IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 27 June 2022, accepted 15 July 2022, date of publication 21 July 2022, date of current version 27 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192837

== RESEARCH ARTICLE

An Ultra-Scalable Blockchain Platform for
Universal Asset Tokenization: Design
and Implementation

AHTO BULDAS 12, (Member, IEEE), DIRK DRAHEIM 3, (Member, IEEE),

MIKE GAULT “4, RISTO LAANOJA 12, TAKEHIKO NAGUMO “5:6, MART SAAREPERA 27,
SYED ATTIQUE SHAH 8, (Member, IEEE), JOOSEP SIMM 2, JAMIE STEINER 2,

TANEL TAMMET ', AND AHTO TRUU 2

! Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, 12618 Tallinn, Estonia
2Guardtime, 11316 Tallinn, Estonia

3Information Systems Group, Tallinn University of Technology, 12618 Tallinn, Estonia

4Guardtime, 1006 Lausanne, Switzerland

SMitsubishi UFJ Research and Consulting, Minato, Tokyo 105-8501, Japan

6Graduate School of Management, Kyoto University, Kyoto 606-8501, Japan

"Martest Research, 11317 Tallinn, Estonia

8School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, U K.
9 Applied Artificial Intelligence Group, Tallinn University of Technology, 12618 Tallinn, Estonia

Corresponding authors: Ahto Buldas (ahto.buldas @taltech.ee) and Dirk Draheim (dirk.draheim @taltech.ee)

ABSTRACT In this paper, we explain the Alphabill family of technologies that addresses both unlimited
scalability and unrestricted adaptivity. We deliver a sharded blockchain technology with unlimited scalability,
called KSI Cash, which is based on a new form of electronic money scheme, the bill scheme. We present
performance tests of KSI Cash that we have conducted with the European Central Bank in order to assess the
feasibility of a digital euro. We show the system operating with 100 million wallets and 15,000 transactions
per second (under simulation of realistic usage); having an estimated carbon footprint of 0.0001g CO2
per transaction. Furthermore, we show the system operating with up to 2 million payment orders per
second, an equivalent of more than 300,000 transactions per second (in a laboratory setting with the central
components of KSI Cash), scaling linearly in the number of shards. We explain, in detail, the key concepts
that unlock this performance (i.e., the concepts of the bill money scheme). The results provide evidence that
the scalability of our technology is unlimited in both permissioned and permissionless scenarios, resulting
into the Alphabill Money technology. Next, we contribute the architecture of a universal tokenization
platform that allows for universal asset tokenization, transfer and exchange as a global medium of exchange,
called Alphabill platform. We reveal the crucial conceptual and technical contributions of the platform’s
architecture, including the data structures of KSI Cash and Alphabill Money, the dust collection solution of
Alphabill Money, and the atomic swap solution of the Alphabill platform.

INDEX TERMS Blockchain, Bitcoin, digital euro, decentralized finance, DeFi, Web3, Alphabill.

I. INTRODUCTION

Blockchain technology has received tremendous attention
from academia, industry, politics and media alike in the
last decade. Since the introduction of blockchain technology
with the cryptocurrency Bitcoin [1] in 2009, we have seen a

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak

77284

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

plethora of cryptocurrencies and blockchain-based solutions.
In connection with that, we have seen the emergence of a
series of extended blockchain-based visions such as smart
contracts [2], decentralized finance (DeFi) [3], and, most
recently, Web3.

The prerequisite for any valuable blockchain-based vision
to be turned into reality is uncapped scalability. With an
average transaction rate of 7 transactions per second, Bitcoin

VOLUME 10, 2022

https://orcid.org/0000-0002-6413-8258
https://orcid.org/0000-0003-3376-7489
https://orcid.org/0000-0002-4860-7077
https://orcid.org/0000-0002-5157-3373
https://orcid.org/0000-0002-4224-8878
https://orcid.org/0000-0003-1808-9915
https://orcid.org/0000-0003-2949-7391
https://orcid.org/0000-0002-1952-4803
https://orcid.org/0000-0002-3731-5108
https://orcid.org/0000-0003-4414-3874
https://orcid.org/0000-0001-7427-5005
https://orcid.org/0000-0001-5822-3432

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

partition-2

partition-1

Alphabill Money
Transaction System

Transaction System X

partition-0

. [Shard][Shard]

Transaction System Y

Atomicity System

point-to-point
transaction requests
and responses

Wallet Wallet Wallet

Wallet

Wallet oo Wallet

inter-wallet communication

FIGURE 1. Alphabill high-level architecture.

is far from the transaction rates of today’s established
payment systems such as VisaNet, which has a peak
performance of 24,000 transactions per second according
to [4]. According to [5], there has been a total of approx.
435 billion annual USD transactions in 2017 via the three
biggest players in the field alone, i.e., Visa (300 billion),
MasterCard (75 billion) and UnionPay (60 billion), which
amounts to an averaged transaction rate of approx. 13,800
transactions per second. Therefore, blockchain technologies
also need to be capable of thousands of transactions per
second. If micropayment visions and related visions such as
the Internet of Things (IoT) are to be enabled by blockchain
technology [6]-[12], much higher transaction rates will be
needed already in the near future, i.e., in the range of hundreds
of thousands of transactions per second and even way
beyond. Top-level research projects have been launched to
study ultra-scalable blockchain technology [13]-[15]. Also,
it is often overlooked that shorter and shorter transaction
durations (or at least maintaining transaction durations in
regard to current transaction duration expectations) will
become increasingly important against the background of
these developments.

In addition, existing tokenization platforms are limited
as they either oversimplify today’s established monetary
system [16] or neglect the reality of today’s institutional

VOLUME 10, 2022

stack [16], [17] and (inter-)/organizational settings [18]
or both. Typically, new tokenization solutions proclaim
disruptiveness in their field (at different levels: organizations,
business domains, the whole monetary system, or the whole
society). Each of the single tokenization solutions is, how-
ever, typically not prepared for adoption, i.e., vulnerable to
changes in its environment. Therefore, having more and more
specialized tokenization solutions will no longer advance the
field significantly. What is needed instead, is an adaptive, het-
erogeneous tokenization platform that allows for launching
and coordinating individual blockchain technologies in a sys-
tematic and at the same time innovation-friendly manner, i.e.,
in way that allows the hosted blockchain technologies to show
not only business-related innovations but also technological
innovations.

In this paper, we present the Alphabill family of tech-
nologies that addresses both unlimited scalability as well
as unrestricted adaptivity by posing the following research
questions:

1) How to design a blockchain technology that com-
pletely fulfills today’s as well as future performance
demands?

2) How to design a universal asset tokenization platform
that allows for a maximum of both business-related and
technological innovations?

77285

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

In order to solve these questions, we make the following
contributions:

e KSI Cash. We deliver a blockchain technology with
essentially unlimited scalability and performance, called
KSI Cash.! KSI Cash has been developed for experi-
ments of the European Central Bank and a group of eight
central banks from the Eurosystem2 (Estonia, Germany,
Greece, Ireland, Italy, Latvia, Spain, the Netherlands)
to assess the feasibility of a digital euro [19]. KSI
Cash has been developed as a joint design science
effort of the Estonian Central Bank (Eesti Pank) and
Guardtime? [20], [21]. The scalability of the Alphabill
platform is founded on the scalability of its individual
partitions. KSI Cash is part of this foundation, and a part
of the Alphabill family of technologies.

o Exhaustive KSI Cash Performance Evaluation. We
present diverse performance tests of KSI Cash that we
have conducted with the European Central Bank and
the said group of eight central banks [19]. We show
the system operating with 100 million wallets and
15 thousand transactions per second under simulation
of realistic usage. Furthermore, we show the system
operating with up to 2 million payment orders per second
(an equivalent of more than 300,000 transactions per
second in our technology) in a laboratory setting that
runs with the central components of KSI Cash. These
tests show that the technology scales linearly in terms
of the number of deployed shards. Furthermore, we are
able to estimate the carbon footprint of KSI Cash as
0.0001g CO2 per transaction, again under the realistic
usage scenario (as compared to Bitcoin, which amounts
to much more than 100 kg CO2 per payment transaction
according to several existing studies).

o Bill Scheme. We explain, in detail, the key concepts that
unlock the performance of KSI Cash, i.e., a new form
of electronic money scheme, the bill scheme [21], [22],
which achieves full decomposability by circumvention
of monetary splits and joins. The analysis indicates that
the performance of our technology is unlimited for prac-
tical purposes, in both permissioned and permissionless
scenarios.

o Alphabill Platform Architecture. We provide the archi-
tecture of the Alphabill platform, see Fig. 1. The
Alphabill platform enables universal asset tokeniza-
tion, transfer and exchange as a global medium of
exchange. The platform allows users to launch an
arbitrary number of new so-called partitions. Each
partition implements an individual token and corre-
sponding transaction system. The Alphabill platform
provides the necessary innovations and protocols,
along with respective languages, libraries and toolkits,

1KSI in KSI Cash is not an acronym and stands for nothing. The name
KSI Cash has been chosen by Guardtime for internal reasons.

2https://www.ecb.europa.eu/ecb/orga/escb/
3 https://guardtime.com/ksi-cash

77286

to implement and launch partitions in such a way
that individual partitions as well as their coordination
and interaction show unlimited scalability. We specify:
the platform’s elements, asset presentations, ledger
certificates, transaction orders, sharding schemes and
transaction system specifications.

o Alphabill Money. We introduce the Alphabill Money
technology, which forms the native money of the Alpha-
bill platform. With Alphabill Money, we contribute an
extended bill scheme that balances monetary splits and
limited forms of monetary joins with a dust collection
solution so that scalability is preserved. We specify the
data structures of Alphabill Money.

o Alphabill Money Dust Collection. We specify the dust
collection solution of Alphabill Money. We introduce
and elaborate the notion of bill swap scenario and
specify the dust collection process.

o Alphabill Platform Atomicity Partition. A key contribu-
tion is the design of a scalable multi-asset atomic swap
solution (the atomicity system in Fig. 1) that enables
cross-partition transactions that are needed, e.g., for
financial transactions (parallel synchronized transfers
of monetary and non-monetary assets). We specify
the solution by defining the data structures of the
atomicity system and defining a novel 3-phase-commit
protocol.

The Alphabill platform will be published as open-source
software on GitHub.

We proceed as follows. In Section II, we discuss related
work. In Section III, we explain the architecture of the
Alphabill platform and its design principles. In Section IV,
we describe the technical principles and data structures of
the central bank digital currency KSI Cash. In Section V,
we explain the design of the KSI Cash test bench and present
the outcomes of a series of diverse test runs. In Section VI,
we delve into the details of a series of essential Alphabill
platform components, i.e., fundamental design elements,
the Alphabill Money partition, and the Alphabill atomicity
partition. In Section VII, we discuss future directions and
future work. We finish the paper with a conclusion in
Section VIII.

Il. RELATED WORK

Scalability is a central concern for blockchain technology.
In [23], the authors provide a survey on relevant approaches
to improve the scalability of the Bitcoin network, including
tuning Bitcoin protocol parameters, basic off-chain pay-
ment channels, duplex micropayment channels [24], Bitcoin
lightning channels [25], and off-chain payment networks.
In [26], the authors provide an overview of scalability of
blockchain systems and technologies for scalable blockchain
systems. They discuss tuning of blockchain parameters, off-
chain transactions, decoupling blockchain management from
execution, and sharding. They identify Elastico [27] and
OmniLedger [28], [29] as sharding blockchain technologies.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

A. BLOCKCHAIN SHARDING APPROACHES

1) SURVEYS RELATED TO SHARDED BLOCKCHAIN
TECHNOLOGY

Two most recent surveys on sharding in blockchains are
provided by [30] and [31]. The survey in [30] provides
an analysis of sharded blockchain technologies including
aspects such as intra-consensus settings (measures to reach
blockchain consensus [32], [33] within a single shard), design
of cross-shard atomicity (i.e., measures to guarantee that
transactions that span more than one shard are conducted
either as a whole or not at all [34]), corresponding overhead,
latency and theoretical throughput. The paper reviews
Elastico [27], Chainspace [35], [36], OmnilLedger [28],
[29], RapidChain [37], and Monoxide [38] and investigates
Ethereum 2.0 [39]. The survey in [31] is a survey on
scaling blockchains, however, it focuses on sharding [31]:
“In particular, we focus on sharding as a promising first
layer solution to the scalability issue.” The survey in [31]
analyses technologies in terms of committee formation and
intra-committee consensus. In addition to the work analyzed
by [30], the survey in [31] reviews [40], SSChain [41]
and Ostraka [42] and, furthermore, considers the technology
proposals Zilliqa,* Harmony,> Logos,® and Stegos.”

2) SHARDED BLOCKCHAIN TECHNOLOGIES

Elastico [27] is an early sharded, proof-of-work-based
blockchain technology that did not yet provide cross-shard
atomicity control. Elastico is based on UTXOs (unspent
transaction outputs), which form the electronic money
scheme that has been introduced originally by the Bitcoin
blockchain [1] (UTXOs are smallest units of account
consumed as input to transactions and produced as output of
transactions [22], [44]).

OmnilLedger [28], [29] is a permissionless, sharded,
UTXO-based blockchain technology that relies on a cross-
shard, client-driven two-phase commit protocol (called
Atoms) for the needed atomicity control. OmniLedger builds
on the consensus protocol ByzCoin [45] by introducing
sharding to it, resulting into the OmniLedger’s consensus
protocol ByzCoinX. Furthermore, OmniLedger builds on
Hybrid Consensus [46], [47] and Elastico [27]. Hybrid
consensus [46], [47] relies on proof of work and consumes a
permissioned BFT (Byzantine fault tolerance) [48] protocol
as a building block. To support power efficiency by proof-
of-stake rather than proof-of-work consensus, OmniLedger
builds on Ouroboros [49] and Algorand [50]. OmniLedger
uses the RandHound protocol [51] targeting a scalable and
at the same time bias-resistant sampling of representative
validators.

Chainspace [35], [36] is a sharded blockchain technology
that supports user-defined smart contracts ‘“‘operating on

4https://docs.zilliqa.com/whitepaper.pdf

5 https://harmony.one/whitepaper.pdf
6https://logos.network/whitepaper.pdf
7https://stegos.com/docs/stegos-whitepaper.pdf

VOLUME 10, 2022

controlled objects” [35], [36]. The system exploits an
implementation of PBFT (Practical Byzantine Fault Tol-
erance) [52], i.e., MOD-SMART (Modular State Machine
Replication) [53], for intra-shard consensus. Cross-shard
consistency is guaranteed by a distributed commit proto-
col called S-BAC (Sharded Byzantine Atomic Commit).
As opposed to OmniLedger’s client-driven commit protocol,
in S-BAC, the entire shard acts as a coordinator — rather than
a single untrusted client.

‘Ethereum upgrades’® represents the current roadmap of
Ethereum [54] as the successor of Ethereum 2.0 [39]. From
its beginning, Ethereum was a proof-of-work blockchain. The
roadmap aims to bring a proof-of-stake consensus and shard-
ing to Ethereum via a component called beacon chain,’ which
has already been described as part of Ethereum 2.0 [39]. “The
Eth2 execution sharding (formerly known as Eth2 Phase 2)
consists of one beacon chain and multiple shard chains.
A shard chain is a sharded blockchain, and a beacon chain is
a blockchain that manages the shard chain. The beacon chain
mediates cross-shard communications.” [55] As Ethereum,
‘Ethereum upgrades’ will be based on so-called balances,
which imposes an account money scheme.

RapidChain [37] is a permissionless, sharded, UTXO-
based blockchain. “RapidChain partitions the set of nodes
into multiple smaller groups of nodes called commit-
tees.” [37] Intra-committee consensus builds on an efficient,
synchronous version of Byzantine fault tolerance [56], [57]
to reduce communication overhead and latency in each
committee. In order to achieve efficient cross-shard transac-
tion verifications, RapidChain employs a routing mechanism
inspired by Kademlia [58], a peer-to-peer distributed hash
table, for committees to discover each other.

Monoxide [38] is a sharded blockchain technology that is
based on an account money scheme, i.e., an account/balance
model, compare with [22]. Shards are called zones in
Monoxide, which are defined as “‘multiple independent and
parallel instances of single-chain consensus systems” [38].
For cross-shard transactions, Monoxide introduces a notion
of eventual atomicity. Eventual atomicity allows ‘“the
withdraw operation to execute first, interleaving with other
transactions then the corresponding deposit operation to be
settled later. What is achieved is that once the withdraw
operation is confirmed, the deposit operation will be executed
eventually.” [38] In order to achieve eventual atomicity, [38]
suggests a lock-free cross-shard transaction design, which
aims at saving the overhead of a usual two-phase commit
protocol needed to achieve atomicity immediately.

In [40], Dang er al. design a permissioned, sharded,
UTXO-based blockchain technology that aims at perfor-
mance optimizations of the consensus protocol running
within each individual shard. They suggest an efficient
shard formation protocol, and a secure distributed (Byzantine

8https ://ethereum.org/en/upgrades/

9https ://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md

77287

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

TABLE 1. Comparison of sharded blockchain technologies in regard to implementing money scheme and utilized consensus protocol.

Blockchain Money Scheme Consensus Protocol

Elastico UTXOs proof of work

SSChain UTXOs proof of work

OmniLedger UTXOs hybrid proof of work / Byzantine fault tolerance; proof of stake
RapidChain UTXOs Byzantine fault tolerance

Dang et al. [41] UTXOs Byzantine fault tolerance

Ostraka UTXOs generic

Ethereum account scheme proof of work

Ethereum upgrades | account scheme proof of stake

Monoxide account scheme generic

Chainspace object-based Byzantine fault tolerance

ZyConChain not specified hybrid proof of work / Byzantine fault tolerance
Du et al. [44] not specified Byzantine fault tolerance

Alphabill bill scheme generic

fault-tolerant) transaction protocol for cross-shard, dis-
tributed transactions (cross-shard commit protocol). The
paper [40] considers technology in the context of trusted
execution environments (TEEs).

SSChain [41] is a sharding-based protocol that addresses
the problem of extensive data migration due to reshuffling
the network. Therefore, SSChain suggests a non-reshuffling
structure in service of transaction sharding and state sharding.
In order to achieve the elimination of data migration
overhead, SSChain allows nodes to “freely join in one or
more shards without reshuffling” [41]. The implementation
of SSChain is based on the Bitcoin source code, therefore,
SSChain uses the UTXO money scheme and runs a proof-of-
work consensus protocol.

Ostraka [42] is different from sharding-based blockchain
protocols that split the network into shards, i.e., Ostraka
shards the nodes themselves. The rationale behind the design
of Ostraka is to prevent such denial-of-service attacks where
a single shard is overloaded with the goal to bring down
the complete transaction system. ‘Ostraka utilizes the UTXO
model.” [42] In regard to the consensus protocol, Ostraka
is generic, i.e.: “Ostraka is a node architecture and is thus
independent of the underlying consensus protocol.” [42]

ZyConChain [59] is a sharded blockchain technology that
follows the approach of a general data model, i.e., aims at
being not restricted to a certain scheme such as UTXO.
ZyConChain’s approach introduces three kinds of blocks in
each shard including parent blocks, side blocks and state
blocks, where each type of block is maintained via its own
consensus mechanism. Parent blocks are maintained via
proof-of-work consensus, whereas for side blocks, a new
consensus mechanism based on speculative Byzantine fault
tolerance [60] is suggested.

Alphabill is a partitioned, sharded blockchain technology,
i.e., itintroduces two tiers of decomposition, see Fig. 1, which
makes it different from all technologies [27]-[29], [35]-[41],
[59] discussed so far in Section II-A2, which utilize only
one level of decomposition into shards. In Alphabill, the
partitions host implementations of distinct tokens and each
partition stands for a distinct transaction system. Each tier
of decomposition can have its one, specific optimizations,

77288

which is behind the reasons of Alphabill’s ultra-scalability.
Alphabill utilizes a new form of money scheme, the bill
scheme [22], whereas all other technologies in Section II-A2
are either based on a variation of one of the two established
money schemes, i.e., UTXOs and account schemes, or — in
case of ZyConChain [59] and Du et al. [43] — do not specify
details of their transactions. Only the bill scheme [22] is fully
decomposable, which is the key enabler for Alphabill’s ultra-
scalability, since cross-shard transactions become obsolete in
Alphabill. Where the other technologies have to deal with
cross-shard transactions at highest granularity, Alphabill has
to deal only with cross-partition transactions at a coarse-
grained level, for which it innovates its own swap-partition-
based 3-phase commit protocol. Alphabill does not prescribe
a particular consensus protocol, i.e., new transaction systems
can join the Alphabill platform as long as their consensus
protocol adheres to certain minimal conditions, which can
be best described as deterministic finality. As opposed to
that, all of the technologies in Section II-A2 (despite of one,
i.e., Monoxide [38]) rely on their own specific suggestions
to consensus protocols, which advance or combine elements
of established consensus protocols such as proof of work,
proof of stake and Byzantine fault tolerance. In Table 1,
we compare all technologies discussed in Section II-A2,
including Alphabill, with respect to their money schemes and
utilized consensus protocols.

In [43], Du et al. suggest the Mixed Byzantine Fault
Tolerance (MBFT) protocol that uses so-called layering to
separate specific node functions, i.e., separating the veri-
fication function from the demodulation process. Layering
aims at reducing the load of nodes and this way improving
the efficiency of the overall consensus mechanism. Layering
is combined with sharding to further improve the protocol
efficiency. In regard to the money scheme, [43] is generic,
i.e., it does not further specify the content of transactions.

Alphabill has been designed, originally, as a universal
asset tokenization platform. The objective of universal asset
tokenization has directed Alphabill’s design efforts and can
be detected in many of its design decisions and innovations.
At least to a certain extent, each blockchain technology
that possesses a sufficiently flexible mechanism for locking

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

and unlocking transactions, can be utilized for launching
new tokens or wrapping tokens of existing blockchains.
However, that does not automatically mean, that such a
technology is also well-suited for tokenization. What is
needed are (i) appropriate support for joining a transaction
system to the platform, (ii) systematic features for interaction
of hosted tokens, and last but not least, (iii) sufficient
scalability, actually, uncapped scalability. All of these issues
are explicitly addressed by Alphabill, but usually not by other
blockchain technologies.

However, there is yet another crucial, and even more
relevant difference. New tokens can be launched on top
of a blockchain technology, but technologically, they are
limited by the underlying blockchain, i.e., they cannot
bring technological innovation to it. This is different in
Alphabill. Here, partitions have their own implementations
and therefore allow for technological innovations.

To explain the difference, let us take Ethereum as an exam-
ple, which is widely used to create new tokens. In an ICO
(initial coin offering), the Ethereum development standard
ERC-20'° can be utilized to create new tokens. These new
tokens represent the coins of a newly offered cryptocurrency.
However, a typical scenario is that this new cryptocurrency
is then build as a new, separate blockchain technology. This
technology would implement the innovations outlined in the
white paper of the respective ICO. These innovations can be
about improving (or disrupting) the established processes in
a business domain or about technological advancements such
as performance, security, decentralization, and integration of
emerging technologies. The new cryptocurrency now exists
in the form of two kinds of tokens, i.e., its ERC-20-based
tokens in Ethereum and the genuine coins of the separately
implemented blockchain. Both coins can be traded, and
investors can exchange the ERC-20-based tokens to the
genuine token via a blockchain bridge.!! In such an ICO
lifecycle, Ethereum has merely the role of a crowdfunding
platform, but the new token is not genuinely “‘build on top of
Ethereum™ [61]. In principle, it is possible to build the new
cryptocurrency entirely as an Ethereum token, i.e., without
separate implementation and without blockchain bridging.
In such case, all innovations of the new cryptocurrency are
reflected in Ethereum smart contracts. These innovations
can be business domain innovations but no blockchain tech-
nology innovations, and the new cryptocurrency is limited
by the technological capabilities of the hosting Ethereum
platform.

3) OPTIMIZATIONS FOR SHARDED BLOCKCHAIN
TECHNOLOGY

In [62], it is suggested to analyze the security of sharded
blockchains (such as OmniLedger [28], [29] and Rapid-
Chain [37]) by estimating the failure probabilities of single
sharding rounds on the basis of failure probabilities of all

10https :/lethereum.org/en/developers/docs/standards/tokens/erc-20/
1 https://ethereum.org/en/bridges/

VOLUME 10, 2022

shards. For this purpose, a hypergeometric distribution model
is assumed. The proposed methodology is tried out and
numerically analyzed on the basis of a large-scale trial.

In [63], an optimized data storage model for sharding-based
blockchain technology is suggested. The approach utilizes
an Extreme Learning Machine (ELM) algorithm, a type
of single-layer feedforward neural network, to identify hot
blocks to be stored and queried locally according to several
objective criteria, including historical popularity, hidden
popularity and storage requirements of the block.

In [64], an adaptive resource-allocation algorithm is
designed for optimizing transaction assignments in sharded,
permissioned blockchains. The algorithm is designed on the
basis of the drift-plus-penalty (DPP) technique [65] in the
framework of stochastic network optimization [65], [66].

B. CENTRAL BANK DIGITAL CURRENCIES

RSCoin [67] is a central bank digital currency. Its architecture
is based on shards (called mintettes) and a trusted central
component (called central bank). Each mintette serves a
subset of public client addresses, with a certain level of
replication needed for majority voting. The mintettes are
authorized by the central component and work together
in creating consensus on a next block to be certified by
the central component. The necessary communication is
implemented indirectly by the wallets via a two-phase-
commit protocol, where each wallet makes its decision
individually based on incoming majority votes.

The Hamilton Project [68], conducted by the Federal
Reserve Bank of Boston together with the Massachusetts
Institute of Technology Digital Currency Initiative, is a
concept study on implementing central bank digital currency.
In the project, they investigate two different architectures.
The first one, called the atomizer architecture, is a blockchain
solution that relies on sharded transaction verification.
The architecture follows the UTXO scheme. The central
component of the architecture is the afomizer, which is
responsible for collecting verified payments from shards
and creating blocks, introducing an essential bottleneck
to the overall system. The study proceeds with com-
paring the atomizer architecture with the so-called 2PC
architecture (2-phase-commit architecture), which repre-
sents an instance of established (non-blockchain) trans-
action system technologies as found in today’s banking
domain.

RSCoin as well as the Hamilton project are not designed
as universal asset tokenization platforms such as Alphabill,
instead they represent central bank digital currencies such as
KSI Cash. The crucial difference to KSI Cash is in the utilized
money schemes which follow the UTXO model in both the
case of RSCoin and the Hamilton project, as opposed to the
bill money scheme in case of Alphabill. Therefore, RSCoin
and the Hamilton project need to deal with the severe issue of
cross-shard transactions, whereas KSI Cash can instead deal
with the comparatively moderate issue of increasing amounts
of smaller money denominations.

77289

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

C. A LARGE-SCALE OFF-CHAIN PAYMENT APPROACH

An example of a large-scale off-chain payment solution is
SLIP (Secure Large-Scale Instant Payment) [69]. SLIP uses
an aggregate signature scheme to connect off-chain channels
that enables locked-in tokens to circulate. This way, SLIP
aims at improving the negotiability of locked-in tokens in
off-chain channels. The generic construction of SLIP aims
at defending against double-spending, over-spending, and
malicious settlement attacks. When compared to Alphabill,
SLIP is based on an account money scheme, whereas
Alphabill is based on the bill money scheme. SLIP is not a
sharded approach, but uses off-chain payments to improve
scalability.

D. A BILL-SCHEME-BASED BITCOIN SIDECHAIN
CoinCash [70] is a Bitcoin sidechain [71] that aims at enhanc-
ing privacy by adding an overlay of transaction anonymiza-
tion [72]. CoinCash uses the CoinJoin protocol introduced
by George Maxwell [73]. The CoinCash blockchain is an
example of implementing a bill money scheme, but does not
solve the problem of payments with fractional amounts, i.e.,
“transactions involving fractionation amount are rounded
up to the nearest available denomination” [70]. According
to [70], CoinCash is neither a universal asset tokenization
platform nor a sharded blockchain technology as Alphabill.

E. A HETEROGENEOUS MULTI-CHAIN APPROACH
Polkadot'> is designed as a “heterogeneous multi-
chain” [74]. Polkadot distinguishes between the relay chain
and parachains (“‘parallelised” chains) [74]. Polkadot itself
provides the relay chain, which may host “validatable,
globally-coherent dynamic data-structures” [74] called
parachains, which do not necessarily have to be blockchains.
With the parachains, Polkadot aims at blockchain scalability:
“In principle, a problem to be deployed on Polkadot may be
substantially parallelised — scaled out — over a large number
of parachains.” [74] At the same time, parachains aim at
blockchain heterogeneity: “In other words, Polkadot may be
considered equivalent to a set of independent chains (e.g.
the set containing Ethereum, Ethereum Classic, Namecoin
and Bitcoin) ...” [74]. In [74], Polkadot suggests a fully
asynchronous interchain communication, i.e., parachains can
dispatch transactions in other parachains or the relay chain.
The dispatched transactions are fully asynchronous, i.e.,
“there is no intrinsic ability for them to return any kind of
information back to its origin” [74]. The communication
mechanism is based on queuing: “Interchain transactions
are resolved using a simple queuing mechanism based
around a Merkle tree to ensure fidelity. It is the task of the
relay-chain maintainers to move transactions on the output
queue of one parachain into the input queue of the destination
parachain.” [74]

A key difference between Polkadot and Alphabill is in
their approach to decomposition. Polkadot is a federation of

12https://polkadot.network/

77290

multiple blockchains, whereas Alphabill is a single par-
titioned blockchain. The other key difference is in the
communication model. Polkadot chooses asynchronous mes-
saging for its interchain communication, whereas Alphabill
establishes rigorous atomicity control for each cross-partition
swap.

F. RELATED STANDARDS
With respect to usage of blockchain terminology, we refer
to the ISO standard ISO 22739 [32] and the NIST report
NISTIR 8202 [33]. Given their status, both documents have a
high international visibility and standing, where ISO 22739 is
a published international standard of ISO (International
Organization for Standardization), and NISTIR 8202 is an
internal report of NIST (National Institute of Standards and
Technology Internal Report), which received 799 citations
(according to Google scholar, as of 17 June 2022) via its
publication in the open-access archive arXiv [75]. Despite
their standing, the two documents are currently not fully
applicable. In its published version ISO 22739:2020 [32],
the standard is currently (as of June 2022) to be revised and
therefore exists also as an ISO committee draft, version ISO
CD 22739,'3 see Table 2. Similarly, despite its visibility,
NISTIR 8202 still has the status of a NIST internal report.
ISO has published a series of standards related to
blockchain technology and a series of further standards under
development, see Table 2, which lists the standards together
with their standards development stages. The standard that
comes closest to the research questions posed in that
paper is ISO standard ISO/AWI TS 23516 ‘Blockchain and
distributed ledger technology — Interoperability framework’.
ISO/AWI TS 23516 aims at specifying “a framework, rec-
ommendations and requirements for interoperability between
DLT systems, between DLT and entities outside the DLT
system, the relationship and interactions between these and
cross-cutting aspects”.!* The standard is in a very early stage
of development, i.e., it has become an officially registered
new ISO standards development project. It is therefore too
early to compare it systematically with the contributions
made in this paper. What can be said in any case is
that interoperability of blockchains is definitely a pressing
issue — we have explained, in Section II-A2, the role of
bridging between blockchains through the example of a
typical ICO lifecycle utilizing Ethereum as a token sale
platform. However, we have also explained in Section II-E,
when comparing Alphabill with Polkadot, that Alphabill is
not about federation of blockchains. Instead, Alphabill is a
partitioned blockchain.

Ill. THE ALPHABILL PLATFORM

Alphabill is a system for trading with various kinds
of digitalized (tokenized) assets. Alphabill enables swap
transactions between different kinds of assets without trusted

Bhitps://www.iso.org/standard/82208.html
14https://www.iso.0rg/standard/82098.html

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

TABLE 2. Published and planned ISO standards related to blockchain technology and distributed ledger technologies (DLTs), including approved work
items (AWIs), working drafts (WDs), technical specifications (TSs), technical reports (TRs), draft technical reports (DTSs), committee drafts (CDs), and

proofs of a new international standard (PRFs); together with their current standards development stages as of June 2022.

ISO No. Standard Stage

ISO/AWI 7603 Decentralized identity standard for the identification of subjects and objects New project registered
ISO/AWI TS 23516 | Blockchain and distributed ledger technology — Interoperability framework New project registered
ISO/WD TR 23642 | Blockchain and DLTs — Overview of smart contract security good practice and issues Working draft study initiated
ISO/WD TR 6277 Blockchain and DLTs — Data flow model for blockchain and DLT use cases Working draft study initiated
ISO/DTR 6039 Blockchain and DLTs — Identifiers of subjects and objects for the design of blockchain systems Committee draft study initiated
ISO/CD 22739 Blockchain and DLTs — Vocabulary Close of comment period
ISO/DTR 23644 Blockchain and DLTs — Overview of trust anchors for DLT-based identity management Close of comment period
ISO/PRF TR 3242 | Blockchain and DLT's — Use cases Final text received

ISO/TR 23455:2019 | Blockchain and DLTs — Overview of and interactions between smart contracts Published

ISO/TR 23576:2020 | Blockchain and DLT's — Security management of digital asset custodians Published

ISO/TR 23244:2020 | Blockchain and DLTs — Privacy and personally identifiable information protection considerations | Published

ISO/TS 23258:2021 | Blockchain and DLTs — Taxonomy and ontology Published

ISO/TS 23635:2022 | Blockchain and DLTs — Guidelines for governance Published

ISO/TR 23249:2022 | Blockchain and DLTs — Overview of existing DLT systems for identity management Published

1SO 23257:2022 Blockchain and DLTs — Reference architecture Published

1SO 22739:2020 Blockchain and DLTs — Vocabulary To be revised

ISO/DTS 23259 Blockchain and DLTs — Legally binding smart contracts Deleted

intermediaries, and we call those transactions multi-asset
swap transactions (similar to multi-asset strategies, which
also consist of various kinds of assets'?).

Definition 1 (Multi-Asset Swap Transaction): A multi-
asset swap transaction is a swap transaction between
different kinds of (tokenized) assets.

The Alphabill system has its native electronic currency
called Alphabill Money. With multi-asset swap transac-
tions, digitized assets can be bought and sold for the
native currency or swapped directly without involving the
native currency. Multi-asset swap transactions are executed
automatically — defined by blockchain rules, so that no
nobody can break their trading contract agreements.

Each kind of asset is implemented by a corresponding
transaction system that is deployed to the Alphabill platform
as so called partition. Therefore, multi-asset swap transaction
are also called cross-partition transactions in this paper.

A. THE ALPHABILL PLATFORM ARCHITECTURE

The Alphabill platform, see Fig. 1, allows for the deployment
of arbitrarily many partitions, where each partition is a
blockchain implementation of a transaction system. There
are three specialized partitions that genuinely belong to the
platform:

e Root partition. The root partition (or root system)
keeps track of the registered transaction systems. The
entities of the root partition are the registered transaction
systems, each described by the system identifier & and
the state tree type (see Def. 7). The root partition
periodically receives the roots of the state trees of all
transaction systems and creates uniqueness certificates
for the ledgers of the transaction systems. By uniqueness
certificate, we mean any proof of uniqueness of the

15 https://www.blackrock.com/us/individual/education/multi-asset-
strategies

VOLUME 10, 2022

ledger such as proof of work, proof of stake, or proof of
authority. The definite specifications of the root partition
and the uniqueness certificate depend on the consensus
protocol of the root partition, the particular choice of
which is out of the scope of this paper.

o Atomicity partition. The atomicity partition (or atom-
icity system) supports atomic multi-asset swap trans-
actions. The entities of the atomicity partition are
multi-asset swap transactions, where each transaction is
described by the identifier ¢, the terms, and the status
(complete/incomplete) of the transaction. The atomicity
partition is described in detail in Section VI-C.

o Alphabill Money partition. The Alphabill Money
partition (or Alphabill Money system) provides the
default medium of exchange of the platform. The
implementation of the money partition is described in
Section VI-B

The communication protocols in the Alphabill platform
(Fig. 1) can be divided into five logical groups (fabrics):

o The consistency fabric, which establishes the rules of
communication between client applications (wallets)
and the transaction systems, as well as the reactions of
the transaction system to the communication, i.e., how
the transactions (enacted by wallets) change the state of
the transaction system.

o The certification fabric, which establishes the rules of
communication between the transaction systems and the
root system, as well as how the root system creates
uniqueness certificates for all the transaction systems.

o The distribution fabric, which describes the rules of
wallet-to-wallet communication.

o The coordination fabric, which describes the protocols
between wallets and the atomicity system as well as the
reaction of the atomicity system to protocol messages.

77291

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

o The governance fabric, which describes the communi-
cation with the root system for registering, changing, and
removing transaction systems from the framework.

In regard to the certification fabrics, any type of consensus
protocols (proof of work, proof of stake, etc.) can be used for
producing uniqueness certificates in the root partition of the
Alphabill framework. This paper does not aim to contribute to
the field of ledger consensus. Partitions send their root hash
values and summary values to the root partition and receive
uniqueness certificates from the root partition. The consensus
protocol guarantees that only one hash and summary value
pair from each partition is certified by the root partition per
block and that partitions do not create the next block before
the uniqueness certificate for the previous block has been
received.

B. THE ALPHABILL DESIGN PRINCIPLES

The design goals of Alphabill are maximum security,
maximum scalability and system viability [76]. Accordingly,
the design principles of Alphabill are:

o Secure-by-Design. Alphabill is a partitioned blockchain
system that operates according to abstract rules that
cannot be broken unless the blockchain technology
itself fails. Every transaction system in Alphabill has
its specific rules. All communication between partitions
is certified. Cross-partition messages have ledger cer-
tificates. A ledger certificate is a proof that the content
of an inter-partition message is included in the ledger
of the sender partition. The types of ledger certificates
available in the Alphabill platform are described in
Section VI-A3.

o Scalable-by-Design. The Alphabill framework provides
tools for designing a transaction system in a way that the
ledger of the system is dynamically decomposable into
autonomous ledgers (shards). Each asset entity has its
own independently verifiable sub-ledger.

o Robust-by-Design. The Alphabill framework provides
tools for designing highly redundant transaction sys-
tems, following proven patterns of blockchain networks
with many nodes.

o Viable-by-Design. The Alphabill framework is a self-
adaptive system. It changes depending on the require-
ments of its business environment and the society
[76]—-[84]. This is only possible because Alphabill is a
partitioned blockchain solution, where new transaction
systems can be included, existing transaction systems
can be modified, and transaction systems that are no
longer needed can be removed from the system. This is
not possible in monolithic permissionless blockchains
such as Bitcoin, because in these blockchains all
rules are fixed from the launch of the blockchain and
henceforth cannot be changed.

IV. KSI CASH CENTRAL BANK DIGITAL CURRENCY
KSI Cash [20], [21], [85] is a central bank digital currency
(CBDC). KSI Cash represents an option of how to implement

77292

a currency partition of the platform in case it has to be
controlled by a central bank.

KSI Cash is implemented on the basis of a bill money
scheme [21], [22], or just bill scheme for short. The
key property of any bill scheme is that it allows for
sharding without a need for atomicity control of cross-
shard transactions. The bill scheme mimics traditional cash.
Traditional cash scales, without any automation, and, in a
certain sense, the bill scheme can be considered as a direct
digitization of traditional cash. In this paper we present a
proof of concept of KSI Cash that has been implemented to
evaluate its performance. This concept study is based on a
pure bill money scheme as described in Section IV-A.

A. KSI CASH DATA STRUCTURES

1) BILLS AND PAYMENT ORDERS

Figure 2 shows the data structures of KSI Cash consisting of
the public blockchain data and the maintained system state.
The digital asset of a bill scheme is called a bill. A bill has
an owner and a value. During payments, it is possible to
change the owners of bills, but it is not possible to change their
values. This means that the value of a bill cannot be changed
and the number and identities of all bills are fixed from the
genesis of the ledger during all of its lifetime, i.e., bills cannot
be destroyed, nor dynamically created. From that, it follows
immediately, that there are no splits and joins of digital assets,
as we have them, e.g., in Bitcoin UTXOs (unspent transaction
outputs) [1], [44]. Later, in implementations of KSI Cash in
the field, the rigid change policy of bills needs to be loosened
to allowing for limited forms of splits and joins. The design
solution is to allow in-shard splits and joins, but to avoid
atomic cross-shard transactions.

Figure 2 shows a small example system with sixteen
bills By through Bjs. Given a bill B;, we say that i is the
identifier (or number) of the bill. The bills are distributed
over four shards shard to shardy, i.e., bills By through B3 are
maintained by shard 1, bills B4 through B7 are maintained by
shard, and so forth. In Fig. 2, time flows from left to right,
divided into epochs (also called rounds), i.e., rounds of block
creation, with n denoting the most recent epoch number. In a
given epoch k, each payment order, denoted by Bi.‘, that is
successfully integrated into the block, changes the owner of
the bill B; (and, in the extended bill scheme, potentially also
the value of that bill). A payment order Bﬁ-‘ is a record

B = (i, owner(BX), value(BY)), 1)

where owner(B;‘) is the public key address of the new owner
and value(Bf) the (the potentially new) value of the bill.
Therefore, you can think of a payment order Bf , that is
integrated into the ledger, simply as the status of the bill in
the respective round. We therefore also talk about a payment
order B;‘ simply as the bill B; in round k.

Each payment order is signed by the most recent owner
of the affected bill. We call a payment order together with
a corresponding signature a signed payment order. Signed
payment orders are the transactions that are recorded by

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

epoche n—2 epoche n—1

-1

core: internal state

'
1

'

'

'

'

'

1

1

1

1

hnfl '
8.9.10.11.12.13.14.15 :
'

. '

n— '
hi313.1415 !

'

1

1

'

'

'

]

epoche n

7

n
h? 8.9.10.11.12.13.14.15
0.1.2.3.4.5.6.7

n
hi2131415

hn
h? 8.9.10.11
0.1.2.3

n
h'12.13.14.15
KW
8.9.10.11

B, B
H hard,
i i shard,
E 3 B},
' shard,
. Bn
i i shard,
H 1 B¢ B} BY B}
. ! ! shard,
shards: internal state H H
_______________________________ gy gy g g g g g gy g g g g gy g gy gy g g gy gy g Sy
v 1
lockchai 1 |
blockchain ! block,n—1 f block, n
' '
! block; n—1 ! block; n
H block, n—1 H block, n
' '
E block, n—1 E block, n
' '
H |n_liGcore((rnil'"_n);(hz.s.ls.whg.9.110.11.12.13.14,15) | 1 | 1 6core ((r™, n)); (hi 567, Rg.0.10.11.12.13.14.15) |
' '
' '
' = = '
! | By Gawnerwﬂ"’z)(BS D) | Y | Bg; Gowngr(sg‘-‘)(Bg) |
' '
' '
' - = '
b B} Goumercapt) (B3 [|l BY; Sgpmerap~y(B1) |
' '
' '
' '
' ' | BY; Cowner(Bp™Y (B7) |
' '
' '
' '
Bl o, 1y (BY) |
i i | 35 Sowner (st (B3 blockn
' '
' '

FIGURE 2. KSI cash data structures.

KSI Cash blocks. In Fig. 2, we use o,(x) to denote the
signature of data x created by the private key belonging to the
public key address o. In a given round, only a small subset
of all bills is affected by payment orders. Therefore, it is
necessary to retrieve the current owner of a bill in the most
recent block that contains a payment order with respect to
this bill. For example, in Fig. 2, the most recent owners of bills
By and B3 inround n, can be retrieved from the previous round
n—1 as owner(Bg_l) and owner (B3~ 1), whereas the owners of
bills B and B; need to be retrieved from the previous rounds
n—k and n—1 respectively, with both k > 1 and / > 1.

2) INTERNAL STATE

Each block needs to obtain further authentication data.
We have designed a bill-based data structure that is optimized
for performance, which will be analyzed in Section IV-C.
For this, in each round, a Merkle tree is computed, which
has one leaf for each bill, called the hash of the bill (in that
round). If, in a given round, there exists a validated payment
order for a bill, the corresponding leaf of the Merkle tree is
computed from this payment order and the hash of the bill in
the previous round, as depicted in Fig. 2 by various different
colors (By: yellow; By: blue; B,: green; B3: red). If there exists

VOLUME 10, 2022

no validated payment for a bill in a given round, we take the
hash of the bill in the previous round again as hash of the bill
in the current round (shown in Fig. 2 as computation from
the zero hash, denoted by 0y, and the hash of the bill in the
previous round). This means that data from several rounds are
related to each other (“‘chained together”’) at the level of hash
tree leaves (and not, as, e.g., in Bitcoin, at root hash level).
In each round, the Merkle tree, which we also call the hash
tree of the round, is computed by the shards and a further so
called core system, or just core for short. Each shard validates
payment orders and computes a Merkle tree for those bills
that it is responsible for. The core then further integrates all
of the shard trees into one single Merkle tree, see Fig. 2.
In Fig. 2, the hash tree of a round k consists of nodes of the
form h(g, where s is a sequence ij.is. - - - .i, of bill identifiers
that uniquely determines the node’s position in the hash tree.
We use 4% to denote the hash tree of round k and ¥ to
denote its root hash. We call the root hash of the hash tree,
which is computed by shard; in round k, the root hash of
shard; (in round k). We call the upper part of the hash tree of
round k, that is maintained by the core system, the core hash
tree of round k. Note that the root hash of a shard; belongs
also, as a leaf, to the core hash tree of the respective round.

77293

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

For example, in Fig. 2, we have for hg.1.2.3 belongs both to
the hash tree of shard; and the core hash tree of round k.

3) BLOCKS AND BILL PROOFS

The KSI Cash blocks are sharded. In a given round, each
shard; builds a shard block denoted by block; k. The block
of round &, which is denoted as block k, consists of all shard
blocks block; k. In each round, the core system signs the root
hash together with its round number (r*, k) using the private
key of the central authority, i.e., the respective KSI Cash
system owner. We call such a signature a root hash signature,
denoted by Oeore((r¥, k)) in Fig. 2. As authentication data,
each shard block block; k contains (i) the round number,
(ii) the round’s root hash signature and (iii) the authentication
path [86]-[88] belonging to the shard’s root hash in the core
hash tree. For example, in Fig. 2, the shard root hash of
blocky n is h](‘).].z.3 and the authentication path of this shard
root hash is the sequence (h§.5_6.7, h§.9.10.11.12.13.14.15>'

After a payment order has been validated and successfully
integrated into the block, the shard sends a respective proof to
the respective wallet; either upon request of the wallet (pull)
or automatically (push). We call proofs of successful payment
orders also just bill proofs. With the given block design,
each shard has the necessary authentication data to compile
its bill proofs. A bill proof consists of (i) the bill number,
(ii) the round number, (iii) the round’s root signature, (iv) the
hash of the bill in the previous round and (v) the complete
authentication path of the bill in the current round’s hash tree.
For example, the bill proof of payment order B in Fig. 2 is:

(0, 1, 0core((r* k), BE Y (W W e 7 H 1s)) (2)

The data contained in a KSI Cash bill proof is sufficient to
authenticate a successful payment order, i.e., the wallet does
not need to have all data of the full block or even the whole
blockchain.

4) ON CORE SHARDING

The core system could also be sharded. In Fig. 2, the core
hash tree is not sharded. However, a further tier of shards
(or even tiers of shards) in the realm of the control system
could be introduced, following the same pattern as exposed
by the hash tree and block data structures in Fig. 2. However,
core sharding would only become necessary, if the number of
shards gets critically large. In balancing out concrete system
designs, the number of bills per shard will be very large
as compared to the number of shards. The number of bills
per shard is determined by the expected performance of the
system in terms of transaction throughput. Even for very large
transaction loads, the number of shards can be expected to
be relatively small (in regard to the need for core sharding),
compare with Section IV-C and V.

B. THE KSI CASH EXCHANGE SERVICE

1) EXCHANGE SERVICE AND EXCHANGE STRATEGIES

The KSI Cash data structures described in Section IV-A
are fully parallelizable. In a pure bill scheme, payment

77294

orders only change the owners of bills. Therefore, the set
of all bills can be distributed over shards that can process
payment orders in parallel without any communication and
coordination. If a wallet wants to enact a payment, the wallet
breaks down the payment to a set of payment orders. We need
to assume that the wallet owns a reasonable mix of bills with
different kinds of values, in particular, small enough values,
so that it can map a concrete payment onto payment orders,
possibly in different shards. In practice, it will happen that
some payments cannot be mapped onto a mix of payments
orders, given a certain mix of bills in the wallet.

In some of the KSI Cash runs, we simply ensure, via the
system initialization, that all wallets have enough small-value
bills to run all payments. This is possible, as we can
steer, which payments are sent to wallets. Furthermore,
we have implemented an exchange service in KSI Cash. This
exchange service is implemented as a specialized wallet that
is (i) owned by the central authority (central bank), and is
(ii) trusted by all of the other wallets. We call the specialized
wallet of the exchange service the exchange wallet, and we
call all other wallets user wallets, or just wallets, if clear from
the context.

The exchange service needs to be initialized with suffi-
ciently many small-value bills in the beginning of a test run
to enable all payments between user wallets. There are two
wallet exchange strategies with respect to the usage of the

exchange service, i.e.:
o Re-Active Exchange. Whenever the wallet cannot turn a

payment into a set of payment orders, due to the lack of
sufficiently small-value bills, it first uses the exchange
service before the actual payment.

o Pro-Active Exchange. After each successful payment,
the wallet analyzes, whether its combination of bills is
able to potentially serve all possible payments (smaller
than the total amount possessed by the wallet). If not,
the wallet immediately triggers an exchange via the
exchange service.

A usage of the exchange service is called a money
exchange. A money exchange simply consists of two
payments, ie., a payment from the user wallet to the
exchange wallet (containing some large-valued bills) and a
simultaneous back payment from the exchange wallet to the
user wallet (containing respectively many small valued bills).

2) TRANSACTION AND TRANSACTION ROUNDS

In the KSI Cash setting, we assume that the exchange wallet
is trusted by the user wallets. Therefore, both payments
of an exchange (i.e., the payment to the exchange wallet
and back to the user wallet) can be enacted simultaneously,
in one so-called transaction round. The transactions in an
Alphabill transaction system might be organized hierarchi-
cally, depending on the respective domain and its technical
implementation. In KSI Cash, we distinguish three levels of
transactions, see Table 3. At the outermost level, KSI Cash
transactions are simply called transactions. They are triggered
by users in order to transfer a value from one user wallet

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

TABLE 3. KSI Cash transaction design and terminology.

KSI Cash Transaction Hierarchy

user-triggered payment between wallets; consists
of one or two transaction rounds

payment between user wallets; or money ex-
change

changes the owner of a bill

transaction

transaction round

payment order

Further KSI Cash Transaction Terminology
money exchange consists of two simultaneous payments: (i) from
user to exchange wallet, (ii) trusted back payment
from exchange to user wallet
started by a wallet sending payment orders; ends,

transaction

duration when all bill proofs have been received; includes
network travel times
tx/s transactions per second (transaction throughput)

to another. At the next level, a transaction consists of either
one or two so-called transaction rounds. A transaction round
conducts a payment between two user wallets or otherwise
a money exchange. At the lowest level, the transactions
are the payment orders, which change the ownership of
bills. In general, several payment orders are needed during
a payment to fulfil its purpose.

A transaction must contain at least one transaction round,
i.e., a payment between user wallets. Additionally, it might
contain a further money exchange as second transaction
round, according to the respective wallet exchange strategy
(re-active or pro-active). Henceforth, we measure KSI Cash
system throughput as transaction throughput (transaction
rate), i.e., in terms of the number of transactions per second,
which we denote as tx/s.

Transaction durations are defined via the start and end
of transactions as follows: a transaction starts, when the
respective wallet sends payment orders to the KSI Cash
backend system; a transaction ends, when the receiving
wallet has received all bill proofs of the transaction. This
means, that transaction durations include network travel
times. Network travel times depend on network performance;
therefore, network travel time is an impact factor on KSI Cash
performance measures (throughput) that is not KSI Cash
specific, i.e., independent of KSI Cash technology. From a
rigorous viewpoint, network travel times should be excluded
from the duration times. It was decided to keep them in,
in service of having realistic performance measures from a
user perspective. In our test runs, network travel times had
no large impact, e.g., a typical duration of creating a payment
order by the wallet and sending it to the KSI Cash input router
was in the range of 30-40ms only (as, e.g., compared to the
standard round time of KSI Cash, which was set to 1,000ms,
see Section V-A2).

3) BEYOND THE PURE BILL SCHEME

The exchange service described in Section I'V-B is a solution
that is consistent with the pure bill scheme, i.e., it works with-
out introducing splits and joins in the money transactions.
In practice, it needs to be ensured that always sufficiently
many small-value bills are available in the exchange wallet.

VOLUME 10, 2022

An approach to keep the number of small-value bills in the
exchange wallet is to introduce strategies that trigger, in some
appropriate way, also changes in the inverse direction, from
the exchange wallet to user wallets and back.

A different way is introducing splits and joins. In an
extended bill scheme splitting and joining bills is allowed;
however, in such a way that cross-shard transactions are
avoided entirely. This means, that the mechanisms of an
extended bill scheme must be designed as in-shard only. The
dust collection solution of Alphabill Money introduced in
Section VI-B2 achieves this and, therefore, is an extended bill
scheme.

If a way to split bills into smaller-valued bills is introduced,
we also need to introduce mechanisms that join bills of
smaller values into fewer bills of larger values. Without any
joining mechanism, after some time, the system would end
up in a state of too high granularity; theoretically, in a state
in which there exits only bills of smallest value. However,
if the bill granularity of the system gets too high, the system
is flooded with too much payment orders and stops running
efficiently.

C. ANALYTICAL PERFORMANCE ESTIMATIONS

In this section, we conduct some analytical time and cost
estimations for the bill scheme of KSI Cash as introduced in
Sections IV-A and I'V-B. We deal with the costs of building
the internal state and verifying ledger certificates. We use p;
to denote the number of payment orders processed by shard
i in a given round. For the purpose of this analysis, we do
not distinguish between payment orders that are requested by
wallets and payment orders that are processed by the shards,
i.e. we simply assume that all payment orders are validated
correctly and eventually integrated into the block. We use B;
to denote the number of bills maintained by a shard and ¢ to
denote the number of shards. See Table 4 for an overview of
symbols used in this section and its results.

We use Th,sn to denote the time needed to compute the hash
of a single payment order and T;, to denote the time needed
to verify a payment order signature. A reasonable assumption
is that the time needed to verify a signature is three orders of
magnitude more than the time needed to compute a payment
order hash, i.e.:

Tsig & 10° X Thash)

With T,pdare,i» We denote the time needed by a shard i to
update its internal state in a round (called update time), i.e.,
to compute the new hash tree for all the payment orders to
be included into the block. The time Typgare,; corresponds
directly to the size of the computed hash tree, i.e., its number
of nodes. The extreme (and unlikely) case that there are as
many payment orders as bills yields the following as an upper
bound for the update time (according to the full number of
nodes in the hash tree):

Tupdate,i < 2Bi - Thash)

77295

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

TABLE 4. KSI cash time and cost estimations: symbols and summary.

pi : number of payment orders, shard ¢
Bi; : number of bills, shard ¢
¢ : number of shards
Thash, @ hash compute time
Tsig @ signature verification time
Tupdate,i state update time, shard ¢
Tprocess,i round processing time, shard %
Tprocess total round processing time
Tsig = 10> X Thash ©)
Tupdate,i ~ pi 1092[31‘ . Thash (7)
TpTocess,i ~ pi- (Tsig + 109262' : Thash) (8)
Tprocess S 2¢- T}msh + max Tpmcess,i (9)
k2

If there are less payment orders than bills, accordingly
less leave nodes and possibly also (many) inner nodes of
the hash tree do not have to be computed. Remember from
Section I'V-A that the previous round’s hash is taken for bills
for which there is no payment order in the current round.
Saving hash tree computations propagates through the tree,
i.e., in updating the hash tree, the hash values from the
previous round’s internal state can be re-reused wherever
possible (You start with computing the hashes for existing
payment orders, flag the inner nodes that get affected at the
next level, proceed with those nodes in the next round, and
so on, until you reach the root.). Therefore, the extreme case
that there is only a single payment order yields the following
lower bound for the update time (according to the length of
one path from leave to root in the hash tree):

Tupdate,i > 1082,81' * Thash (5)

Now, given the number of payment orders p;, we can give
a better upper bound for the update time than (4) as follows:

Tupdate,i < pi - 10g2Bi - Thash (6)

We can assume that we have very few payment orders
as compared to the number of bills in a shard. Similarly,
we can assume that the payment orders are usually widely
“distributed”’, i.e., that there is no significant overlap of the
paths of successful payment order leaves in the hash tree.
Altogether, we can see that, therefore, the upper bound (6)
is actually a good estimation of the update time, in general,
and therefore we state:

Tupdate,i ~ ;i - 10gyBi - Thash @)

If we assume that there are much less payment orders than
bills, i.e., p; << Bi, we see that the number of payment orders
pi clearly dominates the update time (7).

77296

As part of payment order validation, the shard has to verify
the payment order signatures as provided by the most recent
owners of the respective bills. For the moment, we neglect
further payment order validation costs. With T)pcess,i We
denote the processing time of a shard i during a round, which
encompasses the update time plus the signature verification
times, i.e., we estimate:

Throcess,i ~ pi - (Tsig + log,B; - Thash) (®)

If we assume that Tj;, is a thousand times more costly
than Tpggn, see (3), we have that the processing time in (8)
is clearly dominated by the signature verification time Ty,
for any realistic number of bills.

Finally, we can give an upper bound for the total processing
time of a round as follows:

Tprocess <26 - Thasn + max Tpmcess,i 9
i

As shard computations can be parallelized, the total
processing time in (9) needs to consider only the slowest
shard (i.e., the one that needs the maximum processing time).
In addition, the total processing time needs to incorporate the
update time needed for computing the core hash tree. We can
assume that all shard root hashes change during a round,
i.e., that all shards receive at least one transaction. Therefore,
the full size of the core hash tree is the adequate basis for
estimating its update time. As discussed in Section IV-A4,
we can consider the size of the core hash tree as relatively
small, so that the shard processing time is the dominating
component in (9).

V. KSI CASH PERFORMANCE EVALUATION
A. THE KSI CASH TEST IMPLEMENTATION
1) OVERVIEW
In order to evaluate the KSI Cash concepts and architecture,
in the first place in regard to performance and scalability,
but also in regard to availability, a first version (proof of
concept) of KSI Cash and a respective test bench have
been implemented. Particular effort and resources have been
invested into simulation of a realistic scenario. This involves
a realistic wallet simulation as well as the implementation
of a backend system with professional input and output sub-
systems that are specified as if the system has to operate under
real-world conditions. For example, TLS (Transport Layer
Security) was imposed throughout the test runs, and session
authentication was conducted for incoming payment orders.
We conducted a series of test runs under simulation of
realistic usage as described in Section V-B. However, we also
wanted to show that the system concept is, basically, capable
of unlimited performance, by showing linear scalability of
the involved core data structures and algorithms. Therefore,
we also conducted a series of test runs with a cut-down
version of the backend system and a simplified load test
generation, simply to achieve ultra-high load with still
reasonable testing costs. We describe these ultra-scalability
test runs in Section V-C. We start with a description of the

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

TABLE 5. Implementation of KSI Cash and its wallet simulation in terms
of lines of code, i.e., uncommented, non-blank lines L ,4., comment lines
Lcomment and blank lines Lyjgn-

KSI Cash Backend Code

Language Files Lptank Lcomment Lcode

Go 659 14,724 14,138 87,704
CSS 1 2,452 2 8,619
YAML 88 384 406 3,571
JSON 8 0 0 2,398
Bourne Shell 35 227 152 957
HCL 17 95 23 589
Python 13 203 101 537
Protobuf 35 165 669 394
Markdown 9 113 0 322
Dockerfile 13 45 4 161
HTML 2 14 2 130
make 1 22 2 61
Bash 1 3 4 13
Sum 887 18,447 15,513 105,461

KSI Cash Wallet Simulation and Test Bench Code

Language Files Lblank mement Lcude

JavaScript 80 591 1,919 4,322
LESS 24 213 7 1,232
Java 21 202 1 848
YAML 7 47 5 454
Markdown 5 97 0 179
Bourne Shell 1 23 36 126
Gradle 5 15 1 110
JSON 4 0 0 79
DOS Batch 1 26 2 76
make 3 19 14 42
SVG 8 0 1 42
HTML 2 9 20 39
Dockerfile 2 8 1 22
Sum 163 1,250 2,007 7,571

backend system as used in the realistic usage scenario in
Sect V-A2 and will explain the differences of the system as
used in the ultra-scalability test runs in Section V-C.

Both the KSI Cash implementation, as well as the KSI
Cash wallet simulation and load test generation have been
deployed, as cloud-native applications, to the Amazon EC2
cloud.'®

KSI Cash, i.e., the KSI Cash backend system, has
been implemented mainly in Go.!” The implementation
encompasses approx. 105,000 (uncommented, non-blank)
lines of code (LOCs), with 87,704 LOCs in Go plus additional
code in diverse programming and DevOps-related languages,
see Table 5. The KSI cash wallet simulation has been
implemented mainly in JavaScript. Together with auxiliary
test bench code, it encompasses approx. 7,500 LOCs, with
4,322 LOCs in JavaScript plus additional code in diverse
languages, see again Table 5. The software development team
consisted of ten Guardtime software developers (all senior
full-stack plus DevOps software engineers).

The KSI Cash backend system has been deployed on a
total of 1,382 virtual CPUs (vCPUS) with 8.27 TB RAM
and 26.1 TB storage, compare with Table 6; and the wallet
simulation has been deployed on 826 virtual CPUs with
1.8 TB RAM and 24.5 TB storage. Some smaller amount of

16https ://laws.amazon.com/ec2/
17https://go.de:v/

VOLUME 10, 2022

extra resources has been needed to run auxiliary modules of
the test bench, i.e., 24 virtual CPUs with 88 GB RAM and
1.8 TB storage, see Table 6.

2) THE KSI CASH BACKEND SYSTEM

Figure 3 shows the nodes of the KSI Cash backend system as
deployed in Amazon EC2. The KSI Cash wallet depicted in
Fig. 3 does not belong to the KSI Cash backend system — for
the architecture of KSI Cash wallets simulation, see Fig. 4.
The KSI Cash wallet sends payment order requests to and
fetches bill proofs from KSI Cash through a high-availability
proxy (HA proxy) consisting of 16 nodes (virtual machines).
See Table 6 for technical specifications of deployment nodes,
including the number of virtual CPUs (vCPUs), RAM size,
storage size, processor type, Amazon EC2 instance type and
the number of virtual machines (VMs). Henceforth, we use
nodes and virtual machines as synonyms.

Handling payment orders in KSI Cash is sharded as
described in Section IV. The test system consists of 14 shards.
According to this, there are 14 so-called gateway nodes
(Gateway 1-14) and, additionally, 14 corresponding gateway
output components as illustrated in Fig. 3. The gateways
and their output components can be considered the workers
of the system, as they are responsible for building the
shard hash trees, creating blocks and issuing bill proofs as
described in due course. This explains the relatively large
amount of compute resources dedicated to the gateways
and their output components, with 896 virtual CPUs and
7.17 TB RAM, i.e., approx. 65% of vCPUs and 87% RAM
of the total compute resources of the backend system (1,382
vCPUs, 8.27 TB RAM). We name the gateways and their
output components together with the core module and the
controller module the key components of the system, as these
components are responsible for all of the tasks described in
Section IV. The remaining components allow for the initial-
ization and management of the system and ensure its client
connectivity.

Payment orders are queued in data pipelines on the basis
of Apache Kafka.'® We use a configuration with three
Kafka nodes, six Kafka proxy nodes and three Zookeeper
nodes. Such configuration is standard; the three Kafka nodes
are in service of availability, not because of performance
optimization. There exists one queue for each gateway in
the Kafka configuration. The payment order router analyzes
incoming payment request and routes them to the respective
gateway queues. The payment order router is a potential
bottleneck for high loads of payment requests, however, more
parallel payment router nodes can be arbitrarily added to
deal with higher loads, as payment order routing is fully
parallelizable. For the loads during our test runs, one node
(with 8 vCPUs) was sufficient.

In the KSI Cash implementation, gateways are synchro-
nized, i.e., they process payment orders and build blocks in
rounds of pre-determined, fixed length called round time,

18https://kafka.apache.org/

77297

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

Controller
(1 node)
Core
v (1 node)
Gateway O (Emission)

(1 node)
Gateway O (Emission)

Output Component
(1 node)

Payment Order
Router
(1 node)

... =
ArangoDB I OutG?Jtteg:)a% lt;%lints Gateway 1-14 rdgd payment ordars Kafka Zookeeper ||
(3 nodes) p(14 nodzs) (14 nodes) (3 nodes) (3 nodes) |f:
ArangoDB Agency ...
(3 nodes) Front Kafka Proxies
i Output Components (6 nodes)
| HA Proxy
(16 nodes)
Amazon Network Load Balancer
fetch bill proofs send payment orders
(HTTP2/GRPC) (HTTP JSON)
KSICash
Wallet

FIGURE 3. KSI cash backend system architecture.

where the round time is a tuning parameter of the system.
In the test runs of KSI Cash that we present in this paper, the
round time was set to a length of 1,000ms.

At the beginning of each round, each gateway pulls the
payments orders which it is responsible for, from its gateway
queue. It stops pulling requests after a fixed amount of time,
called payment order reading time, set to 300ms in the test
runs of this paper. Payment orders that could not be read
in the pre-determined reading time, remain in the gateway
queue for processing in further rounds. All gateways need
to hand over calculation to the core node at least before
a so called core offset time, which is set to 100ms in the
test runs of the paper. The round time, the payment order
reading time and core offset time are all tuning parameters
of the system, which need to be configured in such way
that all requested gateway calculations are finished during a
round.

The core node is responsible for building the core hash
tree. As soon as a gateway has received a certificate from
the core node, it sends the block of the current round to
its corresponding gateway output component. The gateway
output stores the block in persistent storage. For storage of
the blockchain we use the multi-model database ArangoDB!?
that we run as a database cluster consisting of six nodes, i.e.,

19https://WWW.arangodb.com/

77298

three ArangoDB nodes and further three ArangoDB Agency
nodes. Furthermore, the gateway output component rebuilds
the hash tree of the most recent round in its internal memory,
which it needs to serve bill proof requests that are sent from
KSI Cash wallets. The gateway output components serve
bill proof requests via a scalable tier of ten front output
component nodes. The front output components answer bill
proof requests immediately, i.e., either with the bill proof or
otherwise a message which indicates that the bill proof is
not yet available. In case a bill proof is not yet available,
the respective wallet has to retry the bill proof request
after a reasonable time interval, which again is a tuning
parameter.

An initialization system was built for setting up the
testing environment from scratch, including deployment of
components, configuring a new KSI Cash instance, emitting
bills, initializing and pre-funding the wallets, in whatever
configuration necessary. The Gateway-0 node, also called
emission gateway and its output component are used to
run this system initialization. The whole KSI Cash backend
system has been developed as a cloud-native application.
We have decided to use Nomad?® as container orchestration
system for KSI Cash. One node is dedicated as Nomad server
for the KSI Cash backend.

20https://Www.nomadproject.i0/

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

Amazon Network Load Balancer

fetch bill proofs send payment orders
(HTTP2/GRPC) (HTTP JSON)
Wallet Simulation Arango DB ArangoDB Agency
(16 nodes) (16 nodes) (3 nodes)
send processed pick transactions
transactions for processing
Kafka Proxy Kafka Zookeeper
(1 node) (3 nodes) (3 nodes)
d . consume and
produce transactions aggregate statistics

Influx DB
(1 node)

Load Test Runner
(1 node)

start test scenarios

FIGURE 4. KSI cash wallet simulation and load test generation.

3) THE KSI CASH WALLET SIMULATION

Figure 4 shows the components of the KSI Cash wallet
simulation. The test developer starts test scenarios via the
load test runner component. For each test run, the load
test runner generates a series of transactions among wallets.
These transactions are buffered in a Kafka configuration
consisting of three Kafka nodes plus one Kafka proxy node
and three Zookeeper nodes. The wallet simulation is run by
16 nodes, connected with an ArangoDB database to hold the
wallet data, run by 16 ArangoDB nodes plus 3 ArangoDB
Agency nodes.

The wallet simulation has a series of tasks. First it picks
transactions from the Kafka queuing system. In case of test
runs including exchange services, it breaks down transactions
to transaction rounds, and also steers the execution of these
transaction rounds. It splits transaction rounds into payment
orders, and sends these to the KSI Cash backend system.
Furthermore, the wallet simulation requests bill proofs from
the KSI Cash backend system. A simulated wallet waits a
reasonable time after sending a payment order and before
issuing the corresponding bill proof, which is at least the
round time plus a certain waiting time offset. This time
offset is a tuning parameter of the overall KSI Cash system
and is set to 250ms in the current setting. If the KSI Cash
backend system replies to a bill proof request that the
bill proof is not yet available, the wallet will again wait
the specified waiting time before issuing the bill request
again.

Once a simulated wallet has received all bill proofs needed
to prove a transaction, it sends it back to the load test
runner as a successfully processed transaction. The load
generator aggregated the results and submits them to the

VOLUME 10, 2022

time-series database InfluxDB.?! The test engineer can then
use InfluxDB for various statistical analysis. Furthermore,
InfluxDB was connected to the data analysis and visualization
tool Grafana®? for further analysis (not shown/listed in Fig. 4
and Table 6).

B. REALISTIC USAGE TEST RUNS

1) OVERVIEW

Several test runs have been conducted. The purpose of
the baseline test run in Section V-B2 was to determine
the transaction duration under very small transaction load,
i.e., such that can be considered as minimally needed
transaction duration. The purpose of the production test run
in Section V-B3 was to set the system continuously under
a high load, according to the key performance indicator
of 10,000 tx/s, which was initially set for the proof of
concept. The purpose of the maximum throughput test run
in Section V-B4 was to push the test system to its limits,
in regard to its current configuration and tuning parameter
setting. The purpose of the exchange service test runs in
Section V-B5 was to investigate differences of behaviors
of KSI Cash’s re-active versus pro-active wallet exchange
strategies. We use the peaks and lows test run in Section V-B6
to investigate gateway calculation times. The purpose of the
memory consumption test runs in Section V-B7 where to
investigate the RAM usage of gateway nodes and gateway
components under several different transaction loads. The
24 hours test run in Section V-B8 was for the purpose of
demonstrating the availability of the system.

21 https://www.influxdata.com/
22 https://gratana.com/

77299

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

TABLE 6. The KSI Cash performance test server configuration (with node names referring to nodes in Figs. 3 and 4).

KSI Cash Server Nodes
Node Name vCPUs RAM Storage | Processor EC2 Instance Type | VMs
Controller 2 4GB 20GB | AMD EPYC 7002 cSa.large 1
Core 2 4GB 20GB | AMD EPYC 7002 cSa.large 1
Gateway-0 2 4GB 20GB | AMD EPYC 7002 cSa.large 1
Gateway-0 Output Component 2 4GB 20GB | AMD EPYC 7002 c5a.large 1
Gateway 1-14 32 | 256GB 20GB | Intel Xeon Scalable (Cascade Lake) | rSn.8xlarge 14
Gateway 1-14 Output Component 32 | 256GB 20GB | Intel Xeon Scalable (Cascade Lake) | r5n.8xlarge 14
Front Output Components 16 32GB 20GB | AMD EPYC 7002 c5a.4xlarge 10
Payment Order Router 8 16GB 20GB | AMD EPYC 7002 cS5a.2xlarge 1
Kafka 8 64GB 20GB+4TB | AMD EPYC 7000 r5a.2xlarge 3
Kafka Proxies 16 32GB 20GB | AMD EPYC 7002 c5a.4xlarge 6
Zookeeper 2 1GB 20GB | AMD EPYC 7000 t3a.micro 3
ArangoDB 16 32GB 20GB+4TB | AMD EPYC 7002 c5a.4xlarge 3
Arango Agency Node 2 4GB | 20GB+20GB | AMD EPYC 7002 cSa.large 3
HAProxy 8 16GB 50GB | AMD EPYC 7002 c5a.2xlarge 16
Nomad Server 2 2GB 20GB | AMD EPYC 7000 t3a.small 3
total 1,382 | 8.27TB 26.1 TB - - 78
KSI Cash Client Nodes
Node Name vCPUs RAM Storage | Processor EC2 Instance Type | VMs
WM Worker 32 64GB 20GB | AMD EPYC 7002 c5a.8xlarge 16
Kafka 8 64GB 20GB+2TB | AMD EPYC 7000 t3a.xlarge 3
Katka Proxy 4 8GB 20GB | AMD EPYC 7002 c5a.xlarge 1
Zookeeper 2 1GB 20GB | AMD EPYC 7000 t3a.micro 3
Load Test Runner 8 16GB 20GB | AMD EPYC 7002 c5.2xlarge 1
ArangoDB 16 32GB 20GB+1TB | AMD EPYC 7002 c5a.4xlarge 16
Arango Agency Node 2 4GB | 20GB+20GB | AMD EPYC 7002 cSa.large 3
Influx DB 8 16GB 20GB+1TB | AMD EPYC 7002 c5a.2xlarge 1
total 826 1.8TB 24.5TB — — 45
KSI Cash Auxiliary Nodes
Node Name vCPUs RAM Storage | Processor EC2 Instance Type | VMs
ELK Stack 8 64GB | 20GB+1.5TB | AMD EPYC 7002 rSa.2xlarge 1
HAProxy 2 2GB 20GB | AMD EPYC 7000 t3a.small 1
Nomad Backend Server 2 2GB 20GB | AMD EPYC 7000 t3a.small 1
Monitoring 2 8GB 50GB | AMD EPYC 7000 t3a.large 1
Consul 2 2GB 20GB | AMD EPYC 7000 t3a.small 3
Jump Host 2 4GB 20GB | Intel Xeon (not specified) t2.medium 1
Docker Registry 2 2GB 100GB | AMD EPYC 7000 t3a.small 1
total 24 88GB 1.8TB — — 9

a: PERFORMANCE BENCHMARKS
It was decided to specify two own major key performance

indicators (KPIs) as performance benchmarks as follows:
o Throughput: the proof of concept is able to process

10,000 transactions per second assuming 100M user
wallets.

« Transaction durations:
-- 95% of all transactions are processed in less than

5 seconds,
-- 99% of all transactions are processed in less than
10 seconds.
The standard transaction processing benchmarks

TPC-C [89] and TPC-E [90] of the Transaction Processing
Council (TPC) had been considered. However, TPC-C
and TPC-E were not particularly well suited for our
purposes for a couple of reasons. The benchmarks have
been originally designed as OLTP (online transaction
processing) benchmarks in the field of database management
systems, i.e., they are benchmarks for database products
and not particularly designed for blockchain technology.
Furthermore, since they are database product benchmarks,
they are intrinsically oriented towards the account money

77300

scheme [22] when it comes to payments. Furthermore, both
benchmarks are defined at application level, for example,
TPC-C models an application “‘portraying the activity of a
wholesale supplier” [89] encompassing operations not only
for payments, but also operations for new orders, order status,
delivery, and stock. TPC-E is exactly in the same vein,
simulating “‘the OLTP workload of a brokerage firm” [89].
Therefore, it was decided to set own KPIs as performance
benchmarks. Both of the above KPIs were fulfilled by the
production test run in Section V-B3. Beyond the two major
KPIs, a series of further KPIs have been specified in regard
to the other test runs. They have all been met and we will not
give them explicitly in this paper; instead, we directly present
the results of the several test runs.

b: BILL AND WALLET INITIALIZATION

Most of the test runs in this paper (Section V-B2, V-B3, V-B6,
and V-B8) have been initialized with the so-called standard
initialization as follows:

e Bills: 2.8 billion bills of different values have been
emitted, i.e., 200 million bills per gateway.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

o Wallets: 100 million wallets; each wallet loaded with a
combination of bills, so that the first payment is always
possible without usage of the exchange service.

The maximum throughput test run in Section V-B4, the
exchange service test runs in Section V-B5 and the memory
consumption test runs in Section V-B7 have used different bill
and wallet initializations.

¢: TRANSACTION GENERATION

During transaction generation, the transaction sums were
sampled randomly from log-normal distribution, with arith-
metic average amount 25 EUR and with 1-cent precision.
This pattern follows Eurozone statistics>> of combined cash
and card retail payments. On average, a generated transaction
encompasses six payment orders. This means also, that six
bill proof requests are needed, on average, to validate a
transaction.

Payer wallets were chosen sequentially. Therefore, due
to the test run durations, payer wallets have not been re-
used, i.e., a wallet has been used for payment at most once
during a single test run. Due to this (and the fact that each
wallet has been initialized with a respective combination of
bills, see Section V-B1b), all transactions in the test runs
of Section V-B2, V-B3, V-B5 and V-B§ have been single-
rounded transactions, i.e., the KSI Cash exchange service has
never been used in these test runs. On the other hand, the
exchange service test runs provoked a series double-rounded
transaction by re-using wallet configurations from a previous
test run without re-initializing the system, as will be explained
Section V-B5.

Receiver wallets were chosen randomly. Again, due to the
test run durations, not all of the wallets have been used during
single test runs.

We define the duration of a test run as the time from the
start of the first round till the end of the last round, i.e., the
test run durations do not include times for KSI Cash system
initializations.

2) BASELINE TEST RUN

During the baseline test run, the system was loaded with
1 tx/s for a duration of 5 minutes, i.e., with a total of
600 transactions (with the standard initialization of 2.8B
bills and 100M wallets). All of 600 transactions had finished
successfully in less than 2 seconds. As the round time of
the KSI Cash backend system was set to 1,000 ms, and the
waiting time offset was set to 250ms, no transaction could
have been faster than 1,250ms.

3) PRODUCTION TEST RUN

In the production test run, a steady load of 10,000 tx/s had
been generated for a duration of 1 hour, see Fig. 5. The two
spikes in Fig. 5 were caused by the wallet database and can
be neglected. On average, approx. 60,000 bills were used in
transactions every second. Wallets had been used, at most,

z3 https://www.ecb.europa.eu/press/pr/stats/

VOLUME 10, 2022

10.4K
10.2K
10.0K

9.8K

9.6 K
10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35

FIGURE 5. Production test run: total transactions per second.

10K
7.5K
5K
25K

10:45 10:50 10:55 11:00 11:05 11:10 11:5!.5. 11:20 11:257 11:30 11:35
126 (5-3s [N 1S C) Y e S

FIGURE 6. Production test run: transactions according to transaction
durations.

once as sender for a transaction. This means, that approx.
36 million wallets (out of the standard initialization with
100M wallets) had started a transaction. This also means that
the KSI Cash money exchange service had not been used and
all transactions were single-rounded.

All of the transactions of this run succeeded. Figure 6
shows the distribution of transaction durations of the run:
100% of the transactions finished in less than 7 seconds.
Actually, despite during the first spike in the run (compare
with Fig. 6), all transactions have been finished in less than
4 seconds. Overall, 16.51% of the transaction have been
finished in less than 2s, 95.11% have been finished in less
than 3s and 99.89% have been finished in less than 4s.

4) MAXIMUM THROUGHPUT TEST RUN

The purpose of this test run was to find the transaction rate
limit of the current system setup, including the concrete
setting of tuning parameters. The concept of this test run was
to increase the transaction load during the test run in stages
of 1,000 tx/s until the system starts failing. Here, we define
system failure as the occurrence of a significant amount of
failed transactions, i.e., on the basis of notions of successful
transaction vs. failed transaction.

Definition 2 (Successful vs. Failed Transaction): A trans-
action is considered a successful transaction, if the bill proofs
of all of its payment orders could have been successfully
queried by a wallet during a specified expiry time &.
Otherwise, it is considered as a failed transaction.

For the sake of this test run, we have set the expiry time for
successful transactions to & =40sec (accounting to 40 rounds
of block creation in our system setting). In real-world settings,
in practice, this expiry time can be surely be relaxed further;
the expiry time of £ =40sec simply shows the high ambitions
of the test run. We have not further pre-specified, exactly

77301

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

end total

14K

12K

end success

10K
8K

6 K
20:45 20:50 20:55 21:00 21:05 21:10 21:15

FIGURE 7. Maximum throughput test run: total successful transactions
per second (“end total” = all transaction at the end of the test run; “end
success” = successful transaction at the end of the test run).

how many failed transactions are significant, i.e., need to fail
before we consider the situation a system failure; actually,
given the success of our test run, you can assume the most
strict specification, i.e., we consider the system failing upon
occurrence of the first failed transaction.

A transaction rate of 15,000 tx/s of successful transactions
has been reached. No attempt was made to re-tune the
system (in term of the KSI Cash tuning parameters) to reach
even higher transaction rates with the available EC2 node
deployment. It can be assumed that even higher transaction
rates could have been reached with respective tuning. Still,
the result gives a stable lower bound for the possible
transaction load with the EC2 node deployment described in
Section V-A2.

The test run was initialized with 111 million bills per
gateway, and 55 million wallets. The transaction load started
with 10,000 tx/s. Then, the load was increased by 1,000 tx/s
every 5 minutes, see Fig. 7. Up to a load of 15,000 tx/s, the
system operated with a rate of 100% successful transactions.

When the load was increased 16,000 tx/s, the system
started failing, see Fig. 7, where we distinguish between
all transactions (‘end total’) as opposed to successful
transactions (‘end success’) during the last five minutes of
the test run. First, we can see that a significant amount
of transactions have failed. Second, we can see that the
total number of transactions (including those failing) is
less than the target load of 16,000 tx/s, and even less
than the 15,000 tx/s of the previous, successful stage of
the test run. This was so, because the wallet machines
have been overwhelmed with requesting bill proofs at that
stage, so that they failed generating the targeted number
of transactions per second. Next, also the three most
used gateway output components were also overwhelmed
by the high number of bill proof requests at that stage.
Consequentially, more and more payment orders were queued
in their gateway input queues and a series of transactions
failed.

We can summarize that, during system failure, the
performance bottlenecks have been the wallet machines and
the gateway output components. This opens opportunities
for further system tuning (beyond optimizing the KSI Cash
system tuning parameters) such as the introduction of
queuing layer between the front output components and the
gateway output components. Again, the target of the test run

77302

15K

10K

) M
P Vipcs "l Dl

0K -
20:45 20:50 20:55 21:00 21:05 21:10 21:15

i35 (2:35 [5easl N [S°Ge I X

FIGURE 8. Maximum throughput test run: transactions according to
transaction durations.

was not to push the performance to the limit on the basis of
the available machine, but to find a reasonable lower bound
for the performance of the system with the given compute
resources.

Figure 8 shows the transaction durations of this test
run. Transaction durations did not increase critically with
more load until the system’s limit was reached. Some more
transactions with a duration of up to 4s appeared with
increasing load, however, even at the peak load of 15,000 tx/s,
still 99.9% of transactions were still executed in less than 5s.

5) EXCHANGE SERVICE TEST RUNS

The exchange services test runs have been conducted to test
the KSI Cash money exchange mechanism and to understand
its impact on the overall systems performance.

Three test runs have been conducted. The first one was
a test run without usage of the exchange service, in order
to have a baseline for comparison with the test runs that
use the exchange service, see Section V-B5a. The other test
runs provoked some transactions that needed to use the
exchange service. In the second test run in Section V-B5b,
the re-active exchange strategy was activated, compare with
Section IV-B1. In the third test run in Section V-B5c, the
pro-active exchange strategy have been activated.

Each of the three test runs was loaded with a steady
transaction rate of 5,000 tx/s over a duration of 10 minutes
each.

The system was initialized with 40 million bills in each
gateway (a total of 560 million bills). A total number of
10 million user wallets has been created. The exchange wallet
received 20 million bills. Therefore, on average, each user
wallet received 54 bills. In each wallet, the combination of
bills was composed in such way, that the wallet could make
the first transaction without the need to use the exchange
service.

a: NO EXCHANGE BASELINE TEST RUN

During the baseline run, each sending wallet was used only
once, therefore it was possible to pay all sums without the
help of the exchange service. Figure 9 shows the results of the
first test run. The majority of 55.07% of the transactions have
been finished in 1-2s, whereas 44.87% have been finished in
2-3s and all of the transactions in less than 4s.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

3K
2K
1K

0K
11:43 11:44 11:45 11:46 11:47 11:48 11:49 11:50 11:51 11:52 11:54

PEPER R] s [os [0 e 125

FIGURE 9. No exchange baseline test run: transactions according to
transaction durations.

3K
2K
1K
| bbbtk Wi Mot el |
s ; PRIV o o is W‘W\‘ _H‘M‘Wﬁ
0K AT RET | I Ay e o

12:09 12:10 12:11 12:12 12:13 12:14 12:15 12:16 12:17 12:18
575 [2:35 5eas] I 1SRG 7Y) s e S

FIGURE 10. Re-active exchange strategy test run: transactions according
to transaction durations.

TABLE 7. Exchange service test runs: transaction durations of three test
runs with different money exchange strategies (no exchange, re-active,
pro-active).

transaction duration
Test Run 1-2s 2-3s 3-4s 4-5s 5-6s
no exchange | 55.07% | 44.87% 0.06% - -
re-active 36.11% | 42.15% | 10.30% | 10.94% | 0.46%
pro-active 27.00% | 68.91% 4.06% 0.03% -

b: RE-ACTIVE EXCHANGE STRATEGY TEST RUN

The second test run was started after the first (baseline) test
run from Section V-B5a without re-initialization, i.e., the
wallets remained in the state as produced by the first test
run. Therefore, some wallets missed some denominations for
enacting a transaction at this point and had to use, re-actively,
KSI Cash exchange wallet. This increased the transaction
durations as can be seen in Fig. 10, when compared with
Fig. 9. As opposed to the baseline test run, less transaction
were finished in 1-2s (36.11%), more transaction needed 2-3s
resp. 3-4s (42.15% and 10.3%) and transactions with longer
duration than 4s also occurred (>11%), see also Table 7 for a
summary.

¢: PRO-ACTIVE EXCHANGE STRATEGY TEST RUN

For the third test run, the system was re-initialized with the
same data as the first run (40M bills, 10M wallets, 20M
bills in the exchange wallet etc.). In this run, the pro-active
money exchange strategy was activated, i.e., an extra
money exchange round was triggered after each transaction,

VOLUME 10, 2022

4K

3K

2K

1K

s i i dasallliA i TRITIOY B ik LA 1YY “l
0K
20:08 20:09 20:10 20:11 20:12 20:13 20:14 20:15 12:16

75| (2:35 Al I S I XY) R P

FIGURE 11. Pro-active exchange strategy test run: transactions according
to transaction durations.

i

whenever it was in a state that could not serve directly all
possible transaction requests any more, see Section IV-B1.
Again, as compare to the baseline run in Section V-B5a,
transaction durations increased, with less transactions of 1-2s
(27%), more transactions of 2-3s (68.91%) and also more
transactions longer than 3s, see Fig. 11 and again Table 7 for
comparison.

When comparing the third test run (pro-active) with the
second test run (re-active), there are much more transactions
in the range of 2-3s in the pro-active run than in the
re-active run. With 68.91%, it can be said that the bulk of
transactions is 2-3s in the pro-active run, whereas even longer
transaction more often occur in the re-active run (>21% as
opposed <5% in the pro-active run). When comparing the
overall averages of the two runs, the pro-active run is slightly
better (2.2712s) than the re-active run (2.4735s). From these
results, it is not possible to decide clearly, which of the
money exchange strategies is better. More, longer simulations
or mathematical modeling would be needed. At least, the
results seem to indicate that the pro-active strategy should
be preferred whenever the optimization goal is in minimizing
very long transaction durations (>3s).

6) PEAKS AND LOWS TEST RUN

This test consisted of six phases of different transaction rates,
each with a length of 18 minutes as follows (with the system
standard initialization: 2.8B bills, 100M wallets):

100 tx/s
1,000 tx/s
10,000 tx/s
100 tx/s
1,000 tx/s
10,000 tx/s

The idea of the test run was to simulate peaks and lows
in a real world environment, for the purpose of investigating
gateway calculation time behavior under realistic conditions.

Figure 12 shows the result of the test run in terms of
gateway round calculation times (for 14 gateways, one
colored curve per gateway node in Fig. 12), ie., the
calculations made by a gateway during one round.

A e e

77303

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

TABLE 8. Memory consumption of gateway nodes and gateway output components.

gateway node, 8,000 payment orders per second under full load
NE Number of Bills | RAM Usage Before | RAM Usage During | RAM Usage After | RAM Usage Under
: per Gateway Initialization Initialization Initialization 10,000 tx/s Load
#1 2,000,000 0.27GB 1.18 0.62GB 1.16GB
#2 20,000,000 2.89GB 12.31 6.41GB 12.42GB
#3 200,000,000 27.3GB 69.43 62.52GB 70.21GB
gateway output component, 9,500 bill proof request per second under full load
N Number of Bills | RAM Usage Before | RAM Usage During | RAM Usage After | RAM Usage Under
r per Gateway Initialization Initialization Initialization 10,000 tx/s Load
[Imm] #1 2,000,000 0.27GB 2.05GB 1.21GB 2.18 GB
#2 20,000,000 2.89GB 17.24GB 11.94GB 23.97GB
#3 200,000,000 27.31GB 119.43GB 117.52GB 167.07GB

150ms

100ms

50ms

12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40 13:50 14:00

FIGURE 12. Gateway round calculation time of 14 KSI Cash backend
gateway nodes.

Definition 3 (Gateway Round Calculation): A gateway
round calculation includes:

o Validation of payment orders; here, processing is
dominated by ECDSA (Elliptic Curve Digital Signature
Algorithm) [91] signature checks. Go’s cryptography
library has been used for the purpose of signature
checks.?*

« Updating the state tree of the gateway machine. This
works in batch mode, i.e., some leaves of the Merkle
tree are changed when the represented bills change
ownership, and then the Merkle tree is re-calculated to
update its root, see Section [V-A2.

The gateway round calculation times increase with system
load. The round calculation needs to fit into the standard
time window of 600ms of the test run, i.e., round time
(1,000ms) minus payment order reading time (300ms) minus
core offset time (100ms), see Section V-A2. Even under a
high load of 10,000 tx/s, the gateway calculation time never
exceeded 150ms (with an average of approx. 75ms), see
Fig. 12.

7) MEMORY CONSUMPTION TEST RUNS

The purpose of these test runs was to investigate the
memory (RAM) consumption of the gateway nodes as well as
the gateway output components in regard to different amounts
of bills under production condition, i.e., 10,000 tx/s load.
Three runs for have been conducted, one with 2 million bills,
a second with 20 million bills and a third with 200 million
bills per gateway, each with 100 million wallets. This means
that the third run was run with the standard initialization (2.8B

24https://pkg. go.dev/crypto/ecdsa

77304

bills, 100M wallets). In each run we measured the memory
usage (peak usage) of gateway nodes and gateway output
components in four phases, i.e., before system initialization,
during system initialization, after system initialization (when
transactions have not yet been started) and during rounds
with a load 10,000 tx/s. The durations of the test runs (in the
narrow sense), i.e., after starting rounds have been 5 minutes
each.

The results of the test runs are listed in Table 8.
We have arbitrarily chosen one particular, representative
gateway node and its output component for Table 8. The
10,000 tx/s transaction load had a footprint of approx.
8,000 payment orders per second for the particular gateway
node, and a footprint of 9,500 bill requests per second for
the particular gateway output component. Gateway memory
consumption is in positive correlation to the number of bills.
The memory consumption of gateway output components
is higher than memory consumption of gateway nodes.
Memory consumption is higher after initialization than
before system initialization. Memory consumption is higher
during transactions than before the starting transactions
(after initialization). Memory consumption is higher during
initialization than after initialization. This is due to the
garbage collector of the Go runtime environment. However,
it is only slightly higher in the case of many bills (test run #3).
The peak memory usage of the gateway node was approx.
70GB and the peak memory usage of the gateway output
component was approx. 167GB. This means that the available
RAM (256GB) of the used virtual machines (compare
with Table 6) has been under-utilized during these test
runs.

8) 24 HOURS TEST RUN

The 24 hours test run was conducted in service of test-
ing availability. The system was loaded with a moderate
transaction load of 575 tx/s over a time of 24 hours (with
standard initialization: 2.8B bills, 100M wallets), Fig. 13. All
of the transactions were successful, i.e., system availability
during the test run was 100%. All transactions were executed
within 3 seconds, where the majority of the transactions were
executed within 2 seconds, see Fig. 13.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

400

300

200

100

O 1500 20:00 22:00 24:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
BOPERl e |]]7-8s]8-osfeuosfionisfuaad>10s)

FIGURE 13. 24 hours test run: transactions according to transaction
durations.

C. ULTRA-SCALABILITY TEST RUNS

We have conducted a series of test runs to show that KSI
Cash shows unlimited performance through linear scalability
in terms of needed compute resources. We call these test runs
ultra-scalability test runs. The target was to scale out the
system to a million payment orders and beyond. Conducting
tests with such a high load on the full backend system
and the full wallet simulation as provided by Section V-A2
and Section V-A3 would have been very costly without
a clearly visible advantage of having the realistic usage
simulation. We argue that ultra-scalability test runs provide
enough evidence for unlimited performance although they
are conducted under more simplified conditions, i.e., in what
we call a laboratory setting; in particular, when combined
with the evidence provided by the realistic test runs of
Section V-C.

Figure 14 shows the KSI cash system configuration for the
ultra-scalability test runs, please also compare with Fig. 3.
For a specification of the nodes of the system, see Table 9,
compare with Table 6. The major difference is in dropping the
gateway output components. This means the ultra-scalability
test runs do not actually construct and store the blockchain
anymore. Also, the generating of bill proofs is not tested
any longer. Consequentially, the ultra-scale test system also
needs no front output components. Instead, the block creation
is tested consisting of all necessary gateway calculations,
including the validation of payment orders, updates to the
state tree of the gateway machines (see Def. 3), and provision
of block signatures by the core system’s core component.
We propose that such a test design provides enough evidence
for the intended scalability result.

We name the gateways together with the core module and
the controller module the central components of the system,
as together they are responsible for the block creation.

As a minor detail, the stripped-down system no longer
has a high-availability proxy. Instead, the system contains
load generator nodes. These are added to the system and
take over the role of the KSI Cash wallet simulation
from Section V-A3. The load generation was conceptually
simplified, i.e., payment orders were generated directly,
and not on behalf of (as part of) simulated transactions.
The load generators were single-threaded applications which
were executed in parallel on 100 virtual machines. Each

VOLUME 10, 2022

load generator was responsible to generate a load of 5,000
payment orders per second.
Some further details of the simplified conditions of the

ultra-scalability test runs were as follows:
« No TLS, no session authentication for incoming pay-

ment orders; instead, the load generators send payment
orders to appropriate gateways.

« No bill proof generation nor bill proof requests, instead
relying on the gateways’ internal logging to confirm that
payment orders are verified and processed. Results are
collected through metrics collection.

« No storage of blocks in the ledger database. Once blocks
are created by a gateway together with an associated
certificate provided by the core, the blocks are discarded.

« The gateways are relatively small, each of them handling
1 million bills.

We conducted four test runs with increasing compute
resources. Table 10 shows the specification of the test
runs together with the results. Tests were run with 25, 50,
100 and 200 gateways, deployed on the same number of
virtual machines for each test run, with twice as many load
generators for each test run. The load generators of the first
three test runs were deployed to 25, 50 and 100 gateways
respectively, where each single load generator produced a
load of 5,000 payment orders per second. The system was
configured so that each gateway processes 10,000 payment
orders per second. In the fourth test run, we were short
of 2 million payment orders per second. This was due to
the fact that we could deploy the 400 load generators only
to 100 virtual machines (as in the test run with 200 load
generators). Therefore, the load generators’ virtual machines’
CPU usage reached 100% and could not produce enough
payment orders. Therefore, the slightly smaller number of
1,960,000 payment orders per second was not due to any KSI
Cash related limitations.

Assuming that a payment transaction consists on average
of six payment orders (e.g., as noted in Section V-Blc, the
results illustrate that KSI Cash operates effectively supplying
more than 300,000 successful transactions per second.

It can be summarized that the ultra-scalability test runs
demonstrate that KSI Cash is capable of processing approx.
2 million payment orders per second, scaling linearly in
the available compute resources. The result is not surprising
where the purpose of the test runs was to demonstrate that
these transaction loads are possible, thus we conclude that
even greater transaction loads are possible with additional
compute resources.

D. KSI CASH CARBON FOOTPRINT
1) CARBON FOOTPRINT PER TRANSACTION
We provide an estimation of the carbon footprint of KSI Cash
on the basis of the production test run in Section V-B3, i.e.,
on the basis of 10,000 tx/s and the compute resources needed
for this test run, see Table 6.

For the estimation, we consider only components related
to the implementation of KSI Cash, including orchestration

77305

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

Controller
(1 node)
Core
v (1 node)
Gateway 0 (Emission)
(1 node)

Load Generators
(25-100 nodes) JJ

Gateway 25-200 '§ payment ordars Kafka Zookeeper
(25-200 nodes) J'J (3 nodes) (3 nodes)
T

Kafka Proxy
(1 node)

T

FIGURE 14. The KSI cash system configuration for the ultra-scalability test runs.

TABLE 9. Server configuration of the KSI Cash ultra scalability performance test run, with node names according to Fig. 14.

Node Name vCPUs | RAM Storage | Processor EC2 Instance Type VMs
Controller 2 4GB 20GB | AMD EPYC 7002 | c5a.large 1
Core 2 4GB 20GB | AMD EPYC 7002 | c5a.large 1
Gateway-0 2 4GB 20GB | AMD EPYC 7002 | c5a.large 1
Gateway 1-200 8 | 16GB 20GB | AMD EPYC 7002 | c5a.2xlarge 25-200
Kafka 8 | 32GB | 20GB+4TB | AMD EPYC 7000 | t3a.2xlarge 8
Kafka Proxy 4 | 16GB 20GB | AMD EPYC 7000 | t3a.xlarge 1
Zookeeper 2 1GB 20GB | AMD EPYC 7000 | t3a.micro 3
Nomad Server 2 2GB 20GB | AMD EPYC 7000 | t3a.small 1
Load Generators 4 8GB 20GB | AMD EPYC 7002 | c5a.xlarge 25-100

TABLE 10. Linear scalability of the transaction rate (in terms of payment
orders) in dependence of the number of deployed gateways.

Number of |VMs Number of |VMs Payment orders
Gateways |(Gateways) |Generators |(Generators) |per second
25 25 50 25 250,000
50 50 100 50 500,000
100 100 200 100 1,000,000
200 200 400 100 1,960,000

and edge networking, i.e. KSI Cash server nodes in Table 6.
Load generation and analytics-related components are not
included into the calculation. In total, 1,382 vCPUs (virtual
CPUs) and 8.27 GB of RAM were provisioned. With respect
to resource consumption, there was room for optimization,
i.e., the weighted average CPU usage during the production
test run was below 20% and the memory load was below 40%.

The experiments were run in the Amazon EC2 cloud
environment. Amazon does not disclose its energy efficiency
and environmental footprint in necessary detail; therefore,
we use indirect calculations with the Dell EMC Enter-
prise Infrastructure Planning Tool.”> For the estimation,
we assemble a comparable hardware setup in the tool,
choosing comparable high-end components and assuming
virtualization.

25 http://dell-ui-eipt.azurewebsites.net/

77306

In order to substitute the needed vCPU count and
amount of memory, we calculate with 6 instances of Dell
PowerEdge R940 servers, each configured with 4 Intel Xeon
8180 processors, each providing 28 cores and 56 threads. The
servers are configured with 44 RDIMM memory modules,
each 32GB, which yields 1.4 TB RAM per server. The
CPU maximal power requirement is 205 W, and memory
approximately 200 W. In total, these 6 servers amount to
1,344 CPU threads and 8,448 GB of memory. We take these
1,344 CPU threads as an equivalent of 1,344 vCPUs in our
production test run, as Amazon EC2 markets one CPU thread
as one vCPU.

Dell’s planning tool estimates the following power con-

sumption for our configuration:
o inidle mode: 304 W

« under memory-intensive load: 1030 W

« under potential maximum load: 1704 W

In our estimation, we work with 6 kW under memory-
intensive load for our six-server configuration. We add
1 kW for network equipment and assume an equal power
consumption for cooling and other data-center losses, i.e.,
we work with a total of 14 kW for our scenario. Power
consumption for cooling and auxiliary data center resources
must not be neglected [92]. A factor of two is a usual estimate
used in practice, and we therefore consider this factor as
appropriate for the purpose of a rough estimation.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

Next, we assume EU’s 2019 average®® of 275g CO2/kWh
of carbon footprint. Based on that we can conclude the
following estimations for the carbon footprint of KSI Cash:

o 34t CO2 per year (with permanent load of 10,000 tx/s)?’

« 0.0001g CO2 per transaction

Our estimation does not have the ambition to give an exact
estimate of the carbon footprint of the KSI Cash production
system. In real-world scenarios, additional resources might
be required, e.g., to ensure a higher degree of availability,
or due to a larger amount of bills covering a larger money
supply. Still, we would suppose that, even under a pessimistic
approach, this would not increase our estimation by more
than 3-5 times. On the other hand, there is also the potential
of energy savings, e.g., by further optimizing the KSI Cash
system or using optimized hardware. To conclude, we suggest
that our carbon footprint estimation is accurate enough to be
used in orders-of-magnitudes comparisons, such as needed
when comparing with Bitcoin and proof-of-work consensus,
see Section V-D2.

2) BITCOIN CARBON FOOTPRINT
The energy consumption and carbon footprint of Bitcoin and
proof-of-work consensus is alarming [93]. A study [94] from
the Frankfurt School Blockchain Center from 2021 estimates
the carbon footprint of Bitcoin as approx. 369.5 kg CO2
per transaction. This number is based on an estimation of
the annual energy consumption of 90.86 TWh (in the period
of 1 September 2020, to 31 August 2021), an estimation of the
CO2 emission of 37.97 Mt CO2 and a total of 102,754,276
transactions in that period. The number of transactions
is taken from the statista.com portal.”® According to the
blockchain.com portal, the number of confirmed Bitcoins
transactions in that period30 is 34,379,872, which would
amount to a carbon footprint of 1,104.4 kg CO2 per
transaction (based on the 37.97 Mt CO2 estimated annual
emission from above); whereas the number of confirmed
Bitcoins payments is 238,745 ,466,31 which would amount to
a carbon footprint of 159 kg CO2 per payment. In Bitcoin,
a transaction can contain several payment to different
recipients (called batching). The batched payments must
not be confused with the payment orders of KSI Cash.
In KSI Cash, a transaction consists of one or more payment
orders; when comparing energy consumption of KSI Cash
and Bitcoin, it is the Bitcoin batched payment that correspond
to a KSI Cash transaction. Henceforth, we talk about a Bitcoin
batched payment also as payment transaction.

A study [95] of the central bank of the Netherlands (De
Nederlandsche Bank) from 2021 comes up with similar

26https://www.eea.europa.eu/data—and—maps/indicators/overview—of—the—
electricity-production-3/assessment

2714KW x 24h x 365.25d x 275g CO2/kWh = 33,749t CO2

2814kWh x 275g CO2/kWh / 3,600s / 10,000tx = 0.0001069g CO2/tx

29https://WWW.statista.com/statistics/73O806/daily-number-of-bitcoin-
transactions/

30https://www.block(:hain.com/charts/n—transactions

i https://www.blockchain.com/charts/n-payments

VOLUME 10, 2022

results, i.e., an annual energy consumption of 70 TWh for
2020 (45 Mt CO2; 402 kg CO2 per transaction) and 54 TWh
for 2019 (36 Mt CO2; 300 kg CO2 per transaction).

Other estimates are:
e 21.5 Mt CO2 to 53.6 Mt CO2 in 2018 [96]

e 45.8 TWh and 22 Mt CO2 in 2018 [97]
« 1,216.51 kg CO2 per transaction’?

Similar estimates are also reported in [98].

Given these data, it can be summarized that the carbon
footprint of Bitcoin may be estimated as larger than 100 kg
CO2 per transaction payment.

VI. ESSENTIAL ALPHABILL PLATFORM COMPONENTS

A. FUNDAMENTAL ALPHABILL DESIGN CONCEPTS AND
ELEMENTS

1) ASSET REPRESENTATION

Each kind of asset is implemented by an individual transac-
tion system having individual characteristics. Each partition
maintains asset entities (units) and enables transactions that
create new entities, delete identities, or change the attributes
of entities.

Definition 4 (Entity Representation): Each entity is repre-

sented as a triple (¢, D, ¢) where:
« (s a unique identifier of the entity.
« D is the data part that encompasses all relevant attributes
of the entity.
e ¢ represents ownership — ¢ is a predicate (logical
condition) that defines the rules and restrictions of the
next transaction with the entity, i.e., so that in order
to execute the next transaction 7 with the entity, the
initiator has to provide an ownership proof s such that
o(T, s) holds.
The system identifiers are totally ordered, i.e., for each pair
of identifiers t1, to, either 1j = 13, 11 < 13, 0r iy < (1.

Ownership predicates are an essential concept. For exam-
ple, in Bitcoin, such ownership predicates can be found in the
form of so-called locking scripts [44]. The simplest example
of an ownership predicate is public-key based signature
verification, i.e.,

o(T, s) = Verify(pk; T, s),

which holds if s is a signature on T that verifies with the
public key pk, where the public key pk is an additional
parameter of ¢.

2) PLATFORM ELEMENTS

All kinds of transaction systems can be integrated into the
Alphabill infrastructure. It is assumed that all partitions
follow the Alphabill design principles as described in
Section III-B, in particular, achieving highest security and
scalability. The Alphabill platform enables the integration of
transaction systems and supports the adherence to its design
principles by providing a series of elements and respective
behavior in the Alphabill platform as follows:

32https://digiconomist.net/bitcoin-energy-consumption

77307

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

o The Alphabill platform defines a language for describing
the functionality of transaction systems (syntax and
semantics of state and transactions),

o provides libraries and toolkits for developing block-
chained transaction systems in the Alphabill framework,

« registers and assigns identifiers « to transaction systems,
based on the descriptions of the transaction systems,

« provides ledger certificates, through the blockchain
mechanism, i.e., irrefutable proofs of the current (block
n), the parameters D of entities and the transactions T
with entities.

The Alphabill development libraries and toolkits unlock
the technological know-how in sharding of KSI Cash and
Alphabill Money to be used for implementing massively
scalable transaction systems. All transaction systems that
exploit these libraries and tools will show a design consisting
of shards and a core system as described in detail in
Section IV-A, see Fig. 1. The ledger certificates provided by
the Alphabill platform are described in Section VI-A3.

In order to integrate a transaction system as a partition into
the Alphabill platform, the steps described in Section VI-AS8
have to be followed.

3) LEDGER CERTIFICATES
The Alphabill platform supports three kinds of ledger

certificates:
o Transaction Certificate. A transaction certificate proves

that a transaction 7 was included into the n-th block of
a transaction system.

e Data Certificate. A data certificate proves the value of
D (its attributes) of an entity ¢ in a block n.

o Non-existence Certificate. A non-existence proves that
the entity with identifier ¢ does not exist in round n.
Non-existence certificates play a crucial role in atomic
multi-asset swap transactions.

A ledger certificate consists of:

« the authentication path of the state tree of the n-th block,

o the uniqueness certificate of the n-th block which
depends on the root of the state tree and the consensus
mechanism of the partition.

Alphabill partitions may be based on different kinds of

state trees such as:
o Pure Merkle tree [86] — supports transaction certificates

and data certificates, but does not support non-existence
certificates.

o Authenticated search tree [99] — provides all three kinds
of ledger certificates.

o Count-certified hash tree [100] — provides all three kinds
of ledger certificates, and, in addition, also a proof of a
summary value or an invariant of the transaction system
(e.g., the total amount of money in case the transaction
system represents a money scheme).

These three major kinds of sate trees can be used in
different variations with additional security features such as
chain length certification [101] and node type (leaf/non-leaf)
certification [102].

77308

4) SECURITY MEASURES

This paper does not aim to contribute to the field of protecting
systems against the various forms of cyberattacks such as
DDoS (distributed denial-of-service) attacks. All the best
practices of protecting services and blockchains against
cyberattacks are also applicable in Alphabill. We assume
that the used consensus protocol guarantees that only one
version of the uniqueness certificate is produced. On the other
hand, it can be shown that whenever an adversary is able to
produce two versions of Alphabill’s ledger that both verify
against the same uniqueness certificate, a hash collision can
be extracted from these two versions and the uniqueness
certificate. The proofs follow the reduction techniques used in
provably secure time-stamping [99], [100], [103], [104] and
are omitted in this paper.

5) TRANSACTION ORDERS
In the Alphabill platform, a unified message format is used
for all transaction orders.

Definition 5 (Transaction Order Format): Each transac-
tion order P in a transaction system is a tuple («, 7, ¢, A, Tp),
consisting of:

o o —the system identifier

« T —the message type identifier

« (—the entity identifier

o A —alist of transaction attributes
o Ty — atimeout specification

As usual, we use dot notation to denote the several items
of a tuple, e.g., we use P.« to denote the system identifier of
a transaction order P.

The concrete format of the list of attributes A depends on
the message type t. The timeout 7 represents the expiry
time of the message in terms of block numbers, i.e., P can
be accepted in block n only if n < Ty. Timeout specifications
allow for providing reliable evidence that a transaction has
not and will not be accepted by the system.

A signed transaction order is a pair (P, s), where P is
a transaction order and s is an ownership proof, such that
@(P, s)=1, where (¢, D, @) is an entity.

6) SHARDING SCHEME

The Alphabill platform suggests a unified sharding strategy
for all transaction systems. Each shard is assumed to manage
a part of the partition’s entities within a range of identifiers ¢
(see Def. 4) from an interval [tmin, tmax]-

Every shard has a shard identifier y that is a finite bit string.
Initially, the partition might start as consisting of only one
single shard with the empty bit string as identifier . Upon a
certain event trigger (e.g., a threshold number of transactions
per shard), the shard with identifier y is split into two shards
with identifiers yo and y;. The state tree of the shard is split
by applying a tree-splitting algorithm. Hence, the set I" of all
shard identifiers is always a prefix-free code.

Definition 6 (Sharding Scheme): A sharding scheme is
represented as a pair (I', p), where p is a function on I'

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

that, given a shard number y as input, outputs the interval
[t;in, ¥] of the shard y.
7) TRANSACTION SYSTEM SPECIFICATION
Each partition in the Alphabill network is completely
defined by a set of parameters, called transaction system
specification.

Definition 7 (Transaction System Specification): A trans-
action system specification consists of

o o — the system identifier

« the type specification (meta data) of the data part D of

the partition’s entities
e a state tree type
o the initial sharding scheme and the shard-splitting
trigger

o X — the initial state of the system

« aset T of message types

« for each message type v € T:

-- A; —alist of attributes forming the message content
-- a specification of the message’s effect onto the
system state

Message types could also be called transaction message
types or just transaction types for short, however, message
type is common terminology in transaction system and data
interchange technologies and standards such as in the field of
EDI (electronic data interchange) [105]. Given a transaction
of message type t, we call this transaction also just a 7-
transaction for short.

8) JOINING THE ALPHABILL PLATFORM
Joining a new transaction system into the Alphabill platform
requires the following steps:
1. Describing the new system by defining the parameters of
the transaction system, see Def. 7
2. Applying Alphabill toolkits to compile the system code
3. Preparing machines for each shard and deploying the code
to machines
4. Registering the system and obtaining the system
identifier o
The concrete registration procedure depends on design
choices. In case of automatic registration, the registration
is regulated by ledger rules, i.e., registration is a special
blockchain transaction.

9) INTEGRATION WITH OTHER BLOCKCHAINS

One of the main design goals of the Alphabill platform is
efficient certified communication between the partitions and
shards of the partition inside Alphabill. The main resource
of efficiency is that all shards and partitions share the same
uniqueness certificate framework.

Efficient communication with other blockchains depends
on how the certified communication between Alphabill and
other blockchains can be organized. For efficient verifica-
tion of certified messages from other blockchains, Alpha-
bill’s smart contract language has built-in cryptographic

VOLUME 10, 2022

functionality of verifying digital signatures and hash chains.
Whether another blockchain can verify Alphabill’s certified
messages depends on the flexibility and programmability
of the blockchain. For example, blockchains with Turing-
complete smart contract language such as Ethereum’s Solid-
ity [106] have sufficient flexibility for verifying Alphabill’s
certificates. For less flexible blockchains, interoperability
solutions such as LayerZero [107] can be used.

B. ALPHABILL MONEY
Pure bill-type money schemes only use ownership transfer
transactions, i.e., such transactions that change only the
ownership conditions of bills. Pure bill schemes enable
massively parallel decomposition of the money system [21],
[22], but also have shortcomings. Similar to physical cash,
it is not always possible for a party to pay exact amounts
and therefore, some additional services, such as a money
exchange service, are needed, compare with Section IV-B.
To implement a digital currency based on a pure bill-type
money scheme, one has to start with a large number of
bills existing already from day one. For a central bank
money, such a solution is sufficient as a central bank
(central authority) can always change the distribution of the
monetary denominations by its authority. However, in the
permissionless case, having too many bills might quickly
become too costly for the validators of the blockchain. Here,
it would be reasonable to start from a few high-value bills,
enable the users to split the bills if needed and to provide
an efficient mechanism to subsequently join bills. This idea
is the design rationale behind our proposed dust collection
solution in Section VI-B1 and VI-B2.

1) SPLIT PAYMENTS

An extended bill money scheme addresses the shortcomings
of pure bill schemes by introducing split payments that make
sure that exact payments are always possible. When applied
to a bill, a split transaction reduces its value by an amount n
and creates a new bill with that value n.

Split type transactions enable exact payments but introduce
the critical problem that too many small-value bills (dust
bills) emerge over time. Therefore, additional transactions
and ledger mechanisms are needed to reduce the amount of
dust bills by joining them to larger bills. We address the issue
of dust bills in Section VI-B2 by introducing new types of
transactions along with a specialized type of bill.

2) DUST COLLECTOR AND BILL SWAP PAYMENTS

In the extended bill scheme of Alphabill Money, we introduce
a special type of ownership — the dust collector (DC). Bills
owned by the DC are not in the usual money circulation
but can be considered as frozen by the system. For the
purpose of consolidating dust bills, further transactions with
the DC-owned bills are conducted automatically by the
ledger operation rules (block creation rules) and, hence,
DC represents a built-in smart contract (a smart contract built
in the system).

77309

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

Furthermore, there is a special DC-owned bill with
identifier ¢ called dust collector money supply. The system is
sharded and every shard must have its own DC money supply.

Users who want to get rid of their dust bills, can transfer
them to DC via special ownership transfer transactions of
message type transDC and get ledger certificates of them.
These transactions are processed by the system in such a way
that a new bill with value 7 is issued to the owner specified in
the transaction orders, and simultaneously, the dust collector
money supply (the value of the bill ¢p) is reduced by n.

By presenting those certificates to the system, users can
then obtain new larger bills via bill swap transactions. Each
bill swap transaction contains a list of transDC transactions
with ledger certificates and an owner condition ¢. Once a
bill swap transaction is received by a shard of the Alphabill
native currency partition, the ledger certificates of the listed
transDC transactions are verified and a new bill is created
with the sum value of the dust bills and with ¢ as owner. A bill
swap transaction has a unique identifier that uniquely points
to the shard in which it can be executed. This prevents that
the same bill swap transaction is used in two different shards,
i.e., double-spending the bill swap transaction.

Merely transfers to DC and corresponding swaps are not
sufficient to reduce the number of small-value bills in the
system. In order to achieve a consolidation of small-value
bills, we need to introduce a mechanism for joining dust bills,
as we will discuss in due course in Section VI-B2b.

a: BILL SWAP SCENARIO

To enact a DC swap, a user wallet selects a set of dust
bills with identifiers ¢y, . . ., t,, and values vy, . . . , v;,, respec-
tively. The bill swap procedure consists of the following
steps:

1. The user wallet computes

Lt < h(ty, ..., L),

where £ is a cryptographic hash function.

2. For every dust bill ¢, the wallet creates a signed transDC
transaction order Py that contains ¢, an ownership
condition a for a potential exchange bill, a timeout 7y, and
sends Py to the system.

3. It might be that some of the payment orders do not
reach the system in time. Let Py, . . ., Py, be the payment
orders that were successfully received by the system. For
these payment orders, the wallet obtains ledger certificates
(transaction certificates) Iy, ..., Ig,.

4. For the bills (from the list ¢y, . . ., t,,) that have not reached
the system in time, the wallet obtains ledger certificates
(data certificates) that the ownership in block n > T has
not changed. This ensures that these payments indeed
failed.

5. The wallet sends a signed bill swap transaction (P, s) to
the system, where

P= (o, swap,, A, Ty),

/
A=(a,t1, ..., 0n; Pryy ooy Py, Oy, oo T, V),

77310

and

« ais the ownership of the potential new exchange bill,
e l,..., Ly are the identifiers of the dust bills,

e Py, ..., Py, arethe successful payment orders of type
transDC,

o Iy, ..., Iy, are the ledger certificates of Py, ...,
Py,

o V =g, + ...+ v, is the value of the exchange bill.

6. The system checks the following required conditions:
@) v =wvg, +...+vk, where vg,, ..., v, are the values
of the corresponding bills (v, is included in Py,).

(i) v/ < vg, where v is the current value of the DC
money supply, i.e., where there exists a sufficient DC
money supply.

(iii) there exists no bill with identifier ¢. If the hash
function £ is collision-resistant, this condition only
fails in case of an attempt to use the same swap
message twice, possibly, to maliciously double
spend it.

(v) {Prt, ..o, Pt} S {ur, ..., 4} —all bill identifiers
in payment orders are elements of {1, ..., ¢}

(v) ¢t = h(tq, ..., uy) — the identifier ¢ of the new bill is
properly computed.
(vi) Pr,.t = ... = Pyt = transDC - bills were

transferred to DC

(vii) Py, ..., Py, all contain ¢.

(viii) the payment orders Py, ..., Py, all contain the
proper ownership condition a (of the potential new
exchange bill),

(ix) a(P,s) =1, i.e., s is the signature of @ on P,
(x) Ig,,..., Iy, are proper ledger certificates for
Py, ..., Py,
7. If all of the required conditions have been verified, a new
bill, represented by the triple (¢, V', a), is created.

Now, let us analyze the security of the bill swap procedure.

Itis not possible to obtain two different exchange bills (say,
with identifiers ¢ # () for the same set of dust bills, because
the identifier ¢ is a deterministic function of ¢y, ..., (.

The same swap cannot be used twice in a shard, because
the swap transaction with bill identifier ¢ is not accepted
whenever a bill with the identifier ¢ already exists.

The same bill swap transaction cannot be used in two
different shards, because the sharding scheme uniquely
defines the shard of .

The ownership a of the new bill cannot be modified
by outsiders, because a is included in the payment orders
Py, ..., Py, and this inclusion is verified.

It is not possible that swap dust bills are controlled by
somebody else, because the signature s of the swap order has
to contain a signature s that satisfies a.

If some (or even all) of the transDC payment orders are
not received in time, their ownership does not change and
they can be swapped next time. If just one transDC payment
order goes through, the owner of this dust bill just receives

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

an equivalent dust bill in a (possibly) different shard. Hence,
there is no risk of losing money during a swap.

b: DUST COLLECTION PROCESS

In the extended bill scheme, dust collection is introduced as
a necessary automatic functionality related to block creation,
i.e., regularly (in a way well-defined by the ledger rules), each
block creator has to delete a set

(t1,v1,DC), ..., (g, vk, DC)

of dust bills and, simultaneously, raise the DC money supply
(10, vo, DC) accordingly by increasing its value by

d=vi+...+v.

All the activities related to dust collection preserve the total
money of the system, including DC money.

The DC money is a purely technical, system-related
measure and does not actively participate in the usual
“business transactions”, i.e., it is not meant to be directly
accessed by system users.

3) THE STATE TREE OF ALPHABILL MONEY

Alphabill Money uses an AVL-type authenticated search tree,
see Adelson-Velsky and Landis [108], where the indices
are provided by the bill identifiers. In addition, it is a
count-certified tree where the counters in nodes represent the
total value of the corresponding sub tree. All nodes, not only
the leaf nodes, contain data about bills.

The tree is represented as a pair (¢, N), where ¢, is
the bill identifier of the root node and N is an indexed
array (dictionary) of nodes. We use N[¢] to denote the node
that is associated with the bill with identifier ¢. If there is no
bill with identifier ¢, we write N[(] = L.

Definition 8 (Alphabill Money State Tree Node): An
Alphabill Money state tree node N[¢] is a tuple (¢, v, x, V,
h, 1, tg, d, b) consisting of the following:

e @ —owner condition

e v —value of the bill

e x — bill hash computed as H(x’, T), where H is a hash

function, 7 is the last transaction order with the bill ¢ and
x’ is the previous bill hash of the same bill.
o V —summary value computed as

V< v+N[r].V+N[R]V,

where we assume that N[L].V =0
o h—hash of the node, computed as

h < H(Q, H(p,v,x),V;hy, Vi; hg, Vg),

where hy , hg are the hashes of nodes N[t], N[tg], and
VL, Vg are the summary values of N[t], N[tg] under the
assumption that the hash of L is the zero-hash 0y,
o (7, —left node identifier (can be L if there is no left node)
o (g — right node identifier (can be L if there is no right
node)

VOLUME 10, 2022

o d — depth of the sub-tree computed by
d < max{N[i].d, N[igld}+1,

assuming that N[L].d = 0.
o b —balance factor [108] computed by

b(—dL—dR,

where d; and dp are the depths of N[iz] and N[tg],
respectively, assuming that N[L].d = 0.
In Def. 8, the value of N[i,].V represents the total amount
of money in the system (or shard) and N[¢,].A is the root hash
of the system (or shard).

C. THE ALPHABILL ATOMICITY PARTITION

1) THE GOAL OF ATOMICITY CONTROL

Let uy,...,u, be entities with identifiers ¢y, ..., (¢, and

owner conditions ¢1, ..., @y, respectively. The entities

uy, ..., U, may belong to different transaction systems (parti-

tions) with identifiers oy, . . ., &, respectively. It is assumed

that in each of these partitions, there is a kind of transaction

available for changing the ownership conditions of entities.
The goal is to transfer the entities to new owner conditions

@}, ..., ¢, atomically, i.e., in a way that either
« all of its component transfers take place — all entities
ui, ..., u, are transferred to the new owner conditions
@)oo @y, Or

« none of its component transfers take place — all entities
will have owner conditions equivalent to the previous
conditions ¢, ..., @p.

All entities may potentially be controlled by different par-
ties. We assume that these parties may communicate in order
to agree on the atomic transfer, i.e., after communication, all
parties know all of

s oo s lmsy @1y oo s @y 0L ooy Qg

The parties also agree on other transaction specific
parameters.

If there is more than one party involved, such transfer is
an atomic swap. If there is only single party involved, it is an
atomic multi-entity, single-asset transfer.

2) IMPLEMENTATION RESTRICTIONS
To implement such a transaction, the parties send component
transaction orders 77, . . ., Ty, with the new owner conditions
<pi, ..., ¢, to the system. These new conditions have to be
designed in a way that the atomicity condition is satisfied,
i.e., the new owner of every entity ¢; can execute the next
payment only if there is evidence that all other transactions
Ty, ..., Ti—1,Tit1, ..., Ty have been accepted and included
in the ledger. The previous owner of ¢; can execute the next
transaction only if there is evidence that at least one other
transaction has not been accepted.

In distributed databases technology, such orchestration of
multi-shard transactions is usually achieved with two-phase
commit protocols. In a partitioned blockchain technology,

77311

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

two-phase commits have to be implemented in a certified way
— before executing a component transaction in one partition
the status of other component transactions in other partitions
have to be certified, i.e., there has to be evidence about the
status of other component transactions.

Basically, there are two possible approaches. A usual
approach used in known blockchain technologies is to define
the new owner conditions g1, ..., ¢,, (locking scripts) in
a way that every ¢/ includes direct verification of the
status of all other transactions 71, ..., Ti—1, Tix1, ..., Tn.
A shortcoming of this approach is that the conditions ¢; are
large in size and complex to verify.

Therefore, we use a different approach, where the status
of the multi-component transaction is managed by a special
stateful smart contract called atomicity agent. Instead of using
direct verification of status of other component transactions,
the condition ¢/ verifies the status of the multi-component
transaction via checking the status of a particular atomicity
agent.

The information about the status must be consistent, i.e.,
always the same for all verifying parties. Therefore, a single
server implementation of atomicity agents is insufficient,
because a malicious server may give inconsistent status
information to the parties, resulting in a violation of the
atomicity condition. Implementing the atomicity agent as
a smart contract in a blockchain prevents inconsistent
status information because of the uniqueness property of
blockchains. Therefore, all atomicity agents are managed in
a special partition of the system — the atomicity partition.

3) ATOMICITY PARTITION DESCRIPTION

There is a specific transaction system (partition) with
identifier o that provides necessary unique references for
atomic multi-asset swap transactions. We call it the atomicity
partition.

Entities of the atomicity partition are the atomic multi-asset
swap transactions, i.e., each of these transactions has a unique
pseudo-random identifier ¢ (referred to as contract identifier)
in the atomicity partition. Furthermore, each entity has a data
part D containing:

o a list (a1, (1), ..., {@m, L) of system/entity identifier
pairs,

« a timeout specification 7y of the multi-asset contract
expressed in terms of the block number of the atomicity
partition,

o the status flag status € {0,1} of the contract
(initially set to 0), where 1 means that the transaction
is completed, and O means that it is not yet completed,

o the set confirmed of already confirmed transactions
(initially).

The transactions of the atomicity partition are:

e reg — registering a new atomic multi-asset swap
transaction with contract identifier ¢

¢ CcON — confirming an existing multi-asset swap transac-
tion with contract identifier ¢

77312

To complete the implementation of swap transactions,
an appropriate commit protocol has to be provided. We con-
tribute a novel three-phase commit protocol for this purpose,
as described in Section VI-C4.

4) THE 3-PHASE COMMIT PROTOCOL

a: PHASE 1: PREPARATION

The involved parties prepare transaction orders Py, ..., Py,
(in their wallets) that transfer the ownerships of the entities
{1, ..., Ly to special parameterized ownership predicates

/.
‘Pato(am L, 1o, 91, Prs ———)

/
§0ato(060, Ly 105 Py Ops)

It is not necessary to specify how the parties agree on
the terms of the multi-asset swap transaction and which
communication channels they use for that. This depends on
the domain logic of the involved partitions.

The contract identifier ¢ is computed as a determin-
istic pseudo-random function on the transaction orders
Py, ..., Py (without signatures, i.e., ownership proofs) and
the ownership predicates pato(o, ¢, fo, @i, gol(;)

Definition 9 (Ownership Predicate ¢a10): The predicate
@ato(Qo, ¢, to, @, ¢'; P; status, T1,s) (where the triple
(status, I, s) represents the ownership proof), is true if
either:

e ¢/(P,s) = 1, status = 1, and I is a certificate in the
partition & in a round with number ¢ < fg of the status
of contract ¢, or

e ¢(P,s) = 1, status = 0, and IT is a certificate in the
partition &g in a round with number ¢ > £y of the status
of contract ¢, or

e @(P,s) = 1, and I is a certificate in the partition o in
a round with number t > ¢ty of the non-existence of
contract ¢

The first condition in Def. 9 means that, if all transactions
Py, ..., P, are confirmed in time, the new owners have
control over the entities.

The second condition means that, if the status of the
contract is still O at 7o, the previous owners have control over
the entities.

The third condition means that, if the multi-asset swap
transaction has not been registered in the atomicity partition
at 19, the previous owners have control over the entities.

b: PHASE 2: REGISTRATION
One of the parties creates the registration message

(oo, reg, ¢, A, To),

consisting of:

o g — the identifier of the atomicity partition
« reg — the message type
e (— a contract identifier

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

e« A — a list of attributes that contains the identi-
fiers aq, ..., 0y, t1, ..., and the timeout f¢ of the
multi-asset swap transaction

o Tj — a timeout specification of the registration message
expressed in terms of the block number of the atomicity
partition.

The party sends the registration message to the atomicity
partition. After it has received the message, the atomicity
partition creates a new entity with identifier ¢ and with the
data part

D={ay,...,am, t1,..., L, ty, Status=0, confirmed =0).
¢: PHASE 3: CONFIRMATION

All parties sign their transaction orders Pp,...,P, (by
adding ownership proofs s; to P;) and send them to the
corresponding partitions aq, . . ., Up.

The parties wait until the next blocks in the partitions
a1, ..., o, have been formed and obtain the ledger certifi-
cates (of acceptance) Iy, ..., I1,, for the signed transactions
(P1,51)s -+ s (Pms Sm)-

Next, each party k sends the confirmation message

{ao, con, ¢, Ag, Tp)
to the atomicity partition, where
Ak = (P, sk, k).
Upon receiving a confirmation message
(Ol(), con, ¢, (P, sk, k), To),

the atomicity partition verifies (P, sk, [1x), and checks
whether the identifiers «; and ¢, are consistent with the data
part

D= (ay,..

Oy L1, - - ., L, B0, StAtus, confirmed) (10)

of the contract (. After a successful verification, the triple
(P;, si, T1;) is added to the set confirmed.
If all transactions have been confirmed, i.e., if

Confirmed = {(P17 Sls H1)1 M) (Pm» Sms Hm)},

the atomicity partition checks whether the contract identifier
t was correctly computed on the basis of Py, ..., P,, and
finally sets the status flag status <« 1.

5) STATE TREE OF THE ATOMICITY PARTITION

The state tree of the atomicity partition is similar to the state
tree of Alphabill Money, except for the following: (i) instead
of value v there is a state data record D (see (10)), (ii) there
is no summary value V defined for the nodes, and (iii) the
ownership ¢ of entities is not defined. Hence, the computation
of the node hash is given by the formula

h < H(i, H(D, x); hr; hg).

VOLUME 10, 2022

6) IMPLEMENTATIONS WITH PUBLIC BLOCKCHAIN
TECHNOLOGY

Basically, the Alphabill platform can be implemented as a
private (permissioned) as well as a public (permissionless)
blockchain.

Due to the use of certified communication between the
partitions and shards of each partition, there are some
restrictions to the Alphabill blockchain consensus protocol.
There are two categories of consensus protocols used in
permissionless blockchains:

o Persistent consensus protocols, where a certified n-th
block will, once created, be persistently stay in the
blockchain. For example, proof-of-stake (PoS), multi-
signature-based consensus mechanisms belong to this
category.

o Nakamoto consensus protocols, where a certified n-th
block will not necessarily stay in the blockchain, but
instead may be replaced with an alternative block with
stronger certificate — although the probability that the
n-th block is replaced by a different block after the (n +
k)-th block has been created becomes negligible when
is large. For example, proof-of-work (PoW) consensus
mechanisms belong to this category.

If certified (with ledger certificates) information from the
n-th block of one partition (or shard) is used as input to
another partition (or shard), then this n-th block must be
guaranteed to stay in the first partition (or shard). Otherwise,
the certified information might be incorrect and should not be
used in other partitions and shards.

Therefore, in case the partitions use independent consensus
protocols, only persistent consensus protocols are suitable for
the Alphabill platform.

VII. FUTURE DIRECTIONS

In this section, we discuss future perspectives of the proposed
technology in regard to opportunities and challenges. We also
discuss some ongoing and future work. We structure the
discussion along the currently widely discussed concepts
of DeFi and Web3. Furthermore, we briefly discuss legally
binding smart contracts and, furthermore, opportunities for
the development of Alphabill partitions.

A. POTENTIAL OF ALPHABILL IN GENERAL

In her speech at the Bank of England Conference in
September 2017, Christine Lagarde said: “To be clear,
this [virtual currencies] is not about digital payments in
existing currencies — through Paypal and other »e-money«
providers such as Alipay in China, or M-Pesa in Kenya.
Virtual currencies are in a different category, because they
provide their own unit of account and payment systems.
These systems allow for peer-to-peer transactions without
central clearinghouses, without central banks. For now,
virtual currencies such as Bitcoin pose little or no challenge to
the existing order of fiat currencies and central banks. Why?
Because they are too volatile, too risky, too energy intensive,

77313

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

and because the underlying technologies are not yet scalable.
Many are too opaque for regulators; and some have been
hacked. But many of these are technological challenges that
could be addressed over time. Not so long ago, some experts
argued that personal computers would never be adopted, and
that tablets would only be used as expensive coffee trays. So I
think it may not be wise to dismiss virtual currencies.”” [109]

The quotation form Christine Lagarde’s speech touches a
main motive that was also a central driver for our research,
i.e., that scalability is the prerequisite for cryptocurrencies
becoming a utility beyond being merely financial instru-
ments. But is it all just about speed performance and eco-
friendliness? Lagarde mentions that current cryptocurrencies
are too volatile, financially risky and “too opaque for
regulators” [109]. All of these issues are essential, yet, they
cannot be resolved by purely technical measures. On the other
hand, it is also impossible to solve these issues merely by
regulatory measures [110]. A technological innovation itself
can never disrupt institutions (organizations, or societies as
a whole); at best, it can enable disruptions. Furthermore,
it would usually not lead to disruption, but rather to evolution
of an institution — if the institutional analyses framework
of Oliver Williamson [17], [111] is right, cultural changes
need significantly more time than regulatory changes, and
regulatory changes need again significantly more time than
organizational changes. Still, there is a huge (seemingly
endless) potential for improving the way we conduct business
and the way we run our organizations today. Blockchain
technology can be the key to unleash this potential
[112]-[114]. The question is, how?

We have argued that it needs a platform for universal
asset tokenization that allows for uncapped scalability and
a maximum of both business-related and technological
innovations; and we came up with a concrete design of such
platform.

B. DECENTRALIZED FINANCE

1) THE CONCEPT OF DeFi

The least common denominator of DeFi is the utilization
of blockchain or distributed ledger technology to implement
financial infrastructure and services. Furthermore, it is essen-
tial for the concept of DeFi that it would enact innovations in
regard to the institutional architecture of today’s established
financial economics; i.e., mere technological innovations in
regard to underlying data structures and algorithms (typically
in service of enhancing cross-cutting concerns such as
security or utilization of emerging devices) would not be
sufficient to classify as DeFi. The envisioned transformation
connected with DeFi is disintermediation [127], which is not
necessarily, but typically, associated with permissionless con-
sensus [120] or even utilization of a concrete technological
platform (such as Ethereum in [128]).

The notions of DeFi transactions and economic trans-
actions [17], [111] are incommensurable. DeFi is about
innovations to financial economics; whereas, transaction cost
economics [17], [111] is a general theory of economics,

77314

which is applicable independent of whether established,
transformed or entirely new financial services are utilized.
DeFi transactions are financial transactions, as such, they are
part of economic transactions (in the sense of transaction cost
economics).

2) COMMERCIAL BANKING AND INVESTMENT BANKING
Today’s financial services fall into two large categories, i.e.,
commercial banking and investment banking. Commercial
banks have an essential role in today’s monetary system of
fractional reserve banking.

a: COMMERCIAL BANKING

The business model of commercial banks is commonly
described as “‘banks borrow short and lend long”’; however,
although this is not completely wrong, it does not describe
adequately what commercial banking is about in today’s
tiered monetary system. Commercial banks provide the
money supply in granting collateralized credits; whenever
they grant a credit, by way the largest fraction of the money
is freshly generated. Therefore, it is not the central bank that
“prints money out of thin air” (as we sometimes hear in
cryptocurrency tech talks), instead, the central bank steers
the money supply via a set of complex regulatory measures.
In [16], we have described the money supply as a continuous
transformation of collateralized anchors. In this transforma-
tion process, commercial banks are surveilled (audited) by
dedicated financial supervisory authorities.

Any financial service innovation should be aware of the
exact mechanisms in the established monetary system if it
aims to add value. In the vast amount of cryptocurrencies
that have been launched in the past decade, we have seen
many that nurtured a narrative of an over-centralized, over-
controlled banking system that needs to be overcome, or at
least, have borrowed from such narrative. The Alphabill
vision does not have to rely on such narrative and, therefore,
can be neutral in this regard. Many of today’s stakeholders
in the banking system seek for innovative solutions and are
open for improvements of the institutional framework; and
the Alphabill platform is open for them to join with their
services, as it is open for entirely newly designed financial
services.

b: INVESTMENT BANKING

Investment banking (including wealth management towards
affluent individuals) shows a huge potential for service
innovation. Today’s investment banking services are highly
asymmetric, in that they are designed for (and exclusively
offered to) a limited group of clients, including businesses
and wealthy individuals. The current narrative of DeFi is
very much centered around disintermediation; however, the
asymmetries in today’s investment banking can and should be
addressed more in the future. The Alphabill platform can host
any kind of transaction systems and is therefore also suited
for financial service innovations in the investment banking
sector.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

TABLE 11. Some typical characteristics of the Web3 vision found in current discussions, compared to the current state of Web 2.0.

Web 2.0

Web3

Payments

Online bank transfers between accounts hosted by commercial
banks; “digital payments in existing currencies — through Pay-
pal and other »e-money« providers such as Alipay in China, or
M-Pesa in Kenya” [110]; M1-money

Cryptocurrencies; direct payments between web users, without
intermediaries; currency neither owned by central bank nor
collateralized (being neither MO-, nor M1-money); (central
bank digital money is usually not considered part of Web3)

Financial services

financial services are not considered as part of Web 2.0 (al-
though they might be made accessible through web-based e-
commerce services)

Built-in DeFi (see Sect. VII-B); financial services are consid-
ered integral part of Web3

Identity concepts

public key infrastructure (including established routines of per-
sonal identity proofing [116]); also: cloud-based identity

self-sovereign identity [117]

Data ownership

data owned and utilized by companies

data owned and utilized by users

Trust anchors

authorities, companies

peer-to-peer [118], consensus protocols

Protocol characteristics

stateless (protocols connect siloed applications, protocols regu-
late the “transmission of data, not how data is stored” [119])

stateful (“collectively maintained universal state for decentral-
ized computing” [119])

Business models

Silicon Valley tech giants (Alphabet, Amazon, Metaverse);
super-scaling e-commerce; social media/networks (commer-
cialization of customer data)

decentralized autonomous organization (DAO) [120]; also: gen-
uine DeFi business models (decentralized payment services,
decentralized fundraising, decentralized contracting) [121]

Use cases

(i) Usual narrative: content consumption (Web 1.0); content
production (Web 2.0): social media/networks, collective in-
telligence systems [122]. (ii) Practically: business-to-customer
(B2C) e-commerce (dotcom [123] and post-dotcom era); (iii)
despite SOA (Web services) [124], business-to-business (B2B)

all Web 2.0 use cases, however, disintermediated; disintermedi-
ated B2B is considered an integral part of Web3; non-fungible
tokens (NFTs) [125], [126] (“can represent real-world items
like artwork and real estate” [127], “can also ... represent
individuals’ identities, property rights, and more” [127])

is rather not considered a Web 2.0 use case

3) DeFi VERSUS FinTech

The concepts of DeFi and FinTech (financial technology)
are incommensurable, as DeFi is a concrete technological
vision (albeit not yet settled, see Section VII-B1), whereas
FinTech [129], [130] is a subject area (also considered an
industry). FinTech is always about the utilization of the
respective latest technology for the provision of financial
services. As such, it currently encompasses blockchain
technology as well as artificial intelligence, cloud computing
and big data technology. DeFi is about the utilization of
blockchain for financial services, with a strong stance in
favor of disintermediation (at least in its current dominant
narrative).

C. Web3

In [131], Web3 has been characterized as ‘“‘a decentralized,
blockchain-based internet ecosystem owned and operated by
its users”’. Web3 (not to be confused with the Semantic Web,
Web 3.0°%) takes disintermediation to a next level by making
it ubiquitous, encompassing not only payments and financial
services but also digital identities, data and business models.
Although Web3 is still in its infancy, it has gained massive
attention by major technology analysts such as Gartner [132],
Forrester [133] and Forbes Technology Council [134] as well
as the Harvard Business Review [131], [135], [136], and the
expectations are high towards Web3 being “‘our chance to
make a better internet” [131]. Yet, it is too early to give
an exact definition of Web3. Instead, in Table 11, we have
compiled a series of characteristics that we found most typical
for Web3 in the current discussion and compare them to
corresponding characteristics of Web 2.0.

3 https://www.w3.org/standards/semanticweb/

VOLUME 10, 2022

Alphabill aims at taking a pragmatic instead of dogmatic
approach to Web3:

« We do not want to assess Web3 through completeness of
vision [137] as we would do with innovative products.

o The Web3 is not a product that is engineered, instead,
it is a complex adaptive system [81] that emerges.

o The Alphabill platform positions itself as the framework
that enables the emergence of Web3.

With Alphabill, the Web3 can emerge — evolutionary
— through the appearance and disappearance of more
or less viable systems [76], [79], [80], as described in
Section III-B in regard to Alphabill’s viable-by-design
principle. A plethora of research opportunities exist in regard
to innovative domain-specific transaction systems, as will be
discussed in due course in Section VII-E.

Our own research interest is in reconsidering Internet and
WWW protocols, from scratch, in regard to Web3. Currently,
we conduct a feasibility study of integrating blockchain
technology into the application layer protocols (DNS, TLS,
SMTP, IMAP, PGP, FTP,....) so that it would become possible
to explicitly encode the exchange of digital rights. As another
concrete step, we are currently designing a Web3 browser as
a kind of Alphabill super wallet which tightly integrates Web
2.0 browsing and token payments from scratch.

Furthermore, given the ‘“‘chance to make a better inter-
net” [131], we are currently also interested in more
fundamental research questions:

o What can we hope from a “better internet”?

o What needs to be required from a “better internet’?

« How to design a “‘better internet” ?

« What are the obstacles to creating a “‘better internet” and
how to overcome such obstacles?

77315

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

It was as early as 1960, when Ted Nelson founded
the original hypertext [138] project Xanadu [139]. Today,
more than 50 years later, the requirements®* that have
been formulated for Xanadu read like a wish list for
the “better internet” including a document type system,
transclusion [140], secure user identification, access rights
management, data replication and many others. Analysing
today’s enterprise application landscape [141] leads to similar
requirements in regard to crosscutting concerns. The fact
that today’s enterprise applications are implemented as
web-based applications gives us an idea of another huge
opportunity for Web3 that has been overlooked so far:
the systematic convergence of intranet and internet (where
we think of the intranet as a potential enterprise appli-
cation backbone [141]). Unfortunately, a severe challenge
for such a design is in existing ‘“‘path dependence in
technologies™ [142].

D. LEGALLY BINDING SMART CONTRACTS

With ISO/DTS 23259,% the ISO started a standards devel-
opment on ‘“Blockchain and distributed ledger technologies
— Legally binding smart contracts’, which has been deleted
(currently having the status “deleted’’). The notion of legally
binding smart contracts reveals a fundamental problem:
major technological changes usually need to team together
with institutional changes [143], [144]. A legally-binding
smart contract language cannot be contributed by merely
technological measures. A smart contract language can
only be legally binding in so far this is reflected in
respective regulations. Therefore, successfully designing a
legally-binding smart contract language needs to be, to a
large extent, a juridical research endeavor; although, there
exist also some interesting technological research questions
in regard to legally-binding smart contract languages such
as programming language semantics [145] and programming
language pragmatics [145], [146].

E. PROSPECTIVE ALPHABILL PARTITIONS
1) POTENTIAL
A great deal of future work is available in regard to
prospective Alphabill partitions at various levels, i.e.,
in regard to business sectors, business domains and even
single enterprises, as well as on cross-cutting aspects such
a business-to-business communication [147], [148]. Various
research studies have been conducted in regard to several
business sectors such as e-health [149], energy [150],
manufacturing [8], [10], [151], insurances [152], air traffic
management [153], as well as public sector domains such
as taxation, [154], e-procurement [155], [156] and land
registration [157], just to name a few.

We forecast that research and development activities in
regard to domain-specific blockchain solutions will even
increase more in the future. The Alphabill platform can

34 https://xanadu.com.au/general/faq.html#2
35 https://www.iso.org/standard/75095.html

77316

ease and streamline these research and development efforts
by enabling performant implementations and the integration
with other domains.

2) A GENERIC CI PARTITION

Collective intelligence systems [158] form an extremely
important class of web-based applications with Wikipedia
and Reddit being just two examples. Recently, enterprises
have discovered the potential of CI for their endeavors [159],
where Blackrock’s Aladdin®® system and Genpact’s Cora
system?®’ are particular good examples. As a next concrete
research step, we will design and implement a generic
collective intelligence (CI) platform as an Alphabill partition.
The platform will be designed on the basis of the generic CI
framework provided by [121]. With the envisioned generic CI
platform, it will be possible to launch tailored CI systems for
specialized purposes.

3) B2C PARTITIONS

The current business-to-customer (B2C) sector offers many
opportunities for innovations. Today’s e-commerce platforms
fulfill a mix of functions. Large platforms are sometimes
brokers, logistics providers and insurances at the same time.
In particular with respect to the brokerage function, existing
asymmetries need to be identified and understood better. For
example, if 10% provision are taken merely for brokerage
of a service (although only the service provider invests,
provides the service and bears the business risk), it is worth
to investigate the potential for disintermediation at platform
level. The research question is then, how to design peer-
to-peer e-commerce marketplaces [160], [161] and which
business models they would follow.

4) B2B PARTITIONS

Further research is needed in regard to business-to-business
(B2B) communication. Value-added B2B services are natural
candidates to join the Alphabill platform as transaction
systems. The Alphabill platform comes with a solution for
multi-asset swap transactions, i.e., the atomicity partition
described in Section VI-C. Still, there is potential for
value-added services on top of this fundamental mechanism.
In the EDI era [105], valued-added networks were quite
common. Since then, the value chain has become more
and more fragmented [162] and today’s B2B is highly
asymmetric, with large manufacturers dominating smaller
suppliers. The last systematic attempt to implement a more
symmetric B2B was the millennium B2B vision with its
UDDI (Universal Description, Discovery, and Integration)
registry [123]; however, it never took off and is more than
twenty years ago now. B2B always was a highly relevant
research area, and it can be easily predicted that it will
receive even more relevance through the emerging real-time
economics [77], [78].

36https://www.blackrock.com/aladdin
37https://www. genpact.com/cora

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation IEEEACC@SS

VIil. CONCLUSION

We have argued that uncapped scalability and universal
tokenization are the sine qua non game changers for
blockchain technology to become as impactful as claimed by
the plethora of diverse blockchain technology visions stated
so far over the last decade, ranging from decentralized (micro-
) payment systems over DeFi to now Web3 — to name a few
(not yet to speak about the many domain-specific blockchain-
based technology visions).

In this paper, we contributed:

e A new form of electronic money scheme, the bill
scheme, which unlocks, through its decomposability
results, unlimited scalability in both permissioned and
permissionless scenarios.

o KSI Cash, a central bank digital currency that imple-
ments the bill scheme (as outcome of a research
cooperation between the Estonian Central Bank and
Guardtime) as technological feasibility study of a digital
euro. In particular, we have contributed:

-- The design of a bill-based data structure that
is optimized for performance. We have provided
analytical performance estimations for this data
structure.

-- The design of an exchange service, based on a
pro-active and on a re-active exchange strategy.

« Exhaustive performance evaluations of KSI Cash, con-
ducted with the European Central Bank (together with
a group of eight central banks from the Eurosystem)
encompassing:

-- A Realistic Backend System Implementation.
Particular effort has been invested to enable
realistic usage testing, resulting into a backend
system implementation consisting of approx.
100,000 LOCs.

-- Realistic Usage Tests. We have conducted a series
of test runs under simulated real-world condi-
tions. Most importantly, we conducted a maximum
throughput test run, showing the system operating
with 15,000 transactions per second. (further test
runs have been conducted to analyze round calcula-
tion times, memory consumption and the behavior
of exchange services).

-- Ultra-Scalability Tests. We have conducted a series
of ultra-scalability tests under limited (laboratory)
conditions, showing the system managing a load
of about 2 million payment orders per second
(meaning an equivalent of more than 300,000
transactions per second), demonstrating the linear
scalability of KSI Cash (in terms of compute
resources)

-- Carbon Footprint Estimation. We are able to esti-
mate the carbon footprint of KSI Cash as 0.0001g
CO2 per transaction, again under the realistic usage
scenario (Bitcoin = 100 kg and more).

VOLUME 10, 2022

We have described the architecture of the Alphabill
platform, which enables universal asset tokenization.
We have defined the platform’s elements, asset presen-
tations, ledger certificates, transaction orders, sharding
schemes and transaction system specifications.

We have introduced Alphabill Money, which is the
genuine money partition of the Alphabill platform, as an
extended bill scheme.

We have specified the dust collection mechanism of
Alphabill Money by elaborating the bill swap scenario
and defining the dust collection process.

Based on the specification of the dedicated Alphabill
swap partition, we have defined a 3-phase-commit pro-
tocol for atomic heterogeneous (multi-asset) predicate-
based swap transactions.

Finally, we have discusses opportunities and challenges
of the proposed platform in terms of the currently widely
discussed concepts of DeFi and Web3. Furthermore,
we have outlined opportunities for the development of
Alphabill partitions.

In the design of the Alphabill platform, we have followed
the design principles of security-by-design, scalability-by-
design, robustness-by-design and viability-by-design. As the
consequence of this, with the Alphabill platform, we are able
to provide a universal tokenization platform that allows for
universal asset tokenization, transfer and exchange as a global
medium of exchange.

REFERENCES

(11

[2]
[3]

[4]

[51

[6

[71

[8]

[91

[10]

[11]

S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic
Cash System. Accessed: Apr. 20, 2022. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

N. Szabo, “Formalizing and securing relationships on public networks,”
1st Monday, vol. 2, no. 9, Sep. 1997.

L. Grassi, D. Lanfranchi, A. Faes, and F. M. Renga, “Do we still
need financial intermediation? The case of decentralized finance-DeFi,”
Qualitative Res. Accounting Manage., vol. 2022, pp. 1-22, Feb. 2022.
Visa USA. Visa Acceptance for Retailers. Accessed: Mar. 11, 2022.
[Online]. Available: https://usa.visa.com/run-your-business/small-
business-tools/retail.html

F. Meyer, L. Kuhlmann, and S. Miiller, (2019). Card Schemes—
Europe Could Irreversibly Lose its Position in the Payment
Market. CORE SE. Accessed: Mar. 11, 2022. [Online]. Available:
https://core.se/techmonitor/card-schemes

K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292-2303, 2020.

Z. Yang, R. Yang, F. R. Yu, M. Li, Y. Zhang, and Y. Teng, “Sharded
blockchain for collaborative computing in the Internet of Things:
Combined of dynamic clustering and deep reinforcement learning
approach,” IEEE Internet Things J., early access, Feb. 17, 2022, doi:
10.1109/J10T.2022.3152188.

S. Hameed, S. A. Shah, Q. S. Saeed, S. Siddiqui, I. Ali, A. Vedeshin,
and D. Draheim, “A scalable key and trust management solution for IoT
sensors using SDN and blockchain technology,”” IEEE Sensors J., vol. 21,
no. 6, pp. 8716-8733, Jan. 2021.

M. A. Bouras, Q. Lu, S. Dhelim, and H. Ning, ““A lightweight blockchain-
based IoT identity management approach,” Future Internet, vol. 13,
no. 24, pp. 1-14, 2021.

A. Vedeshin, J. M. U. Dogru, L. Liiv, S. Ben Yahia, and D. Draheim,
“A secure data infrastructure for personal manufacturing based on a
novel key-less, byte-less encryption method,” IEEE Access, vol. 8,
pp. 40039-40056, 2020.

A. Vedeshin, J. M. U. Dogru, I. Liiv, D. Draheim, and S. B. Yahia,
“A digital ecosystem for personal manufacturing: An architecture for a
cloud-based distributed manufacturing operating system,” in Proc. 11th
Int. Conf. Manage. Digit. EcoSyst. (MEDES), 2019, pp. 224-228.

77317

http://dx.doi.org/10.1109/JIOT.2022.3152188

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

77318

G. Sagirlar, B. Carminati, E. Ferrari, J. D. Sheehan, and E. Ragnoli,
“Hybrid-IoT: Hybrid blockchain architecture for Internet of Things
PoW sub-blockchains,” in Proc. 11th IEEE Int. Conf. Internet Things
(iThings), Jul. 2018, pp. 1007-1016.

Informatics Study on Ultra-Scalable — Blockchain — Technology.
Project 19HO01103. Nara Institute of Science and Technology.
Accessed: Jun. 21, 2022. [Online]. Available: https://kaken.nii.ac.jp/en/
grant/kakenhi-project-19h01103/

M. Kasahara, M. Sasabe, J. Kawahara, and Z. Mototama. (2020).
Informatics Study on Ultra-Scalable Blockchain Technology. 2020 Fiscal
Year Annual Research Report. Nara Institute of Science and Technology.
Accessed: Jun. 1, 2022. [Online]. Available: https://kaken.nii.ac.jp/e
n/report/kakenhi-project-19h01103/19h011032020jisseki/

S. Kasahara, “Performance modeling of bitcoin blockchain: Mining
mechanism and transaction-confirmation process,” IEICE Trans. Com-
mun., vol. 104, no. 12, pp. 1455-1464, Dec. 2021.

A. Buldas, D. Draheim, T. Nagumo, and A. Vedeshin, “Blockchain
technology: Intrinsic technological and socio-economic barriers,” in
Proc. 7th Int. Conf. Future Data Secur. Eng. (FDSE), in Lecture Notes
in Computer Science, vol. 12466. Cham, Switzerland: Springer, 2020,
pp. 3-27.

O. E. Williamson, “Transaction cost economics: How it works; where it
is headed,” De Economist, vol. 146, no. 1, pp. 23-58, 1998.

O. Rikken, M. Janssen, and Z. Kwee, “Governance challenges of
blockchain and decentralized autonomous organizations,” Inf. Polity,
vol. 24, no. 4, pp. 397-417, Dec. 2019.

(Jul. 2021). European Central Bank, Eesti Pank, Bank of Greece,
Deutsche Bundesbank, Central Bank of Ireland, Banco de Espaiia,
Latvijas Banka, Banca d’Italia, and De Nederlandsche Bank. Work
Stream 3: A New Solution—Blockchain & elD. Accessed: Mar. 28, 2022.
[Online]. Available: https://www.ecb.europa.eu/paym/digital_euro/inves
tigation/profuse/shared/files/deexp/ecb.deexp211011_3.en.pdf

R. Olt, T. Meidla, L. Ilves, and J. Steiner. (Dec. 2021). Summary Report:
Results Eesti Pank—Guardtime CBDC Research. Eesti Pank, Guardtime.
Accessed: Mar. 11, 2022. [Online]. Available: https://haldus.eestipank.
ee/sites/default/files/2021-12/EP-Guardtime_CBDC_Research_2021_
eng.pdf

A. Buldas, M. Saarepera, J. Steiner, L. Ilves, R. Olt, and T. Meidla,
Formal Model of Money Schemes and their Implications for Central Bank
Digital Currency, Eesti Pank, Guardtime, 2021. Accessed: Mar. 11, 2022.
[Online]. Available: https://haldus.eestipank.ee/sites/default/files/2021-
12/EP-A_Formal_Model_of Money_2021_eng.pdf

A. Buldas, M. Saarepera, J. Steiner, and D. Draheim, “A unifying
theory of electronic money and payment systems,” TechRxiv, pp. 1-45,
May 2022, doi: 10.36227/techrxiv.14994558.v1.

J. Herrera-Joancomarti and C. Pérez-Sola, “Privacy in bitcoin transac-
tions: New challenges from blockchain scalability solutions,” in Proc.
13th Int. Conf. Modeling Decisions Artif. (MDAI), in Lecture Notes in
Artificial Intelligence, vol. 9880. Cham, Switzerland: Springer, 2016,
pp. 26-44.

C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Proc. 17th Int. Symp.
Stabilization, Saf., Secur. Distrib. Syst. (SSS), in Lecture Notes in
Computer Science, vol. 9212. Cham, Switzerland: Springer, 2015,
pp. 3-18.

J. Poon and T. Dryja. (Jan. 14, 2016). The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments, Draft Version 0.5.9.2. Accessed:
Apr. 18, 2022. [Online]. Available: https://lightning.network/lightning-
network-paper.pdf

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey
on the scalability of blockchain systems,” IEEE Netw., vol. 33, no. 5,
pp. 166-173, Sep. 2019.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 17-30.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” Cryptol. ePrint Arch., Paper 2017/406, May 2017, pp. 1-16.
[Online]. Available: https://eprint.iacr.org/2017/406

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 583-598.

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14155-14181, 2020.
A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A
comprehensive survey,” IEEE Access, vol. 8, pp. 125244-125262, 2020.
Blockchain and Distributed Ledger Technologies—Vocabulary, Stan-
dard ISO 22739:2020(E), International Organization for Standardization,
2020.

D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology
overview,” Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. NISTIR 8202, Oct. 2018.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
San Mateo, CA, USA: Morgan Kaufmann, 1993.

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and
G. Danezis, “Chainspace: A sharded smart contracts platform,”
2017, arXiv:1708.03778.

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2018, pp. 1-16.

M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2018, pp. 1-18.

J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in Proc. 16th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2019, pp. 95-112.

J. Drake. (May 17, 2018). Ethereum Sharding. Accessed: Mar. 26, 2022.
[Online]. Available: https://youtu.be/J4rylD6w2S4

H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proc. Int. Conf.
Manage. Data, Jun. 2019, pp. 123-140, doi: 10.1145/3299869.3319889.
H. Chen and Y. Wang, “SSChain: A full sharding protocol for public
blockchain without data migration overhead,” Pervas. Mobile Comput.,
vol. 59, Oct. 2019, Art. no. 101055.

A. Manuskin, M. Mirkin, and I. Eyal, “Ostraka: Secure blockchain
scaling by node sharding,” in Proc. IEEE Eur. Symp. Secur. Privacy
Workshops (EuroS&PW), Sep. 2020, pp. 397-406.

M. Du, Q. Chen, and X. Ma, “MBFT: A new consensus algorithm for
consortium blockchain,” IEEE Access, vol. 8, pp. 87665-87675, 2020.
A. M. Antonopoulos, Mastering Bitcoin: Programming the Open
Blockchain. Sebastopol, CA, USA: O’Reilly, 2017.

E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in Proc. 25th USENIX Secur. Symp.
(USENIX Security), 2016, pp. 279-296.

R. Pass and E. Shi. (2016). Hybrid Consensus: Efficient Consensus in
the Permissionless Model. Cryptology ePrint Archive, Report 2016/917.
[Online]. Available: https://ia.ct/2016/917

R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in Proc. 31st Int. Symp. Distrib. Comput. (DISC),
vol. 91, Oct. 2017, pp. 1-39.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401,
Jul. 1982.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology (Lecture Notes in Computer Science), vol. 10401. Cham,
Switzerland: Springer, 2017, pp. 357-388.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Oper. Syst. Principles (SOSP), Oct. 2017, pp. 51-68.

E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, ‘“Scalable bias-resistant distributed ran-
domness,” in Proc. 38th IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 444-460.

M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp. 398-461, Nov. 2002.

J. Sousa and A. N. Bessani, “From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation,” in Proc. 9th Eur.
Dependable Comput. Conf. (EDCC), May 2012, pp. 37-48.

V. Buterin, “A next generation smart contract and decentralized
application platform,” Ethereum, White Paper, 2015. [Online]. Available:
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_
generation_smart_contract_and_decentralized_application_platform-
vitalik-buterin.pdf

VOLUME 10, 2022

http://dx.doi.org/10.36227/techrxiv.14994558.v1
http://dx.doi.org/10.1145/3299869.3319889

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

[55]

[56]

[57

[58]

[59

[60

[61

[62

[63]

[64

[65

[66

[67]

[68

[69

[70]

[71

[72

[73]

[74

[75]

[76]

[77
[78
[79
[80
[81

[82]

N. Okanami, R. Nakamura, and T. Nishide, “Load balancing with in-
protocol/wallet-level account assignment in sharded blockchains,” IEICE
Trans. Inf. Syst., vol. E105.D, no. 2, pp. 205-214, 2022.

L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Practical synchronous
Byzantine consensus,” 2017, arXiv:1704.02397.

N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern, “Addendum
to ‘scalable secure storage when half the system is faulty,”” Inf. Comput.,
vol. 205, no. 7, pp. 1114-1116, Jul. 2007.

P. Maymounkov and D. Maziéres, ‘“Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in Proc. Ist Int. Workshop Peer-
to-Peer Syst., in Lecture Notes in Computer Science, vol. 2429. Berlin,
Germany: Springer, 2002, pp. 53-65.

N. Sohrabi and Z. Tari, “ZyConChain: A scalable blockchain for general
applications,” IEEE Access, vol. 8, pp. 158893-158910, 2020.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” ACM Trans. Comput. Syst.,
vol. 27, no. 4, pp. 1-39, 2010.

Vitalik Buterin explains Ethereum. Accessed: Jun. 13, 2022. [Online].
Available: https://www.youtube.com/watch?v=TDGq4aeevgY

A. Hafid, A. S. Hafid, and M. Samih, “A novel methodology-based
joint hypergeometric distribution to analyze the security of sharded
blockchains,” IEEE Access, vol. 8, pp. 179389-179399, 2020.

D. Jia, J. Xin, Z. Wang, and G. Wang, “Optimized data storage method
for sharding-based blockchain,” IEEE Access, vol. 9, pp. 67890-67900,
2021.

H. Huang, Z. Yue, X. Peng, L. He, W. Chen, H.-N. Dai, Z. Zheng,
and S. Guo, “Elastic resource allocation against imbalanced transaction
assignments in sharding-based permissioned blockchains,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 10, pp. 2372-2385, Oct. 2022.

M. Neely, Stochastic Network Optimization With Application to Com-
munication and Queueing Systems. London, U.K.: Morgan & Claypool,
2010.

L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1-144, 2006.

G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1-14.

(Feb. 3, 2022). Federal Reserve Bank of Boston and Massachusetts
Institute of Technology Digital Currency Initiative. Project Hamilton
Phase 1—A High Performance Payment Processing System Designed
for Central Bank Digital Currencies. Federal Reserve Bank of Boston.
Accessed: Mar. 26, 2022. [Online]. Available: https://www.bostonfed.
org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-
Whitepaper.pdf

L. Zhong, Q. Wu, J. Xie, Z. Guan, and B. Qin, “A secure large-scale
instant payment system based on blockchain,” Comput. Secur., vol. 84,
pp. 349-364, Jul. 2019.

W. K. Chan, J.-J. Chin, and V. T. Goh, “Simple and scalable blockchain
with privacy,” J. Inf. Secur. Appl., vol. 58, May 2021, Art. no. 102700.
A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K.-K. R. Choo, “Sidechain technologies in blockchain networks: An
examination and state-of-the-art review,” J. Netw. Comput. Appl.,
vol. 1491, Jan. 2020, Art. no. 102471.

S. Meiklejohn and C. Orlandi, “Privacy-enhancing overlays in bitcoin,”
in Proc. 19th Int. Conf. Financial Cryptography Data Secur., in Lecture
Notes in Computer Science, vol. 8976. Berlin, Germany: Springer, 2015,
pp. 127-141.

G. Maxwell. Coinjoin: Bitcoin Privacy for the Real World.
Accessed: Jun. 1, 2022. [Online]. Available: https://bitcointalk.org/
index.php?topic=279249

G. Wood. (2016). Polkadot: Vision for a Heterogneous multi-Chain
Framework, Draft 1. Accessed: Feb. 3, 2022. [Online]. Available:
https://polkadot.network/PolkaDotPaper.pdf

D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology
overview,” 2019, arXiv:1906.11078.

S. Beer, “The viable system model: Its provenance, development,
methodology and pathology,” J. Oper. Res. Soc., vol. 35, no. 1, pp. 7-25,
Jan. 1984.

“The real-time revolution,” The Economist, pp. 22-24, Oct. 2021.
“Instant economocis,” The Economist, p. 13, Oct. 2021.

S. Beer, Brain of the Firm. Baltimore, MD, USA: Penguin, 1972.

S. Beer, The Heart Enterprise. Hoboken, NJ, USA: Wiley, 1979.

J. H. Holland, “Studying complex adaptive systems,” J. Syst. Sci.
Complex., vol. 19, no. 1, pp. 1-8, Mar. 2006.

J. H. Miller and S. E. Page, Complex Adaptive Systems: An Introduction
to Computational Models of Social Life. Princeton, NJ, USA: Princeton
Univ. Press, 2007.

VOLUME 10, 2022

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]
[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

B. Latour, Reassembling the Social: An Introduction to Actor-Network
Theory. Oxford, U.K.: Oxford Univ. Press, 2005.

K. McBride and D. Draheim, “On complex adaptive systems and
electronic government: A proposed theoretical approach for electronic
government studies,” Electron. J. e-Government, vol. 18, no. 1,
pp- 43-53, Apr. 2020.

Eesti Pank. (Dec. 13, 2021). Eesti Pank Ran an Experiment to Investigate
the Technological Possibilities of a Central Bank Digital Currency
Based on Blockchain, Eesti Pank. Accessed: Mar. 11, 2022. [Online].
Available: https://www.eestipank.ee/en/press/eesti-pank-ran-experiment-
investigate-technological-possibilities-central-bank-digital-currency-
13122021

R. C. Merkle, “Protocols for public key cryptosystems,” in
Proc. IEEE Symp. Secur. Privacy, Apr. 1980, pp.122-134, doi:
10.1109/SP.1980.10006.

R. C. Merkle, “Method of providing digital
U.S. Patent US4 309 569A, Jan. 5, 1982.

R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. 7th Conf. Theory Appl. Cryptograph. Techn., in
Lecture Notes in Computer Science, vol. 293. Berlin, Germany: Springer,
1987, pp. 369-378.

TPC Benchmark C—Standard Specification, Revision 5.11., Trans.
Process. Council, Feb. 2010. [Online]. Available: https://www.tpc.org/
information/who/whoweare5.asp

TPC Benchmark E—Standard Specification, Revision 1.14.0., Trans.
Process. Council, Apr. 2015. [Online]. Available: https://www.tpc.org/
information/who/whoweare5.asp

Public Key Cryptography for the Financial Services Industry, The Elliptic
Curve Digital Signature Algorithm (ECDSA), Standard X9.62-2005,
Accredited Standards Committee X9, Nov. 2005.

N. Rasmussen, “Calculating total cooling requirements for data centers,”
Schneider Electr.’s Data Center Sci. Center, Vienna, Austria, APC White
Paper, Tech. Rep. 25, Revision 3, 2017.

S. Foteinis, “Bitcoin’s alarming carbon footprint,” Nature, vol. 554,
p. 169, Feb. 2018.

P. Sandner, C. Lichti, C. Heidt, R. Richter, and B. Schaub, The Carbon
Emissions Bitcoin From Investor Perspective. Frankfurt, Germany:
Frankfurt School Blockchain Center, 2021.

J. P. Trespalacios and J. Dijk. (2021). The Carbon Footprint Bitcoin.
De Nederlandsche Bank. Accessed: Mar. 29, 2022. [Online]. Available:
https://www.dnb.nl/media/1ftd2xjl/the-carbon-footprint-of-bitcoin.pdf
C. Stoll, L. KlaaBen, and U. Gallersdorfer, “The carbon footprint of
bitcoin,” MIT Center Energy Environ. Policy Res., Cambridge, MA,
USA, Tech. Rep. CEEPR WP 2018-018, Dec. 2018.

C. Stoll, L. Klaaen, and U. Gallersdorfer, “The carbon footprint of
bitcoin,” Joule, vol. 3, no. 7, pp. 1647-1661, 2019.

L. Badea and M. C. Mungiu-Pupazan, “The economic and environmental
impact of bitcoin,” IEEE Access, vol. 9, pp. 48091-48104, 2021.

A. Buldas, P. Laud, and H. Lipmaa, “Eliminating counterevidence with
applications to accountable certificate management,” J. Comput. Secur.,
vol. 10, no. 3, pp. 273-296, Sep. 2002.

A. Buldas and S. Laur, “Knowledge-binding commitments with applica-
tions in time-stamping,” in Proc. 10th Int. Conf. Pract. Theory Public-Key
Cryptography, in Lecture Notes in Computer Science, vol. 4450, 2007,
pp. 150-165.

A.Buldas, A. Kroonmaa, and M. Saarepera, “System and method for gen-
erating keyless digital multi-signatures. U.S. Patent U.S. 8874921 B2,
Oct. 28, 2014.

A. Buldas, P. Laud, M. Saarepera, and J. Willemson, ‘“Universally
composable time-stamping schemes with audit,” in Proc. 8th Int. Conf.
Inf. Secur., in Lecture Notes in Computer Science, vol. 3650. Berlin,
Germany: Springer, 2005, pp. 359-373.

A. Buldas and M. Saarepera, “On provably secure time-stamping
schemes,” in Advances in Cryptology (Lecture Notes in Computer
Science), vol. 3329. Berlin, Germany: Springer, 2004, pp. 500-514.
A.Buldas and M. Niitsoo, ““‘Optimally tight security proofs for hash-then-
publish time-stamping,” in Information Security and Privacy (Lecture
Notes in Computer Science), vol. 6168. Berlin, Germany: Springer, 2010,
pp. 318-335.

M. A. Emmelhainz, EDI: A Total Management Guide. New York, NY,
USA: Van Nostrand Reinhold, 1993.

K. Solorio, R. Kanna, and D. H. Hoover, Hands-on Smart Contract
Development With Solidity and Ethereum—From Fundamentals to
Deployment. Sebastopol, CA, USA: O’Reilly, 2019.

R. Zarick, B. Pellegrino, and C. Banister, ‘‘Layerzero: Trustless
omnichain interoperability protocol,” 2021, arXiv:2110.13871.

signatures,”

77319

http://dx.doi.org/10.1109/SP.1980.10006

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

77320

G. Adelson-Velsky and E. Landis, “An algorithm for the organization of
information (in Russian),” Doklady Akademii Nauk Proc. Russian Acad.
Sci., vol. 146, no. 2, pp. 263-266, 1962.

C. Lagarde, ‘““Central banking and FinTech—A brave new world?” Int.
Monetary Fund, Washington, DC, USA, 2017.

D. Draheim, “Blockchains from an e-governance perspective: Potential
and challenges—EGOSE’2020 Keynote,” in Proc. 7th Int. Conf. Elec-
tron. Governance Open Society: Challenges Eurasia, in Communications
in Computer and Information Science, vol. 1349. Cham, Switzerland:
Springer, 2021, pp. 11-12.

O. E. Williamson, “Transaction cost economics: The governance of
contractual relations,” J. Law Econ., vol. 22, no. 2, pp. 233-261, 1979.
D. Furlonger and C. Uzureau, The Real Business of Blockchain—How
Leaders Can Create Value in a New Digital Age. Boston, MA, USA:
Harvard Bus. Review Press, 2019.

J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas,
F. Daniel, and S. Debois, “Blockchains for business process
management—challenges and opportunities,” ACM Trans. Manage.
Inf. Syst., vol. 9, no. 1, pp. 1-16, 2018.

M. Janssen, V. Weerakkody, E. Ismagilova, U. Sivarajah, and Z. Irani,
“A framework for analysing blockchain technology adoption: Integrating
institutional, market and technical factors,” Int. J. Inf. Manage., vol. 50,
pp- 302-309, Feb. 2020.

Information Technology—Security Techniques—Identity Proofing. Stan-
dard ISO 29003:2018, International Organization for Standardization,
2018.

A. Miihle, A. Griiner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Comput. Sci. Rev.,
vol. 30, pp. 80-86, Nov. 2018.

A. Oram, Peer to Peer: Harnessing the Power of Disruptive Technologies.
Sebastopol, CA, USA: O’Reilly, 2001.

S. Voshmgir, Token Economy—How the Web3 reinvents the Internet, 2nd
ed. Berlin, Germany: BlochainHub Berlin, 2020.

S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “‘Decentral-
ized autonomous organizations: Concept, model, and applications,” IEEE
Trans. Computat. Social Syst., vol. 6, no. 5, pp. 870-878, Oct. 2019.

Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” J. Bus. Venturing
Insights, vol. 13, Jun. 2020, Art. no. e00151.

S. Suran, V. Pattanaik, and D. Draheim, ‘“‘Frameworks for collective
intelligence: A systematic literature review,” ACM Comput. Surveys,
vol. 53, no. 1, pp. 1-36, Jan. 2020.

J. E. Stiglitz, The Roaring Nineties: A New History of the World’s Most
Prosperous Decade. New York, NY, USA: W. W. Norton, 2004.

D. Draheim, “The service-oriented metaphor deciphered,” J. Comput.
Sci. Eng., vol. 4, no. 4, pp. 253-275, Dec. 2010.

M. Niforos. (Jun. 20, 2022). The Promising Future of NFTs Remains
in a State of Flux. Financial Times. Accessed: Jul. 21, 2022.
[Online]. Available: https://www.ft.com/content/a449b288-3f49-43d1-
bb2a-5a5b30c20176

M. Dowling, “Fertile LAND: Pricing non-fungible tokens,”” Finance Res.
Lett., vol. 44, Jan. 2022, Art. no. 102096.

R. Sharma. (Jun. 22, 2022). What is a Non-Fungible Token
(NFT)?” Investopedia. Accessed: Jul. 21, 2022. [Online]. Available:
https://www.invetopedia.com/non-fungible-tokens-nft-5115211

D. A. Zetzsche, D. W. Arner, and R. P. Buckley, ““‘Decentralized finance,”
J. Financial Regulation, vol. 6, no. 2, pp. 172-203, 2020.

F. Schir, “Decentralized finance: On blockchain- and smart contract-
based financial markets,” Federal Reserve Bank St. Louis Rev., vol. 103,
no. 2, pp. 74-153, 2021.

“The FinTech revolution,” The Economist, May 2015. [Online].
Available: https://www.economist.com/leaders/2015/05/09/the-fintech-
revolution

P. Gomber, R. J. Kauffman, C. Parker, and B. W. Weber, “On the
fintech revolution: Interpreting the forces of innovation, disruption, and
transformation in financial services,” J. Manage. Inf. Syst., vol. 35, no. 1,
pp. 220-265, Jan. 2018.

L. Jin and K. Parrott. “Web3 is our chance to make a better internet,”
Harvard Bus. Rev., vol. 10, pp. 1-12, May 2022. [Online]. Available:
https://hbr.org/2022/05/web3-is-our-chance-to-make-a-better-internet

J. Wiles. (Feb. 15, 2022). What is Web3? Gartner. [Online]. Available:
https://www.gartner.com/en/articles/what-is-web3

M. Bennett. (May 10, 2022). Web3 Isn’t Going to Fix the Shortcomings of
Today’s Web. Forrester. [Online]. Available: https://www.forrester.com/bl
ogs/web3-isnt-going-to-fix-the-shortcomings-of-todays-web/

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

B. Platz. (Jun. 1, 2022). Why Web3 is so Confusing. Forbes Tech-
nology Council. [Online]. Available: https://www.forbes.com/sites/forbe
stechcouncil/2022/06/01/why-web3-is-so-confusing/

T. Stackpole, “What is Web3?” Harvard Bus. Rev., vol. 10, pp. 1-9,
May 2022. [Online]. Available: https://hbr.org/2022/05/what-is-web3

J. Esber and S. D. Kominers, “Why build in Web3,” Harvard
Bus. Rev., vol. 16, pp.1-38, May 2022. [Online]. Available:
https://hbr.org/2022/05/why-build-in-web3

N. Pollock and R. Williams, “The sociology of a market analysis tool:
How industry analysts sort vendors and organize markets,” Inf. Org.,
vol. 19, no. 2, pp. 129-151, Apr. 2009.

T. H. Nelson, “A file structure for the complex, the changing and the
indeterminate,” in Proc. 20th ACM Nat. Conf., 1965, pp. 84—100.

K. Knowlton, “Ted Nelson’s Xanadu,” in Intertwingled—The Work and
Influence of Ted Nelson (History of Computing), D. R. Dechow and
D. C. Struppa, Eds. Cham, Switzerland: Springer, 2015, pp. 25-28.

T. H. Nelson, “The heart of connection: Hypermedia unified by
transclusion,” Commun. ACM, vol. 38, no. 8, pp. 31-33, Aug. 1995.

D. Draheim, ““On the radical de- and re-construction of today’s enterprise
applications—CENTERIS’2019 Keynote,” in Proc. 10th Int. Conf.
Enterprise Inf. Syst., in Procedia Computer Science, vol. 164, 2019,
pp. 120-122.

C. Castaldi, G. Dosi, and E. Paraskevopoulou, “Path dependence in
technologies and organizations,” in The Palgrave Encyclopedia of
Strategic Management, M. Augier and D. Teece, Eds. London, U.K.:
Palgrave Macmillan, 2018, pp. 1-4.

J. Koppenjan and J. Groenewegen, “Institutional design for complex
technological systems,” Int. J. Technol., Policy Manage., vol. 5, no. 3,
pp. 240-257, 2005.

D. Draheim, R. Krimmer, and T. Tammet, “On state-level architecture
of digital government ecosystems: From ICT-driven to data-centric,”
in Special Issue in Memory of Roland Wagner. Transactions on Large-
Scale Data- and Knowledge-Centered Systems, vol. 48. Berlin, Germany:
Springer, 2021, pp. 165-195.

V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim,
“Legally enforceable smart-contract languages: A systematic literature
review,” ACM Comput. Surv., vol. 54, no. 5, pp. 1-34, Jun. 2021.

A. Dixit, V. Deval, V. Dwivedi, A. Norta, and D. Draheim, ‘“Towards user-
centred and legally relevant smart-contract development: A systematic
literature review,” J. Ind. Inf. Integr., vol. 26, Mar. 2022, Art. no. 100314.
A. Norta and D. Draheim, “First workshop on blockchains for inter-
organizational collaboration (BIOC),” in Proc. Int. Workshops, in Lecture
Notes in Business Information Processing, vol. 316. Cham, Switzerland:
Springer, 2018, pp. 100-102.

A. Norta, B. Leiding, D. Draheim, D. Karastoyanova, L. Pufahl, and
S. Schoning, “Joint workshop on blockchains for inter-organizational
collaboration and flexible advanced information systems BIOC & FAiSE
2019,” in Proc. CAiSE Int. Workshops, in Lecture Notes in Business
Information Processing, vol. 349. Cham, Switzerland: Springer, 2019,
pp. 149-153.

A. Zhang and X. Lin, “Towards secure and privacy-preserving data
sharing in e-health systems via consortium blockchain,” J. Med. Syst.,
vol. 42, no. 140, pp. 1-18, 2018.

M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins,
P. McCallum, and A. Peacock, “Blockchain technology in the energy
sector: A systematic review of challenges and opportunities,” Renew.
Sustain. Energy Rev., vol. 100, pp. 143—-174, Feb. 2019.

Z.Li, W.M. Wang, G. Liu, L. Liu, J. He, and G. Q. Huang, “Toward open
manufacturing: A cross-enterprises knowledge and services exchange
framework based on blockchain and edge computing,” Ind. Manage. Data
Syst., vol. 118, no. 9, pp. 303-320, Feb. 2018.

M. Raikwar, S. Mazumdar, S. Ruj, S. S. Gupta, A. Chattopadhyay, and
K.-Y. Lam, “A blockchain framework for insurance processes,” in Proc.
9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS), Feb. 2018,
pp. 1-4.

M. D. Clementi, N. Larrieu, E. Lochin, M. A. Kaafar, and
H. Asghar, “When air traffic management meets blockchain technology:
A blockchain-based concept for securing the sharing of flight data,” in
Proc. IEEE/AIAA 38th Digit. Avionics Syst. Conf. (DASC), Sep. 2019,
pp. 1-10.

D. A. Wijaya, J. K. Liu, D. A. Suwarsono, and P. Zhang, “A new
blockchain-based value-added tax system,” in Proc. 11th Int. Conf.
Provable Secur., in Lecture Notes in Computer Science, vol. 10592.
Cham, Switzerland: Springer, 2017, pp. 471-486.

VOLUME 10, 2022

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

IEEE Access

[155] E. Abodei, A. Norta, D. Azogu, C. Udokwu, and D. Draheim,
“Blockchain technology for enabling transparent and traceable govern-
ment collaboration in public project processes of developing economies,”
in Proc. 18th IFIP Conf. e-Business, e-Services e-Soc., in Lecture Notes
in Computer Science, vol. 11701. Cham, Switzerland: Springer, 2019,
pp. 464-475.

[156] T. 1. Akaba, A. Norta, C. Udokwu, and D. Draheim, “A framework for
the adoption of blockchain-based e-procurement systems in the public
sector,” in Proc. 19th IFIP Conf. e-Business, e-Services e-Soc., in Lecture
Notes in Computer Science, vol. 12066. Cham, Switzerland: Springer,
2020, pp. 3-14.

[157] N. Lazuashvili, A. Norta, and D. Draheim, “Integration of blockchain
technology into a land registration system for immutable traceability: A
case study of Georgia,” in Proc. 17th Int. Conf. Bus. Process Manage.,
in Lecture Notes in Business Information Processing, vol. 361. Cham,
Switzerland: Springer, 2019, pp. 219-233.

[158] T. W. Malone and M. S. Bernstein, Handbook of Collective Intelligence.
Cambridge, MA, USA: MIT Press, 2015.

[159] D. Draheim, “Collective intelligence systems from an organizational
perspective,” in Proc. 21st Int. Conf. Inf. Integr. Web-based Appl. Services
(iiWAS), 2019, pp. 3-4.

[160] F. Celata, C. Y. Hendrickson, and V. S. Sanna, “The sharing economy
as community marketplace? Trust, reciprocity and belonging in peer-to-
peer accommodation platforms,” Cambridge J. Regions, Economy Soc.,
vol. 10, no. 2, pp. 349-363, Jul. 2017.

[161] S. Brauckmann, “City tourism and the sharing economy—Potential
effects of online peer-to-peer marketplaces on urban property markets,”
J. Tourism Futures, vol. 3, no. 2, pp. 114-126, 2017.

[162] C. W. Stern, “The deconstruction of value chains,” in The Boston
Consulting Group on Strategy—Classic Concepts and New Perspectives,
C. W. Stern and M. S. Deimler, Eds., 2nd ed. Hoboken, NJ, USA: Wiley,
2006, pp. 198-201.

AHTO BULDAS (Member, IEEE) received the
degree in computer science from the Tallinn
University of Technology, in 1991, and the M.Sc.
degree in simulation techniques for Boolean cir-
cuits and the Ph.D. degree in computational alge-
braic graph theory, in 1992 and 1999, respectively.
He is a Professor of cryptography with the Tallinn
University of Technology. His time-stamping
related research started in 1997 and he has pub-
lished papers in the conferences Crypto, Asiacrypt,
and PKC. He participated in the development of the Estonian Digital
Signature Act and the Estonian eID card, from 1996 to 2002. He is the
Co-Founder of Guardtime and also of Cybernetica AS. His research interest
includes applied cryptography. His current research interests also include
risk analysis methods, including attack-tree semantics and game-theoretical
approaches to risk analysis.

DIRK DRAHEIM (Member, IEEE) received the
Ph.D. degree from Freie Universitéit Berlin and the
Habilitation degree from Universitit Mannheim,
Germany. Currently, he is a Full Professor of
information society technology with the Tallinn
University of Technology, Estonia, where he is
the Head of the Information Systems Group. The
Information Systems Group conducts research in
large and ultra-large-scale IT systems. He is also

I an Initiator and the Leader of numerous digital
transformation initiatives. He is an author of the Springer books Business
Process Technology, Semantics of the Probabilistic Typed Lambda Calculus,
and Generalized Jeffrey Conditionalization; and a coauthor of the Springer
book Form-Oriented Analysis.

VOLUME 10, 2022

MIKE GAULT received the Ph.D. degree from the
University of Wales, in 1994. He is the CEO and
the Founder of Guardtime, a company he has led
for the last ten years. He started his career on a
postdoctoral fellowship conducting research with
the Tokyo Institute of Technology on the numerical
analysis of quantum devices. He then spent ten
years as a Quant and Derivatives Trader with
Credit Suisse Financial Products and Barclays
Capital before starting Guardtime.

RISTO LAANOJA is currently pursuing the
Ph.D. degree with the Tallinn University of
Technology, working on provable security of
hashing-based constructs and the development of
“strong pre-image awareness”” and ‘‘bounded pre-
image awareness’’ concepts. He is a member of the
Research and Development Team, Guardtime.

TAKEHIKO NAGUMO received the M.Sc. degree
in development finance from the University of
London and the M.B.A. degree in strategic
management from Georgetown University. He is
a Senior Managing Executive Officer of Mit-
subishi UFJ Research and Consulting. He is
an Adjunct Professor in strategic management
with the Kyoto University Graduate School of
Management. Numerous times, his research on
balanced scorecard has been published by the
Harvard Business School. He is one of the thought leaders in Japan in
the field of digital economy and society: he is a member of the Japanese
Government’s Regulatory Reform Promotion Committee; a Research Fellow
of the National Institute of Advanced Industrial Science and Technology; the
Co-Founder and the Executive Director of the Smart City Institute Japan;
and a fellow of the World Economic Forum, Centre for Fourth Industrial
Revolution Japan.

MART SAAREPERA received the doctoral degree
in real-time systems verification from the Tokyo
Institute of Technology. He has extraordinary
experience in developing blockchain systems.
Also, he is an Experienced Business Developer,
having shown his leadership skills by growing
small startups to strong enterprises. He was the
Founder of Guardtime, in 2006, which has now
grown to one of the leading industrial blockchain
developing companies providing reliable data
integrity assurance solutions for industry and the public sector. He has been
a coauthor of several research papers on cryptography, integrity protection,
and privacy.

77321

IEEE Access

A. Buldas et al.: Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation

SYED ATTIQUE SHAH (Member, IEEE) received
the Ph.D. degree from the Institute of Informatics,
Istanbul Technical University, Istanbul, Turkey.
During his Ph.D. degree, he studied as a Visiting
Scholar with The University of Tokyo, Japan; the
National Chiao Tung University, Taiwan; and the
Tallinn University of Technology, Estonia, where
he completed the major content of his thesis.
He has worked as an Associate Professor and the
Chairperson with the Department of Computer
Science, BUITEMS Quetta, Pakistan. He was also engaged as a Lecturer
with the Data Systems Group, Institute of Computer Science, University
of Tartu, Estonia. Currently, he is working as a Lecturer in smart computer
systems with the School of Computing and Digital Technology, Birmingham
City University, U.K. His research interests include big data analytics, the
Internet of Things, networks security, and information management.

JOOSEP SIMM received the master’s degree in
computer science from the Tallinn University of
Technology, in 2010. He is a Software Engineer
with Guardtime. One of his specializations is per-
formance testing and tuning of computer systems.
In Guardtime, he has been integrating Guardtime
technology to third party systems. He was the Lead
Engineer in the KSI Cash Project. He has been
active in software development, since 2005.

JAMIE STEINER received the bachelor’s degree
in aeronautical engineering from the United States
Air Force Academy and the master’s degree
in business administration from the NYU Stern
School of Business. He has 25 years of experience
in intelligence, finance, and technology. While in
the U.S. Air Force, he collected and analyzed sig-
nals and imagery intelligence, and crafted the Air
Force’s premier course on precise geographical
positioning for targeting. His experience in finance
includes making markets in inflation linked government bonds for JPMorgan
Chase, overhauling the fixed income trading systems used by the JPMorgan
Private Bank, and managing regulatory and compliance issues. As the Head
of electronic trading with Phoenix Partners LLC, he designed, tested, and
managed one of the top electronic liquidity venues for credit default swaps.

77322

TANEL TAMMET is a Full Professor of applied
artificial intelligence with the Tallinn University
of Technology. He has also worked in the area of
cybersecurity and has been involved in numerous
large commercial and public sector IT projects.
He was one of the initiators of the Estonian
X-ROAD interoperability framework and has
helped to develop several other core IT infras-
tructure systems in Estonia. His main research
interests include crowd-sourced knowledge bases,
automated reasoning, and commonsense reasoning.

AHTO TRUU received the M.Sc. degree in
computer science from Tartu University and the
Ph.D. degree from the Tallinn University of
Technology, where his thesis was on hash-based
server-assisted digital signature solutions. He is a
Software Architect and a member of the Research
and Development Team, Guardtime, where he
has worked on developer tools for integrating
the company’s KSI technology into customer
solutions, trained engineers both internally and
externally, and was one of the inventors of the BLT digital signature scheme.
Before joining Guardtime, he worked for Aprote, leading Estonia’s first
integration of EMV payment card support into a point-of-sale system among
other projects. He has also been teaching programming-related courses with
Tartu University and the Tallinn University of Technology and coached
Estonian teams for international programming competitions.

VOLUME 10, 2022

