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ABSTRACT The multi-label classification task has been widely used to solve problems where each of the
instances may be related not only to one class but to many of them simultaneously. Many of these problems
usually comprise a high number of labels in the output space, so learning a predictive model from such
datasets may turn into a challenging task since the computational complexity of most algorithms depends on
the number of labels. In this paper, we propose a methodology to reduce the label space a user predefined
ratio of labels, aiming to improve the runtime of the multi-label classification algorithms. Obviously, such
reduction should be done without producing a significant drop in their final predictive performance. The
experimental analysis carried out over 25 well-known multi-label datasets, demonstrates a drastic reduction
in the runtime. Besides, it is statistically proven that reducing 20% the number of labels does not lead to
a decrease in the predictive performance of the multi-label algorithms using four well-known evaluation
measures. Even more, in many cases, although reductions of up to 50% of the output space are made, the
predictive performance of the algorithms is not significantly different from using the whole set of labels.

INDEX TERMS Algorithm efficiency, binary classification, dimensionality reduction, label space reduction,
multi-label classification.

I. INTRODUCTION
Multi-label classification (MLC) is a supervised learning
task, where, in contrast to classical supervised learning, each
instance of the data may be associated with more than a
single label simultaneously [1]. For years, MLC has been
an area of great interest in the research community, due to
its good applicability to a wide variety of real-world prob-
lems, such as text categorization [2], image classification [3]
and medicine [4]. Nevertheless, such domains are usually
inherently complex in the output space, i.e., they comprise a
high number of labels. It should be noted that complex label
spaces use to imply a high computational cost to build an
accurate classifier, giving rise to one of the key challenges
of MLC: dealing with high-dimensional or complex output
spaces. Nowadays, this challenge is considered further aggra-
vated with the emergence of problems where the number of
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labels is so extremely large that the classical methods cannot
be applied successfully, leading to the so-called eXtreme
MLC [5].

Many existing successful MLC methods are based on
the decomposition of the multi-label problem into several
single-label learning problems. Most common algorithms in
this category are Binary Relevance (BR) and Label Powerset
(LP) [6]. Whereas the former generates as many independent
binary classification problems as labels exist in the origi-
nal multi-label problem, the latter transforms the multi-label
problem into a multi-class one, where each combination of
labels is considered as a different class. As their complexity is
dependent on the number of labels, they do not usually scale
well for problems where the number of labels is extremely
large. In such a situation, BR may require the training of a
large number of different binary classifiers, whereas LP may
generate a complex multi-class classification problem. Thus,
dealing with domains that include a huge label space still tend
to be a challenge for the vast majority of the MLC methods
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that have been proposed so far, specially when considering
that many of the existing MLC algorithms are designed upon
the basis of BR and LP [7].

A possible solution to address the problems arisen when
dealing with large label spaces lies in the design of methods
that effectively reduce such spaces. Output dimensionality
reduction in MLC has been addressed from different points
of view, ranging from those that reduce both the label and
the feature spaces simultaneously [7], [8], to those that only
reduce the label space, either considering [9] or not [10], [11]
the input features to achieve such objective. Focusing on the
methods that reduce the label space disregarding the input set
of features, existing approaches usually perform the follow-
ing three main phases: (I) reduce the label space; (II) learn a
function to predict the labels on the reduced dataset; (III) infer
the whole label space of the original dataset. These methods,
however, do not usually produce a predefined reduction ratio,
and this ratio is not known till the whole process is performed.
Thus, the user (domain expert) does not have any control
on the reduction level to be performed and, as a result, the
percentage of reduction might highly differ from dataset to
dataset. Besides, some of the existing methods for label space
reduction are presented as a MLC method itself, i.e., they
do not allow to use different MLC algorithms to solve the
problem.

Given the problems identified, the objective of this paper
is to propose a methodology that enables the user to perform
a predefined ratio of reduction in the label or output space of
the multi-label data, allowing to run MLC algorithms more
efficiently, while providing outputs for the entire original set
of labels. Such reduction should improve the overall perfor-
mance of MLC algorithms, not only reducing the runtime
required by classifiers at both training and testing phases, but
also without causing a significant reduction in their predictive
ability. Of course, a huge reduction of the label space might
give rise to a significant loss of information even when it may
allow to run the MLC algorithm in a reasonable quantum of
time.

In this way, the contributions of this research work can be
summarized as follows:

1) A methodology that does not consider at all the input
features, focusing only on removing those single labels
that are better estimated by the rest is proposed.
Unlike other methods in the literature, it allows both to
reduce the label space a predefined ratio (which is not
problem-dependent), and to run any MLC algorithm of
the user’s choice. As a result, accurate but computation-
ally hard algorithms that could not be previously run on
datasets with a large number of labels could be used.

2) The reduction phase is conceived as an iterative pro-
cess, where one label is removed at a time. This
process is therefore repeated as many times as the
desired percentage of labels to be reduced. After any
multi-label classification algorithm is applied on the
reduced dataset, the inverse problem is carried out; that
is, a series of labels are predicted (and added to the label

space) from the reduced set of labels. Therefore, the
original structure of the output space is maintained.

3) An extensive experimental study is carried out over
25 multi-label datasets, considering three different
MLC algorithms, and using four evaluation measures.
Reductions ranging from 10% of the label space, up to
50% have been considered. Both the operation of
the label reduction methodology and the performance
of the MLC algorithms on the reduced datasets are
studied.

According to the study, focusing on the predictive perfor-
mance of the binary classifiers used in the reduction phase,
and as it was expected, results demonstrate a reduction in
their performance when the number of labels is lower and
lower. It denotes that is the user who decides and assumes the
risk of significantly losing predictive performance for large
reductions. Experimental results have also demonstrated that
reductions of about 20% of the labels do not imply a sig-
nificant reduction in the final predictive performance in any
of the three different MLC algorithms considered. In some
scenarios, it was possible to reduce up to 40% or 50% of the
labels without a statistical difference in the final predictive
performance, but drastically decreasing the required runtime.
Situations in which the MLC algorithms obtained a better
predictive performance with the reduced dataset than with the
original one were also found.

The rest of the paper is organized as follows. Section II
presents some background in MLC and label space reduction
methods. Section III describes the proposed methodology for
reducing the label space. Section IV includes the experimen-
tal study, describing the achieved results as well as the lesson
learned. Finally, Section V presents the conclusions obtained
from this work.

II. BACKGROUND
In this section, the MLC problem is formally defined as well
as main approaches to address it. On the other hand, the label
space dimensionality problem is also described, including
methodologies proposed in the literature to tackle it.

A. MULTI-LABEL CLASSIFICATION
A multi-label problem comprises a d-dimensional feature
spaceF and a q-dimensional label spaceL ∈ {0, 1}q, where d
and q represent the number of input features and output labels,
respectively. A multi-label example i can be represented as a
tuple 〈Xi,Yi〉, where Xi ∈ F is the feature vector and Yi ∈ L
the output or label vector of the example i. The output Yi of
a given example is usually represented as a binary vector that
contains q components, where the component Yi` represents
whether the example i is associated with the `th label (1) or
not (0). The goal of any MLC problem is to learn a function
f : F → L, which can predict a label vector Ŷ given an
unseen point X [6].

To date, many MLC algorithms have been proposed and
they can be classified into three main categories: Prob-
lem Transformation Methods (PTMs), Algorithm Adaptation
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Methods (AAMs), and Ensembles of Multi-Label Classi-
fiers (EMLCs) [12]. PTMs decompose the multi-label prob-
lem into one or several single-label classification problems.
A major advantage of PTMs is that classic and sophisticated
existing single-label classifiers can be employed to solve
the MLC problem. On the contrary, their main drawback
is related to the computational complexity, which increases
with the number of labels. For example, given a multi-label
problemwith q labels, BR require the construction of q binary
classifiers, while LP compose a multi-class classification
problem with up to 2q distinct classes. Besides, it should be
highlighted that BR and LP have been the basis of many other
methods in the literature [12]–[14], so most of them share the
aforementioned characteristics.

Focusing on AAMs, they comprise approaches designed to
directly handle the multi-label data without having to trans-
form the original problem. For these methods, the computa-
tional complexity is not so dependent on the number of labels
as the case of PTMs; for example ML-kNN [15] adapts the
popular k-Nearest Neighbors algorithm but retrieving infor-
mation of the full label set for each example, while IBLR-
ML [16] expands the feature space with the label information
of the k nearest neighbors. Finally, EMLCs gather proposals
that combine the output of several multi-label classifiers. The
members of the ensemble can be either PTMs, AAMs, or a
mixture of both. Therefore, the computational complexity of
EMLCs depend on the the used base classifiers.

At this point, it should be highlighted that many of the
existing MLC methods are impractical to be used on large-
scale multi-label datasets, which comprise a considerable
number of labels. Thus, a possible solution is to reduce the
label space of the problem as it is described in the next
subsection, where the main proposals that have appeared in
the literature are analyzed.

B. LABEL SPACE DIMENSIONALITY PROBLEM
In traditional classification tasks, the problem of high dimen-
sionality has been widely studied in the space of features
with promising results [17]. Nevertheless, when dealing with
MLC scenarios, the problem of dimensionality reduction
becomes harder to tackle, and it can be analyzed from dif-
ferent perspectives: reducing the feature space [18], reducing
the label space [19], or reducing both input and output spaces
simultaneously [20].

While the dimensionality reduction on feature space has
widely been studied on multi-label data [18], the problem
of reducing dimensionality in the label space is not well-
studied yet, even when recent studies can be found in the
literature. In MLC, the number of labels is highly related to
both the required runtime and the simplicity of the resulting
model, so in cases with a high-dimensional output space,
reducing the label space could be determinant both in terms
of performance and runtime. Based on that, in this study we
center our attention on the label space reduction methods.

Approaches to reduce the label space can be mainly cat-
egorized into two main groups: methods that consider the

information carried by the features to reduce the label space,
and those that do not pay attention to the input features
for reducing the label space. The feature-dependent methods
leverage the correlation that may exist between features and
labels to reduce the label space. However, it is expected that,
if a feature selection is not carried out while the reduction
process is performed, then the estimation of the labels could
be biased by redundant and noisy features. Also, it should
be considered that the process for reducing the label space
could have a high computational cost on datasets with tens
of thousands of input features (which is very common).
In this paper, we analyze the second group of methods; i.e.
methods that reduce the label space disregarding the feature
space.

One of the first feature-independent reduction method was
proposed by Hsu et al. [19], where an approach based on a
proven compression technique was designed. The so-called
Compressed Sensing (CS) states that the complexity of a
model with q labels can be reduced to the training ofO[log(q)]
simpler models. This proposal requires a significant level of
sparsity in the label space so it is really useful for problems
with a large number of different labels, but with only a small
subset of them appearing in each instance. In this proposal,
the compression phase is made by projections of the original
label space to obtain a representation in a real (non-binary)
lower dimensionality space. Afterward, these projections are
used to train a set of regression models and the outputs are
decompressed to obtain the labels predicted for each sample.
However, as previously stated, it considers that datasets have
low density [21], but not all multi-label scenarios fulfill such
condition.

Later, Tai and Lin [22] proposed the method named Prin-
cipal Label Space Transformation (PLST), which relies on
the popular singular value descomposition technique. In this
case, the authors considered a hypercube view to perceive
the label space of MLC problems geometrically and then
to capture the correlation between labels. Instead of using
label transformations, other works addressed the reduction
problem by selecting a small subset of the labels that can
approximately span the original label space. For example,
Balasubramanian and Lebanon [23] proposed to train only
on a small subset of the labels that is selected by solv-
ing a group-sparse learning problem. However, the formu-
lated optimization problem by the authors is computationally
expensive, especially in scenarios with a large number of
labels.

Reducing the label space has also been tackled from a
descriptive perspective. Charte et al. [24] proposed the min-
ing of association rules [25] to capture the inter-label depen-
dencies, later using such rules to reduce the label space.
Once the prediction is done by a multi-label classifier on
the reduced space, the previously mined association rules are
responsible for inferring the rest of the labels to produce the
final prediction. However, the main drawback of this method
is related to the possibility of not finding any rule that reduces
the label space; in particular, 37.5% of the datasets used in
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this study could not be reduced. That even enhances more the
need to allow the user to reduce the label space a predefined
ratio under its own control and risk, as the proposal presented
in our study; thus, computationally complex algorithms could
be executed over any dataset if desired.

More recently, Kumar et al. [10] assume the existence of
groups of labels according to their sparsity. Therefore, the
label embedding is made for these groups independently,
which are obtained by a clustering algorithm. Later, the latent
factor matrices are find to approximate the ground truth
matrix and thus recover the original set of labels. However,
they present their proposal as a multi-label classifier itself,
not giving a chance to run any other MLC algorithm of
the user’s choice on the reduced dataset. It is also notewor-
thy that in this case, the clusters of labels are also used to
reduce the dimensionality of the feature space, but the label
space reduction is performed independently from the feature
one. Besides, Ji et al. [11] proposed a label space reduction
method in two phases: first, few uninformative labels are
removed following an exact Boolean Matrix Factorization
(BMF) procedure; and then, a number of informative labels
are selected using a genetic algorithm, where the approxi-
mation ability of the reconstruction matrix is used as fitness
value. In this case, a percentage of the informative labels
could be reduced; but such percentage does not include
the uninformative labels that can be reduced in the first
phase.

Deep neural networks have been also applied to the label
space reduction problem. The work of Liu et al. [26] pro-
poses an algorithm where both the label and features spaces
are reduced following different independent processes. For
reducing the label space, they propose to learn a latent label
matrix considering the correlation among labels, and later,
a deep network is used to map the latent feature space and
the label one. However, this process is proposed specifically
for the text classification scenario, which share specific and
common properties. Finally, Chen et al. [27] also propose
a MLC method where both the feature and label spaces
are independently reduced by using deep neural networks
frameworks.

Although the aforementioned feature-independent meth-
ods tend to be less computationally complex than those that
consider the input features to reduce the label space, the main
drawback of this type of methods is that, to the best of our
knowledge, none of the previously proposed methods fulfill
both the following two criteria simultaneously: (I) providing
the user a complete control on the ratio of reduced labels, thus
ensuring that the number of labels removed is known a priori
and not problem-dependent; and (II) enabling the user to
run any MLC algorithm on the reduced dataset, thus making
it possible to execute more complex methods on scenarios
that would be prohibitive unless such reduction were made.
Thus, it is important to highlight that any comparison among
existing methodologies and our proposal (which meets both
criteria and is described in the following section) would be
unfair.

III. LABEL SPACE REDUCTION METHODOLOGY
In this section, the proposed methodology to reduce the label
space in multi-label problems is presented. The proposed
methodology comprises two stages: the first one reduces
the label space before any multi-label classifier is executed,
whereas the last one reconstructs the label space from the
predictions obtained by the multi-label classifier trained on
the reduced dataset.

A. LABEL SPACE REDUCTION
The first stage of the proposed methodology is performed
before a multi-label classifier 8 is assessed on a multi-label
dataset. Let us say L is a label space composed of q labels
`1, `2, . . . , `q, where each label is a binary variable. Then, the
proposed reduction process is based on the following hypoth-
esis: the label `k could be eliminated if it can be estimated
from the other labels `i ∈ L : 1 ≤ i ≤ q∧ i 6= k . The hypoth-
esis is based on the fact that labels are commonly related in
multi-label problems [28] and, therefore, such dependencies
can be effectively exploited to reduce the label space. In what
follows, a formal description of our approach is portrayed.

Let us say P is the set of all the possible permutations of
the q labels, where a particular permutation of labels (here-
after, label chain) is represented as ζ = (`π1, `π2, . . . , `πq).
On the other hand, let ρ`k be a model that can estimate a
distribution for label `k , denoted as B(`k | `k+1, . . . , `q; θ ),
given the labels `k+1, . . . , `q, where θ is the set of parameters
of the model. Furthermore, let us say that ρ`k minimizes the
following empirical risk by averaging the 0-1 loss function
on a set of m examples

error(ρ`k ) =
1
m

m∑
i=1

1(yi`k , ρ`k (y
i
`k+1

, . . . , yi`q )),

where yi`k indicates whether the instance i belongs (1) or not
(0) to the label `k , and ρ`k (y

i
`k+1

, . . . , yi`q ) is the prediction of
the label `k made by the model; the model considers as input
the actual values of the labels `k+1, . . . , `q for the instance i.
Therefore, the goal of our approach is to find a label chain ζ
that minimizes

argmin
ζ∈P

q−1∏
i=1

error(ρ`π i ), (1)

In other words, we want to find a label chain that produce
the minimum expected error rate on the m examples, assum-
ing that the label `π i : i < q can directly be estimated from
the subsequent labels `π j : i < j ≤ q of the chain ζ . How-
ever, minimizing empirical 0-1 loss is not computationally
feasible and, therefore, other measures should be considered.
In this regard, Cortes and Mohri demonstrated in [29] that a
binary classifier minimizing the error rate also optimizes the
area under ROC curve (AUC). Considering that each model
ρ`π i : 1 ≤ i < q corresponds to a binary classifier that
predicts a label given other labels, then the equation 1 can
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be transformed in

argmax
ζ∈P

q−1∏
i=1

AUC(ρ`π i ), (2)

where AUC(ρ`π i ) computes the probability that has the clas-
sifier ρ`π i in predicting correctly the label `π i for two exam-
ples that have been randomly chosen. Another justification
in favor of using AUC as the evaluation measure of each
binary classifier lies in the fact that if a multi-label problem is
decomposed into several binary classification problems, then
high imbalanced datasets can commonly be obtained and,
therefore, it is recommendable to use an evaluation measure
not so sensitive to this issue [30].

The formulated approach is optimistic because it assumes
that we can always find a label chain that allows to attain good
estimations for all the labels; in other words, it is assumed
a priori that the inter-label correlations are strong enough in
such way that each label could be predicted from the other
ones. However, the joint distribution of the labels is often
not known a priori and varies from one problem to another.
Consequently, lower average expected values of AUC could
be attained as the error rates propagate and increase along
the classifier chain ρ`π1 , ρ`π2 , . . . , ρ`πq−1 . On the other hand,
although the optimization problem presented by equation 1
has been relaxed, encountering the global solution to equa-
tion 2 is also computationally expensive in datasets with a
large number of labels, since the size of the search space
is q!. A possible solution to this issue is to find partial label
chains instead of complete chains, i.e. label chains that do not
include all the q labels but a percentage of the original label
where the average error in the estimation is still acceptable.
Therefore, in this work, a greedy algorithm (Algorithm 1)
that can reach an approximate solution for the formulated
optimization problem is proposed, where a partial label chain
is generated; i.e. the algorithm can find a chain of a subset of
labels.

Algorithm 1 follows an iterative process: (I) determine the
label `k that could be better estimated from the rest of labels
`i ∈ L : 1 ≤ i ≤ q ∧ i 6= k; (II) delete `k from the
set L; and (III) repeat the first step until the stop condition
is reached. To decide whether a label `k is a candidate to be
predicted from others, a binary classifier ρ is trained using
a dataset where `k states for the target and the rest of labels
remaining in L are used as the input variables.

An important aspect of the proposed algorithm is the stop
condition. Two possible stop conditions are as follows: (I) to
use a threshold value to decide when a label has been well
estimated by the others, so labels whose estimation is poorer
than the threshold are kept in the output space; and (II) to
set the desired percentage of labels to reduce, independently
of the quality of such estimations. Even when the first stop
condition could be a feasible and great option, the use of a
threshold value is problem dependent and therefore it should
be necessary to know a priori a specific threshold value, or to
tune it. Additionally, small reductions of the label space can

Algorithm 1 Label Space Reduction
Input

D: Multi-label dataset.
ρ: Binary classifier.
γ : Percentage of reduction.

Output
Dr : Reduced multi-label dataset.
P: Stack of binary classifiers.

1: F ← extractFeatures(D)
2: L← extractLabels(D)
3: n` ← bγ × |L|c F Number of labels to eliminate
4: P← [] F Initialize stack
5: for i← 1 to n` do
6: for each `k ∈ L do
7: Fk ← L \ `k F Consider the rest of labels as features
8: Dk ← construct (Fk , `k ) F Create dataset for `k
9: ρk ← crossvalidate (ρ,Dk ) F Evaluate estimation of `k

10: end for
`b ← argmax

`k∈L
AUC(ρk ) F Best estimated label

11: L← L \ `b
12: push (P, ρb) F Push classifier to the stack
13: end for
14: Dr ← construct (F ,L)

return Dr , P

be obtained if high thresholds are considered at the beginning
of the process and, in the worse case, no reduction would
be performed. Thus, in this work, the proposed algorithm
considers the second stop condition, allowing users to define
the desired level of reduction.

This stop condition allows users to define the desired level
of reduction at their own risk; although it should be stressed
that significant errors in the estimation of the labels might be
obtained if a high level of reduction is applied by the user.
Nevertheless, the reduction level that could be attained with
the proposed approach, enables to run complex multi-label
methods that, in normal conditions, are impractical to execute
in scenarios with a large number of labels.

In summary, the algorithm receives as input a multi-label
dataset D in which the label space reduction will be per-
formed, a binary classifier ρ which will be used to estimate
a given label from the rest (and therefore, to select which
label is removed in each iteration), and the desired percentage
of reduction γ . Finally. the algorithm returns the reduced
multi-label datasetDr , and a stack of binary classifiers P that
can subsequently be used to reconstruct the label space.

Regarding the computational complexity of the proposed
algorithm, the biggest complexity lies in the nested loop
where the binary classifiers are constructed and evaluated.
In the first iteration, q binary classifiers are constructed, in the
second iteration, q−1 classifiers, and so, in the last iteration,
q − n` + 1 classifiers (n` is the number of labels to delete).
A total of (2q−n`+1)×n`/2 classifiers are therefore required
to be constructed in the whole process, that is a quadratic
number since n` is a fraction of q. Let us say fL`k×`k repre-
sents the cost function to train a binary classifier considering
L`k as the input variables and `k as target variable. Therefore,
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the label reduction process is asymptotically upper bounded
by the function O(q2× fL`k×`k ). It should be highlighted that
the proposed algorithm might be computationally expensive
in multi-label problems with huge label spaces. However,
it should be stressed that this process is executed only once
before assessing any multi-label classifier. Furthermore, this
process can take advantage of distributed and parallel pro-
cessing models as the binary classifiers constructed in the
nested loop are totally independent.

This approach for the reduction of the label space implies
that a multi-label classifier 8 can be built considering a
smaller label space so, given a test example, the classifier
8 returns a subset of the labels; then, the rest of the labels
are inferred (as explained in the next section). The use of
binary models to decide whether a label can be deleted or
not is an advantage due to the vast state-of-the-art on binary
classification, including methods that range from those that
detect linear relationships to the ones capable to model com-
plex non-linear functions. Consequently, the performance of
the proposed approach greatly depends on the ability of the
binary classifier to exploit the dependencies among labels;
more complex or accurate binary models would be expected
to reduce the error rate in the reduction process, while simpler
binary classifiers would increase such error.

B. LABEL SPACE RECONSTRUCTION
The objective of the second stage of the proposed methodol-
ogy is to the reconstruct the label space that was previously
reduced. For this end, it takes the predictions of a multi-label
classifier that was trained on the reducedmulti-label problem,
and estimates the rest of the original labels. Here, suppose
that the original label space L was reduced by eliminating
the labels `k1 , `k2 , · · · , `kn in this very order. As a result,
the first phase returned a chain ρ`k1 , ρ`k2 , · · · , ρ`kn of binary
classifiers, where the classifier ρ`k considered the labels `j ∈
L : j 6= k as inputs to predict `k . A reduced dataset Dr , i.e.,
a multi-label dataset only comprising those labels that have
not been removed, is also obtained from the first phase. Thus,
given a test set Dts with the same structure as the original
dataset D, and a multi-label classifier 8, the second stage
(see Algorithm 2) of the proposed methodology comprise the
following steps: (I) train8 on the reduced training setDr ; (II)
test8 onDts only predicting the labels known by8; and (III)
use the chain of binary classifiers in P to estimate the rest of
the labels in the reverse order that they were removed.

Regarding the computational complexity to reconstruct the
label space, let us say f 8tr is the cost function to train the
multi-label classifier 8 on the reduced dataset, f 8ts the cost
function to evaluate 8 on m test samples, and fP represents
the maximum cost to evaluate the stack of classifiers P.
The computational complexity of Algorithm 2 is therefore
O(max(f 8tr + f 8ts , fP)). One drawback of this label space
reconstruction process is that the chaining procedure cannot
be parallelized. However, it can be serialized and, therefore,
it would only require a single binary classification problem
in memory at a time.

Algorithm 2 Label Space Reconstruction
Input

Dts: Test data.
Dr : Reduced training data.
8: Multi-label classifier.
P: Stack of binary classifiers.

Output
Le: Estimated label space.

1: 8← train(Dr ) F Train MLC with the reduced set
2: Le ← predict (8, Dts) F Predict reduced set of labels in test set
3: while P is not empty do
4: ρk ← pop (P)
5: `k ← predict (ρk , Le) F Estimate each reduced label
6: Le ← Le ∪ `k
7: end while
8: sortLabels(Le, Dts) F Put labels in original order

return Le

IV. EXPERIMENTAL STUDY
The objective of the experimental study is to evaluate the
impact caused by the proposed methodology in the overall
performance of the MLC algorithms. In this section, first
the datasets and experimental settings are described. Then,
the obtained results are analyzed, dividing the experimental
study into three main parts: (I) analysis of the predictive
performance obtained by the binary classifiers used to reduce
the datasets at different reduction levels; (II) study of the
impact of the reduction level in theMLC algorithms’ required
runtime; and (III) analysis of how the predictive performance
of the MLC algorithms varies at different reduction levels.
Finally, a discussion of the obtained experimental results is
presented.

It should be noted that most results are summarized
through boxplots, where the median is represented by a hor-
izontal line inside the box, and the mean as a cross symbol
(×). Also note that outliers have not been included in any of
the graphics in order to ease the plot interpretation. Due to
the great amount of results collected and in order to make the
paper more readable, only figures summarizing the obtained
results are described in this paper.1

A. DATASETS AND SETTINGS
The experimental study has been carried out over a wide set
of 25 well-known multi-label datasets. A summary of such
datasets is shown in Table 1, denoting the number of exam-
ples (m), attributes (d), labels (q), and the average ratio of
dependent label pairs (rDep) [21]. These datasets have been
specifically selected according to the number of labels, which
ranges from 19 (simple label spaces) to 233 labels (complex
label spaces), as well as the ratio of dependent labels, ranging
from values near to zero, meaning that almost all labels are

1The supplementary material available at http://www.uco.es/kdis/label-
space-reduction/ includes detailed and raw results of the experimental study
and the statistical tests. It also includes detailed information about the
datasets.
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TABLE 1. Multi-label datasets used in the experimental study. The
datasets are sorted in ascending order by number of labels (q).

independent among them, to higher values which denote that
a significant amount of label pairs are dependent among them
(in such cases, a bettermodeling of labels would be expected).
Besides, it should be noted that great diversity in both the
number of input attributes (ranging from 68 to 52,350) and
the number of examples (ranging from 225 to 19,300) have
been considered. With these 25 datasets we cover a wide
range of possible characteristics of the data. Further, and
as shown later in Section IV-C, some algorithms in specific
datasets did not finish their execution for a low reduction ratio
within a month. It leads us to the conclusion that no more
complex datasets could be considered, since it would make
the experimental study intractable in a reasonable period of
time.

In order to construct the binary classifiers that correctly
predict the labels, a Support Vector Machine (SVM) has been
considered by the proposed methodology, since it has been
demonstrated to work well at solving binary classification
problems having all the input attributes defined in binary
domains [31]. Besides, a linear kernel and various values for
the parameter C = {10−5, · · · , 105} have been taken into
account, choosing in each case the one that performed the
best. Nevertheless, it is noteworthy that any algorithm able to
perform a binary classification could be used instead.

In order to assess how the label space reduction affects to
both the runtime complexity and the predictive performance
of the MLC algorithms, three well-known MLC algorithms
have been considered: BR, LP, and IBLR-ML. The use of
BR and LP is motivated by the fact that they are two of the
simplest and more representative PTMs, which have been
used as basis for many well-known MLC methods [12].

The reduction of the label space implies that BR builds fewer
binary classifiers so its runtime complexity is also reduced.
For example, both Classifier Chains and its ensemble ver-
sion [32], which are one of the best-performing methods
in MLC, are based on BR; so by reducing the complex-
ity of BR, those methods that are based on it will also
have their complexity reduced. In the case of LP, on the
other hand, a smaller label space leads to consider a fewer
number of combinations of labels, also reducing its runtime
and complexity. Therefore, methods based on LP such as
Ensemble of Pruned Sets [33] or RAkEL [34] will benefit
from this reduction. As base classifier for both BR and LP,
a C4.5 decision tree was considered with a confidence level
of 0.25 and a minimum of 2 objects per node. It was used
since it is widely used in the literature for these kind of
algorithms [12].

On the other hand, an AAM such as IBLR-ML has been
selected, since their computational complexity is usually less
dependent on the number of labels. However, IBLR-ML adds
the labels of the neighbors as extra input attributes, so then
a reduction of the label space would have also an effect on
its runtime. The parameters used by IBLR-ML are the same
proposed in its original work [16], i.e. a number of neighbors
equal to 10, and the Euclidean metric to calculate the distance
between points. Finally, as EMLCs combine either PTMs or
AAMs indifferently, their complexity is directly related to the
one of their members. Therefore, EMLCs are not considered
in this study, but their complexity is expected to reduce in the
same order as their base members.

Additionally, a 10-folds cross-validation procedure has
been followed on each of the reduced datasets. Note that
the reduction of the label space is performed as a pre-
processing stage and, therefore, it is performed only once
per dataset. On the other hand, the reconstruction of the
label space must be performed in each fold execution. All
the algorithms have been executed over the same folds,
and the results have been averaged along all the partitions.
To estimate the impact of the label space reduction on the
overall performance of the MLC algorithms, the average
runtime to finish the execution of each fold has been col-
lected. It includes the time required for training, testing
and the label space reconstruction. As for the predictive
performance, four evaluationmeasures which assess different
aspects and have been widely used inMLC have been consid-
ered: Hamming loss (HL), Example-based FMeasure (ExF),
Micro-averaged FMeasure (MiF), and Macro-averaged
FMeasure (MaF) [1].

HL is one of the most widely used evaluation measures
in MLC, which computes the average number of times that
a label is incorrectly predicted. It considers both prediction
errors (a negative label is predicted as positive), and omission
errors (positive labels are not predicted as positive). It is cal-
culated as in (3), wherem is the number of test examples, and
1 represents the symmetric difference between the true (Yi)
and predicted (Ŷi) set of labels of the example i. Hereafter,
the symbols ↓ and ↑ indicate that the measure is minimal and
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maximal, respectively.

↓ HL =
1
m

m∑
i=1

1
q
× |Yi1Ŷi| (3)

On the other hand, FMeasure is a widely used evaluation
measure in traditional classification, and for MLC it can be
calculated from different points of view. ExF calculates the
measure for each instance, and then averages their value,
as in (4). On the other hand, MiF, in (5), and MaF, in (6),
calculate the measure based on the contingency matrix of
each label. While the former gives more weight to more
frequent labels in the calculation, the latter gives the same
weight to all labels.

↑ ExF =
1
m

m∑
i=1

2×
∣∣∣Yi ∩ Ŷi

∣∣∣
|Yi| +

∣∣∣Ŷi

∣∣∣ (4)

↑ MiF =

∑q
`=1 2× tp`∑q

`=1 2× tp` +
∑q
`=1 fn` +

∑q
`=1 fp`

(5)

↑ MaF =
1
q

q∑
`=1

2× tp`
2× tp` + fn` + fp`

(6)

where tp`, fp`, and fn` are the number of true positives, false
positives and false negatives for the `th label, respectively.
Finally, a hypothesis testing by means of non-parametric

statistical tests has been conducted with the aim of determin-
ing whether there exist significant differences in the overall
performance of the algorithms at different reduction levels of
the label spaces. The Friedman’s test has been used to analyze
the general differences, whereas the Shaffer’s post-hoc test
has been employed to perform all pairwise comparisons [35].
Finally, it should be highlighted that all the experiments have
been performed on a machine with 6 Intel Xeon E5645 CPUs
at 2.40 GHz and 24 GB of RAM.

B. PREDICTIVE PERFORMANCE OF BINARY CLASSIFIERS
IN THE REDUCTION STAGE
The predictive performance of theMLC algorithms is directly
related to the capacity of the binary classifiers to accurately
reconstruct the label space. Hence, the performance levels
attained by these binary classifiers are of paramount impor-
tance. This performance, in addition, is expected to be worse
at high levels of reductions since those labels that are best
predicted are removed at early stages.

In order to analyze this predictive performance, the AUC
values used to decide which label is eliminated in each iter-
ation of the reduction process were collected and averaged.
Figure 1 presents the average AUC values when reducing up
to 10% the number of labels; when reducing from 10% to
20%; and so on. The results demonstrate that the average and
median of the AUC values decrease in almost a lineal way
while the reduction level increases. Focusing on a reduction
up to 10% of the labels, it is obtained that the AUC values
for the binary classifiers are greater than 0.9 in most of the
cases. Such highAUC values imply that the label space can be

FIGURE 1. Average AUC values of the binary classifiers at the different
reduction levels.

accurately reconstructed. When much higher reduction levels
are considered, e.g. those greater than 40%, the resulting
AUC values are significantly deteriorated, and in some cases,
values near to 0.5 are obtained (meaning almost a random
prediction). At this point, and given that the predictive perfor-
mance tends to be reduced with the increase of the reduction
level, there is no sense to go further than 50% of reduction.

Finally, as previously commented in Section III, the stop-
ping criterion is one of the most important aspects of the
proposed methodology since it may affect the overall per-
formance of the MLC algorithm. It is therefore important to
remark here that the percentage of reduction is responsibility
of the expert, who should decide and assume the risk of losing
a significant grade of precision at high reduction levels of the
label space, while allowing to execute complex algorithms
over complex datasets.

C. ANALYSIS OF THE RUNTIME REQUIRED BY MLC
ALGORITHMS
In this second analysis, the aim is to study the variation
in runtime of the MLC algorithms when the label space is
reduced. For this purpose, five reduction levels have been
considered (10%, 20%, · · · , 50%) to calculate the variation
of the runtime for the MLC algorithms when they are applied
on the original and the reduced multi-label dataset. It is
calculated as (timer− timeo)/timeo, being timeo the required
runtime of the algorithm when the original dataset is used,
and timer the runtime using the subsequent reduced dataset.
As a reduction in the runtime is expected, the rate of change
will be negative for each reduction level (from 10% to 50%).

Results are summarized in Figure 2, illustrating the afore-
mentioned rate of change in the runtime; it has been aver-
aged across all the datasets, for each algorithm at different
reduction levels. As illustrated, the runtime required by BR
is reduced in a linear way for the different reduction levels.
This linear reduction is completely awaited since the number
of binary classifiers generated by BR is dependent on the
number of labels in data. It should be noted that BR was the
algorithm that reduced most the runtime in all cases.

It can be observed that, from the three algorithms, both BR
and LP (as PTMs) are those that best improve their runtime
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FIGURE 2. Rate of change in runtime at five reduction levels.

when the label reduction rate increases. In the case of LP, such
runtime reduction rate is not so high until 30% of the labels
are reduced; after that, the runtime starts to improve drasti-
cally. Such behavior is explained given that, at low reduction
levels, the total number of possible label combinations in
the data may vary very little; hence, the complexity of the
multi-class problem that LP handles is maintained. On the
other hand, at this point it is noteworthy that LP is such a
complex algorithm that, under the available computational
resources and after a month, it was not possible to finish
its execution on three datasets: Yahoo Business and Yahoo
Computers could execute only after 50% label reduction was
made, while Yahoo Education finished for 40% and 50%
reduction levels. Thus, it is corroborated that there are MLC
algorithms that are impossible to execute in a reasonable
quantum of time without considering, a priori, a significant
reduction of the label space.

Finally, analyzing the behavior of IBLR-ML (see Figure 2),
it is demonstrated that the number of labels do not affect so
much in the runtime. The final reduction rate is almost half of
the one obtained either by LP or BR. At a reduction level of
50%, IBLR-ML reduces its runtime in a rate of only ∼ 20%.
In any case, our approach leads to a reduction, drastic in some
cases, in the required runtime of the MLC algorithms.

The final step of this analysis of the runtime required by
the MLC algorithms is to perform a statistical comparison to
determine significant differences at different reduction levels.
To conduct the statistical analysis, the raw runtime values
were used instead of the rate of changes. In such cases where
the MLC algorithm is not able to finish after a month, then
the worst ranking value was assigned. The Friedman’s test
detected that there were general statistical differences in the
three MLC algorithms at a significance level of α = 0.01,
rejecting the null hypothesis with a p-value smaller than
2.20E−16 for BR, p-value of 7.97E−09 for LP, and p-value
of 4.35E−10 for IBLR-ML.

Then, the Shaffer’s post-hoc test was performed to detect
where these significant differences were located. The results
for this post-hoc test, at a significance level of α = 0.01,
are summarized in Figure 3. This figure illustrates that BR at
low reduction levels (20%) significantly reduces the runtime

FIGURE 3. The results of the Shaffer’s test after performing all pairwise
comparisons between the required runtime at the different reduction
levels.

required on the original dataset (0% of reduction). It can be
observed that the reduction of the label space has a major
impact in BR, identifying many significant differences in its
runtime for the different reduction levels. As for the case
of LP, the statistical difference in runtime versus using the
whole label set, was obtained when the the reduction level
is, at least, 40% of the label space. This result is caused by
the complexity of LP, as it was previously explained. Finally,
as for IBLR-ML, at least a reduction of 30% of the label space
is required to significantly reduce the runtime.

So far, the results demonstrated that it is possible to signif-
icantly decrease the required runtime of MLC algorithms by
reducing effectively the label space of large-scale datasets,
supporting the first part of the aim and hypothesis of this
work.

D. ANALYSIS OF THE PREDICTIVE PERFORMANCE OF MLC
ALGORITHMS
In this third analysis, and once it has been demonstrated that
the required runtime of the MLC algorithms is significantly
improved by reducing the label space, we study the behavior
of the predictive performance for each of theMLC algorithms
when different reductions of the label space are considered.

Similarly to the previous study of the runtime, the vari-
ation rate for different evaluation measures (HL, ExF, MiF
and MaF) is analyzed. HL is a minimal measure so its
variation with respect to the original scenario is calculated
as (HLo − HLr )/HLo, where HLo states for the value of
HL when the original dataset was used, and HLr the HL
value obtained in the reduced dataset. Here, negative ratios
state for a drop in the predictive performance. On the other
hand, FMeasure is a maximal measure and its variation with
respect to the use of the original dataset is calculated as
(FMeasurer − FMeasureo)/FMeasureo. Here, FMeasureo is
the performance of the algorithm on the original dataset,
whereas FMeasurer is the performance obtained on the
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FIGURE 4. Variation in the predictive performance of the three different MLC algorithms (BR, LP, and IBLR-ML) when the label space is reduced.

corresponding reduced dataset; note that this equation is valid
for any of the three ways to calculate FMeasure in multi-label
scenarios (ExF, MiF, andMaF). As in HL, negative ratios still
represent a loss of predictive performance.

In Figure 4, the variation in performance of the different
MLC algorithms when the label space is reduced at different
levels is presented. Analyzing the results for BR (upper row
of Figure 4), it is obtained that it tends to reduce its predictive
performance with the reduction of the number of labels in
the output space, achieving a high reduction of performance
when the number of labels is reduced at least a 40%. Note
that the median ratio values of performance drop are always
smaller than 0.10 at a reduction level of 30%, and even only
of 0.01 for the ExF measure. In some specific cases, e.g.
HL and MaF, a better predictive performance is obtained
when the label space is further reduced. This interesting
behavior is obtained by analyzing the upper limits of the
boxplots.

The variation in the predictive performance is also ana-
lyzed for the LP algorithm (see middle row of Figure 4).
Similarly to the previous analysis on BR, it is obtained that
in most of the cases, the predictive performance tends to
decrease with the reduction of the number of labels. When
analyzing HL, on the contrary, the behavior is completely
different to the rest of evaluation measures; in all cases the
median variation is positive, meaning than at least in half of
the cases, the predictive performance of LP was even better
after the label reduction and reconstruction process. Focusing
on the median value in all measures, the rate is never further
from −0.03 when the number of labels is reduced up to a

30%, maintaining its performance at considerable reduction
levels. When analyzing a reduction of 50% of the labels, it is
obtained that the variation rate of the median of any of the
evaluation measures is not higher than −0.20. It should be
also noted that, analyzing the upper limits of the boxplots
in all the evaluation measures, there exists some additional
cases where a better predictive performance is obtained when
reducing the number of labels (e.g. HL and MaF). Given
that the complexity of LP would be much lower when the
number of labels decreases, its output (over the reduced
dataset) would also be much more precise, and thus the final
performance is too. This, explains the behavior of the cases
where LP performs better on the reduced dataset.

As for the IBLR-ML algorithm (see bottom row of
Figure 4), results denote that the mean values for the HL
measure are almost the same along the reduction levels. For
the other three measures, however, a suprising behavior is
obtained by IBLR-ML, achieving an improvement in the
predictive performance when the percentage of reduction is
increased. ExF and MiF evaluation measures obtained the
best results when the dataset is reduced a 30% and, for 40%
and 50% of reduction, these measures remain very similar
in mean. The most interesting case is, perhaps, the MaF
measure, which average value is increased in each of the
reduction levels. Finally, it is also relevant to note the incredi-
ble performance of IBLR-ML in the ExF measure, where the
average variation rate is about +0.80 when the number of
labels are reduced, at least, a 30%.

The final step of the analysis of the predictive performance
achieved by the MLC algorithms is to perform a statistical
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TABLE 2. Level of reduction where the performance of the MLC
algorithms is significantly different from the original dataset,
according to Shaffer’s test with α = 0.01.

comparison to determine significant differences at different
reduction levels. In this study, the Friedman’s test deter-
mined that BR presented significant differences in the four
evaluation measures at a significance level of α = 0.01,
rejecting the null hypothesis with p-values 1.24E−04 for
HL, 4.23E−07 for ExF, 2.01E−13 for MiF, and 5.55E−16
for MaF. For LP, significant differences were only found in
two evaluation measures, that is, ExF and MiF (rejecting
the null hypothesis with p-values 9.91E−05 and 3.66E−04
respectively); whereas for the rest of measures, there is no
statistical difference in the predictive performance obtained
on the original dataset and the reduced dataset. As for IBLR-
ML, the Friedman’s test determined that no significant differ-
ence can be found in any performance measure, stating that
the predictive performance of IBLR-ML is not harmed even
when the number of labels is reduced at a high pace.

To detect particular significant differences in those cases
where the Friedman’s test detected statistical differences, the
Shaffer’s test was conducted. A summary of the results for the
Shaffer’s test, at a significance level of α = 0.01, is illustrated
in Table 2. In this table, the level of reduction for which signif-
icant differenceswere foundwith respect to the use of original
dataset, is presented for the different MLC algorithms and
evaluation measures. In the case of BR, it is obtained that
the overall predictive performance is statistically the same
for the original dataset and the reduced dataset up to 20%.
As for LP, the overall performance does not present statistical
differences with regard to the original dataset for up to 40%
of reduction. In the case of IBLR-ML, there is no statisti-
cal difference in the overall predictive performance for any
reduction level (up to 50% was analyzed).

To sum up, both LP and IBLR-MLmaintained their overall
predictive performance even when the label space was drasti-
cally reduced. By contrast, the predictive performance of BR
decreases with the reduction of the label space; however, it is
also noteworthy that, according to the previous analysis, BR is
the one that most improves its runtime when the number of
labels decreases.

E. DISCUSSION
The goal of this experimental study was to analyze the behav-
ior of three MLC algorithms when the label space is reduced
by means of the proposed methodology. First, it should be
noted that this methodology enables the reduction level to be
specified by the expert, considering that level according to
the features of the problem at hand, or to the requirements
of the particular situation. Besides, any MLC algorithm may

be used. Before performing the experimental study, it was
expected that high reduction levels would lead to a hard
reconstruction of the label space and, therefore, that the over-
all predictive performance of the MLC algorithms would be
harmed.

The experimental results showed that the required runtime
of the MLC algorithms can be significantly improved by
previously reducing the label space. For those MLC algo-
rithms that work similarly to BR, a significant reduction in
the runtime is achieved by only reducing ∼ 20% of the
labels. However, for algorithms that works with PTMs like
LP, or for AAMs algorithms like IBLR-ML, a higher reduc-
tion level is required to be applied if it is desired to obtain
statistical differences in runtime. Additionally, it is relevant
to note that there were various cases where the algorithm
only finished its execution in a reasonable quantum of time
if it works on a highly reduced dataset. It demonstrates the
need of reducing the output space in large-scale multi-label
problems.

As it is experimentally demonstrated, the runtime of PTMs
is highly affected by the complexity of the label space.
Regarding BR, if c labels are removed in the reduction pro-
cess, its complexity is linearly reduced due to the need to
construct only q − c binary classifiers. As for the LP-based
algorithms, their complexities are not directly related to the
number of labels but to the number of distinct combinations
of labels. The number of classes produced by the LP-based
methods is upper bounded by 2q and, therefore, deleting
c labels would imply a reduction of 2q−c classes and an
improvement of the complexity of the multi-class problem
generated by this type of methods. Focusing on IBLR-ML,
not only the output space is reduced but also the input space,
since it extends the input features with the labels of the k-
nearest neighbors of each training instance.

Regarding the predictive performance achieved by the
MLC algorithms, the obtained results demonstrated that,
in some cases, it is possible to reduce the label space with-
out significantly dropping their predictive performance. For
example, the predictive performance achieved by BR is
statistically the same when reducing the number of labels
up to 20%. On the contrary, for the other two types of
MLC algorithms (LP and IBLR-ML), significant reduction
in the overall predictive performance was not observed up
to a 40% of reduction. More specifically, IBLR-ML may
reduce the label space in a 50% with no statistical differ-
ences in the overall predictive performance, which is con-
sidered an excellent result. Finally, it should be denoted
that there were interesting cases where the predictive per-
formance of a specific algorithm, e.g. IBLR-ML, was even
improved when the percentage of labels to be removed
increases. The explanation for this improvement is related
to the expansion of the input space with labels. IBLR-ML
reinforces the learning based on those labels that are after-
wards used to reconstruct the label space, so the better these
labels are predicted, the better is the reconstruction of such
space.
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V. CONCLUSION
In this paper, a novel methodology for the reduction of the
label space in MLC problems have been proposed. This
methodology first comprises the label space by building
binary classifiers that learn some of the labels from the rest,
before any MLC algorithm is executed. Later, the final pre-
diction is obtained by reconstructing the label space from the
predictions of the multi-label classifier that was built on the
reduced dataset, bymeans of the binary classifiers obtained in
the first stage. One of the major features of this methodology
is that the user can reduce the label space as much as required,
defining a ratio of labels to reduce. Nevertheless, higher
reductions of the label space may lead to a significant loss
of predictive performance.

The main aim of our proposal was to significantly reduce
the required runtime of the MLC algorithms but without
causing a significant reduction in the predictive performance.
An extensive experimental study over 25 multi-label datasets
with different label space complexities and using three dif-
ferent MLC algorithms demonstrated that it is possible to
decrease the required runtime of the MLC algorithms but
without significantly reducing their predictive performance.
Besides, there are specific cases where the performance of
the MLC algorithms increases as the label space is further
reduced. Also, there are cases where, without reducing the
label space, the algorithm could not be executed under the
available computational resources in a reasonable quantum
of time, so it reinforced the need of reducing the label space
in some problems.

Finally, due to many well-known MLC algorithms were
based on BR or LP, it would be also possible to reduce their
runtime by means of the proposed methodology.
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