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ABSTRACT Optimizing and managing wireless communication network, including improving the
utilization of network resources, energy efficiency, automatically carrying out wireless network planning and
network construction, is very important to the communication service providers (CSPs). Key performance
indicators (KPIs) forecasting for wireless cells, especially the long-term forecasting task, plays a key role in
wireless network planning and construction. A new adaptive combination forecasting method is proposed
in this paper. The adaptive combination forecasting method has been verified by a real large-scale wireless
network dataset which contains thousands of wireless cells and corresponding daily KPIs. After a series
steps such as dataset analysis, and Auto-encoder algorithm, K-means algorithm and time series forecasting
algorithms, we can obtain the prediction model, then compare its symmetric mean absolute percentage
error (SAMPE) value with Holt exponential smoothing, Comb method and Theta method.Experimental
results have demonstrated that the proposed method has a better performance, especially in the medium
and long term forecasting scenario in terms of symmetric mean absolute percentage error (SMAPE) when
compared with some existing methods. It proved that our method can be more suitable for complex wireless
communication network environment.

INDEX TERMS Time series forecasting, wireless cell, wireless networks, combination forecasting method.

I. INTRODUCTION
With the rapid development of wireless communication
technology, emergence of mobile applications, growing
mobile users and the explosive growth of data traffic, the
requirements for wireless service quality are continuously
improved. All of these put forward new requirements and
challenges for CSPs. It is very important to actively optimize
and manage the wireless network, effectively improve the
utilization of network resources and energy efficiency, and
automatically carry out wireless network planning and
network construction [1].

The key performance indicators (KPIs) of wireless net-
work, especially KPIs of wireless cells, provide important
information and understanding for wireless network insight.
Therefore, KPIs forecasting for wireless cells is an important
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task for CSPs. A precisely forecasting KPIs of wireless
cells can monitor the state of network, also can help CSPs
reserve network resources, increase network bandwidth,
adjust existing network resources in advance. All of these
will improve the network efficiency and the stability of the
network.

KPIs forecasting for wireless cells is an important branch
of time series prediction. Due to the importance, complexity
and large-scale characteristics of time series data, many
challenges have been brought to the field of time series
prediction, especially in the field of wireless communication.

At present, different time series prediction algorithms
have been needed to solve the problems in the field of
large-scale wireless communication, including the classical
time series prediction algorithm, Holt-Winter’s exponential
smoothing algorithm [2],cloud-edge collaboration [32],joint
offloading scheme [33], [34],burst traffic scheduling [35] and
seasonal ARIMA model [3] as well as the neural network
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model [4], [5], [25]–[28], [30], [31], such as Convolutional
Neural

Network [5], [25], [37], BayesianNeural Network [4], [36],
Recurrent neural Network [26], [27], Attention mecha-
nism [27], [28], Convolutional Graph Autoencoder [24],
auto-encoder [24], [30].

KPIs forecasting for wireless cells, especially the long-
term forecasting task, plays a key role in wireless network
planning and construction. To the best of our knowledge,
most of the current works focus on short-term forecasting or
on a small dataset [2]–[4]. The time span of these datasets
is often not long enough to support long-term forecasting
[1]–[7]. Some current works use individual time series
forecasting method to solve the problem of KPIs fore-
casting for wireless cells. However, individual methods
cannot produce a better performance than the combination
methods [8], [9], [29].

Due to the complexity of wireless communication envi-
ronment and user behavior, individual time series forecasting
methods can only be applied in a single scene, which is
difficult to adapt to the complex and changeable wireless
communication environment. Therefore, it is particularly
important to choose different time series forecasting methods
for different wireless cell scenarios.

In this paper, in order to overcome the shortcoming
of individual time series forecasting methods, which is
difficult to adapt to the complex and changeable wireless
communication environment, we use combination forecast-
ing methods to improve the robustness adapting to the
complex and changeable wireless environment. We proposed
an adaptive combination forecasting method based on a
real large-scale wireless network dataset which contains
thousands of wireless cells and corresponding daily KPIs.
The prediction method includes the following parts: Feature
extraction of high-dimensional time series automatically by
unsupervised learning; automatically classify time series by
clustering algorithm; the forward selection algorithm is used
to generate the best combination predictionmode for different
types of time series. It is very important in the big data
scenario, as it cannot manually select forecasting models for
each time series dataset.

The rest of this paper is structured as follows. In Section II,
we introduce the real large-scale wireless network dataset,
together with themainmachine learning algorithms including
auto-encoder algorithm, K-Means algorithm and traditional
time series forecasting algorithms. In Section III, we intro-
duce the scheme design and the details of our method.
In Section IV, the results of different forecasting methods
are given and compared. Finally, we conclude this paper in
Section V.

II. DATASET ANALYSIS METHODS
A. DATASET ANALYSIS
In this section, we provide details about the utilized dataset
and present some observations of wireless cells characteris-
tics. The dataset is collected from one of large cities in China,
by one of largest CSP. It contains five thousand wireless cells

FIGURE 1. Time series for KPI of downlink traffic about average traffic of
all wireless cells, high traffic wireless cell, median traffic wireless cell and
low traffic wireless cell.

FIGURE 2. Trend component of downlink traffic about average trend
component of all wireless cells, trend component of high traffic wireless
cell, trend component of median traffic wireless cell and trend
component of low traffic wireless cell.

spanning over one year during August 2017 and July 2018
in long-term-evolution (LTE) cellular network. The dataset
contains three important KPIs to monitor the the status of
cells, which include downlink physical resource block (PRB)
utilization, average connections number of radio resource
control (RRC) and downlink traffic.

Fig. 1 shows the time series for KPI of downlink traffic
about average traffic of all wireless cells, high traffic wireless
cell, median traffic wireless cell and low traffic wireless cell.

In order to better understand the characteristics of wireless
cells. We used classic time series decomposition method to
decompose the downlink traffic time series into trendcompo-
nent, seasonal component and stochastic component [10].

Fig. 2 shows the trend component of downlink traffic about
average trend component of all wireless cells, high traffic
wireless cell, median traffic wireless cell and traffic wireless
cell, respectively.

Fig. 3 shows the seasonal component of downlink traffic
about average seasonal component of all wireless cells, high
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FIGURE 3. Seasonal component of downlink traffic about average
seasonal component of all wireless cells, seasonal component of high
traffic wireless cell, seasonal component of median traffic wireless cell
and seasonal component of low traffic wireless cell.

FIGURE 4. Stochastic component of downlink traffic about average
stochastic component of all wireless cells, stochastic component of high
traffic wireless cell, stochastic component of median traffic wireless cell
and stochastic component of low traffic wireless cell.

traffic wireless cell, median traffic wireless cell and low
traffic wireless cell, respectively.

Fig. 4 shows the stochastic component of downlink traffic
about average stochastic component of all wireless cells,
high traffic wireless cell, median traffic wireless cell and low
traffic wireless cell, respectively.

It can be seen from Fig. 1 and Fig. 2 that the average traffic
of all cells has an obvious growth trend. With the growth of
time, the overall traffic is growing upward, but there is a great
inconsistency between the traffic change of a single cell and
the average traffic change. The trend component of a single
cell has great volatility, which brings a great challenge to time
series forecasting.

In addition, we can observe that the average traffic and
the average trend component of all wireless cells have
an obvious growth trend. The local trend of an individual
wireless cell fluctuates greatly whether the downlink traffic
is high, medium or low, which brings a great challenge for
forecasting.

FIGURE 5. The structure of auto-encoder.

Compared with Fig. 1 to Fig. 3, we can find the amplitude
of seasonal components is very smaller than the amplitude of
time series or trend component. In other words, all of time
series have no obvious seasonality.

Compared with Fig. 1, Fig. 2 and Fig. 4, we can find the
amplitude of average stochastic component of all wireless
cells is smaller than the amplitude of average time series
or average trend component. However, the amplitude of
stochastic component of individual wireless cell is too high
to be ignored. The high fluctuation of local trend and high
amplitude of stochastic component bring great challenges for
wireless cell forecasting task.

B. AUTO-ENCODER ALGORITHM
Effective characterization of time series plays a key role in
subsequent time series prediction. In [30] rough auto-encoder
(RAE) and rough denoising auto-encoder (RDAE) are used
as hidden layers to extract the features of the time series of
wind speed data. In [31] restricted Boltzmann machines and
rough set theory are used to capture unsupervised temporal
features from wind speed data. Our proposed method use
auto-encoder extract the features of the time series of wireless
cells.

Auto-encoder is an unsupervised neural network, which
can extract the effective coding (or representation) of a
dataset [11], [12]. The structure of auto-encoder can be
divided into two parts: encoder and decoder, as shown in the
Fig 5.

Assuming a set of D-dimensional samples x(n) ∈ RD,
1 ≤ n ≤ N , the encoder f : RD

→ RM maps this set of
samples to the feature space to get the code of each sample,
z(n) ∈ RM , 1 ≤ n ≤ N . Then the decoder g : RM

→ RD is
expected to reconstruct the original samples x ′(n) ∈ RD, 1 ≤
n ≤ N as accurately as possible. Generally,M, the dimension
of the feature space, is smaller than D, the dimension of the
original space. The auto-encoder is equivalent to a dimension
reduction or feature extraction method.

The learning objective of auto-encoder is to minimize the
reconstruction errors L.

L =
N∑
n=1

∥∥∥x(n) − x′(n)
∥∥∥2 + λ ‖W‖2F (1)
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TABLE 1. Time series algorithms used in this paper.

where λ is the regularization coefficient, W is the shared
weight parameter matrix of encoder and decoder (only
transposed), which is called tied weight. The neural network
is easier to learn because of the reduction of parameters.
In addition, tied weight can also play a role in regularization.

C. K-MEANS ALGORITHM
K-Means is the most commonly used clustering algorithm.
K-Means divides the set of n samples into k classes, and the
distance from each sample to the center of its class is the
smallest [13]. The essence of K-Means is the selection of
function from samples to classes ◦
Assuming a set of n samples, X = {x1, x2, . . . , xn}, where

each sample is represented by an m-dimensional eigenvector.
The number of clusters is less than the number of samples.
The samples are divided into k classesG1,G2, . . . ,Gk, where

Gi ∩ Gj = ∅,
k⋃
i=1

Gi = X (2)

TABLE 2. The meaning of mathematical symbols.

And C presents division, and one division corresponds to one
clustering result.

The loss function W (C) is defined as the sum of the
distances between each sample and its class center.

W (C) =
k∑
l=1

∑
C(i)=l

‖xi − x̄l‖2 (3)

where x̄l = (x̄1l, x̄2l, · · · , x̄ml)T is the center of the l-th class.
K means is to solve the optimization problem.

C∗ = argmin
C

W (C)

= argmin
C

k∑
l=1

∑
C(i)=l

‖xi − x̄l‖2 (4)

D. TIME SERIES FORECASTING ALGORITHMS
The list of time series prediction algorithms to be used in this
paper is shown in Table 1. In the offline stage, according to
different clustering results, the forward selection algorithm
will select the most suitable combination from the algorithms
list. The variables involved in these algorithms are further
illustrated in Table 2.

In algorithm Theta, ft is a function of variable θ , which is
expressed as

ft (θ ) = x1 + (i− 1)(x2 − x1)+ θ

(
t−1∑
i=2

(t − i)y′′i+1

)
(5)

III. PROPOSED METHOD
In this section, the scheme of our proposed method is
described firstly, then the detailed description of offline phase
and online phase are presented.

A. SCHEME DESIGN
The scheme of our proposed method is showed in Fig. 6,
which includes offline phase and online phase.

The offline phase consists of auto-encoder algorithm,
K-Means algorithm and forward selection algorithm. The
time series of all wireless cells are used as features and labels
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FIGURE 6. The overall flow chart of offline phase and online phase.

for the auto-encoder algorithm, then a encoder model are
generated by training dataset. The feature vectors output by
encoder model are used as input of K-Means algorithm. Then
K-Means algorithm will output the K-Means model and the
class corresponding to the time series of each wireless cell.
Finally, the forward selection algorithm is used to generate
the combination forecasting model for each class.

The offline phase shown in Fig. 6 includes auto-encoder
algorithm, K-means algorithm and forward selection algo-
rithm.

The time series data are input into the auto-encoder as a
training set, and the auto-encoder parameters are trained to
generate the Encoder model, and the encoding feature vector
corresponding to the training set is generated to extract the
time series features of the wireless cell.

The encoding feature vector of Auto-encoder is input
into the K-means algorithm, which generates the K-means
clustering model and outputs the clustering results of the
training set and the clustering labels of each sample, so as
to facilitate the subsequent search for the optimal solution.

The K-means training output clustering results and clus-
tering labels are input into the forward selection algorithm to
generate each type of corresponding combination prediction
model.

In the offline phase, the Encoder model generated by
auto-encoder algorithm, the K-means clustering model gen-
erated by K-means algorithm, and the combined forecasting
model generated by forward selection algorithm are used
as the trained model and the input of the online phase
model.

In online phase, the time series to be predicted generates
Encoded data by Encoder model. Encoded data is input
into the K-means model to generate the corresponding
clustering label Clutter C, and the corresponding combination
prediction algorithm is found according to the clustering
label and Forecasting model, which effectively solves the
impact on our work caused by the large amplitude of the
random component in a single wireless cell, the high volatility
of the local trend and the high amplitude of the random
component. Time series data is predicted according to the

Algorithm 1 Forward Selection of Combined Forecasting
Model
Input: compressed time series of a cluster class
Output: combined forecasting model of a cluster class
Symbol: S0: All candidate time series forecasting algorithms

S: Candidate time series forecasting algorithms in
iteration, S={s}.
A0: Selected combined forecasting algorithm set in
last iteration
A: Selected combined forecasting algorithm set

e(S∗): forecasting error of combined forecasting
algorithm set S∗

1 Initial: Let A = ϕ, S0 = {12 candidate time series
forecasting algorithms}.

2 Let A0 =A, S = S0.

3 Select the time series forecasting algorithm s with the
smallest forecasting error from S

4 if e(A +s) <e(A): let A = A +s.

5 S = S -s.

6 if S 6= ϕ: go to step 2
elif S=ϕ and A = A0: return A.
else: A0 = A, go to step 1.

combination prediction algorithm to generate the final
prediction results.

In online phase, the time series pass through the encoder
model and K-Means model in sequence to obtain the
corresponding forecasting model firstly. Then, this model is
used to generate the forecasting results. The details of online
and offline phases are presented as follows.

B. METHODS OF OFFLINE PHASE
In the offline phase, we train a encoder model, a K-Means
clustering model, and a combined forecasting model for each
cluster class.

Firstly, the time series are compressed by auto-encoder,
and then the encoder model is generated. Secondly, K-means
algorithm is utilized to cluster the compressed time series
to generate a k-means clustering model include all the
clustering results of the training set and the clustering labels
of each sample. Finally, for each cluster tag and cluster
result, we utilize the forward selection algorithm to generate a
combined prediction model. The details of forward selection
algorithm are as follows.

In each iteration, a candidate algorithm from table 1 is
added to combined forecasting algorithm set A if the
combined algorithm with s has lower forecasting error.
The forward selection algorithm stops iterating until the
forecasting error is no longer reduced.
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C. METHODS OF ONLINE PHASE
In online phase, the vector Y = (y1, y2, . . . , yT )T is used to
represent the known time series values, where the subscript
T is the number of elements in the set. Then, yT+i is defined
as the value to be predicted, where i is the i-step ahead for
forecasting and i ≥ 1. The overall flow chart of the online
phase is shown in Fig. 6.

Firstly, the time series set Y is input into the encoder
trained in the offline stage to obtain the coding vector Ŷ =
(y′1, y

′

2, . . . , y
′
n)
T , which is expressed as:

Ŷ = f (Y ) (6)

Secondly, the distance di = ‖Y −Mi‖
2 between Ŷ and

K-Means cluster centers is calculated, and the clustering
center corresponding to the minimum distance is taken as the
category c of Ŷ , that is

c = argmin
i
{di |i = 1, . . . ,m } (7)

Finally, the corresponding combined forecasting algorithm
set is selected based on category c, which is denoted as Cf ,
Cf = {fk}, where fk is individual time series forecasting
method. For the input time series Y = (y1, y2, . . . , yT )T , the
i-step ahead forecasting result yT+i is denoted as:

yT+i =
1∣∣Cf ∣∣ ∑fk∈Cf fk,T+i, fk,T+i = fk (Y ; i) (8)

where fk (Y ; i) is the predictive value of prediction algorithm
in i-step ahead of fk , i ≥ 1.

IV. EXPERIMENTAL RESULTS
Use In this section, we use the dataset introduced in
Section II to verify the effectiveness of ourmethod.We divide
the dataset into two parts. One is used in the offline
phase and learn the models including auto-encoder model,
K-Means model and combining forecasting model, which
ranging from 2017-08-01 to 2018-07-03. The other is
used to conduct the experiments to verify and validate
the accuracy of our proposed method, which ranging from
2017-08-01 to 2018-07-31. The 28 days of data ranging from
2018-07-04 to 2018-07-31 is used as evaluation data to
evaluate the forecasting performance metrics.

To evaluate the different time series forecasting methods,
we should introduce the performance metrics which can
measure their forecasting accuracy. There are many different
performance metrics to evaluate the time series forecasting
methods. Among them, the most common and widely
performance metrics for time series forecasting methods are
root mean square error (RMSE) and mean absolute error
(MAE). They are defined as follows.

RMSEk =

√√√√ 1
T

T∑
t=1

(
ŷk,t − yk,t

)2 (9)

RMSE =
1
K

K∑
k=1

RMSEk (10)

MAEk =
1
T

T∑
t=1

∣∣ŷk,t − yk,t ∣∣ (11)

MAE =
1
K

K∑
k=1

MAEk (12)

where T is the total number of samples in a forecasting
period, K is the total wireless cell numbers, yk,t is the true
value and ŷk,t is the forecasting value.

However, both RMSE and MAE performance metrics
are not normalized. They are varied according to the true
values. Since the symmetric mean absolute percentage
error (SMAPE) performance metric is a normalized value,
we use SMAPE to evaluate the different time series
forecasting methods in this paper. The SMAPE is defined as
follows.

SMAPEk =
100%
T

T∑
t=1

∣∣ŷk,t − yk,t ∣∣(∣∣ŷk,t ∣∣+ ∣∣yk,t ∣∣) /2 (13)

SMAPE =
1
K

K∑
k=1

SMAPEk (14)

In order to verify the effectiveness of our method, we com-
pare the proposed method with Holt exponential smoothing
method [15], [16], Theta method [17], [18] and Combmethod
which a combination based on the simple arithmetic average
of the Simple, Holt and Damped exponential smoothing
models [8].

In the training of auto-encoder method, the time series
are normalized by subtracting the mean value and dividing
by the variance. The mean-absolute-error (MAE) is used
as the loss function for auto-encoder method and the
dimension of the feature space is 14 dimensions. Auto-
encoder input dimension 154 days of day granularity data.
The Adam method [19] is used to train the parameters
of the auto-encoder. The auto-encoder is realized using
Tensorflow package [20]. The 14-dimension vectors are input
into the K-Means method to train the K-Means model.
The parameter K of K-Means method are determined by
silhouette coefficient [21]. The K-Means method is realized
using scikit-learn package [22]. The classical time series
forecasting methods introduced in Section II are realized
using statsmodels package [23]. As the forecasting steps are
very long, the forecasting steps are divided into four non-
overlapping segments. Each segment has seven forecasting
points, and uses Forward selection method to find the best
combining forecasting methods.

We highlight to the reader that any results reported in this
section should be considered as lower bounds of system per-
formance. The performance of adaptive capacity prediction
method can be improved by super parameter optimization
of auto-encoder and k-means algorithm, or by introducing
better feature extraction algorithm, or by introducing the
latest neural network time series prediction algorithm.

The SMAPE performance metrics among four different
methods on the three KPIs are presented in Fig. 7.
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FIGURE 7. The SMAPE performance metrics comparison among four
different methods.

For the KPI of downlink PRB utilization, SMAPE of
Holt exponential smoothing method is 31.71% whereas
it is 24.69% for Comb method and 21.98% for Theta
method. Our proposed method has a lowest SMAPE among
four different forecasting methods, which is 20.87%. Our
method’s SMAPE is close to 5.1% more accurate than the
Theta method.

For the KPI of average connections number of RRC,
SMAPE of Holt exponential smoothing method is 31.71%
whereas it is 23.71% for Comb method and 21.06% for Theta
method. Our proposed method has a lowest SMAPE among
four different forecasting methods, which is 19.86%. Our
method’s SMAPE is close to 5.7% more accurate than the
Theta method.

For the KPI of downlink traffic, SMAPE of Holt exponen-
tial smoothing method is 36.60% whereas it is 32.24% for
Comb method and 31.62% for Theta method. Our proposed
method has a lowest SMAPE among four different forecast-
ingmethods, which is 28.03%.Ourmethod’s SMAPE is close
to 11.4% more accurate than the Theta method.

From Fig. 7, we can obtain observations. The combination
methods have a better performance metrics compared with
the individual method on different KPIs. Our proposed
method has a lowest SMAPE among the four forecasting
methods.

The SMAPE performance metrics for KPI of downlink
PRB utilization on the different forecasting steps among four
different methods are showed in Fig. 8.

For the first 7 forecasting steps, SMAPE of Holt expo-
nential smoothing method is 16.48% whereas it is 14.87%
for Comb method, 14.18% for Theta method and 14.32% for
our proposed method. Except for Holt exponential smoothing
method, the forecasting errors of the other three algorithms
are similar.

For the forecasting steps ranging from 8 to 14, SMAPE
of Holt exponential smoothing method is 30.65% whereas it
is 25.03% for Comb method, 22.44% for Theta method and
20.96% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.

FIGURE 8. The SMAPE performance metrics for KPI of downlink PRB
utilization on the different forecasting steps among four different
methods.

Our method’s SMAPE is close to 6.6% more accurate than
the Theta method and 16.3% more accurate than the Comb
method.

For the forecasting steps ranging from 15 to 21, SMAPE
of Holt exponential smoothing method is 37.68% whereas it
is 28.55% for Comb method, 25.08% for Theta method and
23.47% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 6.4% more accurate than
the Theta method and 17.8% more accurate than the Comb
method.

For the forecasting steps ranging from 22 to 28, SMAPE
of Holt exponential smoothing method is 42.05% whereas it
is 30.30% for Comb method, 26.24% for Theta method and
24.72% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 5.8% more accurate than
the Theta method and 18.4% more accurate than the Comb
method.

FromFig. 8, we can find that the farther the forecasting step
is, the higher the forecasting error is. Our proposed method
has a better performancemetrics in the medium and long term
forecast compared with the other three forecasting methods
for the KPI of downlink PRB utilization.

The SMAPE performance metrics for KPI of average
connections number of RRC on the different forecasting steps
among four different methods are showed in Fig. 9.

For the first 7 forecasting steps, SMAPE of Holt exponen-
tial smoothing method is 15.41% whereas it is 13.38% for
Comb method, 12.55% for Theta method and 11.94% for our
proposedmethod. Our proposedmethod has a lowest SMAPE
among four different forecasting methods. Our method’s
SMAPE is close to 4.9%more accurate than the Thetamethod
and 10.8% more accurate than the Comb method.

For the forecasting steps ranging from 8 to 14, SMAPE
of Holt exponential smoothing method is 29.70% whereas it
is 23.09% for Comb method, 20.40% for Theta method and
19.32% for our proposed method. Our proposed method has
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FIGURE 9. The SMAPE performance metrics for KPI of average
connections number of RRC on the different forecasting steps among four
different methods.

a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 5.3% more accurate than
the Theta method and 16.3% more accurate than the Comb
method.

For the forecasting steps ranging from 15 to 21, SMAPE
of Holt exponential smoothing method is 38.38% whereas it
is 27.95% for Comb method, 24.66% for Theta method and
23.21% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 5.9% more accurate than
the Theta method and 17.0% more accurate than the Comb
method.

For the forecasting steps ranging from 22 to 28, SMAPE
of Holt exponential smoothing method is 43.58% whereas it
is 30.44% for Comb method, 26.61% for Theta method and
24.98% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 6.1% more accurate than
the Theta method and 17.9% more accurate than the Comb
method.

From Fig. 9, we can find that the farther the forecasting
step is, the higher the forecasting error is. Our proposed
method has a better performance metrics, especially in the
medium and long term forecast, compared with the other
three forecasting methods for the KPI of average connections
number of RRC.

The SMAPE performance metrics for KPI of downlink
traffic on the different forecasting steps among four different
methods are showed in Fig. 10.

For the first 7 forecasting steps, SMAPE of Holt exponen-
tial smoothing method is 22.28% whereas it is 20.93% for
Comb method, 22.04% for Theta method and 19.73% for our
proposedmethod. Our proposedmethod has a lowest SMAPE
among four different forecasting methods. Our method’s
SMAPE is close to 10.5% more accurate than the Theta
method and 5.7% more accurate than the Comb method.

For the forecasting steps ranging from 8 to 14, SMAPE
of Holt exponential smoothing method is 37.17% whereas it

FIGURE 10. The SMAPE performance metrics for KPI of downlink traffic
on the different forecasting steps among four different methods.

FIGURE 11. The cumulative percentage of SMAPE of wireless cell for KPI
of downlink PRB utilization about four different methods.

is 33.40% for Comb method, 32.72% for Theta method and
27.64% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 15.5% more accurate than
the Theta method and 17.2% more accurate than the Comb
method.

For the forecasting steps ranging from 15 to 21, SMAPE
of Holt exponential smoothing method is 41.83% whereas it
is 36.40% for Comb method, 35.18% for Theta method and
29.79% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 15.3% more accurate than
the Theta method and 18.2% more accurate than the Comb
method.

For the forecasting steps ranging from 22 to 28, SMAPE
of Holt exponential smoothing method is 45.11% whereas it
is 38.24% for Comb method, 36.56% for Theta method and
31.74% for our proposed method. Our proposed method has
a lowest SMAPE among four different forecasting methods.
Our method’s SMAPE is close to 13.2% more accurate than
the Theta method and 17.0% more accurate than the Comb
method.
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FIGURE 12. The cumulative percentage of SMAPE of wireless cell for KPI
of average connections number of RRC about four different methods.

FIGURE 13. The cumulative percentage of SMAPE of wireless cell for KPI
of downlink traffic about four different methods.

From Fig. 11, we can find that the farther the forecasting
step is, the higher the forecasting error is. Our proposed
method has a better performance metrics, especially in the
medium and long term forecast, compared with the other
three forecasting methods for the KPI of downlink traffic.

The cumulative percentage of SMAPE of wireless cell for
KPI of downlink PRB utilization are presented in Fig. 11.

From the Fig. 11, we can find that our proposed method
has more wireless cells with low forecasting error compared
with the other three methods. Taking SMAPE less than 30%
as an example, the cumulative percentage is 68.32% for Holt
exponential smoothing method, 75.62% for Comb method,
80.96% for Theta method whereas it is 84.02% for our
proposed method.

The cumulative percentage of SMAPE of wireless cell for
KPI of average connections number of RRC are presented in
Fig. 12.

From the Fig. 12, we can find that our proposed method
has more wireless cells with low forecasting error compared
with the other three methods. Taking SMAPE less than 30%
as an example, the cumulative percentage is 68.36% for Holt
exponential smoothing method, 73.70% for Comb method,

78.84% for Theta method whereas it is 82.94% for our
proposed method.

The cumulative percentage of SMAPE of wireless cell for
KPI of downlink traffic are presented in Fig. 13.

From the Fig. 13, we can find that our proposed method
has more wireless cells with low forecasting error compared
with the other three methods. Taking SMAPE less than 30%
as an example, the cumulative percentage is 56.22% for Holt
exponential smoothing method, 58.08% for Comb method,
59.38% for Theta method whereas it is 67.04% for our
proposed method.

V. CONCLUSION
In this paper, we carried out experiments on a real large-
scale wireless network dataset which contains thousands of
wireless cells and corresponding daily KPIs. Experimental
results have demonstrated that the proposed method has a
better performance, especially in the medium and long term
forecasting scenario in terms of SMAPEwhen comparedwith
some existing methods. It proved that our method can be
more suitable for complex wireless communication network
environment.

The future direction of our work includes: (1) Use
effective and efficient time series extractor to further improve
feature extraction and feature expression, such as denosing
auto-encoder, sparse auto-encoder, variational auto-encoder;
(2) The proposed method uses the classical time series
prediction algorithm as the basic predictor, which will limit
the final performance of our adaptive combination prediction
method. In the future work, the recent neural network model,
and machine learning model will be introduced as the
basic prediction algorithm to further improve the prediction
performance of the adaptive combination prediction method.
(3) At present, our proposal method is mainly used in the
field of wireless communication network, and this predicition
method will be applied to more time series prediction fields
later.
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