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ABSTRACT Recently, many video streaming services, such as YouTube, Twitch, and Facebook, have
contributed to video streaming traffic, leading to the possibility of streaming unwanted and inappropriate
content to minors or individuals at workplaces. Therefore, monitoring such content is necessary. Although
the video traffic is encrypted, several studies have proposed techniques using traffic data to decipher users’
activity on the web. Dynamic Adaptive Streaming over HTTP (DASH) uses Variable Bit-Rate (VBR) - the
most widely adopted video streaming technology, to ensure smooth streaming. VBR causes inconsistencies
in video identification in most research. This research proposes a fingerprinting method to accommodate for
VBR inconsistencies. First, bytes per second (BPS) are extracted from the YouTube video stream. Bytes per
Period (BPP) are generated from the BPS, and then fingerprints are generated from these BPPs. Furthermore,
a Convolutional Neural Network (CNN) is optimized through experiments. The resulting CNN is used to
detect YouTube streams over VPN, Non-VPN, and a combination of both VPN and Non-VPN network
traffic.

INDEX TERMS Video identification, fingerprinting, deep learning, classification, variable bitrate.

I. INTRODUCTION

With the advancement of technology and availability of
mobile devices, the past few years have seen an increase
in video network traffic. CISCO claims video streaming to
be the leading consumed media that has become the major
contributing factor to internet traffic [1]. For the security
and privacy of clients, internet traffic is encrypted, leaving
little or no possibility of monitoring stream content. Minors
and adolescents can be induced to inappropriate content with
unmonitored traffic [2], [3]. Most video streaming platforms,
such as YouTube, Facebook, and Twitch, have adopted
dynamic adaptive streaming over HTTP (DASH) technology
to enhance the client’s quality of experience (QoE). DASH
uses the Variable Bitrate (VBR) encoding technique to
stream video content to clients to ensure a smooth streaming
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experience [4]. The popularity of DASH resulted in multiple
industries starting to invest in this direction. Furthermore, the
Google search engine also ranks video streaming websites on
the first page of search results that adopt DASH streaming
technology [5].

The previous video identification frameworks rely on IP
packet headers, ports, and content information to identify
individual videos. However, with the rising popularity of such
frameworks and their threats to user privacy and security,
video streaming service providers started encrypting their
streams to mitigate security issues. Most of the traffic flowing
between clients and servers is secured by Secure Socket
Layer (SSL) and Transport layer security (TLS) encryption
technology over HTTPS protocol. In conclusion, such
encryption approaches restrict techniques including Deep
Packet Inspection (DPI) [6] to identify individual videos
streaming over a network. Furthermore, with the upsurge
in the availability of free Virtual Private Networks (VPNs),
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FIGURE 1. Experimental platform of video identification pipeline.

more clients and adversaries are inclined to use them to hide
their network activities, which aggravates the streaming video
identification.

VPN and SSL protocols prevent a middleman from
viewing the content of network traffic between the two
communicating parties. Although an SSL protocol only
encrypts the packet, the whole packet is encapsulated within
another packet in a VPN, which allows the client to bypass
server blockage at the gateway by tunneling through a remote
machine. A VPN is classified into two types based on its
security protocol; SSL VPN and IPsec VPN. The VPN used in
this research is Open VPN [7] which is an SSL type VPN that
uses a Hash-based Message Authentication Codes (HMAC)
with a SHA1 hashing algorithm to ensure that the contents
in the packets are intact. However, plentiful information
regarding streaming video can be obtained via flow-based
features, including the number of packets, packet sizes, burst
sizes, and quantity of packet bursts. Machine learning and
deep learning models [8], [9] can leverage these features to
identify streaming videos.

Over the years, deep learning-based neural networks
have outperformed traditional machine learning algorithms.
A Convolutional Neural Network (CNN) is a particular
type of artificial neural network that applies convolutional
operation in at least one of its layers. Its high accuracy
and efficiency have introduced many real-world applications,
including human activity detection [10], natural language
processing [2], and bot detection [11]., energy consumption
prediction [12], smart city policing [13], risk assessment [14],
and text simplification [15].

DASH streaming follows a specific pattern to send the
videos to the client. In DASH, each video is divided into
small segments, sometimes called chunks, and delivered to
clients. This technique is used to increase the Quality of
Experience (QoE) of the client. However, these segments
are delivered to the client’s device in a specific method,
leaving a delivery pattern in the network traffic. This
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FIGURE 2. Inconsistent bytes arrival time in three separate runs.

pattern can be used to identify the video in the network
traffic [16], [17]. Many studies have exploited the DASH
streaming pattern to identify the videos in the network traffic
[18]-[21]. However, VBR encoding produces inconsistency
in the streaming pattern as shown in Figure 2. These abnor-
malities sometimes create difficulties for the researchers
to identify the video. Moreover, the client’s variable net-
work conditions also complicate the video identification
process.

To address the aforementioned challenges, i.e., (a) video
identification in the variable environment and (b) handle the
abnormalities and inconsistencies cropped up by the DASH
streaming technology, a fingerprinting method, Simple Dif-
ference Fingerprint (SDF), is proposed. This method is used
to generate a stable fingerprint of a video. For this purpose,
the Bytes per second (BPS) of the video stream are extracted,
aggregated into periods, and used for video identification as
shown in Figure 1. The details of the creation of periods and
fingerprints are provided in Section III.

The proposed SDFs are used to train a convolution
neural network (CNN) to classify the VBR video. Initially,
the CNN is fine-tuned through rigorous experiments to
deduce the perfect hyperparameters for different layers,
including convolutional, pooling, dropout, and dense layers,
alongside other model hyperparameters such as batch size,
optimizer, and the number of epochs. After tuning, the
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optimized model is used for video classification with different
traffic combinations of Virtual Private Network (VPN)
and Non-VPN network traffic. The main contributions
of this study are the answers to the following research

questions:
« Cana Sequential Convolutional Neural Network (SCNN)

be used to identify the video in the network traffic?

o How does SDF fingerprinting technique fare with other
fingerprinting methods, and which technique is the most
effective?

The rest of the paper is organized as follows. Section II
presents a summary of previous works and Section III
presents the method for fingerprint creation to handle the
inconsistencies in the network traffic. Section IV presents
the experimental setup and hyperparameter tuning of CNN.
Section V presents the comparison of different finger-
printing methods and finally Section VI concludes the

paper.

Il. RELATED WORK

Hypertext Transfer Protocol Secure (HTTPS) started gaining
attention as Google was one of the earliest adopters of
HTTPS. In contrast to its predecessor, HTTP, it provides
a secure environment and captures the interest of many
researchers to find vulnerabilities in this protocol. Some
research has been conducted to identify video streaming on a
client computer.

Chen et al. [22] demonstrated the severity of side-channel
attacks even with modern encryption techniques. Certainly
some hardware-level attacks are possible, as shown in [23].
Several works have been done for attacking network traffic
of Skype to identify user actions [24], [25]. Furthermore, it is
possible to identify the website that is being viewed on the
network [26]-[28]. Moreover, user activities can be revealed
by the network traffic [10], [29]-[31]. Private information can
also be leaked in location-based applications [32]-[35]. WiFi
signals can be sniffed [29], and routers can be hacked to sniff
packets if the adversary is present inside LAN [36]. At first,
video identification researchers leveraged QoE metrics to
optimize network bandwidth sharing. Mangla et al. [37]
predict these QoE metrics of video streams by weighing
packet headers in network traffic.

In contrast, [38] uses a set of statistical features that include
the quantity and size of the packets to classify the resolution
and bitrate of the video streams. Statistical features are also
used by [39] to identify the flow of video in the network.
Gutterman et al. [40] predict quality metrics for YouTube
encrypted videos by exploiting chunk statistics, including
chunk length and chunk duration, as well as flow statistics
such as flow duration and direction. Chunk statistics are also
leveraged by [41] to identify variable bitrate adaption under
HTTP and QUIC protocol.

Ameigeiras et al. [42] described a characteristic burst fea-
ture in the YouTube network streams. These bursts are of
two types: a long burst and a short burst. At the beginning
of streaming, there is a long burst, after which the video
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is buffered in smaller bursts. These characteristics are also
discussed by Rawattu and Balasetty [43]. The On-Off period
between each burst is discussed by Rao et al. [44], and
Liu et al. [45] leverages these On-Off periods to identify
the streaming video using traditional machine learning
approaches.

BPS is an important feature that plays an essential
role in video identification. Khan et al. [21], [46] extracted
the BPS of a video stream multiple times in different
video qualities and used them as a feature. This feature is
used to train different machine learning models, including
Naive Bayes, SVMs (Support Vector Machines), and CNN.
However, extracting the BPS and using it as raw data to
identify the video in network traffic is not enough to deal
with the irregularities in video identification caused by the
VBR.

To address the irregularities of VBR, the study most related
to our work [20] discusses the method of differential finger-
prints. The authors propose an algorithm to aggregate BPS
into several periods. This approach reduces the inconsistency
that occurs due to VBR. However, they only used the feature
distance measuring technique to predict the queried video.
Furthermore, the differential fingerprinting method presented
by the authors ignores the condition of dividing by zero,
and the dataset is missing videos streamed over a VPN.
Furthermore, the dataset consists of only Facebook videos
that stream over 180 seconds on Non-VPN traffic. Based
on the limitations of previous studies mentioned above, this
paper aims to modify the algorithm proposed in [20] to handle
the cases of zero as the denominator. The dataset in this
research contains both VPN and Non-VPN streamed videos,
and the video stream length is 120 seconds. Furthermore, the
baseline convolutional neural network presented in [21] is
fine-tuned, and hyperparameters are changed to improve the
accuracy of the results. The accuracy of the baseline model
on our dataset is 54.77%.

lil. METHODOLOGY

This section illustrates the methodology used for data
collection, fingerprinting methodologies, and producing a
list of predictions through various classifiers as shown in
Figure 3. The methodology is defined in steps as (a) data
collection, (b) preprocessing of data, (c) bytes per period,
(d) fingerprinting, and (e) summary of neural network.

A. DATA COLLECTION

We use Wireshark to capture the network traffic and generate
packet capture (PCAP) files against each video to generate
the dataset of video streams. We utilize the Chrome browser
to play the YouTube videos and Selenium for automation.
We selected 43 random videos from YouTube and each
video is downloaded 55 times. A desktop client SurfShark
is used for capturing the VPN streams. In conclusion, the
resultant data set consists of 86 total labels - 43 non-VPN
titles and 43 VPN titles and each video stream is captured for
120 seconds.
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FIGURE 3. Architectural design of video identification pipeline.

TABLE 1. List of acronyms used in the paper.

Acronym Explanation

ADF Absolute difference fingerprint

BPP Bytes per period

BPS Bytes per second

CISCO Commercial & Industrial Security Corporation
CNN Convolutional neural network

CPU Central Processing Unit

DASH Dynamic adaptive streaming over HTTP
DF Differential fingerprint

DPI Deep packet inspection

GB Gigabyte

GPU Graphics Processing Unit

GTX Giga Texel Shader

HMAC Hash-based Message Authentication Codes
HTTP Hypertext transfer protocol

HTTPS Hypertext transfer protocol secure

1P Internet protocol

LAN Local area network

PCAP Packet capture

QoE Quality of Experience

QUIC Quick User Datagram Protocol Internet Connections
RAM Random access memory

ReLU Rectified Linear Unit

SCNN Sequential Convolutioanal Neural Network
SDF Simple difference fingerprint

SHA Secure hash algorithm

SSL Secure socket layer

SVM Support vector machines

TLS Transport layer security

VBR Variable bitrate

VPN Virtual private network

B. PRE-PROCESSING

Wireshark exports the captured data in pcap file format. Each
generated pcap file contains 120 seconds of the streaming
video. As this file contains both uplink and downlink traffic,
this dataset is cleaned by applying a filter through the IP
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address of the server, which in this case is YouTube, and
selecting only the downlinks. This process is done for VPN
and Non-VPN data. Thus, it mitigates the streaming noise
of unwanted applications. This is achieved by the integrated
Wireshark filter in the conversation section.

C. BYTES PER PERIOD (BPP)

As mentioned above, DASH uses the VBR encoding, which
can cause irregularities in the sequence of BPS, effectively
reducing the accuracy of machine learning models. For this
reason, the BPS are aggregated into L segments, where L
is any constant number. In this paper, the value of L is set
to 6 as discussed in [20]. This aggregation compresses the
number of features from 120 BPS to 20 BPP. This approach
eliminates the VBR inconsistencies as the total size of a
given period will remain virtually the same irrespective of
the sequence in which the bytes are received. Therefore,
the difference between two consecutive periods will remain
consistent, discounting the factor of what sequence the bytes
are received in a given period.

D. FINGERPRINTING
Fingerprinting is a process of representing a large data by
a small bit of string, that uniquely identifies the data in
a process. Particularly, fingerprints are the small labels for
large data [47]. Due to the effectiveness of fingerprinting,
many researchers have effectively utilized the fingerprinting
technique in different scenarios. For instance, fingerprinting
is actively used in application discrimination [48], video
identification [20], Web page recognition [49], user activity
monitoring [25], and mobile application identification [50].
In our paper, we utilize the fingerprinting technique for
video identification in the encrypted network traffic. For
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this purpose, we created fingerprints of the BPPs of a
video stream. The created fingerprints help to differentiate
individual video streams. After generating a BPP sequence
of a stream, all the O in the sequence are replaced with
1 to resolve the zero division problem encountered during
fingerprints creation. For a video consisting of n seconds,
we get a sequence denoted as a = (aj, az, ..., a;,...). For
two adjacent data amounts a;—; and a;, fingerprints can be
generated as r = (ry, 2, ..., 1, ... ) by applying the one of
the following equations described below:

1) SIMPLE DIFFERENCE FINGERPRINT (SDF)

Video fingerprint r; can be calculated by subtracting the i
term of sequence a with the previous term (i — 1) as shown in
Equation (1):

ri=a; — a1 (D

2) ABSOLUTE DIFFERENCE FINGERPRINT (ADF)

This is a modified form of Equation (1) proposed in [20].
To eliminate the negative values generated by subtracting
a;_1 from a;, we take the absolute of the difference as shown
in Equation 2.

ri =la; — aj—1| ()

3) DIFFERENTIAL FINGERPRINT (DF)

Equation (3) is proposed by [20]. In this equation, the
differential of two consecutive periods is calculated as shown
below:

ai— ai
= 3)
aj—1

E. CONVOLUTIONAL NEURAL NETWORK (CNN) MODEL
A convolutional neural network (CNN) is a variant of the
traditional neural network because it can learn directly from
data without manual feature extraction. A CNN generally
consists of convolution layers, pooling layers, and a fully
connected layer. They are mainly used in pattern recognition
and their architecture makes them a preferred model for
object detection in image, voice in audio, natural language
processing (hate speech detection [2]), activity recognition
(bot detection [11], human activity recognition [10], malware
detection [3]), and classify digital signals. The CNN model
designed in this paper comprises four 1D convolutional
layers, each having ReLU as its activation function. Each
convolutional layer employs distinct kernels (also called
filters) that independently convolve the input data and
produce a feature map as the output. The kernel size is
assigned a small number relative to the input size. The
smaller kernel size helps the model learn more feature maps
and improve the overall prediction accuracy. The generated
feature map is passed through an activation function (ReLU
in our case) and passes to the pooling layers.

The max-pooling layers separate the four convolutional
layers. A pooling layer summarizes the result of the previous
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layer to its neighboring outputs, ultimately reducing the size
of the data without losing the key features. This reduction of
data generalizes the repeating patterns while simultaneously
reducing memory requirements.

After convolutional and max-pooling layers, a dropout
layer is added. The dropout layer randomly disables some of
the inputs of the previous layer to prevent the model from
learning only a few input values and restrain overfitting. The
relative amount of input features are disabled by defining the
probability value p in the dropout layer.

The dropout layer’s output is passed to the flatten layer,
which performs conversion of the multidimensional pooled
feature map into a one-dimensional vector to make it
compatible with forwarding into the dense layer. The dense
layer is a fully connected layer having all of its neurons
connected with the neurons of the previous layer. The output
of the dense layer is passed to a final dense layer, also called
Output layer [51].

The fingerprint of BPP is a one-dimensional array;
therefore, the input of the proposed CNN model is a
one-dimension series of BPP with the size of 20. The
first convolutional layer has a kernel size equal to 5 with
300 filters and a stride of 1. A single neuron is connected
to a cluster of five features of the input data. The output of
the layer is 300 feature maps of size 19. Subsequently, the
first convolutional layer contains 1800 trainable parameters
(1500 weights and 300 bias parameters.) This layer is
followed by a max-pooling layer that consists of a 300 feature
map of size 50. Each feature map of this layer is connected
to two feature maps of the previous convolutional layer. The
max-pooling layer has no trainable parameters.

The second convolutional layer has 512 kernels, each of
size 3, forming a total number of 461,312 parameters that
yield 512 feature maps of size 3. The trailing max-pooling
layer after the second convolutional layer generates 512 fea-
ture maps of size 11. The third convolutional layer containing
524,800 trainable parameters has 512 kernels of size 1,
which output 512 feature maps of size 1. Its successive
max-pooling layer generates 512 feature maps of size 1. The
last convolutional layer has 300 kernels of size 1, having
307,500 trainable parameters.

Consequently, the last max-pooling layer produces
300 feature maps of size 1. After the last pooling layer,
a dropout layer is added to disable arbitrary neurons from
the previous layer with the probability of 0.8. The dropout
layer is followed by a flatten layer that converts the pooled
feature maps of the previous layer into a one-dimensional
feature size of 3,300. The output layer, the last layer in the
model, contains 141,743 trainable parameters for 43 labels in
the dataset.

The activation function selected for all the convolutional
layers in this model is the ReLU function. The softmax
function is assigned as the activation function for the output
layer. The ReLU function is quite simple as it outputs the
input directly if it is a positive number. However, it outputs
a zero in the case of a negative number. The softmax function
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FIGURE 4. Arrangement of layers of convolutional neural network.

is a generalization of logistic regression to handle multiple
classes. For N output classes, it normalizes an N-dimensional
vector of actual values to an N-dimensional probability
distribution vector of actual values in the range [0,1]. The
N-dimensional output vector is the probabilistic score of each
corresponding class.

The cost function measures the difference between the
model’s prediction with the actual output and returns an
error value. This error rate helps the model determine how
much more optimization is needed. The cost function selected
for the proposed model is categorical cross-entropy. The
optimization function, which assigns optimal weights to
neurons in each layer, is the Adam optimizer. The complete
architecture of the CNN model is shown in Figure 4

The softmax activation function is used for the dense layer
and adam optimizer is used for model optimization. The
model is trained on three types of datasets: SDF, ADF, and
DF. The model summary is presented in the Table 2.

IV. EXPERIMENTAL SETUP AND MODEL FINE TUNING

The experiments performed in this paper are heavily based on
a Graphics Processing Unit (GPU). Therefore, all the experi-
ments are conducted on an Intel Core i7 processor @ 3.4GHz
with 16GB RAM and Nvidia GeForce GTX 1060 with
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TABLE 2. Fine tuned CNN model summary.

Hyperparameter Value

No. of Convl1D layers (1,2,3,4)

No. of filters (300, 512, 512, 300)
Kernel size (5,3,1,1)

Activation function (all layers) | relu

Max-pooling — pool size (1,2,1,1)

Padding (all layers) same

Dropout 0.8

number of classes
Categorical crossentropy

Dense — neurons (output)
Loss function

Optimizer Adam
Batch size 50
Epochs 300

6GB GPU memory. The experiment setup includes changing
various hyperparameter values, including the number of
filters, kernel sizes, pool size, adding another layer, dropout
ratio, batch size, and the number of epochs. Table 3 illustrates
the summary of each experiment.

A series of experiments are performed on each convolu-
tional layer of the baseline model presented in [21]. In each
experiment, several hyperparameters of the respective layer
are changed. In the first experiment, we change the number
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TABLE 3. Experiments summary.

Experiment number | Description Accuracy
Experiment #1 Tuning the first convolutional layer 55.93%
Experiment #2 Tuning the second convolutional layer 56.16%
Experiment #3 Tuning the third convolutional layer 56.16%
Experiment #4 Tuning the dropout layer 61.86%
Experiment #5 Tuning pooling layers 65.58%
Experiment #6 Adding and tuning fourth convolutional layer | 66.40%
Experiment #7 Adjusting the number of epochs 67.91%
Experiment #8 Setting the batch size 68.14%
Experiment #9 Changing Max Pool to Average Pool 68.14%

of filters of the first layer, and the rest of the values of
hyperparameters remain unchanged. Once we get higher
accuracy than the baseline model, we fix that value of the
number of filters and change the value of kernel size. Again,
on getting a higher accuracy, the value of kernel size is fixed
for the next experiment. The same procedure is repeated for
the second and third convolutional layers. After fixing the
number of filters and kernel size of the convolutional layers,
we repeat the same procedure for selecting the best dropout
value, pool size of all layers, number of epochs, and batch
size. We also add a fourth convolutional layer, and lastly,
we change the max-pooling to average pooling to check its
impact on accuracy. In this manner, we obtain a model with
the most fine-tuned hyperparameters. These experiments are
performed on VPN vs. Non-VPN with SDF applied dataset.
The list of experiments is as follows. Each experiment is
conducted to answer the following questions:

« What is the objective of the experiment?

o What are the outcomes of the experiment?

o What is the impact of the experiment on the results?

A. EXPERIMENT #1 TUNING 15t CONVOLUTIONAL LAYER
This experiment aims to find the optimal settings for the
number of filters and kernel size of the first convolutional
layer of the baseline model. We start the experiment by setting
the number of filters to 100 and increasing it by 100. The
highest accuracy achieved during this experiment is 55.70%
when the filters are equal to 300. After fixing the number of
filters to 300, we start increasing the kernel size. However,
the accuracy is decreased by 4%. Therefore, we decrease the
kernel size to 5, 4, and 3. After kernel size 5, the accuracy
starts to decrease. In the experiment, we get the optimal
value for the kernel and the number of filters of the first
convolutional layer with a 2.11% accuracy increase. The
comparison of accuracy with different settings applied in this
experiment is shown in Figure 5.

B. EXPERIMENT #2 TUNING 2"? CONVOLUTIONAL LAYER
After deducing the values of the first layer, this experiment
is performed to tune the values of the second layer. The
same procedure is followed as in Experiment #1. In this
experiment, we use various filters and kernel sizes. However,
in the case of filters, the settings of the baseline model
provide higher accuracy; increasing or decreasing the number
of filters results in a decrease in accuracy. On the contrary,
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decreasing the kernel size shows an increase in accuracy.
Experiments show that reducing the kernel size to 3 increases
the accuracy to 56.16%. Figure 6 shows the accuracy
comparison with various settings applied to the second
convolutional layer.

C. EXPERIMENT #3 TUNING 3’ CONVOLUTIONAL LAYER
In the continuation of Experiment #1 and Experiment #2, this
experiment is performed to fine-tune the third convolutional
layer of the CNN. The experiment highlights that the value
512 of filters is the most suitable for this layer. Changing
this value decreases the accuracy. The size of the kernel has
a positive impact on the accuracy of the model. Reducing
the kernel size to the minimum, that is, 1, increases the
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The dropout layer is used to mitigate overfitting in the
model. This is achieved by randomly neutralizing neurons
from the previous layer. Conventionally, the dropout ratio is
recommended to be a small value. However, for this model,
we set different values for dropout ranging from 0.1 to 0.9.
The highest accuracy achieved in this experiment is 62%
when setting the dropout value at 0.8. Figure 8 shows the
accuracy comparison with various dropout values.

E. EXPERIMENT #5 TUNING POOLING LAYERS

The pooling layers play an important role in reducing the
dimensions of the feature map, effectively reducing the
number of parameters to learn. The baseline model consists
of 3 pooling layers. The tuning of each pooling layer is done
in the same manner as convolutional layers. We find the
optimal setting for each pooling layer one by one. Changing
the value of the pool size of the first pooling layer results
in an increase in accuracy. However, changing the pool
size of the second and third pooling layer decreases the
accuracy. Therefore, in this experiment, we fix the pool
size of the first layer to 1 and leave the size of the second
and third layers to their default value, as mentioned in
the baseline model. Figure 9 shows the summary of the
experiment.

F. EXPERIMENT #6 ADDING A 4t CONVOLUTIONAL
LAYER AND TUNING IT

After tuning the first three convolutional layers, this exper-
iment is performed to check the impact of adding a new
convolutional layer on accuracy. The new layer is tuned in the
same manner as the previous three layers. To find the suitable
number of filters for the fourth layer, we initially set the filters
to 100 and then increased the size by 100. The experiments
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FIGURE 10. Accuracy comparison with various hyperparameter settings
on fourth layer.

show that the highest accuracy is achieved when the number
of filters equals 300. Similarly, we observe that the minimum
kernel size produces the best results for the kernel size.
After this experiment, the accuracy is improved from 65.58%
to 66.40% with four convolutional layers, as shown in
Figure 10.

G. EXPERIMENT #7 ADJUSTING THE NUMBER OF EPOCH
The epoch number is a hyperparameter used to define the
number of times a model trains itself on the given dataset.
An epoch is a single pass over the whole training set to the
neural network. In general, increasing the number of epochs
increases the accuracy with the trade-off of time taken to
train the model. Therefore, considering the factors mentioned
earlier, an acceptable value for the number of epochs is
selected. In all the previous experiments, the training is done
on 100 epochs. In this experiment, we check the impact of the
number of epochs on accuracy. For this purpose, we increase
the number of epochs by 50 in each experiment. However,
maximum accuracy is obtained when the number of epochs
is set to 300, as shown in Figure 11.

H. EXPERIMENT #8 SETTING BATCH SIZE

The number of training samples passed to the neural network
at one time is called batch size. Increasing the batch size
increases the GPU memory requirements for training the
model. Therefore, the batch size should be set according
to the resources at disposal. The batch size in the baseline
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FIGURE 11. Accuracy comparison of various settings applied to third convolutional layer.

model is set to 100. However, decreasing the batch size to
50 increased the accuracy to 68.14% as shown in Figure 11.

I. EXPERIMENT #9 - CHANGING MAX POOL TO AVERAGE
PoOOL

Max-pooling is a technique used to detect the most significant
values on the feature map. Similarly, the average pooling
technique is used to calculate average values on the feature
map. In this experiment, we change each pooling layer
from max to average individually to check its impact on
accuracy. For example, we change the first max-pooling
layer to average pooling and check the accuracy. After that,
we change the first pooling layer to the max and replace the
second pooling layer to average, and so on. We also replace
all the max-pooling layers with average pooling layers in
the model. However, the results indicate that no increase in
accuracy is achieved by changing the pooling type, as shown
in Figure 11.

V. COMPARISON OF DIFFERENT FINGERPRINTING
TECHNIQUES

After fine-tuning the model, the same model is applied
to different datasets to check the accuracy. This section
compares the accuracy with the fingerprint techniques, i.e.,
SDF, ADF, and DF. For this purpose, four types of datasets are
generated by following the method mentioned in Section III.
The first dataset is prepared by capturing the 43 video streams
in normal traffic mode (Non-VPN mode). Similarly, the same
videos are captured using an encryption technique (VPN) for
the second dataset. We combine the first two datasets for
the third dataset and obtain a dataset containing 86 videos,
43 in normal traffic mode and 43 in encrypted mode. For
the fourth dataset, we label all videos captured in normal
traffic mode as Non-VPN, and videos captured using a
VPN are labeled as VPN. In this case, we get a dataset
containing two labels, VPN and Non-VPN, and call it a traffic
dataset. The improved model is trained on the aforementioned
datasets. Our proposed method SDF, outperforms the other
two techniques in all datasets, as shown in Figure 12. The
results are summarized in Table 4.
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TABLE 4. Accuracy comparison of datasets on different fingerprinting
methods.

Dataset SDF | ADF | DF

Non-VPN 90% | 83% | 88%
VPN 59% | 52% | 59%
VPN v Non-VPN 75% 68% T4%
Traffic (VPN v Non-VPN) | 99% | 98% 99%

VI. DISCUSSION

From the results, the proposed framework for video and
traffic identification is quite persistent. The performance of
the baseline model is increased up to 12.21% with hyper-
parameter tuning. The SDF technique outperforms other
techniques in all datasets, as demonstrated in Section V.
However, identifying video streams over VPN is relatively
more challenging to detect compared to Non-VPN streams.
Moreover, the accuracy of distinguishing between the VPN
and Non-VPN traffic is 99%.

The proposed framework is quite feasible for detecting the
known videos in the network as only 55 streams of a single
video are required for training. However, in a real-world
scenario, there are more unknown videos than known videos.
Moreover, our proposed technique requires a huge storage
capacity and computational requirement for video detection.
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As the proposed framework works on the known videos, the
model must be trained on a large dataset, limiting the scope
of implementation.

Moreover, there are some shortcomings of this technique.
The framework is set back by the phenomenon of ’concept
drift’. Hence, the proposed model requires a substantial
amount of computational and space requirements at the
observer’s end, thus creating a challenge for large-scale
deployment. Moreover, detection is only possible if the video
is streamed exactly from the start to the first 120 seconds.
Changing the video runtime between the first 120 seconds
can lead to abnormal predictions

VII. CONCLUSION AND FUTURE WORK

Irregularities and inconsistencies due to the VBR encoding
of the video make it challenging to identify the videos
in the network traffic. To address the aforementioned
problem, this paper converts BPSs into BPPs and presents
a stable fingerprinting method, SDF. The SDF works on
the difference between the BPPs to identify the VBR video
streamed in encrypted network traffic. The created SDFs
are used to train the CNN model. After tuning the model’s
hyperparameters, the model achieves an accuracy of 90% and
99% in predicting videos and classifying traffic, respectively.
Additionally, the effects of variable period length on the
model’s prediction accuracy are yet to be analyzed. We aim
to modify the technique to cope with the concept drift
problem in the future. Observing the effect of variable period
length and finding the optimal value will make this tech-
nique more foolproof and increase the practical deployment
applications.
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