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ABSTRACT Accurate model parameters of Static Var Generator (SVG) play an essential role in regulating
bus voltage profiles of power grid with increased penetration of renewable energy under various contingen-
cies. Aiming at addressing the known issues of low identification accuracy and long computation time faced
by the traditional SVG parameter identification methods, this paper presents a multi-layer coarse-to-fine
grid searching approach for calibrating SVG dynamic model parameters using particle swarm optimization.
First, actual measurement data is collected through SVG-RTDS testbeds under various conditions, which is
compared with transient stability simulation results to check for model accuracy. Then, nonlinear trajectory
sensitivity analysis is performed using segmented curves to identify potential bad model parameters. Next, a
multi-layer coarse-to-fine grid searching mechanism is used to narrow the parameter searching space, before
particle swarm algorithm optimization is used for more precise identification of parameters. By comparing
the identification results obtained by the traditional identification methods and the proposed approach via
comprehensive case studies, it is found that the proposed coarse-to-fine parameter identification method
achieved higher accuracy and faster computational speed.

INDEX TERMS SVG controller, parameter identification, nonlinear sensitivity, particle swarm optimization.

NOMENCLATURE Ts The third-order lag time constant.
Vv The voltage output of SVG. Tp The proportional link time constant.
Vrer  The reference voltage of SVG. Ts The delay time of SVG response.
Vscs  The auxiliary signal of SVG. Kp The gain of SVG.
Vr The system voltage. K; The gain of the integration module.
Ig The current output of SVG. K4 The slope of the V-I characteristic curve.
T The time constant of the filter and loop of Xr The equivalent reactance between the SVG and
measurement. the power system.
T, The first-order lead constant time. Vmax  The upper limit of the voltage limiter.
T3 The second-order lag time constant respectively. Vuiv  The lower limit of the voltage limiter.
T, The second-order lead time constant. Icmax  The maximum capacitive current.
Ityax  The maximum inductive current.
The associate editor coordinating the review of this manuscript and o The independent variable of trajectory sensitivity.
approving it for publication was Diego Oliva . Vi The dependent variable of trajectory sensitivity.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 77137


https://orcid.org/0000-0002-0336-4761
https://orcid.org/0000-0001-8781-7993

IEEE Access

H. Gao et al.: Parameter Identification of SVG Using Multilayer Coarse-to-Fine Grid Searching and PSO

Yio The model output when the parameter value o;
equal to ajp.

Ao The change value of «;.

0 The reactive power track sensitivity.

I The current track sensitivity.

U The voltage track sensitivity.

N The number of sampling.

Qo The initial value of the reactive power track
sensitivity.

Iy The initial value of the current track sensitivity.

Up The initial value of the voltage track sensitivity.

0 The output when the reactive power value
increased by 5% on the basis of the initial value.

I The output when the current value increased by
5% on the basis of the initial value.

Ui The output when the voltage value are increased
by 5% on the basis of the initial value.

Ez The result of error calculation.

to The starting time of error calculation.

1 The ending time of error calculation.

Opase  The measured reactive power data of RTDS.

Oltest The simulated reactive power data of BPA.
w The inertia weight.

cl,c2 The learning factor.

r1,r2  The uniform distribution between (0,1) as random
numbers.

Vi The velocity of the particle in each dimension.

Vinax The maximum velocity that the particle can reach.

I. INTRODUCTION

With the increased penetration of renewable generation,
growing electricity loads and fast development of grid infras-
tructure, the modern power system in mainland China is
facing critical issue of reactive power shortage, which may
lead to growing risks of voltage instability [1]. The Flexible
AC Transmission System (FACTS) provides a number of
technical means to enhance the security and stability of the
grid. As an advanced reactive power compensation device,
Static Var Generator (SVG) is one of the core members of
the FACTS family being widely used in many fields such
as transmission network, distribution network and integra-
tion of renewable energy generation [2], [3]. If designed
and operated properly, SVG can compensate for fluctuating
loads, harmonics, and power factor to reduce power loss and
improve power quality, to deal with the increased dynamic
and stochastic behavior of the modern power system [4].
The level of SVG model accuracy plays an important role
in affecting the reliability of power system simulations, and
thus directly affects the quality of power grid planning, design
and integration of wind/solar farms, grid security and sta-
bility, etc. However, most manufacturers are unable to pro-
vide accurate SVG models and the corresponding parameters
for grid planning and operational studies due to intellectual
property protection or lack of testing techniques in practice
[5]. To ensure optimal design and operation of SVG in the
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bulk power system, effective methods for accurate parameter
identification of SVG models are urgently needed.

Traditional methods, e.g., least square-based algorithms,
for parameter identification demonstrate satisfactory perfor-
mance for linear control system; however, for more com-
plex and highly nonlinear systems, the performance of such
methods deteriorates, leading to large identification errors
[6]. With the rapid development and evolvement of intelligent
searching algorithms such as chicken swarm optimization
(CSO), genetic algorithm (GA), deep reinforcement learn-
ing (DRL) and others, new methods have emerged to tackle
with the problem of parameter identification and find optimal
parameter sets of complex systems under various conditions.
In fact, previous research efforts were reported to achieve this
goal. In [7], the authors presented a PSO-based algorithm
to calibrate SVG model parameters for both low-wind-speed
and high-wind-speed conditions in wind farms considering
random characteristics of wind farm. Parameter identification
errors caused by wind speed fluctuation were effectively
reduced; however, this method suffers from a large searching
space, affecting the total computational speed. The authors
of [8] proposed an improved CSO-based method for identi-
fication of Static Var Compensator parameters, using local
sensitivity and intelligent optimization theory. Although the
CSO algorithm is similar to PSO, it heavily depends upon
an accurate estimation of parameter range, which can take
many iterations of searching and require long computation
time. In [9], a RTDS-based hardware-in-the-loop testbed is
used for parameter identification, which can successfully
identify key controller parameters. However, the adaptability
of this method is poor given that there are many parameters in
each controller and the interaction among various parameters
was not considered, affecting the overall effectiveness and
efficiency [9]-[12]. The SVG controller consists of many
parameters and the searching range of each parameter is
difficult to determine; thus, it may take much more time to
obtain the optimal parameter set if searching a large parame-
ter range. However, when the parameter range is set too small,
it can lead to situations where the exact parameters cannot be
identified [13], [14]. Therefore, it is essential to screen those
parameters with higher sensitivity with respect to SVG power
outputs, and select a rational range of parameters before
applying parameter identification algorithms. Moreover, tra-
ditional methods typically use the entire simulation curves
for identifying model parameters, which ignore interactions
among various parameters and may yield situations where the
parameters cannot be identified correctly.

In order to resolve the above issues, this paper presents a
novel method of SVG parameter identification using a multi-
layer, coarse-to-fine grid searching framework with particle
swarm optimization. First, it compares the simulation results
obtained from the BPA software and the actual measurements
obtained from the RTDS testbed. Then, key parameters with
high sensitivity are selected through nonlinear trajectory sen-
sitivity analysis conducted on segments of reactive power
curves of SVG [15]. Sensitivity information is clustered into
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segments, which are used to calibrate those model parameters
that are highly sensitive in different segments. In this way,
narrower ranges of parameter searching space can be deter-
mined before applying PSO algorithms for precise parameter
identification, which can effectively reduce the complexity
and overcome the abovementioned issues. This method can
be used for improving SVG parameter identification accuracy
and efficiency, and ensuring high quality transient stability
simulation of bulk power systems.

The remainder of this paper is organized as follow.
Section II introduces the test systems for SVG model
parameter identification, including the hardware-in-the-loop
testbed, simulation models and the control logic of SVG.
Section III presents the trajectory sensitivity analysis method
for identifying sensitive parameters in different segments.
In Section IV, detailed characteristics of parameters are ana-
lyzed and the proposed coarse-to-fine grid searching method
is presented in Section V. In Section VI, comprehensive case
studies are used to verify the effectiveness of the proposed
approach. Finally, conclusions are drawn in Section VII with
future work identified.

Il. TEST SYSTEMS FOR SVG PARAMETER

IDENTIFICATION
A. RTDS HARDWARE-IN-THE-LOOP TESTBED

Real Time Digital Simulator (RTDS) is one of the most
popular real-time simulators for power system research
and development purposes, designed by the direct current
research center of Manitoba, Canada, primarily for real time
parallel electromagnetic transient simulation [11]. RTDS can
simulate fast transient processes of power system in real
time, where the primary system is simulated by mathematical
model, and the secondary equipment uses actual controller
device. The hardware-in-the-loop (HIL) testbed can be con-
structed by connecting the physical controller to the bulk
power grid model through the I/O interface. HIL testing is
equivalent to connecting a physical controller to an actual
power system, thus enabling detailed closed-loop physical
testing under various operating conditions [12].

In this paper, an actual SVG device is connected to the real-
time closed-loop testbed using the RTDS platform. A single-
machine-infinite-bus system model is created to represent
the power grid, shown in Fig.1. The system consists of an
infinite power supply, a 220/35 kV transformer, a parallel
transmission line, a SVG device, and a switchable reactance.
The switchable reactance is used to simulate a three-phase-to-
ground short-circuit fault at bus B1. The purpose of installing
the SVG is to maintain constant voltage profiles at bus B1.
Three-phase-to-ground faults with various switching reac-
tance are applied at bus B1 by switching off the reactance
to generate transient response trajectories. Transient voltage
profiles, reactive power curves and the current curves are
recorded for model parameter identification purposes.

In real-world application, the SVG equipment functions
like a black box with little knowledge of true parameters.
RTDS provides a promising way of simulating high-fidelity
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FIGURE 1. Test system setup.

FIGURE 2. Control block diagram of SVG.

grid disturbances [10]. In this work, power grid models are
created in BPA software to simulate the dynamic performance
of the SVG, the transient trajectory of which is then compared
with the one obtained from RTDS as actual measurements.
The objective of SVG parameter identification is to minimize
the mean square error (MSE) of the two reactive power
trajectories obtained from BPA simulation and RTDS actual
measurements collected at the point of connection.

B. SVG CONTROLLER MODEL
The control block diagram of the SVG controller for param-
eter identification is shown in Figure 2 [15].

In the SVG model, V is the voltage output; Vggr is the
reference voltage; Vscs is the auxiliary signal; Vr is the
system voltage; Ig is the current output; 7 represents the time
constant of the filter and loop of measurement; 7> and 73 are
the first-order lead constant time and the second-order lag
time constant, respectively; T4 and 75 are the second-order
lead time constant and the third-order lag time constant; Tp
is the proportional link time constant; T’ is the delay time of
SVG response; Kp is the gain; K; is gain of the integration
module; Ky is the slope of the V-I characteristic curve and
X7 is the equivalent reactance between the SVG and the
power system. There are also limiters in the control block
diagram, including: Vj4x - the upper limit of the voltage lim-
iter, V- the lower limit of the voltage limiter, Icpax- the
maximum capacitive current, I7y4x - the maximum inductive
current. The equation for calculating the limits of the propor-
tional integral block, Vsyax and Vyy, is given in Eq. (1):

Vsmax = Vr + Xt * Icmax
Vsmiv = Vr — X1 * Itmax (1)

From the control block diagram of SVG, the initial param-
eter set to be identified can be determined as a vector:

[T1,T2,T5,T4,T5,Ts, Tp, Kp, K;, Kp,

Vmax, Vmin, Iemax s Inmax ]

IIl. TRAJECTORY SENSITIVITY ANALYSIS
Trajectory sensitivity analysis provides an effective way to
quantify the impact of independent variables on dependent
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variables in the nonlinear dynamic system. The effect of each
parameter change on the system outputs can be obtained by
analyzing the trajectory sensitivity of the parameters. A high
value of trajectory sensitivity indicates that the parameter
has larger influence on the system, while a low trajectory
sensitivity indicates that the parameter has smaller influence.
For a dynamical system, trajectory sensitivity is calculated
using the following equation:
Yilaio+Aai, D)—yio(dio )
vio(io,?) )
Aai/aio

Sai(1) =

In Eq.(2), «; is the independent parameter; y; is the dependent
variable; y;p is model output when the parameter value «;
equal to «jo; Ac; stands for the change value of «;. In prac-
tice, it is difficult to draw an effective conclusion through
the observation of the trajectory sensitivity, so the trajectory
sensitivity is defined as the average of the absolute values
over a period of time, given in Eq. (3), where N is the number
of sampling points.

1 N
S=+ ; |Sa;(0)] 3)

For SVG controllers connected to a single-machine-infinite-
bus system, the following steps are used to calculate the
sensitivity of parameter trajectory.

1) Set up a simulation system to determine the parameters
to be identified, the initial values of which can be taken from
the SVG’s technical manual; if the manual does not provide
the corresponding parameters, then use the typical parameter
values of SVG as the initial values.

2) Calculate the power flow for the system, set up a
three-phase-to-ground short-circuit fault, perform a transient
stability simulation, and record the output variables of the
SVG device, including reactive power, current and voltage
trajectories.

3) Increase the values of the selected parameters by 5%,
while keeping all other parameters constant and repeat the
same procedure in Step 2) to obtain simulated curves of reac-
tive power, current and voltage for each perturbed parameter.
Sensitivities of each parameter with respect to reactive power,
voltage and current are calculated as follows.

oo Ly Q0 =00

0= N ZNzl 0.05%Q (1)

fo Ly |[h0)—1h®

I = N ZN:I 0.05 * Io(r) @
T_ Ly |[L®O-U®

U= N ZN:1 0.05 * Uy(t)

where @ 1, U stand for reactive power sensitivity, current
sensitivity and voltage sensitivity, respectively; N is the num-
ber of sampling. Qo, Iy, Uy represent the initial values of the
reactive power, current and voltage. Q1, I1, U stand for the
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corresponding values of reactive power, current and voltage
with the perturbed parameter values.

(4) Sort the sensitivity values of all selected parameters
using the above procedure from the largest to smallest.
The parameters with higher trajectory sensitivity values are
selected for calibration.

IV. ANALYSIS OF PARAMETER CHARACTERISTICS
DURING FAULT CONDITIONS

After selecting the key parameters based on the trajectory
sensitivity calculation method introduced in Section III, the
impact of these parameters on the SVG dynamic charac-
teristics during fault conditions is analyzed. In the tradi-
tional process of parameter identification, the performance
of parameter identification cannot be guaranteed because
of the complex, coupled interaction of various parameters
and the large range of parameters. Thus, it is necessary to
explore the influence of parameters on the fault character-
istic of the system, identify the parameters using various
segmented data, improve the identification speed, reduce the
influence of other parameters, and determine a proper range
of the parameters.

For each parameter to be identified, determine its upper
and lower limits and the step size. The parameter changes
from the lower limit and increases by the fixed step size
until reaching the upper limit. Record the changes of reactive
power curve and current curve with respect to parameter
changes and observe those sections of the curve with high
sensitivity. Then, the detailed influence of each parameter on
the fault characteristics is investigated, and the corresponding
sections of the simulation result curves are used to identify
each SVG model parameter. For the parameters with high
trajectory sensitivity, the variation of reactive power curve is
analyzed with the simulation results.

Fig. 3 provides an explanatory example, where the entire
reactive power curve is divided into four segments to com-
pute the corresponding sensitivity information. Table 1 gives
the calculated sensitivity of various parameters for the
four segments. The selected parameter candidates are
[Ty, Tr, T3, T4, Ts, Ts, K;, K4, Icmax]. The initial values of
the above selected parameters are provided in Table 2. It can
be observed that the same parameter change has very different
impact on the reactive power curve sections. Thus, using such
segmented sensitivity information for calibrating parameters
can be very effective.

As can be seen from Table 2, the trajectory sensitivity of
the parameters Kp and 7Tp is small, close to 0. Similarly, the
sensitivity values of Vpmax, VMIN, [LMaXx are zero; therefore,
in the subsequent procedure, these parameters are excluded
from the candidate list for calibration. For each section of
the reactive power curve, identify the parameters with the
largest sensitivity values for initial estimation using the coarse
grid searching procedure described in the following sections.
Thus, the selected parameters for the four sections are marked
bold in Table 1.
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FIGURE 3. Sensitivity information for different sections of the reactive
power curve.

TABLE 1. Reactive power sensitivity of each parameter of the SVG
controller.

SVG Sensitivity Sensitivity Sensitivity of  Sensitivity of
parameters of section I of section II section 11 section IV

T 0 2.231 6.339 0.846
g 0 2.356 10.657 2.185
Ts 0 2.269 9.618 1.946
T4 0 2.356 10.657 2.185
Ts 0 2.263 9.379 1.915
Tr 0 0.001 0.003 0.0006
Ts 0.084 0.838 7.258 1.419
Kp 0 0.001 0.002 0.0001
Ki 0.404 23.143 64.855 24.575
Ka 0 1.107 5.528 0.988

Temax 1.058 1.581 2.137 0.236

TABLE 2. The initial value of the SVG controller parameter.

parameter | initial value | parameter | initial value

T; 0.005 K, 0.02

T, 1.00 Ki 999

T3 1.00 K 0.02

Ty 1.00 Vimax 1

Ts 1.00 Vi -1

7, 0.5 Temax 1.1

Ts 0.005 Iimax 1.1

V. PROPOSED PARAMETER IDENTIFICATION
ALGORITHM

A. GRID SEARCH

Grid search is an exhaustive method to evaluate all possible
discretized parameter values by forming a grid of all possible
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value combinations and then comparing the model perfor-
mance of each parameter set before finding the best set with
the least curve fitting errors. In the process of model param-
eter identification, parameter ranges are typically unknown;
if the range is set too small, one may not find the true values
of parameters. Therefore, the grid search method is used as
the initial step to select a large range of parameters so that the
true ones can fall inside certain bins in the high dimensional
space and the identification speed can be improved. Then,
according to the fault characteristics, the piecewise curve is
selected to search for the true parameters separately, and the
optimized parameter values are obtained using particle swarm
method. In this way, the total calculation burden is effectively
reduced.

The objective function of SVG model parameter iden-
tification is defined as the square error of reactive power
curves between the actual measurements of RTDS and the
corresponding simulation curve, given in Eq.(5).

EQ ="~ Qhuse(t) = Quea(t))? 5)

where E7 is the model error, £ is the starting time and #; is
the ending time of the error calculation, Qps. is the measured
reactive power obtained from RTDS and Qy.; is the simulated
reactive power data from BPA software.

B. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is an intelligent algorithm
that starts from random initial values and searches for the
optimal solution through iterations. The PSO algorithm first
determines some particles at random; each particle has three
attributes: position, velocity and fitness. Fitness is an index
to measure the quality of particles. The smaller fitness is, the
closer to the optimal solution. The calculation error given
in Eq. (5) is chosen as the fitness function in this paper.
In a multidimensional space, these particles are constantly
moving and each particle’s fitness is determined by a fitness
function that adjusts its speed and direction based on its own
experience and that of the population as it moves. In this way,
the optimal solution is found gradually in the iterations. The
details of PSO are given below:

Suppose there exists a target space with a dimension of d
that contains a population of m particles. At the ! iteration,
the position of particle i is represented by a vector X;(¢) =
(Xi1(2), Xin(2), ..., Xia(t)), with a corresponding velocity
vector represented by Vi(r) = (Vi1(t), Via(t), ..., Via(®)).
When the PSO algorithm is executed, the position and veloc-
ity of the m particles are randomly initialized, and then the
optimal solution can be found through iterations. At the
iteration, particles update their velocity and position by track-
ing two best values, namely, Ppeg¢ (personal best, one best
solution obtained by the particle itself), expressed as P;(t) =
(Pi1(t), Pin(2), ..., Pia(1)), and Gpeg (global best, the best
solution found so far by the entire particle swarm), expressed
as Py(t) = (Pg1(t), Pga(1), ..., Pga(t)).
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FIGURE 4. Flowchart of the proposed SVG parameter identification
method.

At the (r + 1) iteration, the particle updates its velocity
and position by Ppeg and Gpegt using Eqs. (6) and (7):

vik(t + 1) = wyg () + c1r1 (i (t) — xix (1))
+ 22 (pg(t) — xik (1)) (6)
Xkt + 1) = xix (1)) +vie(t + 1) @)

where w stands for the inertia weight; ¢ and c¢; are learning
factors; and r1 and r2 are random numbers generated between
(0,1) following the uniform distribution; i = 1,2,...,m,
k = 1,2,...,d. V; is the velocity of the particle in each
dimension and V4, is the maximum velocity that the particle
can reach. After narrowing the parameter range by the grid
search method, the number of generation and iteration times
of particles are determined. Then, the SVG model parameters
with high trajectory sensitivity are precisely identified.

C. MAIN FLOWCHART

The flow chart of the proposed SVG model parameter identi-
fication algorithm based on parameter fault characteristics is
shown in Figure 4.

VI. CASE STUDIES

A. CALCULATION OF TRAJECTORY SENSITIVITY

Using the trajectory sensitivity calculation method introduced
in Section II, the sensitivity values of reactive power, current
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TABLE 3. Trajectory sensitivity values of SVG model parameters.

SVG reactive cultrjcn't Vol'ta.lgfe
power sensitivity sensitivity
parameters sensitivity
T; 2.611 1.804 0.003
T2 (T4) 3.806 3.802 0.004
T3 (Ts) 3.684 3.276 0.003
Ty 0.005 0.007 0
Ts 0.811 0.623 0.002
Kp 0.005 0.006 0
Ki 3.009 3.005 0.003
Ka 1.374 1.372 0.001
Temax 1.525 1.507 0.015

and voltage for the test system shown in Fig.1 are calculated
in Table 3.

As can be seen from Table 3, the voltage sensitivity is
smaller than the current sensitivity and reactive power sen-
sitivity, so it is not used as a good indicator. Because the
current sensitivity values are similar to those of the corre-
sponding reactive power, in this work, only reactive power
is chosen as the good indicator to judge the overall sensitivity
information. According to the results of trajectory sensi-
tivity calculation, the parameters with high sensitivity are
[Ty, Tr, T3, T4, Ts, Ts, K;, Kp, Icmax ], which are selected as
candidates for parameter identification.

B. INFLUENCE OF PARAMETERS ON REACTIVE POWER
FOR INITIAL IDENTIFICATION

Next, the effect of each parameter on the fault characteristics
is explored, which is used to determine those segments of
the simulation curves that are more suitable for identifying
each SVG model parameter. The corresponding simulation
environment is set up in the BPA software, with the one-line
diagram given in Fig. 1. A three-phase-to-ground short-
circuit fault is applied at bus B1, occurring at 36 cycles and
cleared at 86 cycles. One cycle in the simulation is set to
0.02 seconds. The switching reactance is 0.01 H. Reactive
power curves at bus B1 are recorded for comparing with the
corresponding RTDS measurements.

Fig. 5 provides the simulation results when T1 = 0.001 s
and T1 = 0.005s, respectively. From the simulation curves,
it can be found that T only affects the starting time of
the reactive power drop after fault is cleared. Fig. 6 gives
the simulation result comparison when T, = 1 s and T;
= 1.5 s, respectively. As can been seen from Fig. 6, T;
mainly affects oscillatory behavior and the final values after
swings are settled. Fig. 7 provides the comparison of simu-
lation results when 7y = 0.003 s and 7y = 0.006 s, respec-
tively. It shows that Ty mainly affects the sudden change and
oscillatory behavior of reactive power after fault clearance.
Fig. 8 compares the simulation curves of reactive power
when K; = 300 and K; = 900, respectively. The simulation
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FIGURE 5. The influence of T; on the reactive power curve captured at
bus B1.

reactive power (Mvar)

0 200 40 60 80 100 120 140 160 180 200
cycle (unit)

FIGURE 6. The influence of T, on the reactive power curve of bus B1.

reactive power (Mvar)

0 20 40 60 80 100 120 140 160 180 200

-10
cycle (unit)

FIGURE 7. The influence of Ts on the reactive power curve at bus B1.

results show that K; also affects the starting time of reactive
power drop and the amplitude of oscillation following fault
clearance. Fig. 9 provides the comparison of reactive power
when K; = 0.01 and K; = 0.03, respectively. T. According

VOLUME 10, 2022

B
=3

w
=

20

reactive power (Mvar)

0 20 40 60 80 100 120 140 160 180 200

cycle (unit)

FIGURE 8. The influence of K; on the reactive power curve at bus B1.
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FIGURE 9. The influence of K; on the reactive power curve at bus B1.

40 i i i
Iemax=1.1
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reactive power (Mvar)
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FIGURE 10. The influence of Icy;4x on the reactive power curve at bus B1.

to the simulation results, similar to K;, K; mainly affects the
starting time of reactive power drop and the oscillation ampli-
tude. In Fig. 10, the comparison of reactive power curves is
provided, when Icpyax = 1.1 and Icpyax = 1.2. As can be
observed in Fig. 10, Icyax mainly affects the amplitude of
reactive power curve swings during the fault.
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TABLE 4. Preliminary results of SVG model parameter identification.

parameter preliminary
identification results
T, 0.006
T, 1.00
T3 1.00
Ty 1.00
Ts 1.00
Ts 0.0058
K; 800
K 0.028
Temax 1.2

40 T T T T T T T T T

reactive power (Mvar)
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FIGURE 11. Comparison of the reactive power simulation results between
the two methods.

The above analysis provides important guidance on the
influence of each parameter on different sections of the fault
characteristics; the grid search method is used to identify the
parameters in different stages, so that the search range of
parameters can be greatly reduced. The following strategies
are used to achieve this goal:

(1) Determine Icpax using the reactive power curve during
the fault;

(2) Determine T using the climbing curve of reactive power
when the fault occurs;
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FIGURE 12. Comparison of the voltage simulation results between the
two methods.

(3) Determine K;, K;, T1 using the section curve when reac-
tive power starts to decline before reaching the minimum
value;

(4) Determine T, T3, T4, T5 using the oscillatory curve of
reactive power.

Using the error calculation method given in Eq.(5) as the
fitness value for judging the parameter identification perfor-
mance, a preliminary set of SVG model parameters can be
obtained with the lowest fitting errors, the result of which is
given in Table 4.

C. PRECISE IDENTIFICATION OF PARAMETERS

After the initial identification parameters, the search ranges
are set from 90% to 110% of their initial values obtained
from the above step, in order to the derive the final values of
Icyax, T, Ki, Kq, T1 and T>. At the “fine” searching stage,
the presented PSO algorithm is used by properly setting the
number of particles and iteration times, with the objective
function given in Eq.(5).

The performance of the proposed method is verified and
compared with the traditional particle swarm method, shown
in Fig. 11 through Fig. 13 with RTDS representing actual
measurements, given in figure (a), and BPA representing
simulated curves, given in figure (b). From the reactive power
curve, voltage curve as well as current curve at various seg-
ments, it can be observed that the simulation results obtained
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FIGURE 13. Comparison of the current simulation results between the
two methods.

TABLE 5. Performance comparison between the two methods.

(a) Fitting Errors and Computation Time

traditional proposed
method method
Time (min) 9.86 6.38
Reactive power
error (Mvar) 1514.56 1076.48
Voltage error (pu) 0.62 0.23
Current error (pu) 0.86 0.42
(b) List of Identified Parameters
Parameters | traditional method Proposed method
T, 0.0072 0.0063
T 1.07 1.006
T3 1.01 1.002
Ty 1.005 1.003
Ts 1.02 1.002
T, 0 0
Ts 0.006 0.006
Kp 0.03 0.02
K; 999 750
Ky 0.023 0.03
Viax 1 1
Vay -1 -1
Toyvax 1.135 1.2
e 1.1 1.1

using the proposed grid search and PSO-based ‘“‘coarse-to-
fine”” searching method are closer to the traditional approach
with lower fitting errors. Moreover, the computational speed
is faster. Table 5 provides the quantified results of parameter
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identification errors and computation time, as well as the final
estimated parameter sets.

From Table 5(a), the SVG model fitting errors using the
identified parameter set with the proposed method are much
lower than the traditional method, which verifies the effec-
tiveness of this approach. From Table 5(b), it can be observed
that major differences rest with T, K;, K4, and Icyax, indi-
cating their importance on SVG model accuracy.

VIl. CONCLUSION AND FUTURE WORK

In this paper, a grid searching and PSO based ‘“‘coarse-
to-fine” approach is presented to identify SVG model
parameters using segmented measurements. First, the
SVG-RTDS testbed is set up to obtain actual measurements,
which are compared with results obtained from the BPA tran-
sient simulation. To reduce the parameter searching space,
trajectory sensitivity analysis is first performed to identify
those parameters with higher sensitivities. Then, the effects of
various parameters on different segments of the fault curves
are studied. The grid searching method is used to provide
good preliminary parameter set of SVG, before the PSO
algorithm is applied to fine tune the parameter sets in a narrow
range, to speed up the entire process. Finally, the effectiveness
of the proposed method is verified by comparing the results
of traditional parameter identification method with those
obtained from the proposed method.

When calculating the sensitivity of SVG model parameters,
it perturbs one variable only at a time, while keeping all
other parameters constant. However, the nonlinear interac-
tion between different parameters will affect each other in
practice. In future work, more research will be conducted
to investigate such effects in order to further improve the
performance of the proposed method.
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