
Received 12 June 2022, accepted 10 July 2022, date of publication 19 July 2022, date of current version 9 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192443

A Novel GPU-Based Approach to Exploit
Time-Respectingness in Public Transport
Networks for Efficient Computation
of Earliest Arrival Time
SUNIL KUMAR MAURYA AND ANSHU S. ANAND , (Senior Member, IEEE)
Department of Information Technology, IIIT Allahabad, Prayagraj 211015, India

Corresponding author: Anshu S. Anand (anshu@iiita.ac.in)

ABSTRACT In static temporal networks, the Earliest Arrival Time (EAT) problem is to calculate the earliest
possible time of arrival at a set of vertices from a given source vertex. Applications of the EAT problem
include designing efficient evacuation planning in dynamic scenarios, optimal journey planning in transport
networks, and optimal flowmanagement in supply chains. There exist several solutions for the EAT problem
in the literature, however, there is limited work on GPU (Graphics Processing Unit) based solutions to
leverage the capabilities of the high throughput accelerator for better performance. Further, there is also a
need for more efficient methods to process the inherent earliest arrival dependencies in a transport network.
In this paper, we propose a suite of five incremental (GPU) algorithms for the one-to-all Earliest Arrival
Time problem in public transport networks. The Selective-check-version is the most optimized approach
and hence, the key algorithm. It uses an edge coloring based approach to trace the time-respectingness of
paths and processing the in-edges in a sorted order based on their arrival times. Its key characteristic is that it
is very fast for the best-case networks where all temporal paths are time-respecting. For the Selective-check
version, we observed an average speedup of 6.45 against the Serial Connection-scan algorithm and 2.77 w.r.t.
the Edge-version algorithm.

INDEX TERMS Earliest arrival time, GPU, shared memory, temporal graph, transport network.

I. INTRODUCTION
Seeking optimal routes is perhaps the most common and
daunting task in any network. The optimal routes could be
the shortest, fastest, earliest arrival, etc. Designing a serial
algorithm is genuinely a good approach to solve it, but it is
not much feasible for large networks. The Earliest Arrival
Time (EAT) problem is a category of route-planning prob-
lems associated with finding the least possible timestamps at
which a set of destination vertices is reached after departing
from a source vertex. For a transport network G, a source
vertex s, and a scheduled timetable for each of the vehicles,
the EAT problem is to plan the routes in such a way that
we can reach the destination vertex at the earliest. This

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh .

may require one to change several vehicles along the route.
In general, a transport network is comprised of several types
of vehicles but there can also be networks consisting of a
single vehicle or identical vehicles of the same type, e.g.,
a cargo shipping network comprises vehicles of identical
types.

Though the EAT problem is different from Single
Source Shortest Path (SSSP) Problem, but still the works
for SSSP problem proves significant here as evidenced
in [11], [12], [14], [16], and [17]. Besides, a good
graph model and the graph process techniques matter
a lot in having an efficient problem solving mecha-
nism [18]–[20]. The graph with several attributes may
need deeper analysis to fully understand it, hence, the
centralitymeasures andmulti-layer analysismay prove useful
[13], [15].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 81877

https://orcid.org/0000-0002-7271-4702
https://orcid.org/0000-0003-4746-3179

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

In addition to these, the EAT problem has various
applications. For example,
• The EAT problem has significance in optimal journey
planning for the single source to multiple destinations
EAT problem. Its solution requires a specialized variant
of the one-to-all EAT problem’s solution.

• EAT problem is useful in solving cost-effective travel
problems under various dynamics like weather condi-
tions, peak hours, holidays, route diversions etc.

• Another application is evacuation planning where a set
of the earliest reachable spots can be identified as an exit
spot.

• Designing optimal flow management in supply chains.
It may include planning a set of paths for the earliest
transportation of a specific volume of goods.

A naive way to solve the EAT problem is to scan each
temporal edge sequentially in a breadth-first search fashion
and update the earliest arrival time of neighboring vertices.
Inspired by it, Dibbelt et al. proposed the Connection-Scan
algorithm [1] to calculate the minimum expected arrival time.
The variants of Dijkstra’s algorithm can also be useful in
calculating EAT [2]. These are serial algorithms, easy-to-
use but suffering from no parallelism. The one-to-all profile
search problem can be parallelized as follows:- if each vertex
v ∈ V is scanned sequentially in a breadth-first search fashion
but all the outgoing edges of v are scanned in parallel to
update the earliest arrival value of out-neighbors of v [4].
The difficulty that rise while parallelizing the transport

network is the earliest arrival dependency of a vertex on
another vertex. In other words, the earliest arrival time of
a vertex v can be dependent on the earliest arrival time of
one of the in-neighbors of v. To deal with it efficiently,
Ni et al. proposed the ESDG algorithm [6]. To deal with
the problem of limited parallelism in contemporary works,
Ramakrishna et al. proposed a set of incremental algorithms
to solve the EAT problem [5].

Our contributions in this paper is summarized as follows:-
• We propose a set of incrementally designed GPU
algorithms for the EAT problem in a time-table based
transport networks.

• We present a new EAT problem-specific temporal
graph representation for better performance. It helps in
visualizing and representing each vertex and its in-edges
as an independent entity.

• We experimentally evaluate the existing as well as the
proposed algorithm on real-world datasets and compare
their execution times, speedups, and the bytes of the
shared memory expended.

The rest of the paper is organized as follows. In Section II,
we introduce the basic concepts of temporal graphs and some
of the existing methods to solve EAT problem. In Section III,
we propose the incremental algorithms to solve the earliest
arrival problem in temporal graphs. In Section IV, we show
the experimental evaluation of the proposed algorithms
and existing algorithms. Conclusion and future work are
presented in Section V.

II. PRELIMINARIES
We first formally define a temporal graph and describe
its similarity with transport networks. Later, we intro-
duce the baseline algorithms for EAT problem, namely,
Connection-scan algorithm [1], Parallel SPCS (Self Pruning
Connection Setting) algorithm [4], RAPTOR (Round bAsed
Public Transit Optimized Router) algorithm [3], Parallel
Connection-Scan algorithm [5], ESDG (Edge-Scan Depen-
dency Graph) algorithm [6], and Edge-version algorithm [5].

A temporal network differs from a traditional network
structureswhere the latter networks only keep the information
of the vertices and the physical/logical edges connecting
them. On the other hand, a temporal network represents the
flow of objects among the set of vertices it has. It is an abstract
network structure representing the flow/movement of objects
happening in the traditional network. A temporal graph G
is represented by a set of vertices V and temporal edges E
respectively, where each edge model a 4-tuple information.
Each tuple (u, v, t, d) corresponding to E represents:-
u = source vertex
v = destination vertex
t = departure time
d = duration time
Semantically, each tuple (u, v, t, d) represents a vehicle

going from u to v and that departs from u at time t and the
average duration it takes to reach v is equal to d .
A transport network can be represented as a temporal graph

where the set of stops can be represented as the set of vertices,
while the movement of the vehicle at time t from stop u to
stop v, when it takes d duration to reach v can be represented
by a temporal edge from vertex u to v labeled with a tuple
(t, d). This information can also be stored in 4-tuple form as
(u, v, t, d), where u, v, t, d has their respective meaning same
as that of temporal graphs.

The state-of-the-art algorithms for EAT problems include
Serial Connection-scan algorithm [1], Parallel SPCS algo-
rithm [4], RAPTOR algorithm [3], Parallel Connection-Scan
algorithm [5], ESDG algorithm [6], and Edge-version
algorithm [5], which we described below.

A. SERIAL CONNECTION-SCAN ALGORITHM
The Connection-scan algorithm [1] is the first recognized
work in the context of EAT. As per this algorithm, assume
that the earliest arrival value of s is the same as its departure
time, ts and the EAT at each vertex is ∞. Each edge is
sorted in ascending order of departure times. Further, each
edge is scanned sequentially starting from the edge with the
lowest departure time to update the earliest arrival value of
neighboring vertices [1].

This algorithm is easy to understand and known for its
simplicity but it has no parallelism which makes it less useful
on large networks.

B. PARALLEL SPCS ALGORITHM
This parallel algorithm was designed for the profile-search
earliest arrival time problem [4]. The core approach is to
keep track of the set of outgoing connections for each vertex

81878 VOLUME 10, 2022

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

v ∈ V . Let this set be represented by conn(v). The algorithm
further proceeds by partitioning the conn(v) into k subsets,
each of these subsets is processed by an independent thread.
The partial results computed are afterward combined to get
accurate results.

The algorithm is good for static networks only. The idea of
parallelism is kept limited to few multi-core CPU setup.

C. RAPTOR ALGORITHM
The RAPTOR algorithm is a bi-criteria minimization algo-
rithm that aims to calculate the earliest arrival time with the
least possible transfers. It works in rounds and in the k th

round, the fastest way of reaching every vertex with at most
k − 1 transfers is computed [3]. The algorithm is great to
be applied to dynamic scenarios and in multi-criteria profile
search problems, but it lacks parallelism.

D. PARALLEL CONNECTION-SCAN ALGORITHM
This algorithm is very similar to the serial connection-scan
algorithm except for the fact it is a naive parallelization of
CSA. Here, each of the edges is scanned in parallel. Parallel
scanning is done multiple times until there is no change
is observed in the earliest arrival times of any vertex in
consecutive iterations [5]. Its biggest disadvantage is that it
highly depends on the no. of edges. More the edges, more the
number of threads is required.

E. ESDG ALGORITHM
It is a graph transformation based algorithm [6] which
indirectly addresses the inherent dependencies among the
temporal edges. It transforms an original graph G into an
edge-scan-dependency-graph G′. Later, for every level in G′,
each thread is assigned. Every thread i computes the earliest
arrival time of all vertices belonging to ith level.

The ESDG algorithm is specifically designed for the
multi-core systems, not as large as that of GPU cores,
hence, it exhibits low parallelism. In addition, the graph
transformation process adds extra overhead as well.

F. EDGE-VERSION ALGORITHM
This algorithm was one of the most efficient algo-
rithms among the incremental algorithms proposed by
Ramakrishna et al. In this approach, all the edges are
preprocessed into connection-types, clusters, and arithmetic
progressions [5]. With this technique, looking up for the
edge with the minimum arrival time output is improved.
Further, each of the vertex pairs (u, v) directly connected
by an edge is processed in parallel. All the edges between
(u, v) are processed by one thread. Each thread will look
for the edge with the minimum arrival time output for their
respective (u, v) pairs to relax the arrival time of v. This
parallel processing is iterated multiple times until no change
is observed in consecutive iterations.

The algorithm is great in terms of parallelism, pruning
techniques, and speedup but it is applicable only on static

networks. For its applicability to dynamic networks, the
algorithm should be rerun every time the network changes.

Across all these baseline algorithms, we noticed that there
is the need of a very fast method to process the earliest arrival
dependencies between any two vertices. Besides, there is
limited work on GPU-based solutions for the EAT problem.
Most of the current approaches are based on multi-core CPU
setups that show limited parallelism and limited speed-ups.
It is also observed that the EAT problem in networks closer
to the best case can be solved in O(1) time, but it is absent in
existing works.

III. INCREMENTAL PARALLEL ALGORITHM
In this section, we describe our incrementally designed
parallel algorithm for calculating the earliest arrival time from
a source vertex to all the vertices. Firstly, wewill represent the
transport network as G = (V ,E), where, V = Set of vertices
E = Set of temporal edges Each temporal edge in set E can
be represented as a set of 4-tuples (u, v, t, d), where,
u = The vertex endpoint from where the vehicle departs
v = The vertex endpoint the vehicle is destined to
t = departure time of a vehicle
d = duration time from u to v
We proposed our main algorithm through 5 incremental

variants. These are:-
• Vertex-version
• Time-scale version
• Multi-Time-scale version
• Parallel-backward-check-version
• Selective-check version

PROPOSED GRAPH REPRESENTATION
For better performance, we propose a new representation
technique to store and process the temporal graphs for
transport networks.

In the proposed algorithms (except Vertex-version), we use
a dedicated array Sv for all the vertices v ∈ V to store
information of its in-neighbors, departure time, and arrival
time at v from its in-neighbors. All the in-neighbors u of v
and the departure time and arrival time of u → v edge is
stored in the form of a 3-tuple, as shown in Figure 1b.

Consider the subgraph as shown in Figure 1a. For this
subgraph, Figure 1b illustrates the representation for vertices
v1 and v2.

Such a representation helps in visualizing each vertex
and the associated set of data as an independent unit which
ultimately eases the task of computing the earliest arrival
times.

A. VERTEX-VERSION
In this version, each vertex is processed in parallel, and for all
of these vertices, each outgoing edge is processed in parallel
to update the EAT of its out-neighbors. Thus, for two vertices
u and v such that u ∈ vout , if e[v] ≤ tv,u and e[u] > tv,u +
durv,u then e[u] is set to tv,u + durv,u, where
vout = Set of outgoing vertices of v

VOLUME 10, 2022 81879

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

FIGURE 1. Illustration of technique to store the graph.

e[v] = Earliest arrival time of vertex v
tv,u = Departure time of (v, u) edge
durv,u = Duration of (v, u) edge

Algorithm 1 Vertex-Version
Input: G = (V ,E).
Output: Earliest Arrival Times of all vertices in G.

1: for all v ∈ V do F do in parallel
2: for all u ∈ vout do F do in parallel
3: for all edges (v, u) do
4: if e[v] ≤ tv,u and e[u] > tv,u + durv,u then
5: e[u] = tv,u + durv,u
6: Go to step 1 if at least one e[v] is changed.

Complexity:- The steps in Algorithm 1 take O(1) time
because it is done in parallel but the serial iterations required
in Algorithm 1 may go to |V | iterations in the worst case,
where |V | = no. of vertices. Hence, its time complexity is
O(|V |).

B. TIME-SCALE VERSION
In this algorithm, we use a time scale for the processing of
vertices. The heuristic is to make a time scale T of length
1440, where the ith index stores the vertices that are reached
at the ith minute. We assume that the schedule in the given
network repeats itself every 24 hours. Since the total no.
of minutes in a 24-hour clock = 24 × 60 = 1440, that’s
why the length of T is set to 1440.

The algorithm proceeds with the initialization of a time
scale T followed by the for loops to populate T by processing
the entire graph. In steps 2-7, we scan all the vertices v ∈ V
in parallel in the given graph and for each of that v, its
in-neighbors are picked in parallel to scan all the incoming
edges to v. Note that, vin denotes the set of in-neighbors
of v. For each of the in-edges of a vertex v, the minimum

arrival time to v from any of its in-edge is noted down, say
it AT . After that, at index AT in T, this vertex v is stored.
After T is filled, each of its rows is scanned in parallel to
process the vertices stored there. The ith thread will process
all the vertices stored at the ith index in T and hence, tries to
minimize its EAT to i. The lock-unlock mechanism is used
additionally to ensure the atomicity.

Note that, it is designed under the assumption that all the
paths in the given network are time-respecting. Hence, it is
not useful in real-life transport networks. Since its theory
is useful in designing the subsequent algorithms, therefore,
it is necessarily considered here.

Algorithm 2 Time-Scale Version
Input: G = (V ,E).
Output: Earliest Arrival Times of all vertices in G.

1: Initialize a Time scale T of rows 1440.
2: for all v ∈ V do F do in parallel
3: for all u ∈ vin do F do in parallel
4: AT =∞
5: for all edges (u, v) do
6: AT = min(AT, tu,v + duru,v)

7: Add the vertex v in T [AT]
8: for all i ∈ [0, 1440) do F do in parallel
9: for all v stored at T [i] do
10: if e[v] > i then
11: LOCK(v)
12: e[v] = i
13: UNLOCK(v)

Complexity:- The steps 2 to 7 in Algorithm 2 take O(1)
time because it is done in parallel while computation ahead of
the step 7 may take O(|V |) time, where |V | = no. of vertices.
The reason behind the O(|V |) time is the LOCK-UNLOCK
mechanism that’s forcing some threads to have sequential
ordering. In the worst case, this sequential ordering may turn
out to be O(|V |) length.

C. MULTI-TIME-SCALE VERSION
In this version, we improved the idea of the time scale few
more steps. Here, each vertex is treated as an independent unit
whose EAT entirely depends on its in-neighbors. Each vertex
is provided with its own time scale to store its in-neighbors,
departure, and arrival times of the corresponding in-edge.

The algorithm proceeds with the parallel scanning of every
vertex allocating each of them a time scale of length 1440.
Further, all the in-edges of these vertices are scanned to
find the in-edge with the minimum arrival time, represented
by idx. After that, all the in-neighbors corresponding to
the in-edges with idx arrival time is pushed into the list
corresponding to T[idx]. The push operation into T[idx] is
represented by push. Note that t(X ,Y) and dur(X ,Y) represent
the departure time and duration of an edge from X to Y
respectively. To have an atomic read-write, T[idx] is locked

81880 VOLUME 10, 2022

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

before adding any vertex into it. After the addition to it, T[idx]
is unlocked.

Further, for all the vertex X ∈ V , its time scale is scanned
sequentially. At the very first index (idx) in its time scale
where there exists at least one vertex, say depNode, is noted.
Later, the vertex depNode is checked whether it has achieved
its earliest arrival time or not. This condition is checked with
the use of the verified array. The ith index of verified is true
when the ith vertex has achieved its EAT, otherwise, it is false.
When verified[depNode] is true and the earliest arrival time
at depNode is less than or equal to the departure time of the
corresponding edge from depNode to X , the EAT of X is set
to idx and verified[X] is set to true followed by the stopping
of time-scale scanning. In another case, if verified[depNode]
is still false, the vertex X waits for the depNode for its EAT
calculation.

Algorithm 3Multi-Time-Scale Version
Input: G = (V ,E).
Output: Earliest Arrival Times of all vertices in G.

1: for all X ∈ V do F do in parallel
2: T[1440] =∞
3: idx =∞
4: for all Y ∈ V do F do in parallel
5: for all edges (Y ,X) do
6: idx = min(idx, t(Y ,X) + dur(Y ,X))

7: LOCK(T[idx])
8: T[idx].push(Y, t(Y ,X))
9: UNLOCK(T[idx])

10: for all X ∈ V do F do in parallel
11: for all idx ∈ [0, 1440) do
12: for all depNode ∈ T [idx] do
13: if depNode 6= ∞ then
14: if verified[depNode] = TRUE then
15: if e[depNode] ≤ t(depNode,X) then
16: e[X] = idx
17: verified[X] = TRUE
18: break time-scale scanning
19: else
20: wait on depNode

Complexity:- In Algorithm 3, the time complexity highly
depends on the waiting of a vertex for its in-neighbors. Such
waiting contributes to the creation of a waiting chain. This
waiting chain is as long as the diameter of the graph. Thus,
its complexity is O(D) where D = The diameter of the graph.

D. PARALLEL BACKWARD-CHECK VERSION
Though Algorithm 3 provides faster access to EATs, it results
in wastage of space. Thus, to optimize space usage,
we introduce Algorithm 4. In this version, we optimize the
part of time-scale in Algorithm 3. Rather than having a time
scale of fixed length for every vertex, a list can be used for
every vertex to store in-neighbors and arrival time in the form

of key-value pairs. For faster access, shared memories can be
used instead of such a list.

The algorithm proceeds by the scanning of every vertex in
parallel followed by the parallel scanning of all the in-edges
corresponding to every vertex. The in-neighbors and the
arrival times of the in-edges are stored in the shared memory
dedicated for every vertex, represented by shmdmemv. Note
that the respective in-neighbors are stored in the form of
‘keys’ while the respective arrival time is stored in the form
of ‘values’. Next, each vertex is scanned in parallel and
∀v ∈ V , the stored key and value in the corresponding shared
memories are extracted. Later this key vertex is checked
whether the verified[key] is true or not. The concept of
verified is the same as it was explained in Algorithm 3.
If the EAT at v, represented by e[v], is less than or equal
to the departure time of the edge (key, v), then the value of
e[v] is set with value if it is less than the previous value of
e[v], otherwise, there is no need to change the value of e[v].
If verified[key] is not true when it is checked by the thread
corresponding to vertex v then, it waits for the verified[key]
until it is set to true by its respective thread. When it is set to
true, the above process is repeated again.

Algorithm 4 Parallel Backward-Check-Version
Input: G = (V ,E).
Output: Earliest Arrival Times of all vertices in G.

1: for all v ∈ V do F do in parallel
2: for all u ∈ vin do F do in parallel
3: shmdmemv.add(u, tu,v + duru,v)

4: for all v ∈ V do F do in parallel
5: flag = FALSE
6: for all (key, val) ∈ shmdmem do F do in parallel
7: if verified[key] = TRUE then
8: if e[key] ≤ tkey,v then
9: e[v] = min(e[v], val)

10: flag = TRUE
11: else
12: WAIT on key until its respective thread sets

the verified[key]
13: Go to step 3 when verified[key] = TRUE
14: verified[v] = (verified[v] OR flag)

Complexity:- For similar reasons as in the Algorithm 3,
the time complexity of Algorithm 4 will be O(D) time for the
real-life transport networks

E. SELECTIVE-CHECK VERSION
The Selective-check algorithm relies on our key observation
that in the calculation of the earliest arrival time for a vertex
v, it is not always needed to calculate the earliest arrival
time at all vertices u, where u ∈ Vin and Vin is the set
of all in-neighbors of v. We illustrate this with an example.
Consider an edge, u → v that gives the minimum arrival
time at v, and there exists some time-respecting path [6],
s → w1 → w2 → · · · → u, not necessarily the earliest

VOLUME 10, 2022 81881

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

arrival path, then it can be inferred that the path s → w1 →

w2→ · · · → u→ v is the earliest arrival path to v.

Algorithm 5 Selective-Check Version
Input: G = (V ,E).
Output: Earliest Arrival Times of all vertices in G.

1: for all v ∈ V do F do in parallel
2: for all u ∈ vin do F do in parallel
3: arrv.add(u, dt(u,v), at(u,v))

4: for all v ∈ V do
5: Sort arrv in ascending order of arrival times
6: for all v ∈ V do F Scan each vertex v in parallel
7: found = false
8: for all i ∈ [0, arrv.size()) do F Scan in-neighbor of v
9: (u, dt, at) = (arrv[i]0, arrv[i]1, arrv[i]2)

10: for all j ∈ [0, arru.size()) do
11: (w, dt ′, at ′) = (arru[j]0, arru[j]1, arru[j]2)
12: if color[w, u, dt ′, at ′] = white then
13: wait for (w, u, dt ′, at ′)
14: if dt ≥ at ′ AND color[w, u, dt ′, at ′] = green

then
15: e[v] = at
16: found = true
17: color[u, v, dt, at] = green
18: break
19: if found then
20: break
21: else
22: color[u, v, dt, at] = red

The algorithm starts by processing all the edges in parallel
to store all the arrival times at vertex v into an array dedicated
for v, denoted by arrv, ∀v ∈ V (Lines 1-3). Note that u
denotes the in-neighbor of v while dt(u,v) and at(u,v) denotes
the departure time and the arrival time of an edge from u to v.
Next, the arrays for each vertex v, arrv are sorted in parallel
in ascending order of arrival times (Lines 4-5). Following
this, each vertex is processed in parallel to compute the
EATs. For every vertex v ∈ V , its stored in-neighbors u and
the corresponding departure and arrival times of the in-edge
u→ v is extracted. This operation is done in Line 9 in tuple
form as shown below:-

(u, dt, at) = (arrv[i]0, arrv[i]1, arrv[i]2)

Here, u, dt and at receive the values from arrv[i]0, arrv[i]1
and arrv[i]2 respectively. Note that arrv[i]0 denotes the ith

in-neighbour of v. Similarly, arrv[i]1 and arrv[i]2 denote the
departure time and the arrival time of an in-edge from the ith

in-neighbor to v respectively.
The color[] array is used to keep track of the utility

of a temporal edge (u, v, t, d), where each symbol has the
same meaning as described in Section II. Note down that
color[u, v, t, d] can be white, red , or green depending on
whether the edge (u, v, t, d) is in the unprocessed , not −
usable, or processed states respectively. An edge will be in

the unprocessed state if it is not determined yet whether s to
v path via (u, v, t, d) is time-respecting or not. It will be in
the not − usable state if this edge is found to be not time-
respecting, i.e, there does not exist any path from s to u with
an arrival time less than or equal to t , the departure time from
u. Further, an edge will be in the processed state if there exists
at least one time-respecting path from s to u with respect to
the edge from u to v.
The algorithm scans each vertex in parallel (Line 6) and
∀v ∈ V , its in-neighbor u, and the departure time and
arrival time of the corresponding u to v edge is extracted
from the arrv sequentially (Line 9). Next, each of the
in-neighbors and the corresponding in-edge to u is scanned
in arru (Lines 10-11). The state of each of the temporal in-
edges, w → u of u is then checked and if it is white, the
vertex v needs to wait for the state to change to red/green
(Lines 12-13). On the other hand, if the departure time of edge
u → v is greater than or equal to the arrival time of edge
w → u, and the state of the edge w → u is green, then the
EAT of v is set to the arrival time of the edge u→ v (Line 15).
Since the edge u→ v leads to a time-respecting path from s
to v, color[u, v, dt, at] is set to green and found is set to true
(Lines 16-17) to indicate that the earliest arrival path to v is
found.

Subsequently, the further scanning of other in-edges of v
is immediately stopped because the earliest arrival path is
achieved and hence, further scanning is irrelevant. It may
also happen that for the edge u → v, there doesn’t exist
any time-respecting paths from s to u. In such a case,
color[u, v, dt, at] is set to red (Line 22) indicating that v is
not reachable from s through the edge u→ v.

Complexity:- The inherent waiting chain in this algorithm
make its time complexity to reach O(D), where D = The
diameter of the graph.

1) ILLUSTRATIVE EXAMPLE
Consider a sample network with the journey times as
shown in Fig. 2. The labeled edges represent departure and
arrival times respectively. For example, the edge labeled as
(10:30 am, 11:00 am) between (S, 2) represents a vehicle
departing from station S at 10:30 am and arriving at station
2 at 11:00 am.

The Selective-check algorithm starts by grouping all the
in-edges for every vertex. Further, it sorts all those in-edges
on arrival times. Sorting ensures that the in-neighbor resulting
in the earliest arrival time is accessed first. This is shown in
Fig. 3.
As per Algorithm 5, a GPU thread corresponding to

a vertex will be dependent on threads processing its
in-neighbors to ensure time-respectingness. For example, the
thread for vertex 9 will wait for the threads of vertices 7 and
8 to indicate the presence of at least one time-respecting path
to them. As evident from Figure 1, for vertex 9, the possible
time-respecting paths are S → 1 → 4 → 7, S → 2 →
4 → 7, S → 3 → 5 → 7 and S → 3 → 5 → 8.
As there exist three in-edges to vertex 9, the edges 6 → 9,

81882 VOLUME 10, 2022

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

FIGURE 2. An example to illustrate the working of Selective-check algorithm.

FIGURE 3. State of Data structure before and after sorting.

7 → 9, and 8 → 9 are checked for time-respectingness.
Since the edge 7 → 9 results in the earliest arrival at vertex
9 assuming time-respectingness, it is processed first (as it was
sorted earlier, it appears at the head of the list). As soon as
it is determined that there exists a time-respecting path (and
therefore a green-colored path) from S to vertex 7, and if
the arrival time through this path is at least the same as the
departure time from 7, the time-respectingness of the edge
from vertex 7 to 9 is established and therefore colored green,
and the EAT at vertex 9 updated to 3:00 pm. The other edges
from vertices 6 and 8 will not be processed by the algorithm
and therefore, remains white (shown as black in the figure).

2) CORRECTNESS
We now establish the proof of correctness for the
Selective-check version algorithm. We assume that for any
vertex v, there exists a unique EAT path from s to v. Though
this need not be true in practice, it is safe to make this
assumption since even in the presence of multiple EAT paths
between the same pair of vertices, the algorithm will only
identify a single path due to the ordering imposed by sorting.

Lemma 1: If p = (s, v1, v2, . . . , vm, v) is the earliest
arrival path from s to v, then p′ = (s, v1, v2, . . . , vm−1, vm) is
the earliest arrival path from s to vm.

Proof: We prove it by contradiction. Suppose p′ is
not the EAT path from s to vm, then vm should have an in-
neighbor, vk , other than vm−1 that returns the least arrival time
at vm and it should be an intermediate vertex in some time-
respecting path p′′ from s to vm.

Now, consider this edge from vk to vm. Since this edge
results in EAT at vm, it implies that this edge results in earlier
arrival at vm than from vm−1. In such a case, the thread for vm
would have processed this edge before the edge from vm−1
to vm in Line 6. Consequently, it would have set the color of
this edge to green. Now, when the thread for v processed the
in-neighbors of vm (Line 8), it process the edge from vk to
vm first and since its color has already been set to green, the
edge from vm−1 to vm would never have been processed and
its color set to green.

Thus, the thread for v would not have been able to
identify the EAT path, p through vm−1, which contradicts our
assumption. �

VOLUME 10, 2022 81883

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

Theorem 1: The algorithm correctly identifies the Earliest
Arrival Time from the source vertex, s to all vertices.

Proof: Since the algorithm processes each vertex
in parallel, establishing the proof for any arbitrary vertex
suffices. Moreover, all the threads execute independently
without any conflicts. The only dependencies that arise are
when a thread (for a vertex, v) waits for other threads (Line
11) to set the color of edges to red /green.
Let us consider an arbitrary vertex, v in the input graph.

We prove that the algorithm is able to correctly identify the
EAT corresponding to the EAT path p = (s, v1, v2, . . . , vm, v)
from s to v. The proof is by induction on the length of the path,
q between s and v on the path p.

Base Step: q = 0;
This represents the path of length 0 from s to itself and is

straight forward.
Induction Step: Assuming that the theorem holds for

q = m, we prove that the theorem holds for q = m+ 1.
Let p = (s, v1, v2, . . . , vm+1, v) be the EAT path from s to

v having m + 1 intermediate vertices. We need to prove that
the algorithm also identifies it as the EAT path from s to v.

For q = m, the proposed algorithm is able to identify an
EAT path (by induction hypothesis) and therefore, by Lemma
1, p′ = (s, v1, v2, . . . , vm+1) has to be the EAT path from s
to vm+1. We now show that the algorithm is able to identify
EAT through p.

The thread of v scans its in-neighbors (Line 6) and picks
the in-neighbor and the corresponding in-edge that returns
the least arrival time at v. Since the in-edges of v is stored
in a sorted order, they are scanned in ascending order of their
arrival times at v.
Since p is the EAT path from s to v, it implies that either

the edge from vm+1 to v returns the least arrival time at v or
there exists another in-neighbor(s) of v, vk such that the edge
from vk to v returns the least arrival time at v but the edge is
not time-respecting. We discuss both the cases below.

Case 1: The edge vm+1 to v results in the earliest arrival
path at v.
First, vm+1 and its corresponding in-edge to v is
scanned (Lines 6-7). Next, the in-edges of vm+1 are
scanned (Line 8). Since the algorithm has already found
an EAT path from s to vm+1, identified as p′, the
respective in-edge of vm+1 which is part of p′ will be
green. The if condition in Line 12 will be identified
as true as the edge vm+1 − v is time-respecting and
the color of the in-edge of vm+1 corresponding to p′ is
also green. Consequently, the algorithm sets the color
of vm+1−v edge as green (Line 15) denoting that it has
found the EAT path to v.
Case 2: There exists another in-neighbor(s) of v, vk
such that the edge from vk to v returns the least arrival
time at v but the edge is not time-respecting.
In this case, the vertex, vk will be processed earlier than
vm+1. However, the if condition in Line 10 will not be
falsified and consequently, the thread will wait for all
the in-edges of vk to be colored red by other threads

TABLE 1. The dataset.

and finally will itself color the edge from vk to v to red
(Line 20). This will be repeated for every such vertex,
vk , and finally when vm+1 is processed, the edge from
vm+1 to vwill be colored green with the same argument
as in Case 1, signifying the identification of EAT at v.

Thus, the theorem is proved. �

3) DETERMINING EARLIEST ARRIVAL PATHS
In addition to the earliest arrival times, the earliest arrival
paths can also be identified with minor changes to the
Algorithm 5. Note that there may exist multiple paths with
the same EAT from source, s to a vertex, v, but due to the
ordering imposed by our algorithm, it identifies a unique
earliest arrival path from s to v for every vertex, v.

Let eAPath[i] represents a set that stores the earliest arrival
path from source s to vertex i. For every vertex v, the earliest
arrival paths from source s to v can be determined by inserting
the following code snippet in Algorithm 5 after Line 15.

IV. EXPERIMENTS
We implemented all the parallel algorithms in CUDA and
quantitatively compared those against the existing works.
As per our best knowledge, the implementation of these
works isn’t available, thus, we implemented the existing
algorithms by thoroughly following their ideas and applied
them on experimental dataset to calculate execution times.
Further, these executions times are the base of calculated
speedup in our work.

A. EXPERIMENTAL SETUP
The machine used in our experiment comprises of 1.62 GHz
NVIDIA Tesla K80 GPU with 12GB RAM and 2496 cores
for the implementation of parallel algorithms. Besides,
an INTEL core I3 CPU running at 2.00GHz with 8GB RAM
and gcc version 5.4.0 is used to implement serial algorithms.

B. PARALLEL FACTOR
The parallel factor for a dataset indirectly indicates that
how much it can be potentially parallelized. This statistical
measure is accountable for the varying performance of
algorithm(s) on different datasets.

81884 VOLUME 10, 2022

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

TABLE 2. Execution time in milliseconds.

For a temporal graph G, its parallel factor [6] is calculated
by:-

Parallel factor, p(G) = |E|/l(G′)

where, G′ denotes the edge-scan-dependency graph of G, |E|
denote the no. of temporal edges in G, and l(G′) stands for
no. of levels in G′.

C. DENSITY
The density of a graph indicates its sparseness/denseness.
This measure is beneficial in gauging how many edges each
thread may have to process.

The density of a graph G is defined by:-

Density,D(G) =
|E|

|V | ∗ (|V | − 1)
where, |E| = no. of edges and |V | = no. of vertices.

D. DATASET
The dataset used in the experiment consists of timetable
information for 4 cities. The description of each dataset is as
follows:-

E. RESULTS
We applied our algorithms to the dataset shown in Table 1.
We ran 100 queries for each dataset on the proposed
algorithms aswell as on the existing algorithms and computed
the average execution times, average speed-ups, and the
amount of shared memory they occupy. The speedup of an
algorithm x w.r.t. an algorithm y is calculated by the formula:-

Speedup =
yex
xex

where,
xex = Execution time of algorithm x
yex = Execution time of algorithm y
Each query consists of a different source vertex. The

average execution times of all the algorithms are presented
in Table 2 and the amount of shared memory consumed
by different algorithms are presented in Table 3. Similarly,
the speedups of every proposed algorithm with existing
algorithms are shown in Fig. 4. The Fig. 5 represents the
performance of all the algorithms compared to serial CSA.

Our vertex-version algorithm proved faster than the exist-
ing serial algorithms but not on existing parallel algorithms.
It is due to the multiple sequential iterations required to
ensure accuracy. In the worst case, it goes to O(|V |), where
|V | = no. of vertices. Its speedup is shown in Fig. 4a.

The next incremental algorithm, namely Multi-Time-scale
version, utilizes shared memory for faster access on the
in-edges and in-neighbors of a vertex. A Time scale is
dedicated for each vertex whose function is very similar
to the universal time scale used in the Time-scale version.
It achieves speedup ranging from 1.52 to 3.22 w.r.t various
algorithm on different datasets, as shown in Fig. 4b, thus,
it shows a better performance than previous versions. The
usage of the shared memory for faster access to the arrival
times and the algorithm’s capability to directly pick the least
arrival time on a vertex to ensure its validity are the primary
reasons for its improved performance.

The Parallel-backward-check-version is an improved ver-
sion of theMulti-Time-scale version that uses sharedmemory
arrays to store the in-neighbors and the arrival times as
key-value pairs instead of a time scale. It trimmed the need
of scanning all the cells in the time scale and hence shows
the average speedups ranging from 1.88 to 6.02 as shown in
Fig. 4c. Another reason for its fast computation is the parallel
scanning of shared memory instead of sequential scanning as
in the previous version.

Our last algorithm, the Selective-check version, uses the
sorted arrival times for each vertex which facilitates a faster
analysis of the arrival times. As soon as any incoming edge
is validated as the earliest arrival edge for a vertex v, it’s
been set for v and further scanning of the in-edges is stopped
immediately. Consequently, the earliest arrival dependency
of a vertex v on its in-neighbor u is highly reduced, hence
the improved speedup. It shows the speedups ranging from
2.39 to 6.85 as shown in Fig. 4d which is an indicator of its
decent performance.

We didn’t include the experimentation of the Time-scale
version because of the absence of logic in it to address
the time-respectingness. It is designed under the assumption
that all the paths in the given network are time-respecting.
Therefore, it is not useful particularly in real-life transport
networks.

F. COMPARISON WITH SERIAL CSA
The performance of the proposed algorithms and the existing
algorithms w.r.t. Serial CSA is shown in Fig. 5. The
Selective-check version exhibits faster computation against
all the mentioned algorithms. This happened due to its
better ability to locate the least arrival times with minimum
kernel overheads. The Parallel-backward-check algorithm
also shows decent performance but not as fast as Selective-
check. The reason is its tendency of being dependent

VOLUME 10, 2022 81885

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

FIGURE 4. Speedups of all approaches on various algorithm on all datasets.

TABLE 3. Bytes of shared memory occupied.

FIGURE 5. Speedups of various algorithms w.r.t. Serial CSA.

on the earliest arrival time of u for the calculation of
the earliest arrival time of v, where u is the in-neighbor
of v.

Among the existing algorithms, the Edge-version [5] algo-
rithm shows the best speedup over others as shown in Fig. 5.
The primary reason is the pruning of redundant connections,

along with the techniques of creating connection-types,
arithmetic progressions and clustering.

V. CONCLUSION
In this work, we have proposed a novel approach to solve
the earliest arrival time problem. For proper route planning
in a transport network, the arrival and departure times at
every vertex should be carefully dealt with. Therefore, the
set of arrival times corresponding to every vertex should
be visualized as independent units. Our Selective-check
algorithmmakes the least number of comparisons on the best-
case networks. A network is called best-case if ∀v ∈ V , if all
arrival times at vertex v are less than the departure times from
v. A network where no vehicles can be missed at any station
is an example of the best-case network and hence, the earliest
arrival time there can be quickly calculated. For average cases
also, our Selective-check-version algorithm is faster than the
existing works. The reason behind this achievement is the
efficient access to the stored edges and the key idea used
in the algorithm that the computation of EAT at a vertex,
v need not be dependent on the EAT at the in-neighbors
of v.

81886 VOLUME 10, 2022

S. K. Maurya, A. S. Anand: Novel GPU-Based Approach to Exploit Time-Respectingness in Public Transport Networks

We hope that our analysis would prove useful in solving
EAT problem for dynamic transport networks. Although the
algorithms provided here have been designed for GPUs to
exploit data parallelism, the ideas presented here are as
well applicable to CPUs (with a few changes). We plan to
implement an OpenACC version of the proposed parallel
algorithms for performance portability across CPUs and
GPUs. Additionally, it can be extended to multi-criteria
problem solving with slight variations, for example, finding
the earliest arrival route with the minimum cost of travelling.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for their useful comments and editorial suggestions, which
helped them to further improve the article.

REFERENCES
[1] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner, ‘‘Intriguingly simple and

fast transit routing,’’ in Proc. Int. Symp. Exp. Algorithms, 2013, pp. 43–54.
[2] B. B. Xuan, A. Ferreira, and A. Jarry, ‘‘Computing shortest, fastest, and

foremost journeys in dynamic networks,’’ Int. J. Found. Comput. Sci.,
vol. 14, no. 2, pp. 267–285, Apr. 2003.

[3] D. Delling, T. Pajor, and R. F. Werneck, ‘‘Round-based public transit
routing,’’ Transp. Sci., vol. 49, no. 3, pp. 591–604, Aug. 2015.

[4] D. Delling, B. Katz, and T. Pajor, ‘‘Parallel computation of best connec-
tions in public transportation networks,’’ ACM J. Experim. Algorithmics,
vol. 17, pp. 1–12, Jul. 2012.

[5] C. A. Haryan, G. Ramakrishna, R. Nasre, and A. D. Reddy, ‘‘A GPU
algorithm for earliest arrival time problem in public transport networks,’’
in Proc. IEEE 27th Int. Conf. High Perform. Comput., Data, Anal. (HiPC),
Dec. 2020, pp. 171–180.

[6] P. Ni, M. Hanai, W. J. Tan, C. Wang, and W. Cai, ‘‘Parallel algorithm for
single-source earliest-arrival problem in temporal graphs,’’ in Proc. 46th
Int. Conf. Parallel Process. (ICPP), Aug. 2017, pp. 493–502.

[7] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu, ‘‘Efficient
algorithms for temporal path computation,’’ IEEE Trans. Knowl. Data
Eng., vol. 28, no. 11, pp. 2927–2942, Nov. 2016.

[8] Y. Du, Q. Wu, Y. Zhao, X. Zhang, Y. Yao, and H. Xu, ‘‘A parallel
time-varying earliest arrival path algorithm for evacuation planning of
underground mine water inrush accidents,’’ Concurrency Comput., Pract.
Exper., vol. 32, no. 11, p. e5644, Jun. 2020.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[10] OpenMobilityData. [Online]. Available: https://transitfeeds.com
[11] S.Maleki, D. Nguyen, A. Lenharth,M. Garzarán, D. Padua, and K. Pingali,

‘‘DSMR: A parallel algorithm for single-source shortest path problem,’’ in
Proc. Int. Conf. Supercomput., Jun. 2016, pp. 1–14.

[12] P. J. Martín, R. Torres, and A. Gavilanes, ‘‘CUDA solutions for the SSSP
problem,’’ in Proc. Int. Conf. Comput. Sci. Berlin, Germany: Springer,
2009, pp. 904–913.

[13] S. P. Borgatti, ‘‘Centrality and network flow,’’ Social Netw., vol. 27, no. 1,
pp. 55–71, Jan. 2005.

[14] G. J. Katz and J. T. Kider, ‘‘All-pairs shortest-paths for large graphs on the
GPU,’’ in Proc. 23rd ACM SIGGRAPH Eurograph. Symp. Graph. Hardw.,
Jun. 2008, pp. 47–55.

[15] T. Shanmukhappa, I. W. Ho, C. K. Tse, X. Wu, and H. Dong, ‘‘Multi-layer
public transport network analysis,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2018, pp. 1–5.

[16] K. Madduri, A. D. Bader, J. W. Berry, and J. R. Crobak, ‘‘An experimental
study of a parallel shortest path algorithm for solving large-scale graph
instances,’’ in Proc. 9th Workshop Algorithm Eng. Exp. (ALENEX), 2006,
pp. 23–35.

[17] U. Meyer and P. Sanders, ‘‘1-stepping: A parallel single source shortest
path algorithm,’’ in Proc. Eur. Symp. Algorithms, vol. 1461. Heidelberg,
Germany: Springer, 1998, pp. 393–404.

[18] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, ‘‘Kronecker graphs: An approach to modeling networks,’’
J. Mach. Learn. Res., vol. 11, no. 3, pp. 985–1042, 2010.

[19] P. Yuan, C. Xie, L. Liu, and H. Jin, ‘‘PathGraph: A path centric graph
processing system,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3,
pp. 2998–3012, Oct. 2016.

[20] J. Shun and G. E. Blelloch, ‘‘Ligra: A lightweight graph processing
framework for shared memory,’’ in Proc. 18th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., Feb. 2013, pp. 135–146.

SUNIL KUMAR MAURYA received the B.Tech.
degree in computer science engineering from the
Institute of Engineering and Rural Technology,
Prayagraj, India, in 2020. He is currently pursuing
theM.Tech. degree in information technologywith
IIIT Allahabad, India. His current research inter-
ests include parallel and distributed computing and
high performance computing.

ANSHU S. ANAND (Senior Member, IEEE)
received the B.Tech. degree in computer science
and engineering from the Cochin University of
Science and Technology, Kochi, in 2008, the
M.Tech. degree in computer science engineering
from the National Institute of Durgapur, West
Bengal, India, in 2011, and the Ph.D. degree in
computer science engineering from the Bhabha
Atomic Research Centre, Mumbai, in 2019. He is
currently an Assistant Professor with the Depart-

ment of Information Technology, IIIT Allahabad, India. His research
interests include parallel and distributed computing, high performance
computing, parallel programming model design, programming languages,
blockchain, and convergence of HPC and AI. He is a reviewer for many
reputed peer-reviewed international journals and conferences.

VOLUME 10, 2022 81887

