclidean distance, even objects 2 and 3 being similar to the human eye,
object 2 is more alike to object 1.

Fig. 10 portrays the problem of variance to complexity
using three time series computationally generated from the
contour of fish images by the radial scanning technique [60].
By employing this procedure, the distances between the cen-
ter point of the object of interest and the consecutive points
of its contour are extracted to compose a sequence of dis-
tances. In Fig. 10, the initial reference point for calculating
the distances was the fish mouth, and the clockwise direction
was adopted. The Euclidean distance between the built series
shows that, although the shapes of objects 2 and 3 are visually
similar, object 2 is more alike to object 1 (d(1,2) = 0.8279 and
d(2,3) = 0.8419). This fact introduces errors in the similarity
search process since complex data sequences can be consid-
ered more similar to simpler ones.

The application of complexity-invariant distances, such as
CID [26] and DTW - Delta (DTW-D) [61], allows morpho-
logical information of time series to be estimated and used as
a correction factor for existing distance measures. As a result
of this weighting, we have more precise and relevant pattern
matching. Next, we introduce these measures in detail.

1) CID
CID considers the morphology of the sequences being com-
pared and assigns greater distances to the sequences with dif-
ferent complexities. We may define CID from the Euclidean
distance following (9) [26].

CID(Q,C) = ED(Q,C)× CF(Q,C) (9)

In (9), Q and C represent two time series, ED is the
Euclidean distance, and CF comprises a complexity correc-
tion factor defined by (10). In such an equation, CE(Q) and
CE(C) reflect complexity estimates of the sequences Q and
C , respectively. If Q and C have the same complexity, CID
degenerates to the Euclidean distance.

CF(Q,C) =
max (CE(Q),CE(C))
min (CE(Q),CE(C))

(10)

The original CID adopts a reasonably simple complexity
estimate [26]; it is based on the physical intuition that if we
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FIGURE 11. Complexity estimates of three time series with distinct
behaviors. The less complex series (Q1) ‘‘stretches’’ to the shortest line
segment, while the most complex series (Q3) ‘‘stretches’’ to the most
extended line segment (modified from [26]).

could ‘‘stretch’’ a temporal data sequence until it becomes a
straight line, a complex series would result in a longer line
than a simple time series. Fig. 11 synthesizes this idea with
an example.

The complexity estimate illustrated in Fig. 11 and used by
CID can be determined according to (11).

CE(Q) =

√√√√n−1∑
i=1

(qi − qi+1)2 (11)

Equation (11) should be applied for sequences with the
same number of observations since only the differences
between the observed values are taken into account, ignoring
the differences in the time the observations occurred. Such a
condition does not restrict the complexity usage when cou-
pled with a distance metric like the Euclidean, which also
requires that the time series have the same size. However,
it limits the employment of other more flexible distances,
such as DTW. Further, (11) requires that the sequences to be
compared are previously normalized in amplitude and offset.
Although this normalization is a standard requirement for
most application domains, a complexity estimate that does
not claim invariance to amplitude and offset may be quite
useful in other fields of study.

We found dozens of complexity measures in the signal
processing area that can also be applied to time series. Five
of these complexity estimates are described below based on
information theory, chaos theory, and Kolmogorov approx-
imation concepts. Our experimental assessment compares
these five complexity measures with the original CID.

• Absolute Difference: This measure estimates the com-
plexity of a given data sequence in an analogous way to
Squared Difference (11). However, we took the absolute
differences instead of computing the squared differences
between consecutive observations. The following equa-
tion formalizes this concept: CE(Q) =

∑
|qi − qi+1|;

• Compression: Based on the Kolmogorov complex-
ity, this measure can be approximated by compression
algorithms, such as Lempel-Ziv-Welch. Initially, each
time series is converted to symbols using the Symbolic
Aggregate approXimation (SAX) [62]. The discretized
sequences are then compressed using a file compression
utility. The complexity estimate of a time series equals
the size in bytes of the compressed file;

• Edges: This measure considers the number of edges
in the signal, which we can interpret as the number
of changes in the trend or how many times the first
derivative of the data sequence changes its signal to
positive or negative values;

• Zero-crossings: This measure expresses the complex-
ity of a given time series from the zero-crossing rate,
i.e., from the number of times the signal changes its
amplitude from a positive value to negative or vice versa.
In speech analysis, this estimate is widely used to recog-
nize voiced fragments apart from unvoiced segments and
noisy breaks [63];

• Permutation Entropy: This measure reflects the
entropy of a set of patterns produced from a permuta-
tion of natural numbers [64]. In the generation of these
patterns, all possible permutations of numbers between
0 and n−1 are considered, with the value of n commonly
chosen in a range from 3 to 7. For example, for n = 3,
the following permutations are generated: {[0, 1, 2],
[1, 0, 2], . . . , [2, 1, 0]}. We can interpret the pattern
[0, 1, 2] as a temporal sequence of three values in which
the second observation is larger than the first one, and the
third value is greater than the second one. Concerning
the pattern [1, 0, 2], it is a temporal sequence of three
observations where the second value is smaller than the
first one, and the third observation is greater than the first
one. We can analyze all the generated patterns following
this same reasoning. To obtain the probability of each
pattern, we run a sliding window with n observations
across the temporal sequence, counting the number of
times each pattern occurs. The complexity estimate is
nothing less than the entropy of the set of patterns iden-
tified in the time series.

We can employ all the complexity estimates introduced
above to compare sequences composed of a few observations.
In similarity-based forecasting, this restriction is valid con-
sidering that the compared subsequences are usually short,
with lengths proportional to the number of observations that
characterizes a seasonal period within the time series.

2) DTW-D
Proposed initially to improve time series classification
using semi-supervised learning, DTW-D can be considered
a complexity-invariant distance by approximating globally
similar series employing (12) [61].

DTWD(Q,C) =
DTW (Q,C)
ED(Q,C)+ ε

(12)

Equation (12) divides the DTW result by the Euclidean
distance plus an extremely small positive value ε, which
avoids the divide-by-zero error.

V. EXPERIMENTAL SETTING
We organized an experimental protocol in three steps
to evaluate and compare our method kNN-TSPI with
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FIGURE 12. Overview of the experimental setting.

previous similarity-based predictors and state-of-the-art pre-
dictive models (Fig. 12).

In Step 1, we collected 55 real-world datasets currently
managed by the ICMC-USP Time Series Prediction Repos-
itory [18]. These temporal data come from different domains
such as finance, medicine, engineering, agriculture, and
tourism. Table 3 shows, for each dataset, the acquisition
period, the time series size (m), the maximum number of
observations that constitute a seasonal period in the data
sequence (max_p), and the projection horizon (h), which
refers to the number of values we want to predict.

In Step 2, we estimated the best parameter values for
each predictor. We considered ten-fold cross-validation for
the methods that follow the global approach and hold-
out validation for the algorithms that run according to the
local approach. We sought to minimize the Mean Square
Error (MSE) in both cases.

The two parameters required by the similarity-based meth-
ods are the length of the reference query (l) and the cardinality
of the set of most similar subsequences (k). For l, we tested
values between 3 and max_p in increments of 2; for k , values
between 1 and 9 also in increments of 2. Since max_p is an
upper bound for the number of observations corresponding
to a variation in the seasonal pattern, the value of l will
be proportional to the seasonal cycle within the temporal
sequence.

To show that kNN-TSPI can be as accurate as, or more
accurate than, state-of-the-art predictors, we confronted the
proposed algorithm with seven traditional methods [65]:
six non-parametric and five parametric. Table 4 indicates
the 11 predictors used for comparison, the input arguments
required by them, and the value ranges adopted in the
adjustment step. As summarized in this table, we applied
the machine learning regression algorithms following the
global approach and adjusted their parameters through ten-
fold cross-validation with MSE minimization. The statistical
models, in turn, had their parameters estimated using the
Box-Jenkins method with minimizing the Akaike Informa-
tion Criterion (AIC) and maximum likelihood. Exception-
ally, we determined the parameters of LSTM, MA, HWA,
and HWM by employing holdout validation with minimizing
the MSE.

After the parameter estimation step, we built and adjusted
predictive models on the training data. Then, we extrapolated

TABLE 3. Dataset description and evaluation settings.

the fitted models to predict h periods ahead, taking into
account the two projection strategies described in Section III
and referenced in this study as:

• Multi-step-ahead projection strategy with approximate
iteration;

• Multi-step-ahead projection strategy with updated
iteration.

Finally, in Step 3, the results achieved by the predictors
were assessed. We adopted three performance measures to
compare the projected datawith their respective actual values:
MSE, Theil’sU (TU), and Prediction Of Change In Direction
(POCID).

The MSE measure is popularly known for confronting the
actual values (zt ) with the predicted values (ẑt ), as formalized
by (13). It expresses the ratio between the quadratic sum
of the forecast error and the number of projected observa-
tions (h). MSE values close to zero suggests efficient predic-
tors.

MSE =
1
h

h∑
t=1

(zt − ẑt )2 (13)
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TABLE 4. Algorithms and search spaces considered in the parameter
estimation step. The acronyms not yet defined are: Gaussian Process (GP),
Reduces Error Pruning Tree (REPTree), Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM), Moving Average (MA), Holt-Winters
Additive model (HWA), and Holt-Winters Multiplicative model (HWM).

The TU coefficient considers the MSE error normalized
by the error resulting from a trivial model. This trivial model
supposes that the best value for t + 1 is the value observed at
time t . Equation (14) defines the TU index.

TU =

∑h
t=1(zt − ẑt )

2∑h
t=1(zt − zt−1)2

(14)

We can interpret the values of the TU coefficient as fol-
lows: TU > 1, the predictor did not outperform the trivial
model; TU = 1, the predictor’s performance is equivalent to
the trivial model; TU < 1, the predictor outperformed the
trivial model; TU ≤ 0.55, the predictor is reliable for making
future predictions.

Another performance measure considered in our exper-
iments is the POCID hit rate, established by (15). In this
equation,Dt receives the value 1 if (ẑt − ẑt−1)(zt − zt−1) > 0,
and is 0 otherwise. The concept behind POCID is to evaluate
the accuracy of the data direction changes, i.e., if the future
value of the time series will increase or decrease given the
current observation.

POCID =

∑h
t=1Dt
h

× 100 (15)

Because of the different assessment indexes and to guide
the choice of suitable predictors, we decided to perform a
multi-criteria analysis. This paper uses the Multi-Criteria

Performance Measure (MCPM) proposed in [66] to combine
the results ofMSE, TU, and POCID. Unlike the error indexes,
POCID values must be maximized rather than minimized.
Hence, we adopted the POCID counterpart or error rate (ε),
defined as ε = 100− POCID.
The MCPM calculates, for each algorithm-dataset pair, the

total area of a three-sided polygon whose vertices are equiv-
alent to the values of the individual performance measures
obtained by the predictor using the temporal data. Algorithms
with low MCPM are considered good predictors.

To detect statistical differences between a set of predic-
tion algorithms, we employed the non-parametric statisti-
cal test of Friedman with a confidence interval of 95%
(p-value < 0.05). Whenever the significance test identified
differences, we applied the Nemenyi posthoc test to deter-
mine the best-performing predictors.

We also explored distinct aspects intrinsic to the time series
prediction task based on similarity search. To do so, we ran
kNN-TSPI in the same way as the one already presented in
this section, but we configured it with several distance met-
rics (Section III-B), complexity-invariant distance measures
(Section IV-A), and ensemble functions (Section III-C).
All programs involving our experimental evaluation were

implemented using the following technologies: MATLAB
and GNUOctave; R with the Forecast package; and Java with
the Weka library.

VI. RESULTS AND DISCUSSION
We organized the discussion of our experimental results into
three primary studies: (i) kNN-TSPI versus two previous
similarity-based predictors; (ii) kNN-TSPI versus 11 state-
of-the-art prediction methods; and (iii) performance analysis
of kNN-TSPI with different distance measures and ensemble
functions.

The statistical validation findings were summarized in
Critical Difference (CD) diagrams whose scale indicates
the average performance ranking of each prediction algo-
rithm [67]. In these diagrams, predictors joined by a thick line
showed no Statistically Significant Differences (SSD).

We restrict ourselves to displaying here only the diagrams
obtained from the MCPM. Our supplementary material pro-
vides the other diagrams and the detailed results achieved
by the three individual performance measures and the values
found in the parameter estimation step.

A. kNN-TSPI VERSUS OTHER SIMILARITY-BASED
PREDICTORS
The global kNN regressor (Section III-A1) assumes that the
input data are independent and identically distributed. The
local methods kNN-TSP (Section III-A2) and kNN-TSPI
(Section IV) were formulated to consider the temporal
characteristics of the data in their modeling. To show the
cost-benefit of these algorithms, we faced them regarding
predictive performance. Such comparisons totaled 330 con-
figurations (3 predictors × 2 projection strategies ×
55 datasets).
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FIGURE 13. Averages and SD of MSE obtained by the similarity-based
predictors.

We display in Fig. 13 the averages and Standard Devia-
tions (SD) of MSE obtained by the similarity-based methods
over the 55 datasets. In this figure, kNN-TSP with approxi-
mate iteration exhibited the best results. Although kNN and
kNN-TSPI showed some atypical values of SD, they had sim-
ilar MSE averages. In the updated iteration scenario, kNN-
TSPI achieved better MSE values than kNN-TSP, and its
performance was very close to kNN.
Given the four possible ranges of TU values, Fig. 14

presents the results reached by each predictor considering
all the time series. We can state from this figure that kNN-
TSPI with approximate iteration should provide reasonably
lower performance than its version with updated iteration.
Also, kNN and kNN-TSP may display similar results or even
overcome the predictive error of kNN-TSPI. We should not
view this fact as negative since, in kNN-TSPI, the similarity
search is conducted with diversity to avoid erroneous choices
of the most similar subsequences. We will clarify this point
further when Table 5 and Figs. 16-17 are introduced.

FIGURE 14. Performance, in terms of TU, of the similarity-based
predictors across the 55 datasets.

Table 5 exhibits the averages and SD of the values obtained
with the POCID index application. According to the informa-
tion summarized in this table, kNN-TSPI and kNN provided,
in this order, the best and worst hit rates relative to the
projected horizon trends regardless of the prediction strategy
employed.

We sketch in Fig. 15 the CD diagrams for the MCPM total
area values resulting from the execution of the similarity-
based predictors. As for the recursive strategy by approximate

TABLE 5. Average and SD values of POCID achieved by the
similarity-based predictors.

FIGURE 15. MCPM derived from the similarity-based predictors.

iteration, kNN-TSP provided the best result (Fig. 15(a)).
However, our method obtained the smallest prediction errors
using updated iteration (Fig. 15(b)). Moreover, for both pre-
diction strategies, kNN-TSPI was the most stable algorithm
regarding the accuracy of the projected horizon trends.

To reinforce the results of Table 5 and compare
our method’s prediction quality concerning the previous
similarity-based predictors, Fig. 16 displays the behavior
of the algorithms on four challenging datasets. The four
illustrated examples show that kNN-TSPI stands out for its
solid performance in determining the trend direction of the
projection horizons.

As mentioned, kNN-TSPI has only two readily identifiable
parameters: l and k . The parameter l defines the length of
the search window, i.e., the number of previous observations
on which the current value is dependent. The value of l
is proportional to a seasonal station in the time series. For
example, for series with daily samples and weekly season-
ality, we could establish a search window l = 7, so kNN-
TSPI would employ the seasonality information to obtain the
most similar subsequences. Particularly in time series with
seasonality, we must adopt a search window length greater
than or equal to the size of the seasonal cycle to allow kNN-
TSPI to use the seasonality information.

Another factor to consider when choosing the length of
the search window is the temporal dependency. For exam-
ple, given a series representing the daily number of patients
visiting a specific hospital ward, it would not be meaningful
to employ a search window l = 30 since there is not much
relationship between the current observation and a value
observed 30 days ago. Therefore, defining a search window
length that describes the actual dependency of the current
values with historical observations is key to ensuring more
accurate predictions.

The parameter k , in turn, defines the number of nearest
neighbors. The value of k depends on the number of observa-
tions recorded in the time series. Considering the parameter l,
the space of historical values covered by k nearest neighbors
is l × k . In this sense, the condition l × k � m must be
satisfied to ensure diversity and have good candidates for
nearest neighbors.
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FIGURE 16. Predictions for the out-of-sample period obtained from the multi-step-ahead projection
strategy with approximate iteration using the similarity-based predictors.

An optimization tool can also be used to estimate the values
of l and k . In this case, we split the training set into train-
ing and validation sets, and the two parameters are chosen
to minimize a performance measure for the validation data
employing the training data. However, as with any estimation
method, the best value in practice is not always selected.

We experimented with varying the k from 1 to 11 to show
the impact of this parameter on the performance of kNN-
TSPI regarding the other similarity-based predictors over the
55 datasets. To reach this goal, we fixed l = max_p for
each dataset (Table 3). Fig. 17 exhibits the reached results
considering the two investigated projection strategies.

As we can see in Fig. 17, regardless of the projection
strategy, kNN-TSPI displayed the highest number of wins
given the 55 datasets and different values of k . These results

FIGURE 17. Number of wins achieved by each similarity-based predictor
given 55 datasets and the variation of parameter k from 1 to 11.

allow us to state that, unlike the other two similarity-based
predictors, kNN-TSPI is less sensitive to the parameter k .
Thus, even though the three similarity-based methods have

78036 VOLUME 10, 2022



Antonio R. S. Parmezan et al.: TSP via Similarity Search: Exploring Invariances, Distance Measures and Ensemble Functions

presented similar predictive performances, the stability of our
algorithm both regarding the parameter k and the accuracy of
the projection horizon trends is a valuable advantage that jus-
tifies the use of techniques to obtain invariances to distortions
in temporal data.

Finally, the low computational complexity of similarity-
based methods makes them particularly attractive for real
applications that require high efficiency. The global kNN
regressor has a time complexity of O(n × l + n × k), where
n comprises the number of examples, l indicates the search
window length, and k is the number of nearest neighbors.
In contrast, the local kNN predictors have a time complexity
of O(m× l), where m is the size of the time series.

B. kNN-TSPI VERSUS STATE-OF-THE-ART METHODS
To demonstrate that our predictor can provide results as good
as other machine learning algorithms and statistical methods,
we compared kNN-TSPI with 11 state-of-the-art models.
The experiments carried out included 1,320 configurations
(12 predictors × 2 projection strategies × 55 datasets).

Fig. 18 displays the averages and SD of the MSE values
for each configuration and prediction strategy. REPTree pro-
vided the smallest prediction errors by adopting approximate
iteration, while HWA obtained the largest ones. LSTM and
HWM yielded, in this order, the best and worst results using
updated iteration. The other methods achieved MSE values
close to each other.

FIGURE 18. Averages and SD of MSE obtained by the state-of-the-art
methods.

We sketch in Fig. 19 the TU values resulting from the
predictors ran with the two projection strategies. Examining
the approximate iteration (Fig. 19(a)), SARIMA achieved
better results than the trivial model in 30 (20 + 10) of
55 datasets (TU < 1). GP, SVM, and kNN-TSPI out-
performed the naive model (TU < 1) in 27 (13 + 14),
27 (11+ 16), and 22 (12+ 10) datasets, respectively. Looking
at the updated iteration (Fig. 19(b)), SARIMA, GP, SVM,
kNN-TSPI, and ARIMA overcame the trivial model by about
40 datasets (TU < 1).
Table 6 summarizes the average and SD values of

POCID coming from the state-of-the-art algorithms. For the

FIGURE 19. Performance, in terms of TU, of the state-of-the-art methods
across the 55 datasets.

TABLE 6. Average and SD values of POCID achieved by the
state-of-the-art methods.

approximate iteration, we can see that our proposal reached
the best POCID average (61.86% with SD = 18.83%),
outperforming SARIMA (61.64% with SD = 26.29%) and
MLP (58.07% with SD = 18.04%). SARIMA showed the
best POCID values in terms of updated iteration (61.27%
with SD = 18.20%), followed by kNN-TSPI (59.11% with
SD = 18.34%). We must highlight that the error eventually
propagated along the projection horizon influences SARIMA
more than kNN-TSPI.

FIGURE 20. MCPM derived from the state-of-the-art methods.

Fig. 20 exhibits the MCPM values from the investigated
methods by means of CD diagrams. The multi-criteria results
reveal that SARIMA, SVM, GP, and kNN-TSPI are compet-
itive forecasting algorithms with very close outputs.
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Although SARIMA, SVM, and GP achieved a relatively
higher overall precision than the similarity-based predictor
without SSD, our proposal is more straightforward to encode,
fit, and embed into any device. Most importantly, kNN-
TSPI has only two parameters, whereas SARIMA has seven,
and SVM and GP have three. Furthermore, the two input
arguments of the algorithm with invariances are intuitive and
easily determined based on the seasonal characteristic of the
data. This property is highly desirable since the computa-
tional complexity is empirically related to the number of
parameters.

To better illustrate the time efficiency of kNN-TSPI,
we compared the time cost of our method against the most
promising predictors: GP, SVM, and SARIMA. In this exper-
iment, we chose three datasets with a small (ID = 12.D
in Table 3), medium (ID = 55.I in Table 3), and large
(ID = 21.D in Table 3) number of observations to see the
behavior of the algorithms in different situations. We did
not perform this experiment with all 55 datasets due to the
infeasible time required to run each method individually
and measure their cost fairly. However, we believe the three
scenarios discussed are enough to present the efficiency of
kNN-TSPI. Fig. 21 comprises more details about the eval-
uated data and the time costs spent by the algorithms. The
times are in seconds (s), minutes (min), or hours (h), and
each one of them represents the sum of time costs to search
parameters, build the predictive model, and extrapolate the
model for future periods. We performed the tests on a server
running a 2.10 GHz Intel Xeon E5-2620 v4 processor (32-
core) with 92 GB RAM and operational system Debian
4.9.130-2 (64 bits) under the same processing conditions for
all measurements.

FIGURE 21. Time costs of the traditional methods from literature
compared with our algorithm to predict time series with a small (12.D),
medium (55.I), and large (21.D) length.

In Fig. 21, we can see that kNN-TSPI showed a dras-
tically reduced time cost regarding the state-of-the-art pre-
dictors for both projection strategies. For example, given
the dataset 21.D with 3,128 observations and a predictive
horizon of 92 observations, while kNN-TSPI spent only
18.48 seconds in the approximate iteration, SVM exhibited
a cost of 49.04 minutes, SARIMA spent 2.67 hours, and GP

ran over 5.24 hours. Thus, although there is no statistical dif-
ference in the predictive power of these four methods, kNN-
TSPI has an important advantage in terms of time efficiency.

C. EXPLORING SIMILARITY-BASED PREDICTION
PROPERTIES WITH kNN-TSPI
This subsection reports a sequence of computational
tests involving distinct invariances, distance measures,
complexity-invariant distances, and ensemble functions to
explore the intrinsic characteristics of the time series pre-
diction via similarity. Besides helping to find the best set-
tings for kNN-TSPI, these experiments also aim to present
some insights that can guide research with similarity-based
predictors.

1) DISTANCE MEASURES
Our proposal differs from other published methods by
employing techniques to deal with amplitude, offset, and
complexity invariances and treat trivial matches. In this
context, we evaluated 25 distances to verify the similarity
measure’s influence on the kNN-TSPI performance. These
combinations totaled 2,750 configurations (1 predictor ×
25 similarity measures × 2 projection strategies ×
55 datasets).

Fig. 22 displays theMSE results for each configuration and
projection strategy. L3, Chebychev, and Additive Symmetric
χ2 were the metrics that provided, on average, the best MSE
values regarding the approximate iteration. However, they
did not present a large difference margin compared with the
usual distances, such as Euclidean, Cosine, Geodesic, Aver-
age Distance, CID, and DTW. In contrast, Sørensen, Squared
χ2, DTW-D, and CIDDTW showed the poorest MSE results;
they seem to have less discriminatory power than the other
measures.

FIGURE 22. Averages and SD of MSE obtained by kNN-TSPI using
different similarity measures.

Euclidean and the distances from the internal product cat-
egory (Correlation, Cosine, Geodesic, and Jaccard) recorded
the best performances in terms of updated iteration. Topsøe,
in turn, implied the highest prediction errors.
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FIGURE 23. Performance, in terms of TU, of kNN-TSPI employing distinct
similarity measures.

In Fig. 23(a), for the approximate iteration strategy, the
four ranges of TU values show that the metrics belong-
ing to the Lp norm (Manhattan, Euclidean, Minkowski,
and Chebychev) and internal product (Correlation, Cosine,
Geodesic, and Jaccard), and Canberra, Lorentzian, Clark,
Average Distance, DTW, and CID performed well in about
23 datasets (TU < 1), of which 12 showed reliable modeling
(TU ≤ 0.55). The results of these distances and CIDDTW
with updated iteration (Fig. 23(b)) were adequate, on aver-
age, for 37 datasets (TU < 1), of which 16 led to reliable
predictive models (TU ≤ 0.55).

The average and SD values of POCID are arranged,
for each kNN-TSPI configuration and projection strategy,
in Table 7. CID provided the best average hit rate considering
approximate iteration (61.86% with SD = 18.83%), while
Neyman produced the worst average performance index
(46.94% with SD = 12.88%). As for the updated iteration,
CID obtained the best POCID average (59.11% with SD =
18.34%), while Additive Symmetric χ2 recorded the worst
outputs (45.63% with SD= 13.58%). Therefore, CID culmi-
nated in the best results regardless of the projection strategy
adopted.

Fig. 24 exhibits the CD diagrams concerning the MCPM
values coming from kNN-TSPI configured with several dis-
tances measures. The distances belonging to the internal
product family (Correlation, Cosine, Geodesic, and Jaccard)
and Euclidean provided the smallest prediction errors for
kNN-TSPI with approximate iteration. This fact was also
observed for Canberra, Average Distance, Lorentzian, CID,
and Manhattan in relation to kNN-TSPI with updated iter-
ation. None of the said distances demonstrated SSD com-
pared with the metrics commonly employed for classification
and clustering, e.g., Manhattan, DTW, and CIDDTW. It is
important to emphasize that CID was very competitive and,

TABLE 7. Average and SD values of POCID achieved by kNN-TSPI
adopting several similarity measures.

FIGURE 24. MCPM derived from kNN-TSPI configured with various
similarity measures.

regardless of the projection strategy, it provided the kNN-
TSPI with the best hit rates regarding the extrapolated horizon
trends.

In agreement with the overall results, we recommend using
distances that have a linear time complexity. For instance,
in addition to its simplicity and fast running times, CID per-
formed consistently better than the other similarity measures
in terms of POCID.

Although DTW has been applied successfully to various
tasks, such as classification, clustering and anomaly detec-
tion, our study did not identify the potentiality of this non-
linear distance for time series prediction. We believe that the
poor performance of DTW is because it cannot align short
subsequences properly.

2) COMPLEXITY MEASURES
As discussed in Section IV, CID uses a complexity esti-
mate founded on the physical intuition that a series can be
‘‘stretched’’ until it becomes a straight line. Following this
reasoning, a complex sequence would result in a straight line
longer than a simple series. This complexity estimate, aka
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FIGURE 25. Averages and SD of MSE obtained by kNN-TSPI using
different complexity measures.

Squared Difference, can assign higher distances to subse-
quences with distinct complexities.

To assess the influence of the complexity measures in the
similarity search performed by kNN-TSPI, we compared five
other estimates besides the SquaredDifference adopted by the
original CID. The experiments derived from these applica-
tions totaled 660 configurations (1 predictor × 6 complexity
measures × 2 projection strategies × 55 datasets).
Fig. 25 illustrates the MSE averages and their respective

SD for each kNN-TSPI configuration and projection strategy.
Examining the approximate iteration, Zero-crossings, Abso-
lute Difference, and Compression provided the best overall
performances. However, their values were not so far removed
from Permutation Entropy and Squared Difference. Edges
recorded the worst MSE results.

In the scenario where we iteratively update the models with
actual values, Edges showed the worst results. Note that some
measures like Compression, Zero-crossings, and Permutation
Entropy presented comparable results with Squared Differ-
ence. Nevertheless, Squared Difference is conceptually more
straightforward.

In Fig. 26, the ranges of values obtained by the TU coeffi-
cient demonstrated that, among all the complexity estimates,
Edges implied the most unsatisfactory results. Specifically,
for the approximate iteration (Fig. 26(a)), kNN-TSPI config-
ured with the referenced measure was not preferable to the
trivial model in 34 of 55 datasets (TU > 1). Applying the
updated iteration (Fig. 26(b)), Edges was adequate (TU < 1)
to model and predict 34 (11 + 23) datasets, of which only
11 resulted in reliable models.

We can see in Table 8 that, for both projection strategies,
the average and SD values of POCID are evenly distributed
among the six estimates of complexity. In other words, using
any of these measures provided the kNN-TSPI with a POCID
average of 59.21% (SD ≈ 18.27%). Considering all the
complexity estimates, Squared Difference exhibited the best
results via approximate (61.86% with SD = 18.83%) and
updated (59.11% with SD = 18.34%) iterations.

FIGURE 26. Performance, in terms of TU, of kNN-TSPI employing distinct
complexity measures.

TABLE 8. Average and SD values of POCID achieved by kNN-TSPI
adopting several complexity estimates.

FIGURE 27. MCPM derived from kNN-TSPI configured with various
complexity measures.

Fig. 27 shows the CD diagrams that represent the MCPM
values resulting from kNN-TSPI employing the six complex-
ity measures. Squared Difference and Absolute Difference
did not present SSD compared with the other complexities.
For the encoding simplicity and providing the best hit rates
on future trends, we recommend using CID with Squared
Difference, whose good performance was also verified in [7].

3) ENSEMBLE FUNCTIONS
The ensemble function used by kNN-TSPI should allow the
projection of data that present variation in amplitude over
time. Thus, we analyzed four prediction functions: Median;
MAV; MRV; IW, which consists of applying coefficients
weighted by the temporal index of the compared subse-
quence; and DW, which is an average weighted by the values
of the computed distances (d). For the latter case, we investi-
gated six weight variations (Table 9). The performed com-
binations resulted in 1,100 configurations (1 predictor ×
10 ensemble functions × 2 projection strategies ×
55 datasets).

Fig. 28 displays the MSE averages and their respective
SD for each configuration and projection strategy. Analyzing
both projection strategies, MRV provided the kNN-TSPI with
the smallest prediction errors. Median, in turn, was the data
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TABLE 9. Pre-established weights for the DW function.

FIGURE 28. Averages and SD of MSE obtained by kNN-TSPI using
different ensemble functions.

FIGURE 29. Performance, in terms of TU, of kNN-TSPI employing distinct
ensemble functions.

fusion function that led to the worst results. DW3, DW5, and
DW6 were the most stable ensemble functions.
In Fig. 29, the TU statistics show that with approximate

iteration (Fig. 29(a)), MRV associated with kNN-TSPI pro-
moted, for 24 (14+ 10) of the total of 55 datasets, the lowest
TU values (TU < 1). As for the updated iteration (Fig. 29(b)),
MAV, DW3, DW5, and DW6 recorded, for 38 of the total of
55 datasets, the best performances (TU < 1).

From the average and SD values of POCID (Table 10),
it is possible to verify that the results are distributed slightly
among the ten ensemble functions for both projection strate-
gies. This means that using any of these ensemble functions
by kNN-TSPI resulted in an average hit rate over the projec-
tion horizon trends of approximately 60.05% (SD≈ 19.19%).

TABLE 10. Average and SD values of POCID achieved by kNN-TSPI
adopting several ensemble functions.

Notably, in the prediction via approximate iteration, the use
of IW implied the best performances (62.70% with SD =
18.44%). Differently, in the prediction conducted by updated
iteration, the best results were obtained employing DW2
(60.32% with SD = 18.58%).

Fig. 30 illustrates the CD diagrams given the MCPM total
area values of kNN-TSPI configured with the ten ensemble
functions. In the matter of prediction error and POCID rates,
DW3 was the more stable ensemble function regardless of
the projection strategy applied. IW, DW5, and MRV were
also competitive in relation to the other prediction functions.
In this context, DW3 and IW are, in general terms, good
candidates for ensemble function. IW also has the advantage
of assigning larger weights to the most recent observations.

FIGURE 30. MCPM derived from kNN-TSPI configured with various
ensemble functions.

On the one hand, MAV allowed kNN-TSPI with approx-
imate iteration to obtain the best multi-criteria results
(Fig. 30(a)). On the other hand, this same ensemble function
occupied the last position in the multi-criteria performance
ranking for the multi-step-ahead strategy with updated iter-
ation (Fig. 30(b)). These facts demonstrate that the MAV’s
performance is highly influenced by the error eventually
propagated along the projection horizon.

VII. CONCLUSION
This paper presented kNN-TSPI, a novel similarity-based
time series prediction method that explores invariances to
achieve more reliable results. We demonstrated that the
correct combination of amplitude, offset, and complexity
invariances, together with a solution to treat trivial matches,
leads to better matches between reference queries and data
subsequences.
kNN-TSPI is univariate and suitable for short-term pre-

diction. The algorithm can be implemented quickly and has
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only two parameters: the query length (l) and the number of
similar subsequences (k). The time complexity of kNN-TSPI
is O(m× l), where m is the time series size.
We faced our predictor with two previous similarity-based

methods and 11 state-of-the-art models considering 55 real
datasets and four evaluation measures. In addition to being
more stable than the similarity-based algorithms for different
values of k and competing with the state-of-the-art predic-
tors, our method is simpler to explain, adjust, and embed
on any device. We also performed a comprehensive experi-
mental assessment to understand the aspects intrinsic to the
similarity-based time series prediction task, such as invari-
ances to distortions, distance measures, complexity measures
applied to CID, and ensemble functions.

The lessons learned are valuable to all researchers wishing
to apply kNN-TSPI or any other similarity-based algorithm.
Furthermore, the theoretical-practical foundation that sus-
tains our study can be extended to various artificial intelli-
gence techniques.

As future work, we want to investigate the use of predictor
committees to compose kNN-TSPI’s predictions to improve
the final projection. Adapting kNN-TSPI to handle multivari-
ate data is also part of our plans.
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