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ABSTRACT Drowsiness affects the drivers’ sensory, cognitive, and psychomotor abilities, which are
necessary for safe driving. Drowsiness detection is a critical technique to avoid traffic accidents. Federated
learning (FL) can solve the problem of insufficient driver facial data by utilizing different industrial entities’
data. However, in the FL system, the privacy information of the drivers might be leaked. In addition, reducing
the communication costs and maintaining the model performance are also challenges in industrial scenarios.
In this work, we propose a federated transfer learning method with the privacy-preserving protocol for
driver drowsiness detection, named PFTL-DDD. We use fine-tuning transfer learning on the initial model of
the drowsiness detection FL system. Furthermore, a CKKS-based privacy-preserving protocol is applied to
preserve the drivers’ privacy data by encrypting the exchanged parameters. The experimental results show
that the PFTL-DDD method is superior in terms of accuracy and efficiency compared to the conventional
federated learning on the NTHU-DDD and YAWDD datasets. The theoretical analysis demonstrates that the
proposed transfer learning method can reduce the communication cost of the system, and the CKKS-based
security protocol can protect personal privacy.

INDEX TERMS Driver drowsiness detection, transfer learning, federated learning, privacy-preserving.

I. INTRODUCTION
Driver drowsiness is a major cause of road crashes and
serious injuries inflicted in traffic accidents [1]. Timely
prediction of driver drowsiness and provision of driving
assistance can reduce the economic lossses and casualties
effectively [2]. European Union (EU) 2019/2144 regulation
requires certain types of vehicles to be equipped with driver
drowsiness and attention warning (DDAW) systems. The
external non-invasive observation of a driver’s status is a well-
known technique for driver drowsiness detection. Specific
facial expressions, such as frequency of nodding [3], yawn-
ing [4], and elongated eye closure time [5], indicate drivers’
drowsiness.

The deep learning techniques excel in object detection,
segmentation, classification, and behavior prediction tasks.
With the popularity of Internet of Vehicles (IoV) functions,
driver drowsiness detection has become a research hotspot
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in artificial intelligence (AI) and big data applications [6].
Drowsiness detection is a typical case of deep learning for
behavior prediction related to automated driving.

Ghoddoosian et al. [5] proposed an early drowsiness detec-
tion method by using a hierarchical multiscale long short-
term memory (HM-LSTM) network. This method predicts
drowsiness by considering eye blinking as a time series.
Ramos et al. [4] adopted an API-based histogram of oriented
gradients (HOG) and linear support vector machine (SVM)
to predict driver drowsiness by utilizing Euclidean distance
between closed eyes and yawns. Weng et al. [7] proposed
a new hierarchical temporal deep belief network by using
two hiddenMarkovmodels to capture the interaction between
eyes, mouth, and head movements for detecting drowsiness.
This work also provides a dataset for driver drowsiness
detection. Savas et al. [8] introduced a multi-task CNN for
simultaneously classifying eyes and mouth features.

The centralized deep learning for drowsiness detection is
premised on the sharing and collection of the personal data
of drivers. The facial data samples of drivers are scattered on
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different edge nodes, including vehicles, OEMs, and IoV
service enterprises. Usually, these entities are reluctant to
share their datasets because of business competition and
transmission costs. Moreover, many countries [9] have strict
regulations on the use of personal data due to privacy
breaches caused by data sharing. Zafar et al. [10] imple-
mented federated learning (FL) for driver drowsiness detec-
tion to preserve the drivers’ privacy. The FL system achieves
cooperative training of edge nodes without transmitting the
raw data. Please note that transferring a complete model
between a cloud server and edge nodes in a FL system
consumes huge communication resources. Besides, the pre-
vious works [11], [12] show that the model exchanged
in a FL system runs the risk of revealing original local
information after extrapolation. In paper [13], the authors
analyze several privacy-preserving schemes commonly used
in federated learning, including differential privacy and
homomorphic encryption. The encryption scheme of dif-
ferential privacy consumes extremely high communication
resources and costs extra model training time. The encryp-
tion scheme of Paillier is an extremely time-consuming and
communication-consuming training strategy. Inspired by the
studies of [14]–[16], we introduce the probabilistic encryp-
tion method CKKS into the driver drowsiness detection fed-
erated learning framework to protect the privacy of the edge
nodes. In this work, we analyze the security of CKKS-based
encryption schemes and prove that the CKKS is IND-CPA
secure, and if there is no collusion between edge nodes and
the cloud server/ external attacker, the privacy of the driver’s
facial data of the edge nodes can be protected.

In this study, a privacy-preserving federated transfer
learning method is applied to driver drowsiness detection.
Predicting driver drowsiness as accurately as possible is cru-
cial to improving traffic safety. In addition, using driver facial
data for federated learning remains the risk of individual
information being eavesdropping on. To solve the issues,
transfer learning is introduced to the initial model of federated
learning to promote the model’s accuracy and reduce the
communication cost. Besides, the CKKS-based scheme is
adopted to protect the drivers’ individual information of the
edge nodes. Compare to the FL-based methods, the main
contributions of this work are presented below:

1) We adopt the pre-learning mechanism of transfer learn-
ing to the initial model in the federated learning system
for driver drowsiness detection. The proposed method
achieves better performance than the conventional FL
method by transferring the knowledge of similar tasks.
Furthermore, the PFTL-DDD method only exchanges
the parameters of the classification layer between the
edge nodes and the cloud server, which reduces the
communication overhead compared with the existing
FL-based method.

2) Existing encryption schemes for the FL-based method
include differential privacy and homomorphic encryp-
tion, etc. Considering the trade-off between the
effect and efficiency of encryption, the proposed

method selects a CKKS scheme with excellent
computational speed. The CKKS-based protocol meets
CPA-secure [11] providing a security framework for
the proposed method.

3) We evaluate the performance of the proposed privacy-
preserving federated transfer learning method on the
NTHU-DDD dataset and the YAWDD dataset. The
experimental results show that the PFTL-DDDmethod
has better accuracy and saves more communication
resources than the FL-based method. Besides, the secu-
rity analysis of the proposed method indicates that the
CKKS-based protocol can resist the risk of privacy
leakage even if there are eavesdroppers in the system.

II. PROBLEM STATEMENT AND THEORETICAL
BACKGROUND
A. PROBLEM STATEMENT
Federated learning (FL) [17]–[19] is a method for collab-
orative training among entities that cannot share data. The
participants trainmodels on their respective datasets and draw
on the knowledge of other participants for model updates.
In this work, the federated learning system has three entities,
namely trust party, cloud server, and edge nodes, as shown
in Figure 1.

1) Trust party: The trust party provides a secure commu-
nication protocol by generating public and secret keys
for edge nodes as the system initializes.

2) Cloud server: The cloud server provides an initial
model for the edge nodes. After receiving local param-
eters from the edge nodes, the cloud server performs
parameter aggregation and updates the global parame-
ters wglobal(t) to the edge nodes.

3) Edge nodes: The edge nodes train on the local datasets
with the global parameters downloaded from the cloud
server and send the new local parameters ge,i(t + 1) to
the cloud server for model aggregation.

FIGURE 1. The proposed model of privacy-preserving federated learning.

Thread Model: In the proposed method, the trust party
and the edge nodes are assumed to be honest and curious
that will not divulge the keys and information to the cloud
server or external eavesdroppers. However, the cloud server
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and these participants might attempt to infer excess infor-
mation from the exchange parameters. Several studies [11],
[12] show that the parameters exchanged in FL system may
leak the privacy information of the edge nodes. Based on the
above assumptions, the proposed security framework aims
to protect the personal data of the edge nodes in the driver
drowsiness detection task.

B. TRANSFER LEARNING
Transfer learning is a method that uses the knowledge of
a specific domain to perform tasks in a novel domain
[20], [21]. Recent works [22]–[24] show that the transfer
learning method is adequate for tasks with insufficient data.
It improves the learning efficiency [25] by reusing and fixing
the pre-trained model. The fine-tuning technique [26], [27]
has been widely used in transfer learning. In this technique,
the samples related to the novel task are selected for pre-
training and only a few last layers are fine-tuned while freez-
ing multiple initial layers of the model.

In CNNs, the convolutional layers (layers close to the input
images) extract basic features, such as texture and shape,
whereas the fully connected layers classify high-level and
abstract features for specific tasks. The fine-tuning transfer
learning method reuses (freezes) the pre-trained convolu-
tional layers and only trains the fully connected layers for
a novel task, as shown in Figure 2. The CNN model is
trained on a source dataset beforehand. Then, the convo-
lutional layers of this pre-trained CNN model are copied
(reused) to the novel model. The parameters of the fully
connected layers of the novel model are randomly initialized.
The novel model is trained on the target dataset with a smaller
learning rate.

FIGURE 2. The conceptual figure of fine-tuning transfer learning.

C. MODEL FOR DROWSINESS DETECTION
In this work, we useVGG-16 as the baseline network to detect
the behaviors related to drowsiness. This network comprises
13 convolutional layers, with kernels of size 3∗3. Three fully
connected layers are used to classify the features extracted
by the convolutional layers, i.e., features belonging to the
eyes, head, and mouth. The loss function is mathematically

expressed as follows:

L =
1

nbatch

∑
i

−
[
yi × log (pi)+ (1− yi)× log (1− pi)

]
(1)

where, nbatch denotes the batch size, and i represents the four
labels of head, mouth, eyes, and drowsiness.

The model for drowsiness detection consists of a feature
extraction layer and a classification layer. After training the
VGG-16 on the drowsiness-related dataset, the convolution
layers are reused for extracting the features, that is, the feature
extraction layer. The fully connected layers of the VGG-16
are utilized for classification, that is, the classification layer.
The structure of the model for drowsiness detection are pre-
sented in Figure 3.

FIGURE 3. The structure of the model for drowsiness detection.

D. FULLY HOMOMORPHIC ENCRYPTION
Various research works [28]–[30] revealed that differential
privacy and homomorphic encryption are usually used in the
state-of-the-art privacy-preserving federal learning method.
The differential privacy security protocol may result in sig-
nificant degradation of model performance. In the driver
drowsiness detection scenario, the accuracy reduction may
lead to serious casualties. Consequently, the differential pri-
vacy protocol has not been implemented in the proposed
method.

Fully homomorphic encryption is widely used in privacy
protection that entrusts a third party to participate in infor-
mation processing while protecting the local plaintext, i.e.,
computing the ciphertexts before decrypting is equivalent to
executing the same operation on the plaintext after decrypt-
ing [31]. CKKS is a fully homomorphic encryption method
that adds noise at the end of the truncated ciphertext. Com-
paring several homomorphic encryption algorithms, CKKS
overcomes Paillier and RSA [32], [33] in encryption speed.
To pursue superior performance and training speed, we select
the CKKS to protect the data of the edge nodes in the
proposed method. In this work, the local plaintexts of the
edge nodes are encrypted via the CKKS-based method.
The cloud server calculates the ciphertexts and sends back the
results. During the whole process, the cloud server performs
mathematical operations without obtaining the true value of
local data.
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III. THE PROPOSED FRAMEWORK
A. WORKFLOW
The workflow of the privacy-preserving federated trans-
fer learning for driver drowsiness detection (PFTL-DDD)
method comprises three major steps, namely system initial-
ization, local training by edge nodes, and parameters aggre-
gation by the cloud server, as shown in Figure 4.

1) SYSTEM INITIALIZATION
At initialization, the cloud server pre-trains the initial model
with a drowsiness database and builds a communication chan-
nel between the cloud server and each edge node. Then, the
cloud server sends the pre-trained initial model to the edge
nodes. At the same time, the trust party sends the public
and secret keys generated by the CKKS-based encryption
protocol to all the edge nodes. The edge nodes download
the pre-trained initial model and upload the encrypted local
parameters En(ge,i(1)) after training the model on their local
data, where ge,i represents the classification layer parameters
of the local model in the proposed method.

2) PARAMETERS AGGREGATION BY CLOUD SERVER
When obtaining En(ge,i(t)) from all edge nodes, the cloud
server aggregates En(ge,i(t)) to update En(wglobal(t)) based on
the following equation, where wglobal represents the classifi-
cation layer parameters of the global model and t represents
the round of aggregation.

En(wglobal(t)) =
1
N

N∑
i=1

En(ge,i(t)) (2)

The updated En(wglobal(t)) are sent to the edge nodes for local
training.

3) LOCAL TRAINING BY EDGE NODES
The edge nodes download En(wglobal(t)) from the cloud
server and use the secret key for decryption. After loading
wglobal(t) in their local model, the edge nodes retrain the clas-
sification layer by using the local resources. Afterward, the
updated local parameters of the classification layer ge,i(t+1)
are encrypted with the public key. Then, En(ge,i(t + 1)) will
be sent to the cloud server.

B. DROWSINESS DETECTION ON EDGE NODES
The model for drowsiness detection is presented in Section C
of Chapter II. In this section, we design an input layer for
image normalization. The architecture of the proposed model
comprises three layers. The workflow of the edge nodes is
demonstrated in Figure 5. The input layer reshapes the images
to 224∗224 pixels and loads them in themodel. The extraction
layer of the initial model is transferred from the pre-trained
model and not updated to the cloud server after the local train-
ing. The classification layer is trained with a small learning
rate to recognize eyes, head, and mouth. It is noteworthy that
in the proposed work, the classification layers of the edge

Algorithm 1 Privacy-Preserving Federated Transfer
Learning for Driver Drowsiness Detection

1 Input: the baseline model
2 Initialization:
3 Cloud Server:
4 a). Pre-train the baseline model with a drowsiness

database.
5 b). Establish channels for the edge nodes and send the

pre-trained
6 initial model to the edge nodes.
7 Trust Party:
8 c). Generate public key and secret key according to

CKKS-based
9 protocol and send them to the edge nodes.
10 Edge Nodes:
11 d). Train the pre-trained initial model on the local

dataset of the edge
12 nodes and extract the classification layer parameters ge,i.
13 e). Encrypt ge,i(1) with the public key and upload to the

cloud server.
14 Procedure:
15 for t = 1, 2, . . . , T do
16 (I). Cloud Server:
17 Collect the En(ge,i(t)), where i = 1,2, . . . , N;
18 Update the global parameters En(wglobal(t))

according to Eq.2;
19 Send the En(wglobal(t)) to all edge nodes;
20 (II). Edge Nodes: // Parallel computing
21 for edge node i = 1, 2, . . . , N do
22 Download the encrypted global parameters

En(wglobal(t))
23 from the cloud server;
24 Decrypt the En(wglobal(t)) with the private key;
25 Load the wglobal(t) to the classification layer of

the local
26 model;
27 Train the local model and extract the

classification layer
28 parameters ge,i (t + 1);
29 Encrypt the ge,i(t + 1) with public key and send
30 En(ge,i(t + 1)) to the cloud server;
31 end
32 end

nodes are updated by downloading the global weights from
the cloud server.

C. CKKS-BASED PRIVACY-PRESERVING
COMMUNICATION PROTOCOL
In this work, the CKKS-based privacy-preserving communi-
cation protocol includes five functions.

The plaintext spaceRRRQ is represented as a polynomial ring
ZQ[XXX]/(XXXn

+ 1), where n denotes the power of 2. Assuming
that the scale of the plaintext is not large, the coefficients do
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FIGURE 4. The flowchart of the proposed PFTL-DDD.

FIGURE 5. The workflow of edge nodes.

not exceed the modulus Q after encoding. We use < j,k >
to denote the inner product between two vectors j and k.

1) Setup(λ): Given a security parameter λ and the max-
depth L, we define Q = q0·L and set a special mod-
ulus p, which is coprime of q, where q is a divisor
of Q. We use χkey to denote a distribution of secret
key and χerr to denote an error distribution over RRRQ.
Similarly, χenc is used to denote a random distribution
for encryption.

2) KeyGenerate(): Sample s← χkey, a← RRRQ, e← χerr .
The secret keySKSKSK and the public keyPKPKPK are generated
by the trust party.SKSKSK← (1, s) andPKPKPK← (b, a) ∈ RRR2

Q,
where b = (−a · · · + e) mod Q.

3) ParaEnc(str,PKPKPK): Sample v ← χenc and e0, e1 ←
χerr .PKPKPK is used to encrypt the local parameters in edge
nodes based on the following expression:

En(str)← [v ·PKPKPK+ (str + e0, e1)] mod Q (3)

4) ParaAggregate(En(str1), . . . ,En(strN )): The encrypted
parameters En(strk ) ∈ RRR2

Q are aggregated by the cloud
server based on the following relation:

En(stragg)← sum[En(str1), . . . ,En(strN )] mod q

(4)

1) ParaDec (En(stragg),SKSKSK): The encrypted global param-
eter En(stragg) is decrypted by using the secret key SKSKSK
at the edge nodes based on the following expression:

m←< En(stragg), SKSKSK > mod q (5)

IV. THEORETICAL ANALYSIS
A. SECURITY ANALYSIS
A public-key encryption scheme σ = (Gen, En, Dec) is
CPA-secure if any probabilistic polynomial-time (PPT)
adversaryAAA cannot distinguish between the two equal length
messagesm1 andm2 which are intercepted from the message
spaceMMM. For any PPT adversary AAA there exists a negligible
function negFun( ) such that:

Pr
[
EXPcpaA,σ (λ) = 1

]
≤

1
2
+ negFun(λ) (6)

where the probability is derived from the random coins of
the adversaryAAA and its indiscernibility experiment (generate
a public key with λ, random bit b ∈ {0, 1}). According
to this definition, we can draw the following conclusion:
A CPA-secure encryption scheme guarantees security, even
if there are eavesdroppers. The encryption scheme that meets
the definition of CPA security must be probabilistic, and
any deterministic encryption scheme does not fulfill CPA
security.
Theorem 1: In the PFTL-DDD, if CKKS is CPA-secure,

and there is no collusion between edge nodes and the cloud
server/external eavesdroppers, the privacy of the driver’s
facial data of the edge nodes can be protected.
Proof: Assuming that the communication channels are

adequately secure, the malicious activities performed by the
eavesdroppers will be detected by the cloud server. In the
proposed PFTL-DDD method, the parameters exchanged
in the communication channel include the global param-
eters En(wglobal) and local parameters En(ge,i), which are
encrypted by the secret key SKSKSK. As described in Section C of
Chapter III, the SKSKSK is generated by the security parameter λ.
Therefore, even if the encrypted parameters are stolen by an
eavesdropper, the eavesdropper cannot generate the secret
key SKSKSK to decrypt the parameters without λ. If the edge
nodes do not collude with the external eavesdropper, the
eavesdropper is unable to obtain the original data withoutSKSKSK.
In addition, the parameters of the edge nodes uploaded to
the cloud server are encrypted. The channels between the
edge nodes and the cloud server are independent and secure.
Therefore, without colluding with the cloud server, the edge
nodes cannot infer the real information of other edge nodes
by obtaining the parameters of them. Therefore, the proposed
PFTL-DDDmethod can preserve the privacy of driver’s facial
data of the edge nodes.

B. COMPUTATION COMPLEXITY
In this section, the computation complexity of the CKKS in
the proposedmethod is analyzed. The cryptography operation
of the proposed method includes encryption, decryption, and
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ciphertext addition. Table 1 shows the cryptography operation
execution time of CKKS and Paillier. It indicates that the
CKKS has a smaller computation cost compared to Paillier.
When the parameter scale increases, the computation perfor-
mance of Paillier decreases significantly. The computation
time of CKKS is almost linearly positive correlation with the
parameter scale. In the PFTL-DDDmethod, the classification
layer parameters of the model need to take part in cryptog-
raphy computing. Set En, Dec, and CipherAdd to represent
the computational complexity function of encryption, decryp-
tion, and ciphertext addition operation of the proposed CKKS
protocol, respectively. The computational complexity of each
edge node is En×|ge,i|+Dec×|wglobal| and the computational
complexity of the cloud server is CipherAdd ×|ge,i| × N.

TABLE 1. Execution time of CKKS and paillier.

C. COMMUNICATION COST
In the industrial scenario of driver drowsiness detection,
reducing FL communication costs is significant. The param-
eters number of the initial model is 17.93 million, where
the extraction layer contains 14.7 million parameters and the
classification layer contains 3.23 million parameters. The
proposed method reduces the scale of communication param-
eters from 17.93 million to 3.23 million by freezing the
extraction layer in the edge nodes and only exchanges
the classification layer between the cloud server and the
edge nodes. On the contrary, the conventional FL method
exchanges all the parameters, which will consume huge com-
munication resources.

V. EXPERIMENT EVALUATION
A. DATASET
The proposed PFTL-DDD method is evaluated on the
NTHU-DDD and YAWDD benchmark video datasets which
are widely used in driver drowsiness detection researches
[34]–[43]. The NTHU-DDD is an open-source driver drowsi-
ness video dataset collected by the Computer Vision Lab
of National Tsing Hua University [7]. This dataset contains
recordings of about 9 and a half hours of bothmale and female
drivers’ behaviors, including normal driving, yawning, blink-
ing, falling asleep, laughing, etc. It also contains videos of
drivers with and without glasses/sunglasses during the day-
time and nighttime. The resolution of the videos is 640 x 480
at 15/30 frames per second (FPS). The videos are segmented
into 1,653,952 images, then labeled with eyes, head, mouth,
and drowsiness. The YAWDD is also an open-source driver

drowsiness video dataset collected by the DISCOVER Lab of
the University of Ottawa [39]. The videos in this dataset are
taken in a real driving scenario in the daytime. The resolution
of the videos is 640 x 480 at 24/30 FPS. This dataset contains
320 recordings of both male and female drivers’ behaviors,
including 105 normal videos, 100 talking videos, 102 yawn-
ing videos, and 13 talking and yawning videos.

B. SETUP
We use Intel i7-8700, 32G RAM, and NVIDIA GeForce
GTX3090ti for performing experiments. The proposed
PFTL-DDD method is implemented using Python 3.8,
TensorFlow 2.7.0, and MATLAB.

In this work, the PFTL-DDD system consists of four edge
nodes. The NTHU-DDD and YAWDD were successively
used as the experimental dataset to evaluate the proposed
method. The NTHU-DDD experimental dataset is randomly
split into three subsets (40%, 20%, 40%). The pre-training
subset (40% of the dataset) is used for the initial model pre-
training. The test subset (20% of the dataset) is used for
testing the model. The last subset (the rest 40% of the dataset)
is distributed to the edge nodes. The YAWDD experimental
dataset is randomly divided into two subsets, 63 normal
videos and 129 not normal videos for training and the rest
42normal videos and 86 not normal videos for testing. The
video is segmented into images and then marked as normal
and not normal. In the experiment, the classification threshold
is set to 10%, that is, if more than 10% of the images in the
video have not normal classification results, the video will be
classified as abnormal.

C. PARAMETERS AND RUNNING TIME
The workflow of the proposed PFTL-DDD method is dis-
cussed in Section A of Chapter III. The cloud server pre-
trains the baseline model on the pre-training subset of the
experimental dataset and sends the pre-trained initial model
to all edge nodes. The trust party generates the public and
secret keys based on the CKKS protocol and sends them to
the edge nodes. Each edge node preprocesses the local dataset
and uses it for training the model. By fixing the extraction
layer, the edge nodes upload the encrypted parameters of
the classification layer to the cloud server, as discussed in
Section B of Chapter III. The encryption process is presented
in Section C of Chapter III. During the training process,
we use Adam optimizer, 10 training epochs, a batch size of
64, learning rate of 0.001, and a dropout of 0.3.

D. COMPARISON OF DIFFERENT METHODS
In this section, we present the functional comparison of var-
ious driver drowsiness detection methods, such as HTDBN-
DDD [7], ETL-DDD [44], FLDSM [10] and FedSup [45].
The functional comparisons of the methods are presented in
Table 2.

The HTDBN-DDD and ETL-DDD do not support multi-
nodes collaborative training. Driver drowsiness data are usu-
ally distributed stored in different edge nodes which rarely
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share the facial data with the central server for centralized
learning due to privacy concerns. However, the transfer learn-
ing method used by ETL-DDD provides the inspiration to
improve the performance of federated learning. The FLDSM
and FedSup adopt federated learning for driver drowsiness
detection. However, they do not provide security frameworks
to protect the privacy of edge nodes, nor use transfer learn-
ing to improve the performance. The PFTL-DDD adopts a
federated learning framework for driver drowsiness detection
which protect the privacy of the edge nodes by using a CKKS-
based encryption schemewhile improving the performance of
the system model by using the transfer learning mechanism.

TABLE 2. Functional difference of comparative methods.

E. EXPERIMENTAL RESULTS
1) CASE 1 (COMPARISON OF CL, TCL, FL, AND PFTL-DDD)
In this case, driver drowsiness detection is realized by cen-
tralized learning (CL), centralized transfer learning (TCL),
federated learning (FL), and PFTL-DDD respectively. The
classification results of the four methods on the NTHU-DDD
and YAWDD are presented in Table 3 and Table 4, respec-
tively. Taking the experimental results of the NTHU-DDD
for analysis, the accuracy, precision, and recall of TCL are
85.58%, 85.52%, and 86.76%, respectively. The classifica-
tion performance of TCL is better than CL, whose metrics are
81.87%, 82.43%, and 82.45%, respectively. The performance
gap between CL and TCL reflects the improvement effect of
transfer learning. The evaluation metrics of PFTL-DDD are
83.48%, 83.56%, and 84.68%, which are superior to the FL
and the CL. There are various works [46]–[48] show that the
performance gap between decentralized learning and central-
ized learning is pervasive. The adoption of transfer learning
enables PFTL-DDD to outperform centralized learning. The
analysis shows the experimental results of the YAWDD were
similar to those of the NTHU-DDD. The classification results
of the PFTL-DDD on the YAWDD are better than those of the
FL and the CL (as shown in Table 4). The accuracy curves
of the four methods on the NTHU-DDD and YAWDD are
presented in Figure 6 and Figure 7, respectively. It can be seen
that the convergence speed of the PFTL-DDD is faster than
FL and CL.

2) CASE 2 (IMPLEMENT PFTL-DDD WITH
DIFFERENT NETWORKS)
In this case, VGG-16, ResNet, and DenseNet are adopted
as the baseline network model to realize the proposed

TABLE 3. The classification results of CL, TCL, FL, and PFTL-DDD on the
NTHU-DDD.

TABLE 4. The classification results of CL, TCL, FL, and PFTL-DDD on the
YAWDD.

PFTL-DDD method, respectively. The classification results
of the NTHU-DDD and the YAWDD are presented in
Table 5 and Table 6, respectively. Taking the experimen-
tal results of the NTHU-DDD for analysis, the PFTL-DDD
method implemented by VGG-16, ResNet, and DenseNet
has stable classification performance that the metrics of the
three models for the PFTL-DDD method are in the range
of 83%∼85%, 83%∼85%, and 84%∼86%, respectively. The
experimental results of the different networks on the YAWDD
dataset were similar to those of the different networks on
NTHU-DDD. The accuracy curves of the three networks on
the NTHU-DDD and YAWDD are presented in Figure 8 and
Figure 9, respectively, which indicate that the convergence
rates of different networks are similar. This case illustrates
that the proposed method has good scalability and can be
implemented on models with different structures.

TABLE 5. The classification results of the NTHU-DDD of PFTL-DDD
realized by VGG-16, ResNet, and DenseNet.

TABLE 6. The classification results of the YAWDD of PFTL-DDD realized by
VGG-16, ResNet, and DenseNet.

VI. DISCUSSIONS
A. THE ADVANTAGES OF THE PFTL-DDD METHOD
The PFTL-DDD surpasses the drowsiness detection FL
method in many respects. The advantages of the PFTL-DDD
can be summarized as follow:

VOLUME 10, 2022 80571



L. Zhang et al.: Privacy-Preserving Federated Transfer Learning for Driver Drowsiness Detection

FIGURE 6. The accuracy curves of the four methods on the NTHU-DDD.

FIGURE 7. The accuracy curves of the four methods on the YAWDD.

FIGURE 8. The accuracy curves of PFTL-DDD realized by VGG-16, ResNet,
and DenseNet on the NTHU-DDD.

1) The PFTL-DDD method achieves better classification
performance than centralized learning method even if
the driver information is kept in the edge nodes.

FIGURE 9. The accuracy curves of PFTL-DDD realized by VGG-16, ResNet,
and DenseNet on the YAWDD.

2) The PFTL-DDD method reduces the communication
cost by freezing the extraction layer of the collaborative
training model.

3) The PFTL-DDD method provides a security frame-
work based on the CKKS protocol that protects the
drivers’ privacy data in the federated learning process.

4) The PFTL-DDD method has good model structure
scalability and can be adopted in other driver abnor-
mal actions detection such as smoking, calling, and
drinking.

B. THE SHORTCOMINGS OF THE PFTL-DDD METHOD
The shortcomings of the PFTL-DDD can be summarized in
two aspects:

1) The proposed method minimizes the loss function with
gradient descent (GD). GD is a step-by-step method
that the parameters update of the current iteration
depends on the parameters of the previous iteration.
Only referring to a single gradient descent direction
will reduce the model convergence speed.

2) Dataset in industrial scenarios is usually Non-IID
(Non-independent and identically distributed) which
leads to the loss of accuracy in federated learning
method with low global model update frequency.
However, increasing the frequency of global aggrega-
tion has the side effect of increasing communication
overhead. A much more efficient global aggregation
algorithm is essential for driver drowsiness detection
federated learning method.

VII. CONCLUSION
Federated learning is frequently adopted in those indus-
trial scenarios where the datasets belong to different own-
erships. Collaborative training solves the problem of data
isolation, but decentralized learning creates a new problem
of performance degradation. Considering that the training
data is personal biometric information, the risk of privacy
leakage in the FL system becomes even more prominent in
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the scenario of driver drowsiness detection. In this work,
we propose a privacy-preserving federated transfer learning
method (PFTL-DDD) that introduces transfer learning and
CKKS-based privacy-preserving protocol in the drowsiness
detection FL system. The experiment results on the driver
drowsiness dataset show that the PFTL-DDDmethod exhibits
outstanding performance and saves considerable communi-
cation resources as compared to the conventional drowsiness
detection FL systems. Moreover, the analysis shows that
the security framework of the proposed method protects the
privacy of edge nodes.

In future studies, we will further explore the usage of
momentum for GD to accelerate the convergence, as well as
the optimization of the global parameter aggregation algo-
rithm in the future.
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