IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 28 June 2022, accepted 13 July 2022, date of publication 19 July 2022, date of current version 25 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192467

== RESEARCH ARTICLE

Handwritten Logic Circuits Analysis Using the
YOLO Network and a New Boundary
Tracking Algorithm

SOMAIEH AMRAEE ~, MARYAM CHINIPARDAZ -, MOHAMMADALI CHAROOSAEI -,
AND MOHAMMAD AMIN MIRZAEI

Department of Electrical and Computer Engineering, Jundi-Shapur University of Technology, Dezful 64615/334, Iran

Corresponding author: Somaieh Amraee (s.amraee @jsu.ac.ir)

ABSTRACT Handwriting analysis has been addressed by researchers for decades, and many advances were
achieved in understanding handwritten texts so far. However, some applications have been rarely discussed.
One of these applications that has received less attention is the understanding and analyzing of handwritten
circuits. Today, with the widespread use of intelligent tools in engineering and educational processes, the
need for new and accurate solutions for processing such handwritings is felt more than ever. This paper
presents a new method to analyze handwritten logic circuits. In this method, circuit components are first
identified using a deep neural network based on YOLO. Then, the connection among these components
is recognized using a new simple boundary tracking method. Then, the binary function related to the
handwritten circuit is obtained. Finally, the truth table of the logic circuit is generated. We have also created
a set of various handwritten logic circuits called JSU-HWLC. The results of the experiments show the proper
performance of the proposed method on the collected dataset. The experiments demonstrated that the YOLO
algorithm achieved better results than other deep learning methods such as faster R-CNN, Detectron2, and

RetinaNet. For this reason, YOLO has been used to identify logic gates in the proposed system.

INDEX TERMS Handwritten logic circuit, deep learning, YOLO, boundary tracking.

I. INTRODUCTION

Handwritten documents are one of the most important ways
to record information. The processing of handwritten texts
has been of particular importance for decades. These pro-
cesses are performed to authenticate, understand handwritten
content, classify, etc, [1]- [9]. There are different types of
manuscripts, one of which is circuits drawn by engineers,
professors, or students. The circuit diagram consists of var-
ious symbols called circuit components that determine the
function of that circuit. Recognizing circuit components and
then understanding circuit performance by machine vision
algorithms can be used in various areas, including faster
solutions to engineering problems as well as the production
of intelligent graphics boards. Drawing handwritten logic

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

circuits is frequently the initial phase in the design pro-
cess in digital system design, which includes the symbolic
depiction of gates and other logic components, as well as
their connections. To date, circuit designers have had to
physically enter all of the manual circuit data into the com-
puter, and this method, in addition to being time-consuming,
is likely to lead to errors. For this reason, in recent years,
researchers were interested in providing new solutions to cre-
ate a system, including the process of automatic segmentation
and recognition of parts in handwritten documents to create
computer-aided manufacturing (CAD/CAM) systems.

In a comparative study on recognition processes of
different symbols, including widely used symbols in engi-
neering documents, different methods of symbol recogni-
tion are divided into four general categories [1]. This study
has investigated statistical, structural, syntactic, and hybrid
methods, but it does not mention new methods based on

76095

https://orcid.org/0000-0002-1877-5774
https://orcid.org/0000-0001-9795-7818
https://orcid.org/0000-0001-7318-9172
https://orcid.org/0000-0002-4558-9803

IEEE Access

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

deep learning networks. Another work [2] has provided a
method for identifying components of manual electrical and
electronic circuits, including analog and digital components.
In this method, after performing the desired preprocessing,
a set of texture-describing features and shape-based features
including the histogram of oriented gradients (HOG), cen-
troid distance, tangent angle, and chain code histogram, are
extracted. These features are then optimized using a feature
selection algorithm called Relief. The classification of circuit
components is performed using sequential minimal optimiza-
tion (SMO). This method only identifies circuit components
and their classification and does not involve recognizing con-
nections as well as understanding circuit performance.

In the method proposed in [3], a combination of the
local binary pattern (LBP) and statistical features based
on pixel depth is used to detect the circuit components.
Then, the components are classified using a support vector
machine (SVM) model. After identifying the components, the
proposed method subsequently uses their position to deter-
mine the type of circuit. To do this, it displays a sequence
of components known as a string. This string representation
of the circuit is given to the finite state machine (FSM) to
identify the type of circuit.

The segmentation process is performed in [4] using a series
of morphological operations on binary images and differen-
tiation among three categories of components (closed form,
components with connected lines, discrete components).
Each segmented component is described by calculating the
HOG, while the classification is performed using SVM.

In recent years, deep neural networks have made signif-
icant progress and have yielded acceptable results in many
applications, including object detection and recognition [10]-
[16]. A system that accepts sketched logic circuits as input
recognizes various components of the circuit using R-CNN
and converts the sketch-based circuit into a 2-D formal graph-
ical format is provided in [10]. This system produces a dig-
itized version of hand-drawn sketched images, but it seems
that this system has not yet reached maturity. Its data set con-
sists of only AND, OR, and NOR gates, and assumes that the
original circuits are carefully drawn, with sharp corners, and
without discontinuities. A two-stage CNN-based electrical
and electronic component detection system has been provided
in [15]. In the first step, a CNN-based clustering algorithm
is implemented to get all the components that are similar
components in shape and structure into one cluster. Then, the
circuit components belonging to each cluster are classified
into their actual classes. This approach is likewise confined
to circuit component identification and does not include con-
nection analysis or circuit performance knowledge.

The YOLO [16] algorithm was first introduced in 2016 to
detect objects with high speed and accuracy. This method
introduced a new structure for object recognition systems
and has received much attention accordingly. Hence, different
versions of YOLO were implemented in various applica-
tions [17]- [25]. YOLO stands for “You Only Look Once”.
The term refers to the ability of the human visual system

76096

to detect objects at a glance. Therefore, the YOLO object
recognition system is designed to provide a method like that
of the human visual system. The first version of YOLO con-
sists of a 24-layer convolutional neural network for feature
extraction as well as two fully connected layers for predicting
the probability and coordinates of objects.

The present paper aims to develop an intelligent system
that can detect the types of digital gates, apart from under-
standing the operation of the handwritten logic circuit and
produces its truth table. The circuit components detection
step is performed using in-depth learning based on the YOLO
algorithm. Then, a simple boundary tracking method is pro-
posed to detect the connection wires in the circuit, and finally
the binary function and the corresponding truth table are
generated. Such a system will be helpful at both educational
and industrial levels. Although this program was developed
to analyze logic circuits, it can be generalized to use in many
other fields and to process various types of engineering cir-
cuits. To test the efficiency of the proposed method, a diverse
set of handwritten logic circuits called JSU-HWLC has been
created. The experimental results showed that the proposed
method is useful for turning the drawn circuits into suitable
information for higher-level designs. The rest of this paper is
structured as follows: the main stages of the proposed system
are described in Section II. Section III covers the experi-
mental results on the JSU-HWLC dataset, and Section IV
is dedicated to conclusions and recommendations for future
research.

Il. THE PROPOSED SYSTEM

The proposed system consists of several steps, which are
described below. First, the required collection of photos is
created. Different individuals have sketched logic circuits
in the picture collection. These photos were tagged to pre-
pare the YOLO network for training. The connecting lines
among the various components of the circuit are discovered
once the YOLO algorithm has identified them. By identifying
the gates and determining the relevant connections wires, the
binary function of the original circuit is generated. Finally, its
truth table is drawn. The following is an explanation of each
of these steps.

STEP 1- PREPARING THE DATASET

The set of images produced in this article is called
JSU-HWLC, which contains 240 handwritten logic circuits.
These circuits were drawn by computer engineering students
of the Jundi-Shapur University of Technology of Dezful.
To improve the detection of the proposed system, these stu-
dents were asked to denote the input and output signals
with a special symbol. Figure 1 shows some examples of
these images. In this figure, the input pins are represented
by a tiny circle, while a little square represents the output
pins. A total of 240 circuits are included in the collection of
photos created, with 120, 50, and 70 images utilized for train-
ing, validation, and testing, respectively. After collecting the
total dataset, some initial preprocessing, such as resizing to

VOLUME 10, 2022

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

IEEE Access

OUTPUT

FIGURE 2. Overview of MAKESENSE script.

640 x 640 pixels along with converting to gray-scale images,
is performed on them. Table 1 describes the number of
images and the number of components in the JSU-HWLC
dataset.!

STEP 2- IMAGE ANNOTATION

In this step, we should label all the images that we have pre-
pared for the training and validation processes, and introduce
all the gates to the program with labels. Drawn circles and
squares that symbolize the inputs and outputs must also be
labeled and identified as individual objects. At this stage, the
available scripts can be used for labeling. These scripts can
generate appropriate input information for the YOLO algo-
rithm. For this purpose, a free and simple 2 script [1] was used
in our proposed system for this purpose. In MAKESENSE
script, after entering various labels such as AND, OR, NOT,
XOR, INPUT, and OUTPUT, the corresponding label can
be selected by drawing a rectangle around each circuit com-
ponent. This process is repeated for all components of each
circuit and all training images. Figure 2 shows an overview of
this program. The program creates a text file for each image,
which provides the coordinate of the circuit components as
well as their labels for the YOLO algorithm.

STEP 3- YOLO ALGORITHM

After preparing the input data, it is time to train the YOLO
neural network. The proposed system is implemented on
Google Colab using the YOLOVS5s 3 version coded in Python.
YOLO training is done using the JSU-HWLC dataset. For

1JSU-HWLC is available on http://d12.jsu.ac.ir/index.php/s/NjUkaaE7JH
sIGB6

2https://www.makesense.ai

3 https://colab.research.google.com/github/ultralytics/yolov5/blob/master/
tutorial.ipynb

VOLUME 10, 2022

this purpose, it is necessary to upload the desired image set
on Google Colab and then train the deep network of YOLO.
The output structure of the trained network can be used
to run on a test set. The gates were recognized with great
precision, and were represented by boxes with various colors
and labels. In the expriments, the accuracy of YOLO for dig-
ital component categorization was substantially higher than
traditional approaches like support vector machine (SVM) or
K-nearest neighbor. (KNN). The results of this comparison
are presented in Section III. Also, as will be described in
Section III, the YOLO algorithm achieved better results than
other deep learning methods such as Faster R-CNN [12],
Detectron? [14], [26], and RetinaNet [13].

STEP 4- CIRCUIT COMPONENTS RECOGNITION

One of the YOLO outputs is a text file that lists the coordi-
nates of the identified components. In this step, we put a black
rectangle in the original image instead of each component
using this file. Also, at this step it is possible to manually
correct the misclassified gates of the previous step. This is
done by modifying the class number in the output text file
of YOLO. Putting a black rectangle instead of each com-
ponent simplifies the initial image and prepares it for the
next step. It should be noted that for each black rectangle,
its corresponding class is recorded in the YOLO output file,
and we can extract the type of components from this file
if needed. Figure 3-A shows an example of the resulting
image of YOLO after placing black rectangles. Figure 3-B
shows the YOLO text file. Each row in this file represents
one of the components identified by YOLO. The first column
indicates the component’s type, while the remaining columns
describe the rectangle’s center point, length and breadth, and
probability of object identification, respectively.

STEP 5- CONNECTION LINES DETECTION

In this step, first, the output of the previous step (Figure 3-B)
is converted into a binary image; then, the quality of the
binary image is improved using the edge detection algorithm
and morphology operators to eliminate unwanted noise as
much as possible. Also, morphological operators are applied
to binary images to correct circuit breaks and missing connec-
tions. According to the experiments, four dilation operators
were used on binary images, filling the lines and smoothing
the image. Figure 4 shows an example of a prepared binary
image.

76097

IEEE Access

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

TABLE 1. The JSU-HWLC image set.

(a) Drawing a black rectangle instead
of the gates.

FIGURE 3. ldentifying circuit components.

FIGURE 4. Binary image after morphology operation.

After preparing the binary image, it is time to recognize the
connection wires. By performing morphological operations,
the thickness of the lines has become more than one pixel.
To determine how the gates are connected, we do the follow-
ing for each gate:

1) As shown in the yellow circle in Figure 5 and its
magnification on the left side of the image, we start
from the bottom left corner of each component. Hence,
the green pixel in Figure 5, indicated by point 1, will
be the starting point of the tracking. The coordinates of
this point are obtained from the YOLO output file.

2) Now assuming the circuit is drawn from left to right,
we know that the inputs are connected to the left side
of the rectangle. Starting from point 1, we move to the
left on the blue path to reach the first black pixel on the
border of black and white pixels (point 2).

3) From point 2, we change the direction upwards and
continue the red path until we reach the first white
pixel. This pixel is the entrance point of the first input
signal (point 3). From now on, in this paper, these pixels
are called input points.

4) If the label obtained by YOLO says that the gate has
more than one input, the process continues to find the
other input signals. Thus, we follow the path from

76098

Number Number of components
of images IN AND | OR | NOT | XOR | OUT | Total
Train set 120 535 158 140 138 91 120 1182
Test set 70 300 94 72 95 47 70 678
Validation set 50 215 73 45 54 39 50 476
Total 240 1050 325 257 | 287 177 240 | 2336
0 0.0742188 0.645215 0.0640625 0.0578125 0.72383Z2
0 0.0703125 0.825 0.06536Z25 0.0625 0.777754
0 0.0703125 0.165531 0.075 0.0734375 0.810544
0 0.066406Z2 0.276563 0.0703125 0.06875 0.811486
5 0.8%6054 0.554531 0.0671875 0.0828125 0.850245
Z 0.667188 0.558594 0.14375 0.20156Z 0.514881
1 0.284375 0.75625 0.165625 0.2875 0.527558
1 0.341406 0.246875 0.176563 0.26875 0.53324

(b) YOLO output text.

FIGURE 5. Detection of the first (lowest) input signal.

point 3 (in Figure 5) upwards and along the white
pixels of the first input line, as shown in the blue path
of Figure 6. Then, we continue upwards (red path) as
before to reach the next input point.

We perform these four steps for all gates to obtain the input
points specified in Figure 7-A. After finding the input points
for all components of circuits, we start moving from the lower
right corner of each component using the boundary tracking
algorithm and move to the right to get out of the rectangle.
As shown in Figure 7-B, we follow the wire boundary at
black background pixels. In this way, we track the black
pixels attached to the white line to reach an endpoint. A close
view of this method is shown in Figure 7-C. As it can be
seen in this figure, the starting point was shown by the green
pixel at the lower right corner of a component, and the blue
path represents the white pixels that must be passed to exit
the rectangle. By hitting the first black pixel, the boundary
between the white and black pixels is followed (red path) until
it reaches the point that was specified as the input point of
another component (yellow pixel).

After reaching the input point, the boundary tracking algo-
rithm determines the link between the two circuit compo-

VOLUME 10, 2022

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

IEEE Access

A)
FIGURE 6. Detection of other input signals.

TABLE 2. The truth table of the logic circuit.

Inputs | Gate6 | Gate8
TYwz
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Output
F(I7 y’ Z7 w)
0

8
<
N
g

[l B e o == K] R on) H ool o] Hen] fen) Nen] Nen] Hen] Ren] Nen] B}
= OO OI OO~ oo+ oo
== =] O] O O | O O O = O O

nents. The input of the second component, which has an input
point, is linked to the output of the first component, from
whence the navigation began. The relationship of all gates,
input, and output signals can be obtained in the same way.
For example, in Figure 7-D if we start from component 1 and
use the boundary tracking algorithm, we reach an input point
of component 2. So, we can say that the output of gate 1 is
used as one of the input signals of gate 2, and because gate
1 shows one of the primary inputs of the circuit, input 1 is
connected directly to gate 2. Repeating this operation for all
circuit components leads to finding all circuit connections.
Figure 8 shows the steps for extracting component input
points (Figure 8-A) and finding interconnected components
(Figure 8-B).

STEP 6- BINARY FUNCTION

After finding the connection wires among the components of
the circuit, the binary function of the circuit can be obtained
by following the connections from the input pins of the circuit
to the output pin. For this purpose, we start from the output
components and find the gates connected to them based on the
connections obtained from the previous step. We performed
this procedure recursively for each gate. The boundary condi-
tion in this recursive algorithm is the circuit input pins. Thus,
the corresponding function is obtained, which can be written
in an infix form. In Figure 9-A, each component is shown by
a number that is the row number of the corresponding text

VOLUME 10, 2022

(b)

(d)

FIGURE 7. Connection wires detection. (a) Finding input points of each
component. (b) Following the wire boundary to reach the endpoint.

(c) Close view of following the wire boundary. (d) Determining the link
and relationship between components.

76099

IEEE Access

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

(a) Extracting component input points.

FIGURE 8. Flowchart of connection lines detection.

[LS S

File
5 e
6 0
580
50
59
00
10
00

6
7
8

FIGURE 9. Numbering components to generate

HNO

-

(b) Finding interconnected components.

Edit Format View Help

.0992187 0.857031 ©.151562 0.120312 0.921514
.891406 ©.511719 0.145313 0.164062 0.92419
.119531 0.248437 ©.145313 0.16875 0.936948
.116406 0.708594 0.154687 0.129688 0.944235
.142969 ©.399219 ©.154687 ©.117188 0.944982
.361719 0.777344 0.164062 0.320312 0.951033
.689062 0.539844 0.20625 0.214062 0.953668
.410156 0.321094 0.179688 0.307813 0.95851

(b)

the binary function. (a) Visualizing each component

in the circuit by its class number. (b) YOLO labeling output file.

file of YOLO in Figure 9-B. The original circuit is shown in
the right image of Figure 1. The following connections are
extracted from this example circuit:

2—->7 78 7T—-6 6—>4
6—>1 8—-3 8—5
In Figure 9, for example, gate 6 is a component with the
class number of 0 in the sixth row of the YOLO output file
(Figure 9-B), which represents the AND gate. Now, we can

say that because component number 2 in Figure 9-A is the
output pin of the circuit, its value is the result of the binary

76100

function, which itself is the result of performing OR on the
outputs of gates 6 and 8. These gates are performing AND
operation on input pins (see Figure 4); therefore, the binary
function of this circuit can be written as the following infix
expression:

f = (1) AND (4)) OR ((3) AND (5)) ey

By replacing the input pins with appropriate variables, and
using symbols such as ‘4’ and ‘-* instead of AND and OR,
the function f is expressed as follows:

fEywd=x-)+W-2) 2

VOLUME 10, 2022

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

IEEE Access

TABLE 3. Confusion matrix of YOLO in comparison with the other deep learning methods.

INPUT | AND | OR | NOT | XOR | OUTPUT | ERROR
INPUT (300) 300 0 0 0 0 0 11
AND (94) 0 94 0 0 0 0 0
Detectron2 OR(72) 0 0 71 0 0 0 0
NOT(95) 0 0 0 92 0 0 0
XOR(47) 0 0 0 0 47 0 1
OUTPUT (70) 0 0 0 0 0 70 0
INPUT | AND | OR | NOT | XOR | OUTPUT | ERROR
INPUT(300) 300 0 0 0 0 0 1
AND (94) 0 93 0 0 0 0 0
Faster R-CNN OR(72) 0 0 70 0 0 0 0
NOT(95) 0 0 0 92 0 0 0
XOR (47) 0 0 0 0 45 0 0
OUTPUT (70) 0 0 0 0 0 70 1
INPUT | AND | OR | NOT | XOR | OUTPUT | ERROR
INPUT(300) 291 1 0 0 0 0 2
AND (94) 0 93 1 0 0 0 1
RetinaNet OR (72) 0 0 70 0 1 0 0
NOT (95) 0 0 3 92 0 0 2
XOR (47) 0 0 2 0 45 0 0
OUTPUT (70) 0 0 0 0 0 70 1
INPUT | AND | OR | NOT | XOR | OUTPUT | ERROR
INPUT(300) 300 0 0 0 0 0 0
AND (94) 0 94 0 0 0 0 0
YOLO OR (72) 0 0 72 0 0 0 0
NOT (95) 0 0 0 95 0 0 0
XOR (47) 0 0 1 0 46 0 0
OUTPUT (70) 0 0 0 0 0 70 0
TABLE 4. Confusion matrices of traditional feature-based classifiers.
Classifier
INPUT | AND | OR | NOT | XOR | OUTPUT
INPUT (300) 281 11 0 7 1 0
AND (94) 47 42 0 2 1 2
SVM OR (72) 65 5 0 2 1 2
NOT (95) 75 2 0 14 4 0
XOR (47) 39 3 0 4 1 0
OUTPUT (70) 3 3 0 0 0 64
INPUT | AND | OR | NOT | XOR | OUTPUT
INPUT (300) 75 21 160 23 15 6
AND (94) 10 33 34 2 9 6
NB OR (72) 5 3 54 2 8 0
NOT (95) 7 6 41 19 21 1
XOR (47) 0 9 21 7 9 1
OUTPUT (70) 0 1 1 0 0 68
INPUT | AND | OR | NOT | XOR | OUTPUT
INPUT(300) 167 86 16 19 11 1
AND (94) 29 47 6 3 6 3
KNN OR (72) 30 23 5 8 6 0
NOT (95) 28 18 7 22 20 0
XOR (47) 21 15 1 6 4 0
OUTPUT (70) 1 5 0 0 0 64

VOLUME 10, 2022

76101

IEEE Access

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

0 Predicted: INPUT
a - o =1 Predicted: AND
L] i
wod 2 Lk 8 | E==1 predicted: QR
l il =1 Predicted OUTPUT
200 A L._I

300 1

400 A

g

600

0 100 200 300 400 500 600

FIGURE 10. Error of gate detection in Faster R-CNN.

1.0000 09971 0.9977 0.9965 0.9971
0.9906 09924 09915 g0

0.9900
0.9812
0.9800 09727 09762 09745
0.9700
0.9600
0.9500
0.9400
0.9300
0.9200
0.9100
0.9000

Precision Recall F1-Score
FIGURE 11. Precision, recall, and F1-score on the JSU-HWLC dataset.
STEP 7- TRUTH TABLE
In this step, to obtain the truth table we create a row for each
input combination of the function. Then, for each gate we
calculate its output value and then the function output. Table 2
shows the truth table made for the function of Figure 9. In this
table, the first four columns represent the value of the inputs
(x,y,w, z), and the last column represents the value of the
function.

Ill. EXPERIMENTAL RESULTS

As mentioned in Section II, the object detection module of the
proposed system was implemented using the YOLO version
5. YOLOVS5 includes five different models: YOLOv5s (small-
est), YOLOvS5m, YOLOvS], YOLOv5x (largest). The pro-
posed system uses the YOLOVS5s release. There was no need
to use more complex and heavier models because YOLOvV5s
achieved high accuracy in the experiments. This algorithm
was implemented using Google Colab services. Colab or
Colaboratory is an interactive notebook provided by Google
for writing and running Python through a browser.

In the training phase of YOLO on the Google Colab plat-
form, no improvement was achieved after epoch 324. Table 3
shows the confusion matrix resulting from the YOLO and
three other deep learning algorithms on the testing image
set. The testing dataset includes 70 handwritten circuits with
a total of 300 INPUT pins, 94 AND gates, 72 OR gates,
95 NOT gates, 47 XOR gates, and also 70 OUTPUT pins
throughout the set. In these matrices, there is a column called
Error, which represents gate detection that have occurred in

76102

TH
a H}KW
)

(a) original image.

INPUT

)i}
1 it
s

(b) component detection.
INPUT D %
1 —p /U

iy

(c) label modifying for gatel and gate2.

Xyz F=(x"@® (v.2)")
000
001
010
011
100
101
110
111

=== =

(d) binary function and truth table.
FIGURE 12. Analyzing handwritten logic circuits.

an unreal place. In other words, this column represents parts
of the image (such as the background or connection signals)
that have been mistakenly identified as a gate. An exam-
ple of these errors generated by Faster R-CNN is shown in
Figure 10. In this figure, a part of the connection signal is mis-
takenly identified as an output component. As it can be seen
in Table 3, two other methods (Detectron2 and RetinaNet)
have led to such errors, but in the experiments, YOLO did not
generate such errors. For this reason, the YOLO algorithm
is used as a component detector in the proposed system.
Figure 11 shows the precision, recall, and F1-score of YOLO
in comparison with the other deep learning methods. This

VOLUME 10, 2022

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

IEEE Access

Accuracy
0.9995
1 0.9383

0.8947
09 0.8204
0782

038
0.7
06
05
0.4
03
02
0.1

0

Dinesh[27] Rabbani[28] Naika [3] ROY [2]
(SVM+HOG) (ANN)

Proposed method

(Finite state) (Texture+Shape) (YOLOVSs)

FIGURE 13. Comparison of the proposed method with some
state-of-the-art methods.

TABLE 5. Average precision in gate detection on JSU-HWLC dataset.

Gates Sharma [10] | Proposed Method
(R-CNN) (YOLOV5s)

INPUT 0.9967 1.0000
AND 1.0000 1.0000
OR 1.0000 0.9863
NOT 0.9691 1.0000
XOR 0.9783 1.0000
OUTPUT 0.9859 1.0000
Average 0.9883 0.9977

figure illustrates the superiority of the YOLO algorithm in
these criteria.

Table 4 shows the confusion metrics of traditional methods
including support vector machine (SVM), Naive Bayes (NB),
and K-nearest neighbor (KNN). These three algorithms have
employed the histogram of oriented gradient (HOG) descrip-
tor as the feature vector. As it can be seen in this table, tradi-
tional methods are much less efficient than the deep learning
algorithm (Table 3). Because logic gates are visually similar,
they have not been accurately classified using conventional
methods based on feature extraction. The use of complex
feature vectors may increase the accuracy of these algorithms.
But as demonstrated in Table 3, YOLO as a deep-learning
approach that does not need a separate step for feature extrac-
tion is capable of classifying the components of logic circuits
accurately. Although YOLO can detect various gates with
high accuracy, in the proposed system the user can manually
modify the incorrect detection so that the incorrect binary
function will not be generated in the next stage. Figure 12
shows the different steps of the proposed system on a sample
handwritten circuit. In this example circuit, two components
were misdiagnosed by YOLO. The user modifies this error,
and finally, the correct truth table is generated.

Comparison of the proposed hand-drawn circuit compo-
nent recognition method with some state-of-the-art methods
is shown in Figure 13. It should be noted that the accu-
racy of the proposed method has been calculated using the
sample images of logic gates provided by ROY et al [2],
and the accuracy of the other methods is obtained from [2].
Table 5 shows the class-level and also average values of
precision in comparison with an RCNN-based method [10].
To have a fair comparison, this method has been imple-
mented on JSU-HWLC using the hyperparameters provided
by Sharma [10].

VOLUME 10, 2022

IV. CONCLUSION

A new system for understanding handwritten logic circuits
was provided in this article. In this method, the circuit com-
ponents are first identified using a known algorithm in deep
learning called YOLO. This algorithm is trained by a cus-
tomized set of images (JSU-HWLC). Then, the connection
among the detected components is investigated by a new
simple boundary tracking method. Once the circuit compo-
nents, including gates and the input and output pins and the
connections between them were detected, the binary function
of the handwritten logic circuit was obtained, and finally, the
truth table was generated. The results of the experiments show
the high efficiency of the proposed method. Therefore, this
simple and efficient system can be used in sketching phase
engineering projects as well as on smart training boards for
teaching logical circuits and computer architecture.

The proposed system was tried to be as simple as possible
and low cost in terms of processing load, so it can be easily
performed on any ordinary platform. Since this system has a
structural procedure, each module can be easily replaced with
amore accurate method in the future. At present, the proposed
system works correctly to process circuits that have simple
wiring. It can detect all connection lines. So, the loss ratio,
in this case, is zero. But it has some problems for complex
circuits with multi-branch connections or intersecting lines.
We will expand the dataset to include more complex circuits
with crossing connections and multi-branch signals and also
other digital components such as decoders, encoders, mul-
tiplexers, full adders, and flip-flops to improve the system.
Our proposed system will be trained on the most commonly
used letters in logic circuits such as X, y, z, w, a, b, ¢, d, etc.
Adding reinforcement learning techniques is another future
work of this research to modify detection errors, and achieve
higher accuracy. Additional stages such as simplifying the
circuit using the Karnaugh map and the automatic production
of HDL code corresponding to the simplified function are
considered as future goals of this system.

REFERENCES

[1] 1. Khan, N. Islam, H. Ur Rehman, and M. Khan, “A compara-
tive study of graphic symbol recognition methods,” Multimedia Tools
Appl., vol. 79, nos. 13-14, pp. 8695-8725, Apr. 2020, doi: 10.1007/
$11042-018-6289-6.

[2] S. Roy, A. Bhattacharya, N. Sarkar, S. Malakar, and R. Sarkar,
“Offline hand-drawn circuit component recognition using
texture and shape-based features,” Multimedia Tools Appl.,
vol. 79, nos. 41-42, pp.31353-31373, Nov. 2020, doi: 10.1007/
$11042-020-09570-6.

[3] R. L. Naika, R. Dinesh, and S. Prabhanjan, ‘““Handwritten electric circuit
diagram recognition: An approach based on finite state machine,” Int.
J. Mach. Learn. Comput., vol. 9, no. 3, pp. 374-380, Jun. 2019, doi:
10.18178/ijm1c.2019.9.3.813.

[4] M. Moetesum, S. Wagar Younus, M. Ali Warsi, and I. Siddigi, “Seg-

mentation and recognition of electronic components in hand-drawn circuit

diagrams,” ICST Trans. Scalable Inf. Syst., vol. 5, no. 16, Apr. 2018,

Art. no. 154478, doi: 10.4108/eai.13-4-2018.154478.

X. Zhang, Y. Li, Z. Zhang, K. Konno, and S. Hu, “Intelligent Chinese

calligraphy beautification from handwritten characters for robotic writ-

ing,” Vis. Comput., vol. 35, nos. 6-8, pp. 1193-1205, Jun. 2019, doi:
10.1007/s00371-019-01675-w.

[5

—

76103

http://dx.doi.org/10.1007/s11042-018-6289-6
http://dx.doi.org/10.1007/s11042-018-6289-6
http://dx.doi.org/10.1007/s11042-020-09570-6
http://dx.doi.org/10.1007/s11042-020-09570-6
http://dx.doi.org/10.18178/ijmlc.2019.9.3.813
http://dx.doi.org/10.4108/eai.13-4-2018.154478
http://dx.doi.org/10.1007/s00371-019-01675-w

IEEE Access

S. Amraee et al.: Handwritten Logic Circuits Analysis Using the YOLO Network

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Ghosh, A. Chatterjee, P. K. Singh, S. Bhowmik, and R. Sarkar,
“Language-invariant novel feature descriptors for handwritten numeral
recognition,” Vis. Comput., vol. 37, no. 7, pp. 1781-1803, Jul. 2021, doi:
10.1007/s00371-020-01938-x.

H. Guo, Y. Liu, D. Yang, and J. Zhao, ““Offline handwritten Tai Le character
recognition using ensemble deep learning,” Vis. Comput., Jul. 2021, doi:
10.1007/s00371-021-02230-2.

J. Chaki and N. Dey, “Fragmented handwritten digit recognition using
grading scheme and fuzzy rules,” Sdadhana, vol. 45, no. 1, pp. 1-23,
Dec. 2020, doi: 10.1007/s12046-020-01410-5.

S. P. Deore and A. Pravin, “Devanagari handwritten character recognition
using fine-tuned deep convolutional neural network on trivial dataset,”
Sadhand, vol. 45, no. 1, pp. 1-13, Dec. 2020, doi: 10.1007/s12046-020-
01484-1.

M. Sharma, S. Nipane, Rachita, K. N. Jariwala, and R. Khade, “DLC
re-builder: Sketch based recognition and 2-D conversion of digital logic
circuit,” in Advanced Computing, D. Garg, K. Wong, J. Sarangapani, and S.
K. Gupta, Eds. Singapore: Springer, 2021, pp. 200-214, doi: 10.1007/978-
981-16-0404-1_15.

A. Abdallah, A. Berendeyev, I. Nuradin, and D. Nurseitov, “TNCR:
Table net detection and classification dataset,” Neurocomputing, vol. 473,
pp. 79-97, Feb. 2022.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, ““Focal loss for dense
object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980-2988.

W. Y. Yuxin, A. Kirillov, F. Massa, L. Wan-Yen, and R. Girshick. (2019).
Detectron2. [Online]. Available: https://github.com/facebookresearch/
detectron2

M. Dey, S. M. Mia, N. Sarkar, A. Bhattacharya, S. Roy, S. Malakar, and
R. Sarkar, “A two-stage CNN-based hand-drawn electrical and electronic
circuit component recognition system,” Neural Comput. Appl., vol. 33,
no. 20, pp. 13367-13390, Oct. 2021.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system
based on Yolo in traffic scene,” in Proc. 6th Int. Conf. Comput. Sci. Netw.
Technol. (ICCSNT), Oct. 2017, pp. 315-319.

V.B.S. Mabhalleh, T. A. AL Qutami, and I. A.-T. Mahmood, ‘““YOLO-based
valve type recognition and localization,” in Proc. IEEE 6th Int. Conf. Ind.
Eng. Appl. (ICIEA), Apr. 2019, pp. 37-40.

C. Dewi, R.-C. Chen, Y.-T. Liu, X. Jiang, and K. D. Hartomo, “YOLO V4
for advanced traffic sign recognition with synthetic training data generated
by various GAN,” IEEE Access, vol. 9, pp. 97228-97242, 2021.

W. Chen, H. Huang, S. Peng, C. Zhou, and C. Zhang, “YOLO-face: A real-
time face detector,” Vis. Comput., vol. 37, no. 4, pp. 805-813, Apr. 2021,
doi: 10.1007/s00371-020-01831-7.

M. H. Junos, A. S. Mohd Khairuddin, S. Thannirmalai, and M. Dahari,
“Automatic detection of oil palm fruits from UAV images using an
improved YOLO model,” Vis. Comput., vol. 38, pp. 2341-2355, Apr. 2021,
doi: 10.1007/s00371-021-02116-3.

S. Zhou, Y. Bi, X. Wei, J. Liu, Z. Ye, F. Li, and Y. Du, “Automated
detection and classification of spilled loads on freeways based on improved
Yolo network,” Mach. Vis. Appl., vol. 32, no. 2, pp. 1-12, Mar. 2021, doi:
10.1007/s00138-021-01171-z.

Y. Li, Z. Han, H. Xu, L. Liu, X. Li, and K. Zhang, “YOLOv3-lite: A
lightweight crack detection network for aircraft structure based on depth-
wise separable convolutions,” Appl. Sci., vol. 9, no. 18, p. 3781, Sep. 2019.
W. Min, X. Li, Q. Wang, Q. Zeng, and Y. Liao, “New approach to
vehicle license plate location based on new model YOLO-L and plate
pre-identification,” IET Image Process., vol. 13, no. 7, pp. 1041-1049,
May 2019, doi: 10.1049/iet-ipr.2018.6449.

Y. Tian, G. Yang, Z. Wang, H. Wang, E. Li, and Z. Liang, “Apple detection
during different growth stages in orchards using the improved YOLO-V3
model,” Comput. Electron. Agricult., vol. 157, pp. 417-426, Feb. 2019.
S. Noor, M. Waqas, M. L. Saleem, and H. N. Minhas, “Automatic object
tracking and segmentation using unsupervised SiamMask,” IEEE Access,
vol. 9, pp. 106550-106559, 2021, doi: 10.1109/ACCESS.2021.3101054.

76104

[27] R.Dinesh, ‘““‘Handwritten electronic components recognition: An approach

based on HOG+ SVM,” J. Theor. Appl. Inf. Technol., vol. 96, no. 13,
pp. 40204028, 2018.

[28] M. Rabbani, R. Khoshkangini, H. S. Nagendraswamy, and M. Conti,

“Hand drawn optical circuit recognition,” Proc. Comput. Sci., vol. 84,
pp. 41-48, Jan. 2016, doi: 10.1016/j.procs.2016.04.064.

SOMAIEH AMRAEE received the B.S. degree
in computer engineering from Alzahra University,
Iran, in 2006, the M.S. degree in computer archi-
tecture from the Isfahan University of Technology,
Iran, in 2010, and the Ph.D. degree from the Uni-
versity of Isfahan, Iran, in 2018. She is currently
an Assistant Professor in electrical and computer
engineering with the Jundi-Shapur University of
Technology, Dezful, Iran. Her research interests
include computer vision, machine learning, and
digital hardware design.

MARYAM CHINIPARDAZ received the B.Sc.
degree in computer engineering-software, the
B.Sc. degree in information technology, and the
M.Sc. and Ph.D. degrees in computer network-
ing from the Amirkabir University of Technol-
ogy (AUT), in 2009, 2010, 2012, and 2018,
respectively. She is currently an Assistant Profes-
sor in electrical and computer engineering at the
Jundi-Shapur University of Technology, Dezful,
Iran. Her current research interests include opti-

mization methods and machine learning techniques in multimedia networks.

MOHAMMADALI CHAROOSAEI received the
B.Sc. degree in computer engineering from the
Jundi-Shapur University of Technology, Dezful,
Iran, in 2021. He has a solid and up-to-date under-
standing of machine learning and deep learning
algorithm’s theoretical concepts with implemen-
tation experience. His research interests include
machine learning and deep learning, especially
their applications in computer vision and image
processing.

MOHAMMAD AMIN MIRZAEI is currently
pursuing the bachelor’s degree in computer engi-
neering with the Jundi-Shapur University of
Technology, Dezful, Iran. His research interests
include computer vision, artificial intelligence,
and android programming. He has three ACM
membership.

VOLUME 10, 2022

http://dx.doi.org/10.1007/s00371-020-01938-x
http://dx.doi.org/10.1007/s00371-021-02230-2
http://dx.doi.org/10.1007/s12046-020-01410-5
http://dx.doi.org/10.1007/s12046-020-01484-1
http://dx.doi.org/10.1007/s12046-020-01484-1
http://dx.doi.org/10.1007/978-981-16-0404-1_15
http://dx.doi.org/10.1007/978-981-16-0404-1_15
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/s00371-020-01831-7
http://dx.doi.org/10.1007/s00371-021-02116-3
http://dx.doi.org/10.1007/s00138-021-01171-z
http://dx.doi.org/10.1049/iet-ipr.2018.6449
http://dx.doi.org/10.1109/ACCESS.2021.3101054
http://dx.doi.org/10.1016/j.procs.2016.04.064

