
Received 22 June 2022, accepted 17 July 2022, date of publication 20 July 2022, date of current version 26 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192619

Two Distributed Arithmetic Based High
Throughput Architectures of Non-Pipelined
LMS Adaptive Filters
MOHD. TASLEEM KHAN 1, MOHAMMED A. ALHARTOMI 2, (Member, IEEE),
SAEED ALZAHRANI 2, (Member, IEEE), RAFI AHAMED SHAIK 3, (Member, IEEE),
AND RUWAYBIH ALSULAMI 4, (Member, IEEE)
1Linköping University, 58183 Linköping, Sweden
2Department of Electrical Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia
3Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
4Department of Electrical Engineering, Umm Al-Qura University, Mecca 21961, Saudi Arabia

Corresponding author: Mohd. Tasleem Khan (mtkhan@iitism.ac.in)

This work was supported in part by the Deanship of Scientific Research at Umm Al-Qura University under Grant 22UQU4350362DSR01;
and in part by the Deanship of Scientific Research, University of Tabuk, under Grant S-1442-0151.

ABSTRACT Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput
of DA based implementation is limited by the LUT size. This paper presents two high-throughput architec-
tures (Type I and II) of non-pipelinedDA based least-mean-square (LMS) adaptive filters (ADFs) using two’s
complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the
steepest descent approach with possible extension to its power-normalized LMS version and followed by its
convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA
and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ
the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping
scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the
evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II
structure provides higher throughput than Type I structure at the expense of slow convergence rate with
almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed
structures offer very high throughput performance, especially with large order DA base units. Furthermore,
they are capable of performing less number of additions in every filter cycle. Based on the simulation results,
it is found that 256th order filter with 8th order DA base unit using Type I structure provides 9.41× higher
throughput while Type II structure provides 16.68× higher throughput as compared to the best existing
design. Synthesis results show that 32nd order filter with 8th order DA base unit using Type I structure
achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18%
more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure
achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10%
more slice LUTs and 1.47% fewer FFs as compared to the best existing design.

INDEX TERMS Adaptive filter (ADF), distributed arithmetic (DA), finite-impulse response (FIR), least
mean square (LMS), look-up table (LUT).

I. INTRODUCTION
Adaptive filters are extensively used in many digital signal
processing applications such as system identification, echo

The associate editor coordinating the review of this manuscript and

approving it for publication was Yunlong Cai .

cancellation and channel equalization [1], [2]. In many prac-
tical system, the sampling rate of input signals is close to the
clock rate. Due to technology advancements, the clock rate is
increasing for designing a system. Thus, it is desired that the
adaptive filters (ADFs) must have a high throughput to meet
the input sampling rates. The high-throughput ADF would

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76693

https://orcid.org/0000-0001-6106-1534
https://orcid.org/0000-0002-5955-8864
https://orcid.org/0000-0003-3325-857X
https://orcid.org/0000-0003-1617-2299
https://orcid.org/0000-0003-0031-6497
https://orcid.org/0000-0002-6709-3999

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

allow trade-off with area and power using very large scale
integration (VLSI) methodologies [3].

A wide variety of adaptive filtering algorithms have been
suggested [4]–[11], the most important from VLSI imple-
mentation point-of-view are perhaps based on least mean
square (LMS) [4]. They are simple, robust and easy to
implement on the hardware. There are LMS variants which
can further simplify hardware realization of LMS at the
expense of convergence performance e.g., sign-sign LMS [5].
On the other hand, the power-normalized sibling of LMS
referred as normalized LMS (NLMS) is capable providing
better convergence performance [6]. It is relatively more
computational complex than LMS. Although recursive least
squares (RLS) algorithm [7] based adaptive filters provide
faster convergence, they are even more computational com-
plex than LMS and its variants. A class of algorithms based
on affine projection (AP) [8], also referred to as generalized
NLMS has been developed [9]. It provides some compro-
mise between the convergence performance and complex-
ity features of the LMS and RLS algorithms. Subsequently,
several variants of AP have been suggested such as fast
AP (FAP) [10] to increase the speed, modified FAP [11]
to improve the numerical stablility etc. It is believed that
Gauss Seidel FAP can be implemented on hardware using
logarithmic number system (LNS) [12]. Similarly, algo-
rithms such as a priori Error-Feedback LSL [13], normalized
RLS [14] based on LNS are expected to provide better con-
vergence performance than conventional LMS. However, the
LNS arithmetic was restricted to low-precision applications
due to the difficulty in performing addition and subtraction
on large wordlengths. Furthermore, the addition and sub-
traction in LNS cause offset leading to numerical stabil-
ity issues. In contrast, the floating-point could be used in
place of LNS, but it requires typically larger, complex, and
much slower adder and subtractor units than its fixed-point
counterpart.

Based on the aforementioned reasons, it is clear that the
fixed point LMS algorithm is the front-runner among dif-
ferent LMS variants because of its satisfactory numerical
stability and ease of hardware implementation. Nonetheless,
it could also result in high throughput performance as it is free
from complex operations such as division, exponent, norms,
etc. which might increase the critical path delay. In the LMS
unit, finite-impulse-response (FIR) filter is the main compu-
tational block. It consists of several multipliers depending
upon the filter order which occupies a large chip area and con-
sumes a lot of power. Since the number of multipliers grows
linearly with filter order, the real-time implementation of fil-
ters is a challenging task. Furthermore, the throughput of such
implementation is limited by the critical path delay which
grows linearly with the filter order. Thus, there is a need to
shorten the critical path to meet the sampling rate of input
signals. Pipelining could be employed to reduce the critical
path delay, however, it changes the convergence properties of
LMSADF and makes the system less accurate [19], [20]. The
depth of pipelining further degrades the accumulation of the

past input samples for fixed-point implementation of LMS
ADFs.

Due to the progressive scaling of silicon devices over
the past several years, semiconductor memory has become
inexpensive, high-speed and power-efficient. As per the pro-
jections of the international technology roadmap for semi-
conductors (ITRS) [21], embedded memories will continue
to dominate in system-on-chip, for instance, at present, it is
roughly more than 90% of total SoC content [22]. It is
found that the packing density of transistors in SRAM is not
only high but also increasing much faster than the transistor
density of logic devices [23]. Distributed arithmetic (DA) is
an efficient memory or look-up table (LUT) based approach
used for the implementation of FIR filter [24]. It is classified
as two’s complement (TC) or offset binary coding (OBC) DA
depending on the representation of filter coefficients (or input
samples). It consists of a look-up table (LUT) and a shift-
accumulate (SA) unit [25], [26]. LUT stores the filter partial
products while the SA unit produces the output by successive
shift and accumulation of filter partial products for a certain
number of clock cycles. The LUT size grows exponentially
with filter order, hence limiting the system throughput for
higher-order filter realization. Several authors alleviated the
throughput limitation of DA based LMSADFs using different
approaches [27]–[34]. Allred et al. employed two LUTs,
one for filtering and the other for coefficient update opera-
tion [27]. The system throughput is limited by the sizes of
both LUTs, especially when the filter order becomes large.
Guo and DeBrunner proposed two high-throughput architec-
tures for LMSADFs using TCDA and OBCDA [28]. In their
work, they showed that a single LUT can be employed by per-
forming parallel filtering and coefficient update operations.
The throughput achieved is considerably higher as compared
to [27]. Surya and Rafi [29] presented a new high-throughput
architecture for LMS ADF using OBC DA. Recently, two
architectures for LMSADF based onOBCDAhave been pre-
sented to replace the multipliers with LUTs [30]. One of them
is implemented using straightforward OBC and the other is
implemented with the half-latency algorithm. In the second
approach, the input bits are split into even-odd components
for concurrent processing through separate paths. Several DA
based pipelined designs [35]–[39] have been presented at
the expense of system accuracy and convergence properties.
To the best of our knowledge, no study has been carried out to
improve the throughput performance of non-pipelined LMS
ADF. This motivates us to investigate two high-throughput
LMS ADFs based on TC DA and OBC DA. The key contri-
butions in this paper are as follows.
• Mathematical formulation of the LMS algorithm and
inner products using TC DA and OBC DA.

• Architectural and algorithmic descriptions of the pro-
posed designs based on LUT pre-decomposition.

• Concurrent LUT update scheme for each TC DA and
OBC DA based design.

• Consolidate comparison of different non-pipelined LMS
ADFs based on TC and OBC DA in terms of

76694 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

computational complexities, convergence performance
and implementations on application specific integrated
circuits (ASIC) and field programmable gate array
(FPGA) platforms.

The rest of the paper is organized as follows. In Section II,
we present the LMS algorithm, its convergence properties
and the formulation using OBC DA and TC DA. In next
Section, we formulate the inner product using OBC DA and
TC DA based on the LUT pre-decomposition. In Section IV,
we describe the architectural and algorithmic details of the
proposed designs are discussed. In Section V, the perfor-
mance of the proposed and existing designs are compared
in terms of computational complexities, convergence per-
formance, area, power consumption and logic utilization.
Conclusions are provided in Section VI.

II. LMS ALGORITHM
A. STEEPEST DESCENT AND LMS ALGORITHM
The adaptive filtering discussed here is of LMS type as
presented by Widrow et al. [4]. At time instant n, the output
yn of N th order ADF can be given as

yn = wTn xn =
N−1∑
i=0

wn(i)xn−i (1)

where xn = [xn, xn−1, . . . , xn−N+1]T is the input vector
and wn = [wn(0),wn(1), . . . ,wn(N − 1)]T is the coefficient
vector. An error en is computed by subtracting yn from the
desired signal dn as

en = dn − yn (2)

It is desired that the coefficients are updated in every iteration
based on the computed error given in (2). The coefficients are
updated using steepest descent approach [15], according to

wn+1 = wn −
1
2
µαn∇n (3)

where µ is the step size and αn is the additional scaling
factor to make filter coefficients as fast as possible [18].
The selection of µ is critical as it determines how fast the
coefficients converge to their optimal values (also known
as Weiner coefficients [4]). For the conventional LMS and
normalized LMS, its value αn = 1 and αn = (E[xTn xn])−1
respectively. One common assumption that usually made the
elements of input xn are uncorrelated in time, zero mean, and
jointly Gaussian [17]. The gradient ∇n at time instant n is the
partial derivative of the expected value of error with respect
to the coefficients:

∇n ,
∂ E[e2n]
∂w

∣∣∣∣
w=wn

≈ ∇̃n =
∂e2n
∂w

∣∣∣∣
w=wn

(4)

where E[·] is the expectation operator. Since the computation
of an ensemble average is quite difficult, an estimate of ∇n
defined by ∇̃n is used. Using (2) and (4), the gradient ∇̃n
for the LMS algorithm can be obtained as ∇̃n = −2enxn,
therefore, its coefficient update equation is given by

wn+1 = wn + µenxn (5)

Similarly, one can obtain the coefficient update equation for
NLMS algorithm based on the above discussion. The pri-
mary focus of this work is to implement the high throughput
VLSI architectures of LMS algorithm using DA. Therefore,
we restrict our discussion to LMS algorithm only.

B. CONVERGENCE PROPERTIES OF THE LMS ALGORITHM
The convergence properties of the LMS algorithm include
convergence rate, steady-state MSE, and step-size. Using (2),
we can derive the MSE (ξ) of error en by squaring and
applying the expectation on both the sides which would result

ξ , E[e2n] =
(
E
[
d2n
]
− 2pTw− wTRw

)
(6)

The correlation matrices R and cross-correlation vector p are,
respectively, defined as

R = E
[
xnxTn

]
and p = E [xndn] (7)

The estimate of MSE gradient for a fixed coefficient vector:

∇̃n = −2p+ 2Rw (8)

One can find an alternative and useful expression based on
(6) to calculate the MSE as

ξ = ξmin + E
[
(w− w∗)TR(w− w∗)

]
(9)

where σ 2
d = E[d2n] is the power of desired signal and ξmin =

σ 2
d−p

Tw∗ is theminimumMSE. For guaranteed convergence
and algorithm stability, it is important to select an appropriate
value of µ for a given choice of N . By defining the difference
of coefficients from their optimal values as vn = wn − w∗,
we can re-express (9) as

ξ = ξmin + E
[
vTRv

]
(10)

The second term in (10) denotes the excess error which
indicates how far the MSE is from its minimum value at
time instant n. By taking the expectation on (5), the mean
coefficient behaviour of the LMS ADF can be determined as
follows

E[wn+1] = (I − µR)E[wn]+ µp (11)

From (11), we can find the steady-state coefficient vector if
the convergence is assumed. It is possible when µ satisfies
the following inequality:

0 < µ <
2

tr[R]
≈

2
Nσ 2

x
(12)

where tr[·] is the trace operator and σ 2
x is the power of

input signal. In the steady-state, the filter coefficients can be
obtained from the condition lim

n→∞
E[wn] = w∗ as

w∗ = R−1p (13)

As expected, w∗ converges to the mean of MSE in (10), only
if ξ = ξmin. It implies that the coefficients converge to their
optimal values when theMSE approaches its minimum value.

VOLUME 10, 2022 76695

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

In terms of v, the coefficient update equation of the LMS
algorithm in (5) modifies to

vn+1 = (I − µR)vn + µeo,nxn (14)

where eo,n = dn−w∗T xn is error in the steady-state. By taking
the expectation on both the sides of (14), we have

E[vn+1] = (I − µR)E[vn] (15)

where E[eo,n] = 0. In general, (15) indicates a form of
homogeneous difference equation whose solution depend on
different modes of the convergence [15]. Hence, there will be
N different relaxation time constants for the coefficients to
converge

τi =
1

2µλi
(16)

where λi (i = 0, 1, . . . ,N − 1) represent the eigenvalues
of R. Assuming all the eigenvalues to be equal which is
usually considered the special case [16]. Therefore, a single-
mode is sufficient to describe the LMS ADF. Furthermore,
the time constant given in (16) depicts how fast the algorithm
converges for a given µ. A larger µ leads to slower conver-
gence and vice-versa. In the following, we formulate the LMS
algorithm using TC DA and OBC DA in the vector form.

C. FORMULATION OF LMS USING TC DA AND OBC DA
By representing the filter coefficients wn in signed B-bit 2’s
complement form, we have

wn = Wns (17)

where s = [−20, 2−1, . . . , 2−(B−1)] is the vector of binary
weights and Wn = [wn(i, j)]N×B is the coefficient bit-slice
matrix in 2’s complement form, where wn(i, j) ∈ [0, 1] ∀ 0 ≤
i ≤ N−1 and 0 ≤ j ≤ B−1. Substituting (17) in (5), we have

Wn+1s = Wns+ µenxn (18)

It is clear from (18) that LMS algorithm using TCDA is same
as the conventional LMS algorithm except that the coeffi-
cients are updated at the bit-level. Unlike (17), it is based on
the representation of coefficients in OBC form. By writing
the coefficients as wn = 1

2 [wn − (−wn)] = 1
2 [wn − wn − 1],

where wn is the 1’s complement of wn. Therefore, we can
express the coefficients wn using (17) in OBC form as

wn = Wns =
1
2

[
(W̃n − 1)s

]
(19)

where W̃n = [w̃n(i, j)]N×B ∀ is the coefficient difference
bit-slice matrix in OBC form with w̃n(i, j) ∈ [−1, 1]. Sub-
stituting (19) in (5), and after some simplification, we have

W̃n+1s = W̃ns+ 2µenxn (20)

The coefficient update equation of LMS algorithm using
OBC DA has an extra scaling of 2× alongwith the step-size.

III. INNER PRODUCT FORMULATION
In the previous Section, we formulate the LMS algorithm
with OBC DA and TC DA. To design the LMS ADF, it is
also required to formulate the inner product given by (1)
using OBC DA and TC DA based on the proposed LUT pre-
decomposition.

A. INNER PRODUCT USING TC DA
This design is based on the representation of filter coefficients
wn(i) by signed 2’s complement B-bit format as

wn(i) = −wn(i, 0)+
B−1∑
j=1

wn(i, j)2−j (21)

where i ∈ [0,N − 1]. By substituting (21) in (1) and after
some simplification, it results in

yn =
B−1∑
j=0

an(j)2−j (22)

where an(j) = (−1)b(B−1−j)/(B−1)cbn(j), b·c is the greatest
integer function and j ∈ [0,B − 1]. From (22), it is clear
that filter partial products an(j) undergoes shift-accumulation
for B number of clock cycles with sign inversion at 0th clock
cycle. The term bn(j) can be expressed as

bn(j) =
N−1∑
i=0

xn−iwn(i, j) (23)

where wn(i, j) ∈ [0, 1] denotes the bit-slices of filter coeffi-
cients, therefore, term bn(j) can be represented by 2N binary
combinations which can be pre-computed and stored in a
LUT, as depicted in Fig. 1(a). From the contents of LUT,
it can be noted that recent sample xn is present at odd address
locations of LUT, and hence the term bn(j) can be decom-
posed into even and odd address locations to form two smaller
LUTs as

bpn(j) =
N−2∑
i=0

xn−j−1wn(i+ 1, j)+ pxn, ∀ wn(0, j) (24)

where p = w0,j which assumes 0 for even LUT (E-LUT) and
1 for odd LUT (O-LUT) with 0 ≤ j ≤ B− 1. By substituting
p = 0 and p = 1 in (24), we get

b1n(j) = b0n(j)+ xn (25)

i.e., the contents of O-LUT is same as that of E-LUT except
for an additional term corresponding to recent sample xn. This
can be taken care by placing an extra adder outside theO-LUT
block to perform the addition with xn.

B. INNER PRODUCT USING OBC DA
Unlike TC DA, the filter coefficients are coded using OBC as
follows: wi = 1

2 [wi − wi], with wi being the 2’s complement
of wi. Using (21), this relation can be further written as

wi =
1
2

[
− (wi,0 − wi,0)+

B−1∑
j=1

(wi,j − wi,j)2−j − 2−(B−1)
]
(26)

76696 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

FIGURE 1. LUT content of (a) TC DA (b) OBC DA.

Let 1wi,j = (wi,j − wi,j) denotes the difference of bit-slices
of filter coefficients and their 2’s complement. By substitut-
ing (26) into (1) and after simplification, we get

yn =
B−1∑
j=0

(
1
2

N−1∑
i=0

xn−ici,j

)
2−j −

(
1
2

N−1∑
i=0

xn−i

)
2−(B−1)

(27)

where ci,j = (−1)b(B−1−j)/(B−1)c1wi,j. Therefore, a more
compact representation of yn can be given as

yn =
B−1∑
j=0

dj2−j + dinitial2−(B−1) (28)

where the term dj and dinitial , are respectively, expressed as

dj =
1
2

N−1∑
i=0

xn−ici,j, dinitial = −
1
2

N−1∑
i=0

xn−i (29)

Note that the term dj would also have 2N possible binary
combinations of input samples which can be pre-computed
and stored in LUT as similar to Type I structure. However, the
nature of stored contents are different from Type I structure
since ci,j ∈ [−1, 1]. Corresponding to bit-value of cN−1,j,
the LUT contents present at first half and second half address
locations are 2’s complement of each other. Hence, it is only
required to store first 2N−1 half combinations in LUT as
shown in Fig. 1(b). Mathematically, the term dj in (29) can
be re-written as

dqj =
(−1)q

2

[
xn +

N−2∑
i=0

xn−i−1ci,j
]

(30)

where q denotes the sign of the contents present at first and
second half address locations for 0 and 1 respectively. The
LUT can be decomposed into even and odd address locations
by re-writing (30) as

dq,pj =
(−1)q

2

N−2∑
i=0

xn−ici+1,j +
(−1)p

2
xn−N+1, ∀c0,j (31)

FIGURE 2. (a) Circuit schematic of the proposed 4th order LMS ADF using
LUT pre-decomposition (b) SA unit for Type I structure (c) SA unit for
Type II structure.

where p assumes 0 and 1 for E-LUT andO-LUT respectively.
By carefully observing (31), a useful reduction in LUT can be
obtained by noting that the contents at first half even address
location for q = 0, p = 0 are 2’s complement of the contents
present at second half of odd address location for q = 1,
p = 1 and vice-versa. By substituting the logic values of p
and q in (31), we have

d0,0j = −d
1,1
j and d1,0j = −d

0,1
j (32)

Clearly, the contents of E-LUT and O-LUT correspond
to d0,0j and d1,0j terms respectively. The other halves of

E-LUT and O-LUT correspond to d1,1j and d0,1j which can

be obtained by taking 2’s complement on d0,0j and d1,0j
respectively.

IV. PROPOSED ARCHITECTURES
The DA based non-pipelined LMS ADF schemes reported in
the literature used LUTs to store the filter partial products
in TC or OBC form. However, the size of LUT grows expo-
nentially with filter order. Generally, LUT access time is the
bottleneck for the speed of thewhole system, especially, when
the size of LUT becomes large. Therefore, reducing the LUT
size is very important and is of great practical concern. One

VOLUME 10, 2022 76697

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

possible solution is to pre-decompose the LUT into two small
LUTs based on its even and odd address locations which
half the access time, as briefly discussed in Section II. In this
paper, we propose two new high throughput architectures for
LMSADFs based on TCDA and OBCDAwhich are referred
as Type I and Type II respectively.

The proposed 4th order Type I and Type II structures
of LMS ADF is shown in Fig. 2(a). In both the design,
an error en is computed in parallel with the arrival of new
sample xn+1 i.e.,

en ← dn − yn
xn ← xn+1 (33)

Thus, an external register is needed as shown by hatched line
in Fig. 2(a). Each filter coefficient is represented in vector
form as wn = Wns, therefore, one can re-written (1) as

yn = sT [WT
n xn] (34)

where [WT
n xn] indicates the possible filter partial products.

The combined product sT [WT
n xn] is computed in parallel with

the update of filter coefficients, according to

yn = sT [WT
n xn]

Wn+1s = Wns+ µenxn (35)

Clearly, the presence of scaling-vector s in (35) allows the
computation of filter output and the update of coefficients
in parallel for every B clock cycles. Similarly, one can
develop the aforementioned relations for OBC DA based
LMS ADF.

The circuit schematic of the proposed 4th order filter with
coefficient update block (CUB) is shown in Fig. 2(a). It con-
sists of four-barrel shifters (BSs), four weight updating accu-
mulators, and an address generation table. The control signals
to the multiplexers of BS are provided in power-of-two i.e.,
2−r , where the parameter r depends on the filter order N .
The composite signal µen is then quantized into B-bits with
its MSB considered. As a result, the multiplication betweenµ
and error en as given in (35) is not needed. This assumption
marginally affects the convergence of LMS ADF [27]. The
convergence rate and misadjustments in the steady-state of
the LMS filter are controlled by µ, for example, a small
value of µ reduces the misadjustments, however, it slows
down the convergence rate and vice-versa. The value of µ
is considered as half of the upper bound obtained in (12).
For simplicity, the step-size is taken as 1/N . Therefore, the
expression of r is given by r = log2N . It is important to note
that the complexity of BS would be large, especially when N
is high. This can be avoided by pre-shifting the input samples.
In that case, the expression of r becomes r = log2N − l,
where l is the number of pre-shifts on the input samples. For
example, consider N = 4 and l = 1, we get the value of
r as 1, i.e., each level in BS provides a right shift by one.
As shown in Fig. 2(b) and (c), the internal schematic of the
SA unit of Type I and Type II structure are different, but
similar in function except that the Type II structure requires

FIGURE 3. Proposed E-LUT and O-LUT update scheme for 4th order Type I
structure from time n to n+ 1.

FIGURE 4. Architectural details of 4th order Type I structure.

dinitial term to be added initially. The operation of SA unit
begins with least-significant-bit (LSB) of filter coefficients
i.e., j = B − 1 and decreases until it reaches the most-
significant-bit (MSB) i.e., j = 0. And, when j becomes zero
and the sign of input signal (IN) to SA unit must be reversed as
per the DA principle. In the next two subsections, the design
details of Type I and Type II structure are discussed.

A. TYPE I STRUCTURE
The proposed E-LUT and O-LUT update operations for
4th order filter Type I structure are illustrated in Fig. 3.
The E-LUT and O-LUT contents have the same binary com-
binations of recent N − 1 input samples, as per (24). For
example, the binary combination of input samples for N = 4
with input vector [xn−1, xn−2, xn−3] are required to store in
each LUT. It may be noted from Fig. 3 that the contents of
the first half address locations of each E-LUT and O-LUT at
time instant n are used to generate the contents at time instant
n + 1. Note that the second half address locations contain
the oldest sample xn−3 term and are not needed during LUT
update operation. It may also be noted that the contents at

76698 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

Algorithm1Explains the Proposed Filter Using Type I Struc-
ture
1: Initialize:
w′i,j = wi,j, i ∈ [0,N − 1], j = [0,B− 1]

2: loop
yn =

∑B−1
j=0 aj2

−j

3: if CTRL== 1 then
4: for wi,j =2max(i)

− 1 to 0, i 6= 0, ∀ w0,j do
5: if wi,j%2 == 0 then

E
wi,j
n+1← E

wi,j/2
n

O
wi,j
n+1← O

wi,j/2
n

6: else
E
wi,j
n+1← E

wi,j−1
n+1 + xn -

O
wi,j
n+1← O

wi,j−1
n+1 + xn

7: end if
8: end for
9: else

10: for j = B− 1 to 0 do
wEn+1← wEn +

en
N .{E

wi,j
n }

wOn+1← wOn +
en
N .{O

wi,j
n + xn+1}

aj = σj{w0,j.(O
wi,j
n + xn+1)+ w0,j.E

wi,j
n }

F σj = (−1)b
B−1−j
B−1 c

11: end for
12: end if
13: for every next sample do
14: xn← D{xn+1}; F D{.} = delay operator

en← dn − yn;
15: end for
16: w′i,j← wi,j, n← n+ 1
17: end loop

even address locations of E-LUT and O-LUT at time instant
n + 1 are the re-mapped versions of the contents present
in the first half address locations at time instant n. While
the contents at odd address locations of E-LUT and O-LUT
are obtained by adding xn with the contents present at time
n of the previous address location. Further, the update of
O-LUT requires the addition of a new sample xn+1,
as required by (24). Mathematically, the entries of E-LUT
and O-LUT for the next iteration can be written as

Esn+1 ← pxn + Es/2
1−p
−p

n

Osn+1 ← pxn + Os/2
1−p
−p

n + xn+1 ∀w0,j (36)

where s and p denote the address index and its modulo 2
operation, i.e., s ∈ [0, 2N−1] and p ≡ s (mod 2). The
LUTs are updated with the sequence of addresses as shown
in Fig. 4 using the address generation table. It is important
to note that when w0,j = 0 or 1 the even address locations
of both LUTs are first updated followed by their odd address
locations. By doing so, the concurrent operation between the
LUTs is maintained at the cost of a few adders and 2-to-1
multiplexers. The Algorithm 1 explains the operation of the
proposed Type I structure.

FIGURE 5. Proposed E-LUT and O-LUT update scheme for 4th order Type
II structure from time n to n+ 1.

FIGURE 6. Architectural details of 4th order Type II structure.

B. TYPE II STRUCTURE
The proposed E-LUT and O-LUT update operations for 4th

order filter Type II structure are illustrated in Fig. 6. A novel
strategy is proposed to update the LUTs which involves two
external terms (12 [∓xn + xn−3],

1
2 [±xn + xn−3]). It indicates

the addition (or subtraction) of recent sample xn with the
oldest sample xn−3. As mentioned, the symmetry in the OBC
combinations allows only half to be stored in LUT and
remaining half can be obtained by taking 2’s complement
using a 2-to-1 multiplexer. Consider the update of E-LUT
and O-LUT from n to n + 1 iteration. An external term
1
2 [∓xn+xn−3] is needed to update E-LUT, where ‘−’ and ‘+’
corresponds to even and odd address locations respectively.
As an example, the subtraction of + 1

2 [+xn + xn−3] to the
contents of 01 address location in E-LUT at time instant n
results in + 1

2 [+xn − xn−1] + 1
2xn−2, which is independent

of oldest sample xn−3. By close observation, it is nothing but
the contents of 10 address location in E-LUT at time instant
n + 1. This re-mapping can be accomplished by performing
left rotation on the address bits. In similar manner, the update
of O-LUT requires an external term 1

2 [±xn + xn−3] can be
explained, where + and − corresponds to even and odd
address locations respectively. Mathematically, the entries of

VOLUME 10, 2022 76699

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

Algorithm 2 Explains the Proposed Filter Using Type II
Structure
1: Initialize:

wi,j = w′i,j, ci,j = wN−1,j ⊕ wi,j
i ∈ [0,N − 2], j ∈ [0,B− 1], ‘⊕′: XOR
operator

2: loop
yn =

∑B−1
j=0 dj2

−j
+ dinitial2−(B−1)

3: if CTRL== 1 then
4: for ci,j = 2max(i)−1

− 1 to 0, i 6= 0, ∀ c0,j do
5: if ci,j%2 == 0 then

E
ci,j/2
n+1 ← E

ci,j
n −

1
2 [−xn + xn−N+1]

O
ci,j/2
n+1 ← O

ci,j
n −

1
2 [+xn + xn−N+1]

6: else
E
ci,j/2
n+1 ← E

ci,j
n −

1
2 [+xn + xn−N+1]

O
ci,j/2
n+1 ← O

ci,j
n −

1
2 [−xn + xn−N+1]

7: end if
8: end for
9: else

10: for j = B− 1 to 0 do
cEn+1← cEn + {

2en
N }{cN−1,j.O

ci,j
n + cN−1,j.E

ci,j
n }

cOn+1← cOn − {
2en
N }{cN−1,j.E

ci,j
n + cN−1,j.O

ci,j
n }

11: if j == B− 1 then
d0 = {−c0,0.O

ci,0
n + c0,0.E

ci,0
n } + dinitial

12: else
dj = σj{−c0,j.O

ci,j
n + c0,j.E

ci,j
n }

13: end if
14: end for
15: end if
16: for every next sample do
17: xn← D{xn+1}; F D{.} = delay operator

en← dn − yn;
18: end for
19: dinitial

D
← E0

n+1
20: c′i,j← ci,j, n← n+ 1
21: end loop

E-LUT and O-LUT at n+ 1-iteration can be expressed as

Es/2n+1 ← Esn −
1
2
[(−1)1−pxn + xn−3]

Os/2n+1 ← Osn −
1
2
[(−1)pxn + xn−3] ∀c0,j (37)

where the definitions of s and p are the same as that of
Type I structure. As discussed, the remaining combinations
of E-LUT and O-LUT at time instant n + 1 can be obtained
by symmetries in OBC combinations, as per

Es/2n+1 ← +[q.O
s/2
n+1 + (1− q).Es/2n+1]

Os/2n+1 ← −[q.E
s/2
n+1 + (1− q).Os/2n+1] (38)

where q ≡ s (mod 2N−1). As it can be seen from (38) that
the remaining contents ofE-LUT andO-LUT can be obtained
from O-LUT and E-LUT by setting q = 1 respectively.
In other words, the d1,1j and d0,1j terms in (15) can be obtained

by taking 2’s complement on the stored contents of E-LUT
and O-LUT respectively. Therefore, the concurrent update
of LUTs is possible with extra two adders and two 2-to-1
multiplexers. It can be noted from Fig. 6 that the design
has a smaller critical path and utilizes all LUT contents as
compared to the Type I structure. However, it requires the
update of dinitial term, in accordance with (29). From analysis,
it is found that there are two possible ways to update dinitial
term. In first method, the dinitial term is stored in a register
and updated with the E-LUT content present at 0th address
location. In second method, 1

2 [−xn+1 + xn−2] is stored in
a register and added with dinitial term. The first method is
preferred over the second method due to fewer involved
clock cycles. The Algorithm 2 explains the operation of the
proposed Type II structure.

C. FIXED-POINT DESIGN CONSIDERATION
For fixed-point (FP) implementation of Type I and Type II
designs, it is important to select the wordlengths for inputs
(x), coefficients (w), and other intermediate signals (o). Let
(X vf ,X

v
i) be a FP representation of a wordlength X v with

v ∈ {x,w, o}, X vf is the fractional part and and X vi is the
integer part. For the sake of clarity and without loss of
generality, we replace the previous notation W and B by
X xf and Xwf to represent the fractional parts of inputs and
coefficients respectively. Note that the wordlength of x,w,
and o needs to be considered as the design constraints for
desired accuracy and implementation complexity. From the
above discussion, we can find that the FP representation of
inputs and coefficients as (X xf ,X

x
i) and (X

w
f ,X

w
i) respectively.

In the case of Type I and Type II designs, each E-LUT and
O-LUT stores the (N − 1) inputs, however, Type II have
1/2 scaling with the inputs. Therefore, the LUTs in Type I
and Type II designs would have the FP representations as
(X xf +dlog2(N−1)e,X

x
i +dlog2(N−1))e and (X

x
f +dlog2(N−

1)e − 1,X xi + dlog2(N − 1)e − 1) respectively. The output
of O-LUT is added with a new sample xn after its update
in Type I design. While Type II design does not have any
extra adder but rather performs 2’s complement at the output
of O-LUT through a separate 2-to-1 multiplexer. Therefore,
the FP representation of Type I and Type II at the output
of 2-to-1 multiplexer used in LUT pre-decomposition would
be (X xf + dlog2Ne,X

x
i + dlog2Ne and (X xf + dlog2Ne −

1,X xi +dlog2Ne−1). Note that 2’s complement at the output
of O-LUT in Type II design needs to extend the sign-bit
by 1. In the proposed architectures, the SA unit and CUB
run operate concurrently. It implies that the precision of the
register in the SA unit should be the same as the register in
CUB. Therefore, the FP representation at the output of SA
unit for Type I design would be (X xf +dlog2Ne+1Xf ,X

x
i +

dlog2Ne+1Xi), where (1Xf ,1Xi) = (Xwf −X
x
f ,X

w
i −X

x
i).

Depending on the wordlengths of inputs and coefficients,
it is possible to make the same precision of registers in the
SA unit and CUB. Similarly, one can obtain the expression
of FP representation for Type II design. It may be noted
that the SA unit performs right-shift by 1 for each cycle

76700 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

TABLE 1. General comparison of computational complexities of different DA based Non-Pipelined LMS ADF architectures.

of accumulation, therefore, FP representation would not be
altered. Usually, the FP representation of the desired input
dn is the same as output yn and possess same quantization
as that of input xn. This is achievable with specific scaling,
sign-extension and truncation or zero-padding for a given
requirement. As the LMS algorithm starts learning, the output
yn must have the same sign as that of desired input dn. This
would allow the error en to have the same FP representation
after the subtraction without overflow. In [41], it is shown that
the convergence of an N th order fixed-point LMS ADF with
equal fractional parts of the inputs and coefficients would
result in MSE as

ξ = ξmin + E
[
vTRv

]
+ ξq (39)

It is clear from (39) that the total MSE ξ as given in (10) is
increased by the MSE due to quantization error ξq. By again
following the derivation in [41], we can find the MSE due to
excess error and quantization error, respectively, as

E
[
vTRv

]
=

1
2
µξmintrR (40)

ξq =
Nσ 2

c

2a2µ
+

1
a2

(|w∗|2 + c)σ 2
x (41)

where σ 2
x = 2−2X

x
f /12, σ 2

c = 2−2X
w
f /12; a is the input range

adjustment factor and c is related with the quantization on
inner product. In both the design, we assume that the inputs
are already scaled to [−1, 1), so the value of a is unity, and
the quantization is performed after the bit-level accumulation
of partial products through adder tree, so the value of c is
also unity. Clearly, the MSE due to quantization error is
related with the wordlengths of inputs/coefficients and step-
size, while the MSE due to excess error depends on the input
power. In the description of Type I and Type II structures,
we have already considered the value of µ as 2−r . Based
on the FP representation, one can find the upper limit on r
for Type I and Type II designs as X xi + dlog2Ne + 1Xi and
X xi + dlog2Ne − 1 + 1Xi respectively. Since µ is in power
of two, its multiplication with en is equivalent to the shifting
of the radix-point. If we require to have a smaller µ, i.e.,

r > X xi +dlog2Ne+1Xi for Type I and r > X xi +dlog2Ne−
1 + 1Xi for Type II, then some of the least-significant-bits
(LSBs) of en are required to be truncated. Consider r =
X xi + dlog2Ne + 1Xi, the corresponding step size would be
µ = 2−(X

x
i +dlog2Ne+1Xi). Consequently, it would result the

FP representation of µen as (Xwf ,X
w
i) without any truncation.

It is important to note that the FP representation of Type I
and Type II after µ scaling are same. This is because 1-bit
less in the wordlength of Type II design is compensated by
twice µ, in accordance with (20). The coefficient increment
termµenxn as obtained at the output of BS in Fig. 2 is required
to have FP representation (Xwf + X xf ,X

w
i + X xi). It can be

noted that only Xwi MSBs in the computations of the CUB
are to be retained, while the remaining MSBs are required
to be discarded. This could be understood from the fact that
as the coefficients converge toward the optimal values, the
coefficient increment term µenxn becomes smaller, and the
error en has more leading number of zeros in the MSBs.
In both the designs, X xf − X xi LSBs of µenxn are truncated
so that the terms have the same FP representation as to the
coefficient values and can be fed as the addresses to the
E-LUT and O-LUT. We have also assumed that the addition
in the coefficient update does not cause overflow. Otherwise,
we need to increase the coefficients wordlength in every
iteration, which is undesirable. The assumption holds good
as the coefficient increment terms become smaller when the
coefficients start converging. During the training period, there
are chances that overflow might occur, the update of coeffi-
cient may not be appropriate and cause additional iterations to
reach the steady-state. In such a case, the updated coefficient
can be computed in the truncated form (Xwf ,X

w
i) and can be

fed as the addresses to the E-LUT and O-LUT.

V. RESULTS AND DISCUSSION
In this Section, we compare the performance of different
non-pipelined DA based LMS ADFs in terms of compu-
tational complexities, convergence performance and imple-
mentation results. For the sake of discussion, we refer to
the designs in [27]–[30] as DA0−3 respectively. Note that

VOLUME 10, 2022 76701

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

DA1 comprises two architectures based on TC DA and OBC
DA which we refer them as DA∗1 and DA∗∗1 respectively.
Likewise, DA3 also have two designs which we refer them as
DA◦1 and DA

◦◦

1 . For clarity, they are classified as TC DA (♦)
and OBC DA (♣) in Table 1. Assuming N to be composite,
they can be expressed into m DA base units of order k such
that N = m × k . By doing so, the exponential growth
of LUT size in different designs with filter order can be
reduced [27]–[30].

A. COMPUTATIONAL COMPLEXITIES
The hardware complexities of the proposed and DA0−3
designs in terms of the number of additions (ADD) per filter
cycle (FC), registers (REG), and multiplexers (MUX) are
listed in Table 1. It is well known that the LUT size in TC
DA based designs is double that of LUT size in OBC DA
designs as it does not possess mirror symmetry. As indicated
in Table 1, the LUT size in Type I and Type II structures
are almost the same as that of DA∗1 and DA∗∗1 respectively.
While the LUT size of DA2 and DA3 schemes are double of
Type II structure since they employed auxiliary LUT for the
coefficient update. The FC is a useful measure to indicate the
number of clock cycles needed to perform the filtering opera-
tion in every iteration. For a given FC, we have estimated the
total number of additions needed for each design. It includes
the number of additions involved in the LUT update, SA unit,
and CUB. As listed in Table 1, it appears that the number of
additions for both the proposed structures are reduced over
DA0−3. This is primarily due to the concurrent update of
E-LUT andO-LUTwith the samemapping scheme. In Fig. 7,
we illustrate the savings in number of additions per FC with
respect to DA0 for 4th and 8th orders DA base unit. The
DA0 design is considered a reference as it involves the highest
number of additions per FC. It is clear that the savings in
the number of additions per FC compared to DA0 for the
proposed structures with 8th order DA base unit that are better
than DA◦◦3 with 4th order DA base unit. Specifically, Type I
offers 4.04× savings while Type II offers 3.96× savings
are better than DA◦◦3 for k = 8. The proposed structures,
however, occupy more number of registers and multiplexers
for any DA base unit order as compared to other designs. This
is mainly due to the LUT pre-decomposition and use of an
external register. For instance, the LUT pre-decomposition
for both the designs involves combinational logic in terms
of a 2-to-1 multiplexer and an adder (Type I) or inverted
inputs 2-to-1 multiplexer (Type II). In the case of Type-II,
the complexity of registers and multiplexers further increased
over Type-II architectures due to the update of dinitial term,
and subsequently loaded into the SA unit. The number of
registers and multiplexers for 32nd order filter with k = 8
in Type II structure 5.55% and 7.69% higher than Type I
structure.

We have also listed the time complexities of different
designs in terms of critical path delay and FC in Table 1.
The critical path of each design includes the access delay of
LUT and adder and/or multiplexer delay during the filtering

FIGURE 7. Savings in ADD per FC with respect to DA0 for the proposed
and DA1−3 designs for (a) k = 4 and (b) k = 8.

operation and LUT update. The critical paths of the proposed
structures are different, as they are based on different algo-
rithms for the LUT update. As shown in Fig. 6, the critical
path includes the access delay of LUT, delays of adder, and
2-to-1 multiplexers. It can be seen that the critical paths of the
proposed structures do not depend on the order of DA base
units similar to DA∗1 and DA

∗∗

1 . This implies that there would
be a significant reduction in the clock period as compared
to the DA0,2,3. Furthermore, the simultaneous access of two
smaller LUTs in the proposed structures would result in lesser
LUT access time as compared to a single LUT architecture in
DA0 and DA1. From the discussion so far, it is clear that all
the designs are dependent on LUT size, and updating them
requires the longest time in the entire system. Due to simulta-
neous concurrency in filtering with coefficient update opera-
tion, the update of the external register with the computation
of en and the update of E-LUT and O-LUT together, both
the proposed structures enable high throughput implementa-
tion. Precisely, the update of filtering or coefficient update
operation takes B clock cycles, the update external register or
the computation of en requires single clock cycle, the update
of E-LUT and O-LUT together takes 2k/2−1 clock cycles.
Since the proposed structures also employ the decomposition
N = m × k , the resulting adder tree for the addition of
outputs from DA base units would consume dlog2(m)e clock
cycles. Hence, both the proposed structures would take a total
of 2k/2−1 + B + dlog2me + 1 clock cycles which amounts
to a single FC. The number of clock cycles for both the
proposed structures are significantly reduced over the DA0−3.
For instance, a 32nd order filter with 8th order DA base unit for
the proposed structures would amount FC to 21 clock cycles.

76702 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

FIGURE 8. Throughput plots for the proposed and DA0−3 designs for
(a) k = 4 and (b) k = 8.

Since the critical paths of different designs also depend on
the LUT access time, which itself is a function of the DA base
unit. Hence, it is difficult to compare the different designs. For
a fair comparison, we define the throughput of an adaptive fil-
ter as the number of signal samples processed by an adaptive
filter per second. It includes both the critical path delay and
number of clock cycles parameters in its definition, as per

Throughput =
1

Critical Path Delay× FC
(42)

Depending upon the order of the DA base unit, both the
proposed structures can be made to provide higher through-
put as compared to DA0−3. For higher-order of DA base
unit, the DA0−3 suffer from severe throughput bottleneck.
In contrast, the proposed structures are more advantageous
for higher-order DA base unit. Interestingly, when 8th order
DA base unit is used, the throughput of both the structures
is higher as compared to the DA0−3. The improvement in
throughput would be more when the DA base unit order is
large. For example, a 32nd order filter with 8th order DA base
unit using 90 nm TSMC standard library cells, the Type I
structure offers 9.41× and Type II structure offers 16.68×
improvements in throughput over DA◦◦3 , as shown in Fig. 8.
Although the improvement in throughput is achievable with
high k(= N/m), the word-size required for the FP represen-
tation of E-LUT and O-LUT proportionally increases. For
a fixed m, the increase in DA base unit k also increases
the filter order N . As a consequence, the step-size for FP
implementation has to be reduced for the larger DA base
unit and filter orders to design the DA based LMS ADF.
Otherwise, it would increase the quantization error ξq and
causes significant perturbations in the steady-state.

FIGURE 9. Block diagram of system identification using Type I or II design.

From the previous discussion, it is clear that Type II out-
performs in throughput among all the designs, while Type I
offers slightly lower throughput. As stated, Type I and Type II
structures are based on TC DA and OBC DA, thus it is fair to
compare their convergence performance. For FP simulation,
the proposed Type I and Type II structures of LMS ADF are
used for a system identification problem with (X xf ,X

x
i) =

(8, 0) and (Xwf ,X
w
i) = (Xbw,X

b
i) = (8, 0), as shown in Fig. 9.

The unknown system is 10th order band-pass filter [42] with
an impulse response given by

hn =
sin(wH (n− 4.5))
π ((n− 4.5))

−
sin(wL(n− 4.5))
π ((n− 4.5))

for n = 0, 1, 2, . . . , 9, otherwise hn = 0 (43)

where wH and wL are the high and low cut-off frequencies of
the passband which are set to wH = 0.7π and wL = 0.3π
respectively. We have considered 16th, 32nd and 64th orders
filter with step size as half of the bound given by (12) i.e.,
µ = 1/Nσ 2

x which also satisfies the fixed-point quantization
model. The unknown system and adaptive filter are fed with
the Gaussian random input xn of zero mean and unit variance
(σ 2
x = 1). The output of the unknown system is contaminated

with white Gaussian noise zn of strength −60 dB. The MSE
learning curve of Type I and Type II designs averaged over
100 independent runs are illustrated in Fig. 10(a) and 10(b)
respectively. It is clear that as the filter order increases, the
convergence rate slows down and increases the steady-state
MSE in all the cases. The Type I design offers a fast conver-
gence than Type II design. This is because the step-size in
Type II design is 2× than Type I design, therefore, its time
constant is reduced by half as compared to Type I design,
as per (16). It is interesting to note that both the proposed
designs reach the similar steady-state MSE (minimum MSE)
for a givenN , as per (9). Thus, it is clear that the Type II struc-
ture provides high throughput performance at the expense of
slow convergence, while Type I offers fast convergence at the
expense of low throughput performance for almost similar
steady-state mean square error.

B. IMPLEMENTATION RESULTS
We have coded both the proposed and DA0−3 designs in
Verilog HDL to implement 16th, 32nd and 64th LMS ADFs

VOLUME 10, 2022 76703

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

TABLE 2. ASIC synthesis and FPGA implementation of different DA based architectures using 4th and 8th order DA base units.

FIGURE 10. Convergence curves of LMS ADF based on (a) Type I
(b) Type II.

using 4th order DA base unit; and 32nd 64th and 128th order
LMS ADFs using 8th order DA base unit. The reason for
using higher k for LMS ADF implementation is to have a fair
comparison with other designs. This is because the proposed
architectures provide high throughput for large k values.
The wordlength of input samples and filter coefficients are
assumed to be 8-bits. For synthesis purposes, we have con-
sidered the register file as LUT for the proposed structures as
compared to SRAM and latch-based memories as it provides
low access time for high throughput implementation. ASIC
synthesis was performed using TSMC 90 nm CMOS Library
by Cadence RTL Compiler. The Verilog file was completely
flattened to the logic gates at gate-level implementation by the
tool. Subsequently, the Verilog file from the RTL Compiler
was then used to perform place and route by the Cadence
Design Encounter tool. The random test vectors were taken

for the generation of switching activity files with full timing
and parasitic parameters. In addition, low-driving strength
standard cells were employed to avoid routing congestion
during the place and route. To avoid the setup and/or hold
violations, extra buffers were introduced by the tool with a
slight increase in area and power consumption. The estimated
area, power (at 100 MHz), and MSP by the tool are listed
in Table 2. As expected, the area and power of Type I and
Type II structures are increased due to more computational
cost involved. This stems from the fact that the overhead in
LUT pre-decomposition. For instance, the proposed Type I
structure has one extra adder, a few more multiplexers, and
registers as compared to DA∗1. This is valid for the Type II
structure and all the filter orders and DA base unit orders.
While the hardware cost DA2−3 designs are relatively lower
than proposed structures due to the use of OBC DA. For
example, a 32nd order filter with 8th order DA base unit using
Type I structure provides 38.76% less MSP, occupies 28.62%
more area and consumes 67.18%more power as compared to
DA◦◦3 , whereas Type II structure provides 51.25% less MSP,
occupies 21.42% more area and consumes 47.84% more
power compared to DA◦◦3 .
The proposed structures are also implemented on a Xilinx

FPGA Virtex (690t). The Verilog file is imported into the
Xilinx Vivado tool, translating them into a netlist in Xilinx
netlist format (.xnf). The simulator then performed functional
verification through test vectors. The mapping is performed
to translate the netlist on the available resources of the FPGA
at 100 MHz clock frequency. After this step, the place and
route process was done at specific locations of the FPGA
device with the available routing resources. Subsequently,
the delay information corresponding to interconnections is
used to obtain a more accurate netlist through timing anal-
ysis (back-annotation). A bitstream file is generated for each
design, which is then transferred to the Xilinx Virtex (690t).
The logic utilization of the proposed and DA0−3 in terms
of slice-LUTs (SLUT) and flip-flops (FF). The Type I and
Type II structures are a slightly higher numbers of SLUT

76704 VOLUME 10, 2022

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

and FF as compared to DA∗1 and DA∗∗1 respectively. While
they provide significant throughput improvements compared
to DA◦◦3 at the expense of more logic utilization. For example,
a 32nd order filter with 8th order DA base unit using Type I
structure utilizes 49.06% more SLUTs and 3.31% more FFs
over DA◦◦3 , whereas Type II structure utilizes 29.10% more
SLUTs and 1.47% less FFs as compared to DA◦◦3 .

VI. CONCLUSION AND FUTURE WORK
In this paper, the detailed architectural analysis and imple-
mentation of two new high throughput architectures of
non-pipelined LMS ADF have been presented. The proposed
design methodology has resulted in less number of clock
cycles, less LUT access time, a small sampling period, and
less number of additions for both proposed architectures.
An efficient fixed-point quantization model for the evalua-
tion of proposed structures is also presented. Unlike exist-
ing non-pipelined designs [27]–[30], the proposed structures
offer very high throughput performance, especially with large
order DA base unit. The second structure provides higher
throughput than the first structure at the expense of a slow
convergence rate with almost the same steady-state mean
square error. It is found that 256th order filter with 8th order
DA base unit using Type I structure provides 9.41× higher
throughput whereas the Type I structure provides 16.68×
higher throughput than [30]. ASIC and FPGA implemen-
tation results showed that 32nd order filter with 8th order
DA base unit using Type I structure achieves 38.76% less
minimum sampling period (MSP), occupies 28.62% more
area, consumes 67.18% more power, utilizes 49.06% more
slice LUTs and 3.31%more flip-flops (FFs), whereas Type II
structure achieves 51.25% less MSP, occupies 21.42% more
area, consumes 47.84% more power, utilizes 29.10% more
slice LUTs and 1.47% less FFs as compared to [30].

This paper is primarily concentrated on high throughput
fixed-point implementation of DA based non-pipelined LMS
adaptive filters with its effect on the error performance. This
may also be extended for future research with approximate
DA [43] as it relaxes algorithm precision constraints. Hence,
there will be a reduction in the chip area as well as the power
consumption of adaptive filters with simultaneous increase in
the throughput performance. Furthermore, this study focused
on the improvement of throughput performance of LMS
adaptive filter at the expense of area, power, logic resources
and convergence rate. LMS variants such as NLMS algorithm
can provide faster convergence than standalone LMS. Thus,
it will be pertinent to take a similar methodology for DA
based non-pipelined NLMS adaptive filter. [6] that can result
in improved error performance.

ACKNOWLEDGMENT
The authors would like to thank all the reviewers for
their valuable comments and suggestions, which immensely
helped to improve the quality of manuscript.

REFERENCES
[1] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ, USA:

Prentice-Hall, 1996.
[2] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:

Wiley, 2003.
[3] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Imple-

mentation. Hoboken, NJ, USA: Wiley, 2007.
[4] K. B. Widrow, J. McCool, M. G. Larimore, and C. R. Johnson, ‘‘Stationary

and nonstationary learning characteristics of the LMS adaptive filter,’’ in
Aspects of Signal Processing. Springer, 1977, pp. 355–393.

[5] B.-E. Jun, D.-J. Park, and Y.-W. Kim, ‘‘Convergence analysis of sign-sign
LMS algorithm for adaptive filters with correlated Gaussian data,’’ in Proc.
Int. Conf. Acoust., Speech, Signal Process., vol. 2, 1995, pp. 1380–1383.

[6] N. Bershad, ‘‘Analysis of the normalized LMS algorithm with Gaussian
inputs,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34,
no. 4, pp. 793–806, Aug. 1986.

[7] J. Cioffi and T. Kailath, ‘‘Fast, recursive-least-squares transversal filters
for adaptive filtering,’’ IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, no. 2, pp. 304–337, Apr. 1984.

[8] K. Ozeki and T. Umeda, ‘‘An adaptive filtering algorithm using an orthogo-
nal projection to an affine subspace and its properties,’’ Electron. Commun.
Jpn. I, Commun., vol. 67, no. 5, pp. 19–27, 1984.

[9] S. Kalluri and G. R. Arce, ‘‘A general class of nonlinear normalized
adaptive filtering algorithms,’’ IEEE Trans. Signal Process., vol. 47, no. 8,
pp. 2262–2272, Aug. 1999.

[10] S. L. Gay, ‘‘The fast affine projection algorithm,’’ in Acoustic Signal
Processing for Telecommunication. Springer, 2000, pp. 23–45.

[11] D. Slock and T. Kailath, ‘‘Numerically stable fast transversal filters for
recursive least-squares adaptive filtering,’’ in Numerical Linear Alge-
bra, Digital Signal Processing and Parallel Algorithms. Springer, 1991,
pp. 605–615.

[12] B. Parhami, ‘‘Computing with logarithmic number system arithmetic:
Implementationmethods and performance benefits,’’Comput. Electr. Eng.,
vol. 87, Oct. 2020, Art. no. 106800.

[13] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, ‘‘Pipelined implementations
of the a priori error-feedback LSL algorithm using logarithmic arith-
metic,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 3,
May 2002, p. 2681.

[14] M. M. Chansarkar and U. B. Desai, ‘‘A robust recursive least squares
algorithm,’’ IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1726–1735,
Jul. 1997.

[15] E. Walach and B. Widrow, ‘‘The least mean fourth (LMF) adaptive
algorithm and its family,’’ IEEE Trans. Inf. Theory, vol. IT-30, no. 2,
pp. 275–283, Mar. 1984.

[16] A. Feuer and E. Weinstein, ‘‘Convergence analysis of LMS filters with
uncorrelated Gaussian data,’’ IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. ASSP-33, no. 1, pp. 222–230, Feb. 1985.

[17] J. E. Mazo, ‘‘On the independence theory of equalizer convergence,’’ Bell
Syst. Tech. J., vol. 58, no. 5, pp. 963–993, May/Jun. 1979.

[18] L. Zhoufan, L. Dan, X. Xinlong, and Z. Jianqiu, ‘‘New normalized LMS
adaptive filter with a variable regularization factor,’’ J. Syst. Eng. Electron.,
vol. 30, no. 2, pp. 259–269, 2019.

[19] M. D. Meyer and D. P. Agrawal, ‘‘A modular pipelined implementation
of a delayed LMS transversal adaptive filter,’’ in Proc. IEEE Int. Symp.
Circuits Syst., May 1990, pp. 1943–1946.

[20] N. R. Shanbhag and K. Parhi, Pipelined Adaptive Digital Filters, vol. 274.
Springer, 2012.

[21] B. Hoefflinger, ‘‘ITRS: The international technology roadmap for semi-
conductors,’’ in Chips. Springer, 2011, pp. 161–174.

[22] J. Choi, H. You, C. Kim, H. Young Yeom, and Y. Kim, ‘‘Comparing
unified, pinned, and host/device memory allocations for memory-intensive
workloads on Tegra SoC,’’ Concurrency Comput., Pract. Exp., vol. 33,
no. 4, 2021, Art. no. e6018.

[23] P. K. Meher, ‘‘New approach to look-up-table design and memory-based
realization of FIR digital filter,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 3, pp. 592–603, Mar. 2010.

[24] A. Peled and B. Liu, ‘‘A new hardware realization of digital filters,’’ IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-22, no. 6, pp. 456–462,
Dec. 1974.

[25] A. Croisier, D. Esteban, M. Levilion, and V. Riso, ‘‘Digital filter for PCM
encoded signals,’’ U.S. Patent 3 777 130, Dec. 4, 1973.

[26] S. A. White, ‘‘Applications of distributed arithmetic to digital signal pro-
cessing: A tutorial review,’’ IEEE ASSP Mag., vol. 6, no. 3, pp. 4–19,
Jul. 1989.

VOLUME 10, 2022 76705

M. T. Khan et al.: Two DA Based High Throughput Architectures of Non-Pipelined LMS ADFs

[27] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,
‘‘LMS adaptive filters using distributed arithmetic for high throughput,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337,
Jul. 2005.

[28] R. Guo and L. S. DeBrunner, ‘‘Two high-performance adaptive filter imple-
mentation schemes using distributed arithmetic,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 600–604, Sep. 2011.

[29] M. S. Prakash and R. A. Shaik, ‘‘Low-area and high-throughput archi-
tecture for an adaptive filter using distributed arithmetic,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 781–785, Nov. 2013.

[30] S. Ahmad, S. G. Khawaja, N. Amjad, and M. Usman, ‘‘A novel multiplier-
less LMS adaptive filter design based on offset binary coded distributed
arithmetic,’’ IEEE Access, vol. 9, pp. 78138–78152, 2021.

[31] M. T. Khan, S. R. Ahamed, and F. Brewer, ‘‘Low complexity and critical
path based VLSI architecture for LMS adaptive filter using distributed
arithmetic,’’ in Proc. 30th Int. Conf. VLSI Design 16th Int. Conf. Embedded
Syst. (VLSID), Jan. 2017, pp. 127–132.

[32] M. T. Khan and S. R. Ahamed, ‘‘Area and power efficient VLSI architec-
ture of distributed arithmetic based LMS adaptive filter,’’ in Proc. 31st Int.
Conf. VLSI Design 17th Int. Conf. Embedded Syst. (VLSID), Jan. 2018,
pp. 283–288.

[33] Y. Tsunekawa, K. Takahashi, S. Toyoda, and M. Miura, ‘‘High-
performance VLSI architecture of multiplierless LMS adaptive filters
using distributed arithmetic,’’ Electron. Commun. Jpn. III, Fundam. Elec-
tron. Sci., vol. 84, no. 5, pp. 1–12, 2001.

[34] R. Guo and L. S. DeBrunner, ‘‘A novel adaptive filter implementation
scheme using distributed arithmetic,’’ in Proc. Conf. Rec. 45th Asilomar
Conf. Signals, Syst. Comput. (ASILOMAR), Nov. 2011, pp. 160–164.

[35] P. K. Meher and S. Y. Park, ‘‘High-throughput pipelined realization of
adaptive FIR filter based on distributed arithmetic,’’ in Proc. IEEE/IFIP
19th Int. Conf. VLSI Syst.-Chip, Oct. 2011, pp. 428–433.

[36] S. Y. Park and P. K. Meher, ‘‘Low-power, high-throughput, and low-area
adaptive FIR filter based on distributed arithmetic,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 60, no. 6, pp. 346–350, Jun. 2013.

[37] M. T. Khan, R. A. Shaik, and S. P. Matcha, ‘‘Improved convergent
distributed arithmetic based low complexity pipelined least-mean-square
filter,’’ IET Circuits, Devices Syst., vol. 12, no. 6, pp. 792–801, 2018.

[38] M. T. Khan and R. A. Shaik, ‘‘Optimal complexity architectures for
pipelined distributed arithmetic-based LMS adaptive filter,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 2, pp. 630–642, Feb. 2019.

[39] M. T. Khan and R. A. Shaik, ‘‘High-performance VLSI architecture of
DLMS adaptive filter for fast-convergence and low-MSE,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 69, no. 4, pp. 2106–2110, Apr. 2022.

[40] K. Takahashi, Y. Tsunekawa, N. Tayama, and K. Seki, ‘‘Analysis of the
convergence condition of LMS adaptive digital filter using distributed
arithmetic,’’ IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. 85, no. 6, pp. 1249–1256, Jan. 2002.

[41] C. Caraiscos and B. Liu, ‘‘A roundoff error analysis of the LMS adaptive
algorithm,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32,
no. 1, pp. 34–41, Feb. 1984.

[42] L.-D. Van andW.-S. Feng, ‘‘An efficient systolic architecture for theDLMS
adaptive filter and its applications,’’ IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 48, no. 4, pp. 359–366, Apr. 2001.

[43] S. Venkatachalam and S.-B. Ko, ‘‘Approximate sum-of-products designs
based on distributed arithmetic,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 8, pp. 1604–1608, Aug. 2018.

MOHD. TASLEEM KHAN received the B.Tech.
degree in electronics from the Zakir Hussain Col-
lege of Engineering and Technology, AligarhMus-
lim University, Aligarh, India, in 2013, and the
Ph.D. degree in VLSI from the Indian Institute
of Technology Guwahati, India, in 2019. He was
a Principal Engineer at Taiwan Semiconductor
Manufacturing Company (TSMC), Hsinchu, Tai-
wan. He worked as an Assistant Professor with
the Department of Electronics Engineering, Indian

Institute of Technology Dhanbad, India. He is currently working as a Post-
doctoral Researcher at Linköping University, Sweden. His research and
teaching interests include study of algorithms and architectures for VLSI
implementation of signal processing, communication, machine learning, and
artificial intelligence applications.

MOHAMMED A. ALHARTOMI (Member,
IEEE) received the Ph.D. degree in electronic
and electrical engineering from Leeds University,
U.K., in 2016. He is currently an Assistant Profes-
sor with the Department of Electrical Engineering,
Tabuk University. His research interests include
signal processing, OW systems design, and VLC.

SAEED ALZAHRANI (Member, IEEE) received
the B.S. degree from King Abdulaziz University,
Jeddah, Saudi Arabia, the M.S. degree from the
University of Colorado at Boulder, and the Ph.D.
degree from The Ohio State University, all in elec-
trical engineering. He was with the Microelectron-
ics Research Laboratory, University of Colorado
at Boulder, from 2012 to 2014, involved in devel-
oping tunable ferroelectric-based filters, VCOs,
amplifiers, and antennas. From 2014 to 2019,

he was with the ElectroScience Laboratory, The Ohio State University,
focusing on developing design techniques for wide TR VCOs at mm-wave
frequency band. He is currently working as an Assistant Professor with
the Electrical Engineering Department, University of Tabuk, Saudi Arabia.
His research interests include addresses design and technological challenges
related to RF/millimeter-wave and mixed-signal integrated circuits and sys-
tems for emerging technologies, including communication, automotive, and
biomedical applications.

RAFI AHAMED SHAIK (Member, IEEE)
received the B.Tech. and M.Tech. degrees in
electronics and communication engineering from
Sri Venkateswara University, Tirupati, India, in
1991 and 1993, respectively, and the Ph.D.
degree from the Indian Institute of Technology
Kharagpur, India, in 2008. He is currently a Pro-
fessor with the Department of Electronics and
Electrical Engineering, Indian Institute of Tech-
nologyGuwahati, India. Hewas a FacultyMember

of the Deccan College of Engineering and Technology, Hyderabad, India,
from 1993 to 1995, and the Bapatla Engineering College, Bapatla, India,
from 1995 to 2003. His teaching and research interests include digital and
adaptive signal processing, biomedical signal processing, and VLSI signal
processing.

RUWAYBIH ALSULAMI (Member, IEEE) was
born in Mecca, Saudi Arabia. He received the
B.S. degree in electrical and computer engineer-
ing from the University of Colorado at Boulder,
Boulder, CO, USA, in 2011, the M.S. degree in
electrical engineering from the University of Col-
orado at Colorado Springs, Colorado Springs, CO,
USA, in 2013, and the Ph.D. degrees in electrical
and computer engineering from The Ohio State
University, Columbus, OH, USA, in 2020 and

2021, respectively. He is currently an Assistant Professor in electrical engi-
neering with UmmAl-Qura University, Mecca. His current research interests
include circuit design, such as antennas, filters, multiband power amplifiers,
PA linearization, and measurements of nonlinear microwave devices and
circuits.

76706 VOLUME 10, 2022

