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ABSTRACT This paper presents a fully automated static analysis approach and a tool, Taint-Things, for
the identification of tainted flows in SmartThings IoT apps. Taint-Things accurately identifies all tainted
flows reported by one of the state-of-the-art tools with at least 4 times improved performance. Our approach
reports potential vulnerable tainted flows in a form of a concise security slice, where the relevant parts of the
code are given with the lines affecting the sensitive information, which could provide security auditors with
an effective and precise tool to pinpoint security issues in SmartThings apps under test. We also present and
test ways to add precision to Taint-Things by adding extra sensitivities; we provide different approaches for
flow, path and context sensitive analyses through modules that can be added to Taint-Things. We present
experiments to evaluate Taint-Things by running it on a SmartThings app dataset as well as testing for
precision and recall on a set generated by a mutation framework to see how much coverage is achieved
without adding false positives. This shows an improvement in performance both in terms of speed up to
4 folds, as well as improving the precision avoiding false positives by providing a higher level of flow and
path sensitivity analysis in comparison with one of state of the art tools.

INDEX TERMS Internet of Things (IoT), security, smart homes, static analysis.

I. INTRODUCTION
Today, more devices such as everyday utilities, home appli-
ances, cars and other items are being embedded with software
and are getting connected through the internet, giving rise to
the concept of Internet of Things (IoT).While this technology
brings with it lots of advantages, it also opens the door for
many vulnerabilities, making the study of the security aspects
of this technology very crucial.

One of the main concerns in the field of IoT is the potential
risk of sensitive data leaking. And with the increasing pop-
ularity of the technology, tackling this issue becomes more
necessary. By their nature, IoT apps and devices commu-
nicate through the internet, messages and notifications, but
with bad coding practices this could end up posing a serious
risk of exposing the users’ private information. Furthermore,
malicious applications could be specifically designed to hide
their malicious behavior through undeclared breaches.

The associate editor coordinating the review of this manuscript and
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In a report by the Open Web Application Security
Project (OWASP) that listed top 10 IoT vulnerabilities for
the year 2018 [24], shown in Table 1, it included the risk of
insufficient privacy protection as number 6. This indicates the
risk of apps using sensitive information in a non secure man-
ner or without permission. With the vulnerability of insecure
network services being number 2 on the list, this increases the
importance of providing a way to track private information
within the app and detecting whether the information can
be sent over networks, whether as messages, notifications or
through the internet, which might not be secure.

The scope of our problem is detecting the potential data
leaks in IoT applications in the form of tainted data flows
from tainted sources, which are variables or parts of the
code containing sensitive information, to sinks, which are
functions that can leak the information. This happens when
certain variables are communicated or pushed through a chan-
nel which can be compromised. This can be caused either
by carelessness by the programmers or intentionally by an
attacker. Programs can falsely provide descriptions and ask
for permissions to do certain functionalities which might
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TABLE 1. OWASP IoT Top 10 Vulnerabilities [24].

violate users’ privacy without them knowing. This can be
done either maliciously or due to bad programming practices.
We aim in this research to deal with this issue and provide
an approach to check the source code for cases where such
leakage could potentially happen. Our approach provides
a quicker core analyzer as well as adding sensitivities as
modules which can help detect the parts in the code that
contains tainted flow and potential leakage. This could help
the developer or the reviewer to scrutinize them further and
put safety measures in place if needed.

This paper is an extension to our previous short paper [29],
where we briefly presented an efficient and scalable static
analysis approach and tool, Taint-Things, to identify infor-
mation leakage in smart things apps. The approach provides
security auditing reporting via computing and presenting
tainted flow security slice directly from the code using an
inductive transformation paradigm [19].

And the main contribution of this extended paper is:
• Extends Taint-Things with flow-, path-, and context sen-
sitivity analysis and that to improve the tool’s Precision
and Recall.

• An experiment that evaluates Taint-Things Precision and
Recall after adding flow-, path-, and context sensitivity
analysis.

• We demonstrate that static analyses on IoT can be
pushed to be quicker and cheaper by doing the analysis
directly on the source code, with the right tools and with-
out needing a lot of intermediate representation. This
gives us the ability to explore ways to further increase
in precision with less cost.

Our approach and tool can be used to give more trans-
parency to the user in terms of applications’ functionality
by reporting tainted flows which are potential areas in the
code that contain and may leak sensitive information, as well
as providing developers and reviewers with a beneficial tool
which can automate the process of detecting tainted data
flows. Our approach reports potential vulnerable tainted flow
in a form of a concise security slice, that is the relevant parts
of the code containing the flow. Our approach and tool could
provide security auditors with an effective and precise tool to
pinpoint security issues in SmartThings apps under test.

In the following section, Section II, we provide a back-
ground and an overview of some the concepts related to our
research, which includes static analysis, sources and sinks,

Listing. 1. SmartThing app structure.

and sensitivities. In Section VI, we provide a literature sur-
vey of publications related IoT security as well as some
relevant research done on static analysis in Android apps.
In Section III we demonstrate our approach and its implemen-
tation. The following Section IV we explore ways for adding
more precision by handling flow, path and context sensitiv-
ities, respectively and evaluating them and on Section V we
present an evaluation for our tool and the approaches that add
precision.

II. BACKGROUND
The scope of this paper is the issue of privacy leakage in
IoT apps. We present a method of detecting potentially leaky
IoT apps, illustrated by SmartThings apps, by analysing their
source code, and trying to seeways of improving the analyses.
To start off, we provide some of the important concepts that
are used within this study.

A. THE PLATFORM
IoT has many frameworks, platforms and vendors, and
while they might differ in the way they handle permissions
and granularity, they share key concepts. Such platforccms
include: Samsung’s SmartThings [27], Apple’s HomeKit [3],
openHAB (open source) [23], Vera Control’s Vera3 [10],
Google’s Weave/Brillo [15], and Open Connectivity Founda-
tion’s AllJoyn [14].

Celik et al [8] point to five IoT specific challenges when
it comes to the security of the platforms. Namely, the issues
of physical channels, simulation and modeling, test genera-
tion, multi-app analysis, and interaction between devices and
platform services.
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Physical channels is an issue because IoT devices con-
trol physical devices, which puts additional security risk
through the physical processes. This can be through side-
channel leaks, health related risks, and risk from indirect
interactions.Side-channel leaks can happen for example when
an adversary use the changes in an IoT device to infer whether
someone is at home or not, Health related risk is a seri-
ous issue with IoT devices, since they control things like
temperature or sound. IoT could also be indirect controlled,
for example, by altering the environment around it, one can
control certain devices.

Simulating IoT platforms is also challenging, since IoT
devices often communicate with each other and act as a
complex system. This, and the fact that IoT devices interact
physically with their environment makes modeling and sim-
ulation challenging. This can affect how well one can study
the security aspect of the whole system.

Additionally, since IoT is a new field, systematic and auto-
matic test generation is still an issue that is not explored well.
This is especially important for dynamic analysis.

IoT apps can also interact with each other; their events
could be tied to each other or they can interact with the same
device at the same time. This proposes a challenge when
analyzing the apps and makes it necessary to consider the
behavior of multiple apps at once.

Furthermore, IoT devices can interact with other platforms,
such as network APIS or authentication services. This adds to
the complexity of the analyses where the platform service and
its interactions should be considered in the analyses.

We chose to start our study with a focus on Samsung’s
SmartThings because it is one of the more mature platforms
with a good user base and it shares the important principles
with the other platforms. SmartThings has three components:
the hub, the apps and the cloud back-end. For our research,
we are concerned with the apps and potential vulnerabilities
in their programming. The scope of our research is thus
specific to challenges relevant to the app side rather than the
whole system.

SmartThings apps have security measures such as privilege
separation, secure storage and apps are written in a sandbox
environment, where features are limited for more security.
Nonetheless, the platform raises some security concerns such
as WebServices where HTTP endpoints get exposed and the
use of call by reflection. This can propose a vulnerability
if combined with over-privilege; an attacker can use this to
execute command injection attacks. There is also little restric-
tion on the communication abilities through the internet or
through SMS, which can be used to leak sensitive information

One of the challenges when studying the system is the fact
that it is closed-source, uses a proprietary environment for
the execution and the system does not have publicly available
APIs to obtain binaries. This makes dynamic analysis hard.

The apps in SmartThings are written in Groovy, a language
like Java, and developed in a sandbox which limits it to spe-
cific functionalities relevant to IoT development. The usual
structure of a SmartThings app is comprised of the following

sections: definitions, preferences and the events/actions sec-
tions.

The definition section is where the application’s name,
description, category and other information are described.
The preferences section is where permissions are defined for
different devices as well as user inputs. Event/action sec-
tions define the methods which will perform actions required
whenever an event is triggered.

SmartThings apps are event-driven by design, like Android
applications, they do not have main functions. Instead, they
have events that triggers the method calls. Some of the
language-specific unique features include closures and call
by reflection. Closures can be used to loop and perform action
on a defined list of elements and call by reflections allows
for the calling of methods by using their name in strings.
Listing 1 shows an example of the structure of a SmartThings
app as well as examples of closure and call by reflection
usage.

B. STATIC ANALYSIS
Program analysis can be used to solve different problems,
whether it is checking for the correctness of a program,
finding ways to optimize it or improving its security. Under
the umbrella of security, program analysis can be used with
IoT apps to detect sensitive data leakages. It can be done
either static, without executing the source code, or dynamic,
during run time. Static analysis requires access to the source
code but has the advantage of providing more coverage
and enables us to examine the structure of the code, while
dynamic analyses is limited by the scope of the code being
executed.

When it comes to analysis tools, we care about certain
attributes such as soundness and completeness.Where sound-
ness deals with the correctness of the reports and complete-
ness deals with covering all what’s there to report. Measures
used to evaluate correctness and completeness are precision
and recall. Precision gives an idea of howmany false positives
are being reported from the total positives and Recall gives
an idea about completeness by calculating how many true
positives are reported out of all the positive cases. Making
a perfect static analysis tool can be an impossible task, so we
depending on the task, we can try to achieve certain features
with trade-off from others.

We use a static analysis approach to tackle the problem of
data leakage in IoT programs, where we perform the analysis
directly on the code without executing it. The goal of the
analysis here is to detect the flow from sources of potential
sensitive data to sinks which are potential data leakage points
in the code. If a flow contains sensitive information, we con-
sider it tainted and we report it.

Different factors might contribute into the analysis preci-
sion. Precision being the value of avoiding false positives.
In the following subsections, we present an overview of pat-
terns that exist in IoT programswhich can affect precision and
how an analysis could takes them in consideration, making it
a sensitive one:
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1) FLOW SENSITIVITY
A flow sensitive analysis takes in consideration the state-
ment execution order in the program as well as content
change in variables. Listing 2 shows a sample code where
the original variable message contains sensitive data and is
passed to the sink sendPush but after it is changed, it is
sent to sendSms. A flow sensitive analysis takes that into
consideration and marks sendSms and sendPush’s data flows
differently with sendSms being not tainted, since it accurately
detects no sensitive data being sent through it, while an
insensitive approach will confuse the two and mark sendSms
as a tainted sink, sincemessage contained sensitive data at one
point.

Listing. 2. Flow sensitivity example.

To achieve flow sensitivity we can deal with each changed
variable as a new variable all together; each variable would
only be assigned a value once.

2) PATH SENSITIVITY
A path sensitive analysis takes the execution path in consid-
eration. This is exemplified in how it deals with conditional
statements; a path sensitive analysis would treat each con-
ditional block as a separate path. Listing 3 illustrates this; a
path sensitive analysis would only detect sendSms on line 5 as
a tainted sink, while an insensitive approach will mark both
sendSms and sendPush.

Listing. 3. Path sensitivity example.

Another issue related to path sensitivity is implicit
flows, which are flows that occur implicitly when a con-
ditional statement depends on sensitive data. In Listing 3
sendSms on line 12 doesn’t send any sensitive data, but
it is in a conditional path that depends on testing sensi-
tive data. In a path sensitive approach that takes implicit
flows in consideration, the whole conditional block would
be considered tainted and sendSms on line 12 would be
declared a tainted sink, while a path insensitive approach
or one that doesn’t take implicit flows in consideration
won’t mark it as potentially containing or leaking sensitive
information.

Listing. 4. Field sensitivity example.

Listing. 5. Context sensitivity example.

3) FIELD SENSITIVITY
A field sensitive approach differentiates between the fields in
an object as apposed to treating them as if they were the same.
This is mainly relevant when dealing with global variables
in SmartApps; global variables are stored as fields in an
external object. Listing 4 shows an example of two global
state variables. In a field sensitive analysis, each one would
bemodeled as its own, while an insensitive onewill treat them
as if they were the same variable throughout the program.

4) CONTEXT SENSITIVITY
Context sensitivity mainly deals with function calls and call-
backs within the program. A context sensitive analysis iden-
tifies each call as its own and can track back to the context of
the call.

Listing 5 shows a case where a method gets called twice.
In a context insensitive analysis, both calls on lines 4 and
5 might be conflated, so the tainted return in firstCall will
also be considered in secondCall, marking the flow tainted.
A context sensitive approach on the other hand, doesn’t con-
fuse method calls and distinguishes each call site, so it won’t
mark the flow to sendSms tainted.

C. TXL
TXL [11] is a programming language that can be used for
program transformation. It is a Functional/Rule-based hybrid
language. A TXL program has twomain parts, a grammar and
transformation rules. The grammar part defines the syntax of
the inputted program and allows for the TXL to recognize and
parse its structure, while the transformation rules modifies it
by replacement and alteration. Listing 6 is an example of a
grammar for program made of a simple arithmetic statement;
it specifies arithmetic expressions’ priorities, their structures
and their syntax. Listing 7 is an example of a transforma-
tion rule using the provided grammar to replace addition
expressions with the result of the operation. The rule tries to
find any expression that matches the provided pattern, and
replaces the two numbers it matches with their sum. The
number [+ number] is the built-in TXL expression for
addition.
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Listing. 6. TXL grammar.

Listing. 7. TXL transformation.

D. TESTING PLAN
To test our we work we conduct a comparative analysis with
the state-of-the-art available tool on a dataset of the available
SmartThings apps which are either provided officially or by
third-parties by the community. We used a computer with
similar specs to what the state-of-the-art the tool used to
evaluate the speed and we look into the real time and CPU
time taken to analyse the full dataset. We also manually check
the reported flows by both tools by looking into the code and
confirming that the results are sound.

For the added sensitivities, we also use a mutation dataset,
which is based on the original dataset but adds patterns
which contain patterns that require flow, path and context
sensitive analyses to avoid false positives. We calculate
the precision and recall for the results for our tool when
adding the sensitive analysis and compare it to the original
without it.

III. TAINT-THINGS
To implement our static analysis approach we use TXL [19].
The components of a TXL program are a grammar and a set
of transformation rules. The grammar specifies the structure
of the input while the rules specify the patterns that TXL will
detect and replace to produce the output.

The challenge for the identification of a tainted flow is to
trace dependencies backwards in the program to mark only
those statements that can influence the marked tainted sinks.

Static taint analysis techniques, such as SAINT [9], build a
dependency graph for the program and then use graph algo-
rithms to reduce it to the tainted flow, which is mapped back
to source statements afterward. The idea of using dependency
graphs goes back to Thomas Reps. et al. [17]. However, in our

approach we compute dependency chains directly, using the
inductive transformation paradigm.

The approach uses a related TXL paradigm called cascaded
markup. As Figure1-‘‘Taint Analysis Core Module’’ demon-
strates, the approach starts with marking sink statements,
analyzing them recursively, finding and marking statements
which directly influence them and then those that influence
those statements, and so on until a fixed point is reached. This
fixed point occurs when a potential tainted source is identified
or when no more propagation can be done. As stated earlier,
an example of potential tainted sources are user input identi-
fiers that have been defined as part of the preference block in
the SmartThings app. For the cascaded markup, we consider
an assignment to a variable to be part of a tainted flow if any
subsequent use of that variable exists in a sink.

The other markup propagation rules are simply special
cases of this basic rule that propagate markup backwards into
loops and if statements, around loops and out to containing
statements when an inner statement is marked, Figure1-Path
Sensitivity Analysis. The whole set of markup propagation
rules is controlled by the usual fixed-point paradigm that
detects when a tainted source is hit or when no more prop-
agation can be done. The analysis as well takes care of taint
propagation via methods calls and returns, Figure1-context
sensitivity Analysis.

A. TAINT ANALYSIS-CORE MODULE
1) BUILDING A TXL GRAMMAR
The TXL grammar is considered as the most crucial com-
ponent. It specifies the way TXL parses the program, like
context free grammar (CFG), it analyzes the program into
its components, which are the non-terminal statements, and
further specifies the components of each statement down to
terminal components, such as operators and operand.

Since our first step is to support SmartThings applications,
which use Groovy, we must start with a grammar for it.
Groovy grammar for TXL is not readily available, so we had
to develop it ourselves. This could be done in two ways;
since Groovy is similar in many ways to Java, we could
override the available TXL Java grammar [12], tailoring it
to Groovy, or we can start from scratch, writing a Groovy
specific grammar.

We tried the first approach. Starting with the Java grammar
and trying to parse Groovy applications, patching it up when-
ever it fails. We found out that as programs got bigger and
used more Groovy specific features, the grammar was unable
to parse them, resulting into errors, and was getting harder
to maintain and patch. We developed and adapted 1400 lines
of code and were only able to get 80% of the dataset to
parse. The lack of semicolons as command separators and
string interpolation were the biggest issues. This is because
most statements in Java must end with semicolons while in
Groovy, semicolons are optional and string interpolation has
the challenge of dealing with call by reflection where you can
call a method from within a string.
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FIGURE 1. Taint-things approach architectural diagram.

Listing. 8. Example of problematic statements.

For the second approach, crafting a TXL gram-
mar, we needed to start with an extended Backus-Naur
form (EBNF) for Groovy. However, this isn’t provided in
Groovy’s official documentation. Instead, the official repos-
itory offers parser and lex files generated from ANTLR [2]
which can still give us an idea of the structure of the language.
We used these as a starting point in our grammar inference
process. With this approach, we developed 600 lines of code,
and achieved 100% success rate in parsing our dataset.

2) IDENTIFYING SINKS
Taint sources are defined as variables or information which
get passed in the application and potentially contain sensitive
information. On the other hand, sinks are defined as functions
which pass the information and potentially leak it. In our
approach, we identify the grammatical forms for all potential
sources and sinks for SmartThings IoT app described by
Celik et al. [6]. Their list includes the following sources:
device states, device information, location, user inputs, and
State variables. Listing 9 shows an example of a defined user
input in a SmartThings app.

Then we add those patterns to the grammar description of
our analysis tool. Listing 10 provides an example of how we

Listing. 9. Example of a user inputted variable in a SmartThings app.

Listing. 10. TXL grammar definition for sinks.

grammatically define sinks functions used in SmartThings
apps and identified by our tool. This approach provides flex-
ibility by allowing us to add or remove potential sources
or sinks; to do that, we can simply modify the grammar
description for sources and sinks patterns. This change will
not impact our analysis, since our rule based pattern matching
engine will match by the pattern category rather than the
individual patterns elements.

The first step of our approach is identifying the the sinks
in a program. Since sinks are limited and usually less than
the sources, it is generally easier to start with them and do
backward tracing from there. In this step our tool parses the
program and iterates through its statements. If a statement
contains one of the defined sink functions, it labels the sink
function. It also tags every variable and method declaration
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Listing. 11. Sinks marking output.

with their respective line numbers. Listing 11 shows an exam-
ple based on a SmartThings apps and shows how it gets
processed then at this step the sink, sendPush(message) gets
marked with the label < sink > .. < / >. Not that when the
source code is inputted in TXL, identifiers are labeled with
their line numbers.

3) DOING BACKWARD TRACING
In the second step of the analysis process, our approach tracks
the variable that is being passed to the sink, traces it andmarks
the lines where it’s contained all the way to a source. This is
done by recursively going through the methods, extracting
the line numbers of invoked methods and line numbers of
returned values and using them to track and mark statements
that contain a tainted variable, tagging it with the line number
where it gets passed to.

In the following listing 12, the variable message is passed
to the sink. And message has another variable evt which is
passed to the function motionDetectedHandler. In the pro-
gram initialization this function is subscribed with the source
user input themotion. The subscribe statement is tagged with
the line number where the function is defined.

4) IDENTIFYING TAINTED FLOW
In the next step of the analysis, the data flow gets drawn.
To do that, the previously marked lines are tagged with the
line numbers where their variables gets passed. Those get
used in determining the feasibility of the flow by constructing
a tree from the tagged statements as nodes. For the report, the
code is cleaned by removing unmarked statements. The report
is generated using the constructed tree for the line numbers
containing tainted dataflow. Finally, variable and method
declaration line numbers, tagging the source and presenting
a summary of the data flow. The output from Taint-Things
is shown in listing 13 where the numbers on top are the
summary representing the line numbers of the flow and the
source code gives the details to where it exists. An example
of a real SmartThings app and the analysis steps is provided
in the Appendix.

IV. PRECISION ENHANCEMENT
While we’ve seen that the core module of Taint-Things by
itself is satisfactory in terms of detecting potential leakages
as the tests on the dataset show, we wanted to see if there are
ways to improve it by making it more resistant to potential
false positives and more precise. Since it is fast and light in

Listing. 12. Back tracking output.

Listing. 13. Taint flow report.

its performance, in this and the following sections, we want to
explore howwe can improve the precision by adding analyses
sensitivities. This can help us minimize false-positives in
certain cases. In this section we’ll look into the case of flow
sensitivity which is relevant in the case of variable reassign-
ment throughout the code.

A. ADDING FLOW SENSITIVITY
A flow sensitive analysis takes in consideration the order
of statement execution in the program as well as content
change in variables. A flow sensitive analysis takes the vari-
able’s value changes into consideration while an insensitive
approach does not. This can result into false positive reports.
Currently, this is the case with both Taint-Things and SAINT,
if we test the program in listing 14 they both mark the flow
as malicious even though it is benign.

To avoid conflation in this case and achieve flow sensi-
tivity, we can deal with each variable change as if it were a
new variable; each variable would only be assigned a value
once. This is the same concept used in static single assign-
ment (SSA) formwhere each variable in the code is assigned a
value once. Listing 15 shows Listing 14 in SSA form. We can
process the inputted program and transform it into this form,
which we later can chain into Taint-Things. This form will
provide more precision when dealing with variable reassign-
ments and will solve the issue of false positives resulting from
them.

We have implemented this approach and written a TXL
program that does this transformation. Using the groovy
grammar, we analyse and detect all the assignment statements
in a program as well as the identifiers. The program marks
all declaration statements in the inputted program. It then gets

VOLUME 10, 2022 80733



B. Nazzal, M. H. Alalfi: Automated Approach for Privacy Leakage Identification in IoT Apps

Listing. 14. Flow sensitivity example.

Listing. 15. SSA form example.

FIGURE 2. Taint-things with SSA or function cloning.

the variable’s identifier from each declaration statement and
assigns a unique variable identifier for that declaration state-
ment. Finally, it replaces any instance of the old variable with
the newly assigned identifier. Listing 16 shows the detected
assignment statements in Listing 14. The result is then passed
to the core analysis module as shown in Figure 2.
Algorithm 1 represents the SSA-form generation pro-

cess. Starting from top to bottom. We lookup identifiers
that match the one defined in the assignment statement,
then we give that identifier set a new unique variable
name. Repeating this processes, we go through each assign-
ment statement and its associated identifiers. The result
will be a program in SSA form, where every assignment
statement gives us a uniquely named variable and avoids
conflation in the case of reassignment. This can later be
chained with our analysis tool, giving us a more precises
analysis.

Going through the program’s statements, if we encounter
an assignment statement, we extract the variable V from
the left-hand side (LHS). We assign a counter C(V) for it
and use that to assign a new unique variable name for it.
We then go through the rest of statements and if we find a
statement containing the original variable, we replace it with
the new variable. After that loop is finished, we go to the next
assignment statement, and if it contained the same variable
name, it will increment its counter, otherwise it’ll be assigned
a new counter.

Algorithm 1 Rename Variables in a Program to Adhere
to SSA Form
Input: A program’s source code
Output: Program’s source code in SSA form

1 for each variable V do
2 C(V )← 0
3 end
4 for each statement A in program X do
5 if A is an assignment then
6 get V from LHS(A)
7 i← C(V )
8 C(V )← i+ 1
9 replace V by new Vi in LHS(A)

10 for statement B, from A to end do
11 if B contains a variable that is equal to V

then
12 i← C(V )
13 replace by new Vi
14 end
15 end
16 end
17 end

Listing. 16. Assignment statements.

B. ADDING PATH SENSITIVITY
Following the previous section, we look in the case where the
flow goes through a conditional statement, where it branches
into different paths. We introduce path sensitivity and look
in how we can achieve it by taking all possible branches in
consideration.

A path sensitive analysis takes the execution path in consid-
eration. This is exemplified in how it deals with conditional
statements; a path sensitive analysis would treat each condi-
tional block as a separate path. This is important when trying
to convert the program into SSA form. Figure 3 showcases
this where the variable sent through the second sendSms could
either be variable2 or variable3 depending on whether the
if-statements is executed through the true branch or the false
branch.

This is a challenge when using SSA form to deal with flow
sensitivity for such cases. The problem is exemplified when
dealing with conditional statements, such as if-statements
and switch statements. In our thesis we’re going to focus
on if-statements. These present branching in the program’s
execution path. A precise analysis takes these branches in
consideration and provides all possible cases where a leakage
can occur while avoiding false positives.

In its simplest form, this problem can be represented with
a single if statement. This will give us two branches; a
branch when true and branch when false. To achieve that
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FIGURE 3. Example of potential paths from an if-statement.

and generate these paths from an inputted program, we wrote
two TXL transformations. One that removes the if statement,
while preserving the new lines. And another that extracts the
statements from its body.

At this point, we have the base case solved, but a program
could be more complex; it can contain an if-else, multiple if
statements, nested if statements or a combination of these.
We want to generate all the possible branches from these.
To solve this problem, we can recursively generate the true
and false paths from the program, removing the if-statements
in the process, until we reach the base case.

To do this, we wrote a python script. The script would be
responsible for recursively calling the TXL transformation
for generating the true and false paths for one if-statement at
a time, taking the output and rerunning the transformations,
until no if-statement is left. This way we can generate all
possible paths from any program with multiple or nested if-
statements. After this stage, we would have gotten all the pos-
sible paths. Figure 4 shows an example of how the program
would run on a program with two if statements, generated all
the possible four paths.

For if-else statements, for the initial implementation we
were converting else statement into if-statements and gen-
erating the paths from there using the same method. This
approach would end up generating four paths for an if-else
statement, with two impossible paths, the path of executing
both the if and else clauses and the path where neither is
executed. In our later implementation, we changed the way
we deal with them so that if we consider the path where the
if clause is true, the else clause is always skipped, and if we
consider the path where the if clause is false, the else clause
is always executed. This accurately produces two execution
paths for the if-else statements.

As for the final output, each program would give us multi-
ple paths. Each path would be represented by a combination
of T and F symbols. T for true path and F for false. And the
python script would connect these outputs with the SSA trans-
formation and Taint-Things to preform the analysis. To give
an example, if we take listing 17 as an input, the output
produced by our path sensitivity framework is batch report
for the two possible paths as showed in listing 18. We can see
both possible paths generated and that one path has a tainted
flow reported while the other is benign.

The full implementation can be described as follows. The
goal of this module is generating the possible execution paths

FIGURE 4. Example of path generation from two if-statements. Grey lines
are deleted while green lines are kept. Top branching represent a True
path and bottom branching represent the False path.

Listing. 17. Path sensitivity example.

in the program by generating the true and false branches
from if-statements. This is done by running the analyzer to
mark statements that are within potentially tainted flows.
To check if an if-statement exists that contain a tainted state-
ment, the module parses the inputted program statements and
matches if-statements. It then deconstructs them to see if
they contain a marked statement. If such if-statement exists,
a TXL program that generates the true path and a TXL
program that generates the false path are run. A false path
is generated by parsing the program statements, matching
if-statements, replacing its content with newlines and decon-
structing else-statements and replacing it with the contained
statements. A true path is generated by deconstructing the
if statements and replacing it with the contained statements
and replacing the else-statement with new lines. The program
then recursively repeats the process from the output of the
path generation until no if-statements are left. Each output is
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Listing. 18. Path sensitivity output.

then cleaned from statements markings and is passed to be
analyzed. This is illustrated in Figure 5.

Algorithm 2 Path Generation
Input: A program’s source code
Output: Multiple programs representing the possible

execution paths

1 Function handleIf(X):
2 if X contains an if-statement then
3 truePath← generateTruePath(X )
4 falsePath← generateFalsePath(X )
5 handleIf (truePath)
6 handleIf (falsePath)
7 end
8 end

The first thing to note is that this process can be costly
in terms of performance. As we have seen, with each
if-statement, the program would have double the branch-
ing. This grows exponentially with each if-statement added
and eventually means that the analysis will be done 2n

the times of how many if-statements there are in the pro-
gram. To illustrate the frequency of if-statements in each
of the dataset’s apps, in each app we counted how many
if-statements exist using a TXL program, then organized
the results in a histogram showing how many apps have
a frequency of if-statements. Figure 6 shows the histogram
frequency of if-statements in the dataset’s apps. We noted
15 apps having over 50 if-statements and can be considered
outliers. We excluded these 15 apps in figure 7 to show a
better detail of the frequency distribution. In our tests we’ve
seen that a program with more than 12 if-statements becomes
too large to add path sensitivity in a practical way. And since
the growth is exponential, with each if-statement making at
least two possible branches, we want to optimize the process
and try to deal with as little if-statments as possible.

One way of optimizing this is doing the transformations
on all the methods at once. So, a program with two methods,
each with one if-statement, would only produce two paths,
instead of four. So the amount of paths generated would be

FIGURE 5. Taint-Things with path sensitivity.

the exponential of the maximum number of if-statements
in one method rather than the total of if-statements in the
source code. Figure 8 shows a histogram of the frequency of
the maximum if-statement in one method in each app in the
dataset. We can see this effectively lowering the amount of
possible branches, with less apps having over 12 if-statements
that we have to deal with, but this can come on the expense
of context-sensitivity and sometimes ignores certain possible
paths that affects a flow through multiple methods; this can
happen if two methods, dependant on each other, containing
if-statements that affect the same data flow.

Another thing to note is that not all paths generated neces-
sarily affect the dataflow, so some programs will have multi-
ple paths with the same dataflows reported on different paths.
One way to overcome this and provide better optimization
is to only consider if-statements that affect the flow. To do
that, we can perform a path-insensitive analyses to mark the
sinks and backtrace, marking statements in the data flow, then
performing the path sensitivity analyses where we generate
paths only from if-statements containing the marked state-
ments, and finally performing the analyses again on the paths
to generate results. Adding two analysis steps is considerably
cheaper than the exponential cost of performing the analyses
on all if-statements that don’t effect the flow. Figure 9 shows
the frequency of if-statements that actually affect the flow
in the apps dataset’s app. It shows that it can significantly
reduce the required amount of if-statements to process in
most apps.

C. ADDING CONTEXT-SENSITIVE ANALYSIS
The previous two subsections, we looked into how the flow
can affected through variable reassignment and how condi-
tionals can affect that. But sometimes variable reassignment
is done through a method calls. Handling method calls and
their return values with precision can also pose a challenge.
In this section we look into this case where the flow goes
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FIGURE 6. If-statement frequency in the dataset apps.

FIGURE 7. If-statement frequency without outlier values.

FIGURE 8. If-statement frequency with method-centered optimization.
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FIGURE 9. If-statement frequency with method-centered optimization.

Listing. 19. Context sensitivity example.

through method calls and how to handle the context of each
call.

A context sensitive analysis takes the context of each
method call in consideration while a context insensitive
approachmight confuse them andmark every call to amethod
as tainted if at one point there were one tainted call. If we
take listing 5 where a method gets called twice, once with
a tainted flow passing through it and another with a benign
flow. In a context insensitive analysis, both calls on lines
4 and 5might be conflated; the method is marked tainted after
firstCall, so secondCall will also be considered tainted and
the flow tainted. A context sensitive approach on the other
hand, doesn’t confuse method calls and distinguishes each
call site, so it won’t mark the flow to sendSms tainted.
One way to add the sensitivity is through method cloning.

Where, similar to the SSA approach, we assign each method
call a unique call name and clone the function with it. This
assures that each call sight is treated uniquely and no confla-
tion happens. This can be costly if there is a lot of nesting in
the methods and won’t work properly in the case of recursive
functions. Another disadvantage of this approach is that it
affects the line numbering of the data flow; depending on
where the cloned functions are placed in the source code,
the data flow will go through them rather than the original
methods. If we apply that to the previous listing, the result
will be like listing 20.
We wrote a TXL program that can be used to do method

cloning in the program, by identifying any method call,
assigning a unique method name to it and cloning the method

Algorithm 3 Rename Method Calls in a Program and
Make Clones of the Original MethodWith the NewName
Input: A program’s source code
Output: Program’s source code with function cloning

1 for each method M do
2 C(M )← 0
3 get method nameMN from M
4 end
5 for each statement MC in program X do
6 if MC is a method call and MC equals MN then
7 i← C(M )
8 C(M )← i+ 1
9 replaceMC with newMCi

10 copy M body and replaceMN with MCi
11 end
12 end

Listing. 20. Function cloning example.

definition using the new name. This is done by parsing the
inputted program and iterating through defined methods.
Extracting the method’s name, parsing the program, and for
any expression with a method call that matches the method
name, constructing a new unique method name. It then con-
structs a clone of the defined method but assigns the unique
method name to it, and replaces the call to the old method
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TABLE 2. Comparative analysis of SainT and Taint-Things.

with a call to the new name. Finally, it appends the program
with the newly constructed cloned method

V. EVALUATION
A. EVALUATING TAINT-THINGS
In this experiment we try to answer the following two
research questions:
• RQ1: How does our static taint analysis approach com-
pares with other available approaches in terms of accu-
racy and performance?

• RQ2: Whether our approach added modules for flow,
path and context sensitivity minimize false positives?

To answer RQ1, and to measure Taint-Things’s performance
in terms of correctly detecting apps containing potential
leakage and the speed of the process, we have conducted
a comparative analysis experiment with SAINT tool [7].
We collected SAINT’s analysis reports on our dataset and
then manually compared their findings with ours. The dataset
included 264 applications; 42 official SmartThings Market-
place apps, 144 official apps provided by the community,
59 third-party apps collected from the forums and 19 apps
specifically developed by the SAINT team to include com-
mon vulnerabilities available online under IoTBench test
suite [18].

A thing to note in our comparative study is that some
applications would timeout on each of the tools, whether it’s
due big size or convoluted function calls. SAINT’s web portal
having around 42 cases while our tool had 18. For this part of
the comparative analysis, we excluded all cases of timeouts.

Table 2 presents the summary of our comparative analysis
with SAINT. The table presents the number of apps that
were reported malicious, due to potential leakage of sensitive
information in the form of at least one tainted data flow,
vs. those that were identified benign. Our results matches
SAINT’s results in terms of finding which apps have mali-
cious flows except in 5 apps where we report them containing
potential tainted flows while SAINT reports them as benign
and doesn’t report any potential leakage. The criteria for this
comparison was looking at what sinks SAINT was reporting
and checking if it reported a potential flow being passed to
those sinks.

In addition to comparing our results with SAINT, we veri-
fied that our findings were accurate by checking the source
code and seeing that the reports matched it. For the cases
with mismatched results, we found that the the reason for
this is due to lack of field sensitivity in our tool and how
we handle state variables. In our tool, we considered any
state variable to be a potential source and so mark the flow

TABLE 3. Comparison of the benchmark set between Taint-Things and
SAINT.

from it as tainted. This can be addressed on the grammar
level and how the program parses state atomic variables. For
this case our tool has a more generalized approach when
detecting flows from state variables, resulting in the apps that
our tool marked and SAINT did not. When looking in the
detailed results and comparing the flows reported in each app
we’ve also found that SAINT can report some hard-coded
strings as potential leakage sources if they resemble a number,
where our app considers hard-coded strings as benign. This
can be added by using regex to detect strings that contain
phone number patterns or utilize natural language processing
to detect strings that can act as sensitive data sources, but at
this point, this is beyond the scope of our research.

Table 3 shows the reports provided by the two tools, Taint-
Things and SaINT when running the benchmark set. Here,
we provided the reports as is, but it should be noted that
the way the two tools report their results are different, hence
the need for manually checking each case. For example,
SAINT’s report starts with all the detected sinks and all flows,
regardless if they were tainted or not, and reports the findings
based on the source variables, while Taint-Things only reports
tainted flows in the summary and bases the report on the line
numbers. When manually checked, we found that the actual
tainted flows detected generally match between the two tools
with the exceptions mentioned previously, which are state
variables and hard coded strings.

The answer to our RQ1 is: The core module of
Taint-Things accurately detects the same tainted flows that
SAINT detected while showing significant improvement in
speed. Celik et al. [6] reported on the SAINT’s results on a
230 dataset, using a 2.6GHz 2-core Intel i5 processor and
8GB RAM took around 16 minutes to evaluate the batch,
while an individual app took 23 ± 5 seconds on average.
On the other hand, our tool achieved significant improvement
in performance with at least 4 folds. In addition, our tool
was able to analyse apps that SAINT times out or fails on
startup. detailed results of performance analysis of our tool
is presented in Table 4. This improvement is mainly because
our approach computes dependency chains directly form the
code, using the inductive transformation paradigm, while
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TABLE 4. Performance analysis.

TABLE 5. SSA test results.

TABLE 6. Detailed results when running Taint-Things with and without
SSA form on the benchmarks set.

SAINT builds a dependency graph for the program and then
use graph algorithms to reduce it to the tainted flow, which is
mapped back to source statements afterward.

B. EVALUATING FLOW-SENSITIVE ANALYSIS
To answer (RQ2), evaluate the results of our implementa-
tion with flow-sensitive analysis, we compared the results of
our tool with and without the application of SSA. We used
the previous dataset, which includes 260 IoT apps gathered
from different sources. For the sake of consistency we have
excluded programs that gave errors in the final results; this
included 4 programswithout SSA, and another 4when adding
due to the SSA TXL transformation failing on some apps.
As well as 35 apps using SAINT web app at the time of
the dataset collection. Table 5 shows the results of this test.
The criteria is based on the previous comparison done in the
previous section. We see that Adding SSA does not affect the
final result which shows that no false positives were caused
from the lack of flow sensitivity.

When looking in detail at the results of our tool when
adding SSA form on this dataset and comparing them to the
original results, we saw that the results are identical with

TABLE 7. Runtime performance when using SSA.

TABLE 8. SSA test results.

TABLE 9. Flow sensitivity mutation test.

few exceptions. This shows us that on a real dataset, most
programs do not get affected by adding flow sensitive analy-
ses and there aren’t many cases of variables reassignment in
a way that changes the dataflow. We have included a detailed
look at the results on the benchmark apps from the dataset
in Table 6. We can see that the results are identical with
the exception of call_by_reflection_1 where the SSA form
actually helps in reducing the reported flows; in this case,
without SSA a variable was being conflated with a possible
source and thus flows from it were reported, while the SSA
assigns the variable a unique name avoiding this mixup.

Performance wise, this functionality creates relatively little
overhead. Tomeasure that, we compare the time Taint-Things
takes to run on the dataset, once with the SSA transfor-
mation chained to it and another without it. Table 7 shows
that the SSA transformation had an increase in CPU time
but this translated to having no significant effect on the
real time.

Since we want to provide a definitive answer to RQ2,
we want to accurately measure precision and recall. To
achieve that, we used an independently generated dataset
through a mutation framework that was developed by
Alalfi et al. [1], [25]. The framework generates mutants tar-
geting the evaluation of flow analysis by altering the state-
ments’ order in benign flows to generate leaking ones. The
mutants covered multiple patterns where variable reassign-
ment happen to make the flow tainted or benign and to be
leaked in multiple sink types such as leakage through the
internet, notifications and messages. To compute precision
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TABLE 10. Optimized path sensitivity results.

TABLE 11. Detailed results of optimized path generation and analyses for
the benchmarks Set.

and recall we used the following two equations:

precision =
TruePositives

TruePositives+ FalsePositives

recall =
TruePositives

TruePositives+ FalseNegatives

This dataset included 526 mutants, 263 benign and
263 leaking, adding SSA makes it possible to accurately
report benign apps, while without it, it will be falsely reported
as leaky. On the full dataset, Taint-Things achieves 100%
recall with all the 263 leaking apps detected and 50% pre-
cision with 263 true positives out of the 526 reported leaking
apps, but when adding SSA it achieves 100% recall and 100%
precision with 263 true positives out of the 263 apps.

Overall we can see that adding flow sensitivity though SSA
is inexpensive and doesn’t create an overhead. While the real
dataset didn’t have cases where adding flow sensitivity makes
a significant effect, this functionality can still help in avoiding
the false positive case where a variable can be reassigned a
a benign value and cases where variables can be conflated.
This can be very useful if we apply mitigation to the dataflow,
where we want it to be correctly marked as benign when
applied.

One thing to note when transforming code to SSA form is
the challenge of dealing with the scope. In groovy, variables
are declared global by default. To make a local variable,
it uses the def keyword and then any reference to it would
be local. Also variables declared locally in a method will still
be accessed by block statements in that method. This makes it
hard to generalize a static-analysis approach for dealing with
scopes. In our SSA TXL transformation, we put precedence

Listing. 21. Context sensitivity example.

on the local scope by taking the structure of the inputted
program into consideration. One problematic aspect of this
approach is that some block statements, such as control flow
statements can modify variables outside their scope. Flow
sensitivity by itself ignores that, which can result into false
negatives, as it either ignores variable modification inside
these blocks, or in the case of a conditional statement, it’ll
only deal with one branch of execution. To deal with this
problem path-sensitivity can be used.

C. EVALUATING PATH-SENSITIVE ANALYSIS
To answerRQ2 and evaluate our approach for path sensitivity,
we have run the program on the original dataset. We have
gathered the results and compared them to the previous find-
ings of our tool and SAINT’s.

Table 10 shows a comparison between the results generated
by Taint-Things with andwithout path sensitivity and SAINT.
We used the optimization method described earlier, but it
should be noted that there were still few apps with more
than 12 if-statements that we had to skip, since they end
with a large number of paths that would exceed the ability
of our testing device to analyze in a practical manner. And
for the sake of consistency we also skipped the apps the
introduced errors just like previous comparisons. Since the
path tool actually generates multiple cases for each program,
the criteria we followed for the classification was if at least
one leaking path was detected, the program is flagged leaking
as such. Table 10 shows our findings. We saw that on a
real dataset, there wasn’t any miss-match related to path
sensitivity when it comes to determining whether a program
is benign or leaking. This shows that there were no false
positives related to path sensitivity on the original test. For
a more detailed look in the results, we’ve added the detailed
results on the benchmark part of the set in Table 11 where
we examine how many paths were generated and how many
of them are benign, denoting a possibility of running the
program in a way that doesn’t leak data. We also looked
how many of the leaky paths contained unique new flows,
as apposed to having the same flow reporting in each of them

VOLUME 10, 2022 80741



B. Nazzal, M. H. Alalfi: Automated Approach for Privacy Leakage Identification in IoT Apps

TABLE 12. Detailed results when running Taint-Things with and without
method cloning form on the benchmarks set.

and finally the total number of flows reported in all paths.
Generally the flows reported matches the ones in the SSA
form previously, but the path sensitivity gives more detail to
the cases where each can happen.

In the original version of the path-sensitivity approach
was also independently tested on a set of mutations that
were based on the original dataset to include path-sensitivity
related attacks. The set included 440 mutations with different
leakages of different types; through messages, posting on
the internet and notifications. When tested, it was found
that our tool managed to cover all the possible flows for all
the mutations. From this set, our tool managed to catch all
the tainted flows while avoiding false positives. The results
on this set showed a high level of precision and recall; the
precision is 100% since there are no false positives reported
in that set, and recall is calculated as 100%.

1) EVALUATING CONTEXT-SENSITIVE ANALYSIS
To answer RQ2 and evaluate our approach for context sensi-
tivity, we first wanted to make test case exemplifying the case
and how it is handled by Taint-Things. Listing 21 shows an
example where message1 calls returnMehtod with a benign
string and then gets sent through a sink. The expected result
is that no tainted flow is to be reported. On SAINT, it correctly
reports that there is no potential leakgage. But in Taint-Things
we get a flow from the lines: 3 7 8 2 10. This shows a
context insensitive behavior, where returnMehtod got tagged
as tainted because of message2. And even though the con-
text of the method call in message1 is different, it still gets
conflated and the flow is considered tainted because of that.
But after we run the function cloning transformation on this
example, Taint-Things doesn’t report a tainted flow, which is
the correct context-sensitive behaviour.

We’ve also ran a test on the dataset to see how it affects the
results. Like the previous comparisons, it didn’t have a big
difference on the dataset in terms of labeling apps as tainted

or benign, thus showing that there were no false positives
done due to context sensitivity in the dataset. We found that
there were changes done on how many unique flows and
sinks were detected as well as changes on the line numbers
reported from the original source code. This is due to the flow
running through the multiple newly made clone methods.
Performance wise, the process of function cloning isn’t heavy
in itself, but as the program gets bigger and with more nested
function calls, analyzing the results can be more costly.

Additionally, we’ve tested the tool on a dataset of muta-
tions that adds patterns requiring context sensitive analysis.
With the exception of onemutation operator, our tool was able
to detect all the tainted flows while avoiding false negatives.
For that operator, due to its complexity, the tool had a problem
parsing method calls and ended up conflating them. Overall
it achieved 100% precision and 96.8% recall.

In the mutation testing, if we give equal weight to each of
the three categories of mutators that address the three levels
of sensitivity analysis, we can average their results to get an
estimated overall precision and recall for each of the tools.
When one file is counted as one mutant and the correctness
of the path sensitivity results are considered SaINT has 100%
recall and 56.8% precision, Taint-Things has 99% recall and
100% precision.

For Taint-Things, it can distinguish the change from the
created base file to the generated mutant. But it failed to
identify the mutants generated from one app that contained an
extensive usage of state variable whichmarked it aggressively
as a potential source. It failed for all the benign equivalent
mutants generated from one source app when we only had
sixteen source apps.

VI. RELATED WORK
IoT is still new technology, yet diverse, and it poses many
security challenges. To get an overview of the field, we look
into the previous research done on IoT security. Further-
more, to get a better understanding of the techniques and
approaches, we have to look outside of IoT research and into
different fields such as android apps security, which shares
some similar features, but had more time to mature.

A. IoT SECURITY
Since the field of program analysis for the IoT is still in
its infancy, there is only few related work on this area.
Fernandes et al. [13] presents an approach for exposing vul-
nerabilities in SmartTings IoT apps. They concluded that
many of the existing applications have vulnerabilities, mainly
in the form of over-privilege. This study opened the field
for later research to investigate the security aspects from a
program analysis point of view, trying to provide potential
solutions or ways to detect these problems.

Tian et al. [31] proposed a semantic based approach, with
the objective of better representing applications’ functionality
and privileges to users. While Wang et al. [34] dealt with
the logging problem and interconnectivity. With attention on
the privacy aspect of IoT security, Celik et al. [6] tried to
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programmatically detect sensitive information used in apps
where breaches might happen. Their research introduced
SAINT, which is a static analysis tool that tries to detect
tainted flow through IoT apps’ code, which could lead to
sensitive data leakage. SAINT uses Groovy AST API to help
recover an intermediate representation (IR) where taint sinks
and sources are identified. They proposed using IR as means
of abstracting the code, focusing on the important parts which
might make the analysis easier. Sensitive data flow is then
detected and reported if it is a feasible flow; meaning, the
code can execute the sink function and leak data through it.

Celik et al. [9] also used this approach and applied it on
abuse prevention, the safety and security aspects of IoT apps.
They introduced SOTERIA which performs static analysis
check to find potential vulnerabilities in apps where it is
tested against safety, security and functionality properties.
This could be used both on single apps or in multi-app
environments.

We focus in our research on the issue of privacy leaks using
static analyses, so we looked more into the literature dealing
with IoT app analysis. A literature review by Celik et al. [8]
in 2018, surveyed six available tools that does privacy and
security analyses, one of them, Saint, does static analysis for
data leaks detection.

This comparison looked at multiple features concerning
IoT specific issues, handling of app idiosyncrasy and anal-
ysis sensitivity. Specific issues include: Multi-app analysis,
trigger-action platform support, proactive defense, lack of
runtime prompts. Idiosyncrasies include: RESTful APIs, Clo-
sures and calls by reflection. Analysis sensitivities includes
flow, context, field, path, and provenance tracking.

According to the report Saint provides analysis sensitiv-
ity for all types and handles the mentioned idiosyncrasies.
As well as having no runtime prompts and providing proac-
tive defense. The criteria for path and context sensitivity
that was considered is that the tool does not run infeasible
paths. Saint achieves that by pruning these paths in the IR
using a work list approach. A more detailed criteria would be
considered.

Similar to SAINT, we offer another take on the problem
of detecting potential privacy leaks in the source code, with
the goal of adding more efficiency and exploring ways to
improve the precision. SAINT and SOTERIA implement
their algorithms on the AST of a SmartThings app because of
the constraints on Groovy language and proprietary back-end
libraries. However, in our approach we compute dependency
chains directly from the SmartThings App’s code, using an
inductive transformation paradigm. Our experiments shows
that our approach produces equivalent results with significant
improvement in performance, in speed and memory usage.

B. STATIC ANALYSIS IN ANDROID APPS
We wanted to look more in depth in applications of static
analysis and how sensitivity can be applied to it, so we looked
into tools that run on Android apps. One thing to note in
Android apps is that they have a well-defined IR. So, analyses

can be done directly on that. Soot [30] and WALA [33] are
tools commonly used to convert the source code to its IR.

This approach is what an IFDS framework [26] does; the
code is considered as an inter-procedural, finite, distributive
subset, where it can be represented as a collection of flow
graphs, with the statements and procedures as nodes. The
analyses, then, is treated a problem of graph reachability.
So in this case, an IR can be used to construct call graphs
and used for the analyses.

We started by looking into FlowDroid [4] which is the
first static analysis tool which provides full context, field,
object, and flow sensitivity. It tries to solve problems that
were not handled in previous tools. They are coarse grained
and sometimes over or under approximate. Such problems
happen when the life-cycle is not faithfully modeled, so the
tool misses flows.

It is uses the Soot framework for representing the Java code
and IR. It works by analyzes the byte-code and configuration
file, making a dummy main method and constructing the call
graph to emulate the life-cycle. It then preforms the analysis
on the call graph.

The analysis is on-demand, based on IFDS framework,
which adds context sensitivity, and is inspired by another
tool, Andromeda, but adds more precision. For example,
Andromeda can sometimes lack flow sensitivity, whereas
FlowDroid adds that by using activations statements. One
thing to note is that the IFDS framework and FlowDroid
in extension are not path sensitive. It instead joins analysis
results immediately at any control-flow merge point. Adding
path sensitivity considered expensive.

In literature review of static analysis tools for android
apps [20], the authors looked in multiple tools and their
precision. One of their findings is that path sensitivity was
often overlooked, with only 5 out of 30 of the surveyed tools
provided it: Woodpecker [16], Apparecium [32], Anadroid
[21], THRESHER [5] and ContentScope [36].

Apparecium detects arbitrary data flows. Avoiding entry
point analysis, it directly uses the sinks and sources. It uses
textual representation, smali, for the code which is used to
generate the class hierarchy. It then uses backward slicing for
variables that can be assigned to sinks, followed by forward
slicing for variables that can contain a source, and then com-
bine these. It uses a data flow graph for its representation and
can add paths to it.

Woodpecker detects capability leaks in apps, which are
cases where an app gains permissions without requesting.
Builds a control flow graph from the byte code. It adds refines
it path sensitivity using symbolic path simulation. Anadroid
detects malware in android apps. And uses higher-order
pushdown analyses and entry point saturation. ContentScope
specifically tries to detect two vulnerabilities, passive content
leak and content pollution and uses the analyses to determine
their prevalence in Android markets. For detection of passive
content leaks, it generates call graphs and tests for reachabil-
ity. Thresher deals with the tries to detect heap reachability
using static analysis.
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These studies show different cases where static analysis is
used in phone apps, specifically in Android, to detect taint
flows, capability leaks, specific vulnerabilities or arbitrary
flows. While there is some similarities in the concepts used in
Android apps and IoT apps, like both being event drivenmod-
els, there are differences and challenges specific to IoT.One
problem is that while Groovy gets compiled to Java byte code,
using the Android approaches is challenging due to Groovy’s
dynamic nature which makes it difficult to perform binary
analysis with tools such as Soot. Other differences include
that Android apps can have a straightforward IR, where IoT
platforms on the other hand use different programming lan-
guages, each with its own features and quirks that should be
taken in consideration in the analyses. Naturally, this makes
approaches based on tools specifically tailored for Android,
such as Soot and WALA, not applicable to IoT. And while
SAINT proposed introducing an IR for SmartThings IoT apps
for the analysis, we propose doing the analysis directly on the
source code. This is because SmartThings apps are generally
less complicated, usually smaller in size, contained in one
file and have a simple structure, due to the use of a sandbox
environment, where the programming language features are
limited; for example you cannot define your own classes
when writing SmartThings apps.

However, all the surveyed taint flow analysis techniques
for Android did not provide path sensitivity analysis as it is an
expensive analysis. While we do provide a light weight path
sensitivity analysis without compromising performance. Our
analysis approach can be adapted to other platforms such as
Android. Other members from the team already adapted the
core taint analyser to analyse android apps [22].Their analysis
provided a more accurate with improvement to performance
when compared to FlowDroid [4]. However, that approach is
not yet expanded to enable flow-, path- and context- sensitiv-
ity analysis.

VII. DISCUSSION
In this paper We present a tainted flow static analysis
approach for the identification and reporting of information
leakage in Smarthings IoT apps. For RQ1, we show that
implementing the core analysis directly on the source code
with less preprocessing can achieve 4 fold the speed while
achieving the same results as the available tools. This is pos-
sible due to the simple and defined structure of SmartThings
app.

Our approach automatically transform the source into SSA
form to make the analysis flow sensitive. This approach
avoids false positives that happen due to conflation of vari-
ables in the case of reassigning their values. We provide
a framework for path generation to make the analysis path
sensitive and for it to consider the branching in code execution
and explored ways of optimizing the process to make it more
applicable. We also explored function cloning as a way to
make the analysis context sensitive and to avoid the conflation
of method calls.

When compared to SaINT [7]which parses SmartThings
apps, transforms them into an intermediate representation and
then constructs CFG to reason about taint flow analysis. Our
approach applies an inductive transformation paradigm on
the abstract syntax tree (AST) of the original source code.
The AST is produced as part of the source transformation
stage and is very much influenced by the grammar definition
and overrides. There is no four step process like Saint (Parse,
transform to IR, build CFG, then perform taint flow analysis).
Instead our taint analysis is applied on the original source
codes’ AST. This is true for the core analysis. Providing more
sound analysis requires some pre-transformations, such as
SSA form for flows-sensitivity analysis, methods cloning for
context sensitivity analysis, and path exploration module for
path sensitivity analysis.

Furthermore, for RQ2, we show that flow, path and context
sensitivity can be added as extramodules before the core anal-
ysis and would improve the precision of the tool by avoiding
false positives. We found that the real dataset didn’t contain
major cases that generated false positives due to the lack of
sensitive analysis, but provide them as a way of increasing the
precision and avoiding potential false positives especially in
the cases where a mitigation is introduced.

To confirm our findings, we reference an extensive study
conducted by Alalfi et al. [25] to evaluate taint analysis
tools for IoT applications using a mutation-based framework.
The analysis evaluated Taint-Things with another two tools,
SaINT and FlowsMiner. This study provides a clearer assess-
ment of the tools’ accuracy. It also tests the consistency of the
tool’s results over a large number of test cases.

In their flow-sensitivemutation tests they found that SaINT
and Taint-Things have a recall rate of 100% for this cal-
culation, but SaINT’s precision rate dropped to 50% where
Taint-Things’ precision remains 100%, indicating that SaINT
was not able to avoid false positives that were due to low
sensitivity.

For testing the impact path-sensitivity mutators, they
checked the correctness of the tool’s reports. SaINT was able
to identify the tainted results, giving a recall of 100% but had
its precision drop by ignoring the potential benign paths if
another tainted path existed and reported a false positive in
mutants that had two benign paths. Taint-Things on the other
hand is able to give a detailed report of all the potential paths.

When it comes to context-sensitivity mutators, the results
confirmed that the tools are using context-sensitive analysis
up to a certain level. For SaINT, even after getting the context,
it failed to differentiate benign from malicious when using a
specific sink.

If we give equal weight to each of the three categories of
mutators that address the three levels of sensitivity analy-
sis, we can average their results to get an estimated overall
precision and recall for each of the tools. When one file
is counted as one mutant and the correctness of the path
sensitivity results are considered SaINT has 100% recall and
56.8% precision, Taint-Things has 99% recall and 100% pre-
cision. For Taint-Things, it can distinguish the change from
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the created base file to the generated mutant. But it failed to
identify the mutants generated from one app that contained an
extensive usage of state variable whichmarked it aggressively
as a potential source. It failed for all the benign equivalent
mutants generated from one source app when we only had
sixteen source apps.

In general, we see that SmartThings real cases are not
complex. From our tests, we have seen that all the apps
from our datasets were not affected by the inclusion of the
sensitive analyses. That is because most of them are simple
one page apps written in the SmartThings sandbox [28]. This
also allows our approach to avoid dealing with class hierarchy
beyond the syntax analyses done on the TXL grammar side,
since so users can not define their own classes. Tainted flows
exists in the events and functions and our analysis focuses
on tracking them in the source code. Similarly we do not
deal with pointer analysis. But it should be noted, while real
cases do not exhibit complexity that gets affected by the
sensitivities, their inclusion provides an important addition
not only to minimize false positives but also to avoid false
negatives, especially in the case of mitigating leaking apps.

VIII. CONCLUSION
In this paper we present a tainted flow static analysis approach
for the identification and reporting of informationleakage
in Smarthings IoT apps. Our approach provides a quicker
core analyzer as well as more accurate analysis by adding
flow- path- and context sensitivity analysis as addedmodules.
When compared to existing tools addressing the same prob-
lem, our analysis provides more accurate results with a con-
siderable higher performance gain. One aspect that may have
improved the performance over other existing techniques is
that the approach performs the analysis directly on the source.
In addition, our approach is unique in providing a lightweight
path sensitivity analysis, and innovative way to implement
context sensitivity analysis using methods cloning and source
transformation.

We have deployed a version of Taint-Things that
accounts for flow sensitivity analysis online as well. Taint-
Things is currently available, for testing, at: http://taint-
things.scs.ryerson.ca/.

IX. FUTURE WORK
Future work includes extending our analysis approach to
other Smart Home platforms, such as OpenHab. OpenHab
uses Java, which already have a TXL grammar [12], but it
also utilizes a domain specific language for handling its rules.
The syntax for this is shared with Xtend. We can use its
documentation [35] to build a TXL grammar to handle it.
OpenHab also uses a different structure than SmartThings
apps and will have different definitions for sources and sinks.
A study of how the sources and sinks appear in it, as well
as modification of Taint-Things’ transformation rules will be
required to accommodate that.

While our approach examines potential leakage in each
app by itself, further study can be done on potential leaks

Listing. 22. Real app example.

happening through multiple apps when they communicate
with each other. SmartThings apps are usually self contained
in one file and TXL can handle that easily as an input, but
extending the program to handle multiple files and analyze
their inter connectivity can be challenging. Nonetheless we
can explore similar methods to what were used in adding
flow and path sensitivity analysis, where we either chain
and redirect the analysis results and use a script to work on
multiple inputs.
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Listing. 23. Real app example mark sinks step.

Listing. 24. Real app example trace backward step.

More ways to optimize and utilize precision can be
explored. When adding flow sensitivity analysis, different
ways to determine the variable scopes and using them inmak-
ing the SSA form. This can be done through TXL and would
require a rewriting of the script we currently use by altering
the priorities of how variables get parsed and renamed. Ways
for making path-sensitivity analysis less intensive and for
context-sensitivity analysis to be achieved while maintain-
ing the structure and line numbers of the original source
code should also be studied. A compromise approach can be
used where instead of doing full path or context sensitivity,
we can use a partial approach. This can be done similarly
to the optimized path sensitivity, where we only provide the
path and context sensitivity only for some method calls and
if-statements.

The next step after detecting tainted flowwould be offering
ways of mitigation or suggestions to good coding patterns
and practices. This would require studying and mapping
mitigation methods to each type of leakage. We can replace
non-secure patterns with secure ones using TXL. And finally,

Listing. 25. Real app example final result.

we can explore ways for deploying the app in a more user
friendly manner such as linking it to an IDE.

APPENDIX
The following Listing 22 is a real example of a SmartThings
app that examines a common tainted flow pattern through a
sendPush sink. The sensitive information here is the loca-
tion of the user and his presence. It should be noted that
this tainted flow is not necessarily malicious, but it presents
a potential pattern where sensitive information could leak,
which requires more scrutiny in the review, in case the data is
not sanitized or going through an insecure API.

The following listings show the output of the analysis on
the provided app. Listing 23 shows the sink marking step.
In this case the line containing the sendPush is marked as
such. Listing 24 shows the backward tracing step, where the
variable passed to the sink are traced through the program,
line containing the variables are tagged with the line numbers
they pass the variable to. Listing 25 shows the final results
when the app is run through the analyzers. The line numbers
where the flows exists are printing with the relevant lines are
marked.
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