
Received 25 May 2022, accepted 10 July 2022, date of publication 19 July 2022, date of current version 22 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192427

Kernel-Based Matrix Factorization
With Weighted Regularization for
Context-Aware Recommender Systems
VANDANA A. PATIL 1, SANTOSH V. CHAPANERI 2, (Senior Member, IEEE),
AND DEEPAK J. JAYASWAL 2
1Department of Information Technology, St. Francis Institute of Technology, Mumbai 400103, India
2Department of Electronics and Telecommunication Engineering, St. Francis Institute of Technology, Mumbai 400103, India

Corresponding author: Vandana A. Patil (vandanapatil@sfit.ac.in)

ABSTRACT As an essential task for recommender systems, the rating prediction problem over several
contexts has attracted more attention over the recent years. The traditional approaches ignore the contexts
and thus fail to predict the ratings for the unseen data in the rating tensor for varying contextual scenarios.
Matrix factorization is preferred over decomposing the rating tensor for avoiding the burden of very high
computational complexity while learning the interaction of users’ and items’ latent features. In this work,
we propose a novel kernel loss function for optimizing the objective function of matrix factorization in a
non-linearly projected rating space under multiple contexts in an optimum manner and also incorporate
the implicit feedback of items in the learning process. Further, the optimization is regularized by applying
different weights for each regularization term depending on the users’ and items’ participation. Extensive
experimental evaluation on five benchmark context-aware datasets indicates the superiority of the proposed
work for capturing the non-linearity and predicting the ratings of unseen items for users under varying
contexts over the existing and baseline methods. The proposed kernel loss function is also shown to be
resistant against shilling attacks in the recommender system. A detailed ablation study demonstrates the
validity of the proposed work and the results are shown to be statistically significantly better with RMSE
improvement in the range of 3% to 11% over the baseline methods.

INDEX TERMS Context-aware recommender systems, implicit feedback, matrix factorization, regulariza-
tion, optimization, shilling attacks.

I. INTRODUCTION
Due to the abundance of smart devices and advancements
in technologies for developing recommendation systems, the
end-users seek satisfaction via services that learn the ratings
of unrated items in the system and recommend the most
relevant items by considering the user’s preferences. The
idea of including contextual factors in recommender systems
has gained a lot of significance in recent years and thus
there is more exciting research happening in the field of
context-aware recommendation systems (CARS). The advan-
tage of using these contextual factors is that the ratings for

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos .

the unobserved items can be better estimated by the system
since users have differing preferences for the items when
the context changes. Some examples of contexts include the
user and item metadata, time and/or location when the item
is consumed by the users, etc. However, modeling the con-
text in the recommendation system is a non-trivial problem
since the dimensionality for model representation increases
exponentially depending on the number of contextual factors
involved.

We focus on the rating prediction problem in this work
where the goal is to predict the ratings for the items that
have not been rated yet during the user annotation process,
by considering varying contextual factors. Once the ratings
are predicted, the system may then recommend the top-rated

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 75581

https://orcid.org/0000-0002-1764-5855
https://orcid.org/0000-0003-1159-496X
https://orcid.org/0000-0002-6521-630X
https://orcid.org/0000-0003-1517-6757

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

items to the end-users who have not yet rated those items.
For rating estimation under several contexts, three broad
approaches exist [1] such as filtering before, filtering after,
and modeling of contexts. Since the first two approaches
do not explicitly consider the context information, we prefer
the modeling approach where the prediction system can give
a better prediction by directly using the valuable context
information during the optimization phase.

To avoid the curse of dimensionality due to the increasing
contextual factors, several approaches are suggested in the
literature, most of which solve the rating prediction problem
via factorization principles. Since the data will be a tuple
made up of <user, item, context #1, context #2, . . . >, the
most straightforward approach is to use tensor factorization
over such tuples. However, this approach is very computa-
tionally intensive when the number of contexts increases.
Thus, matrix factorization methods are preferred since they
are significantly faster compared to the tensor counterpart.
But, incorporating the contexts in matrix factorization is
challenging for mapping the multi-dimensional data to a two-
dimensional space.

In this work, we estimate the ratings for the unob-
served data samples by using an improved matrix factoriza-
tion method by including the contexts and propose several
enhancements over the existing methods. We first learn the
implicit feedback of both users as well as items that can
improve the prediction performance substantially as shown
by the experiments. While the concept of user implicit feed-
back is not new, the impact of item feedback is ignored in the
existing work. Learning such implicit feedback gives us clues
on the user preferences for items and item appropriateness
for users. Conventionally, the factors of the rating tensor
or matrix are learned by optimizing the least-squares error
loss function. But we demonstrate in this work that such a
function has several drawbacks andwe propose a novel kernel
loss function that projects the original ratings of items by
users under varying contexts to a high dimensional manifold
where the learning capability is improved. To avoid over-
fitting during the training phase, some regularization terms
are usually added; however, most existing works use the
same hyper-parameter for such terms or perform a careful
fine-tuning to get the optimal hyper-parameter. Under this
setting, it is assumed that all items and all users are given
equal importance, which is not a valid assumption in practice.
Thus, we propose weighted regularization that gives different
weights to users and items depending on their contribution
to the system. An advantage of this step is that the heavy
users who contribute a lot to the rating system and popular
items that have lots of ratings will not be overly penalized and
more penalty is offered to less active users and items having a
long tail, thus the resulting optimization has fewer chances of
over-fitting.

Our contributions are five-fold:
(a) Besides the user implicit feedback, the item implicit

feedback is also learned during the optimization pro-
cess to improve the system performance.

(b) A novel convex kernel loss function is proposed with
nice properties that can be utilized to reduce the impact
of malicious users and which results in less error com-
pared to the traditional least-squares loss function.

(c) The proposed kernel context-aware matrix factoriza-
tion (KCAMF) method is robust to shilling attacks,
which is validated theoretically as well as experimen-
tally on benchmark datasets.

(d) Instead of using the same regularization hyper-
parameters in the optimization process, we propose
weights for such hyper-parameters so that every user
and every item is treated differently during the learning
phase.

(e) Over five benchmark datasets, the proposed KCAMF
method performs better than the existing and recent
state-of-the-art methods for solving the rating predic-
tion problem.

The rest of this paper is structured as follows: Section II
reviews the existing work in literature for solving the prob-
lem of rating prediction in a context-aware recommender
system. Section III summarizes the baseline methods used
in this work for a comparative evaluation, and Section IV
describes the proposedworkwith details of each of the above-
mentioned contributions. Section V covers the experimental
results on benchmark datasets and presents an ablation study
to evaluate the impact of each contribution. Finally, the work
is concluded in Section VI by summarizing the contributions
and providing scope for further work in this area.

II. RELATED WORK
A brief overview of the methods for solving the problem of
rating prediction is given in [2] which discusses the collab-
orative filtering, content-based, and hybrid-based techniques
and also sheds light on deep learning methods such as autoen-
coders and Boltzmann machines for predicting the ratings.
For incorporating the contexts, factorization machines are
used in [3] for modeling the second-order interaction terms
in a non-linear way using convolution operations, but this
method requires computations to be performed via GPU
given its high computational complexity. Auto-encoders and
multi-layer perceptrons were used in [4] to learn the inter-
actions between items and users but the authors concluded
that the training takes a much longer time with an increase
in the depth of the network. Deep sparse autoencoder with
particle swarm optimization was used in [5] to learn the latent
representation of ratings and trust information to calculate
the unknown ratings. A time-aware recommender systemwas
proposed in [6] based on temporal reliability and confidence
scores to take into account the varying user’s preferences over
time, but ignores the context under which the user may have
given the ratings. In [7], the authors learned the latent contexts
from the datasets instead of using the original contexts with an
auto-encoder. However, as noted in [2], such systems suffer
from high complexity due to deeper architectures, hence we
resort to the simpler mechanisms of factorization for predict-
ing the ratings.

75582 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

The rating tensor comprising of users, items, and several
context dimensions was decomposed using tensor factoriza-
tion in [8] by also modeling the trusts between users. The
Tucker decomposition was applied in [9] with K-means clus-
tering for obtaining similar users, but this method cannot per-
form well if the dataset is highly sparse (which is the typical
case in recommender systems). The tensor factorization was
learned via a neural network in [10] to obtain the projected
user and item embeddings. However, the methods of tensor
factorization have a higher complexity of computations when
the tensor is sparse and large compared to the simpler matrix
factorization (MF) as noted in [11]; also, the matrix factoriza-
tionmethods have the advantage of obtaining higher accuracy
and they are easily scalable to large-scale datasets [12]. The
regular MF [13] learns the item and user latent features
compared to the biased MF that only learns their correspond-
ing biases and the model parameters are optimized using
Stochastic Gradient Descent (SGD). A matrix factorization
model was presented in [12] to also learn the temporal and
social features for modeling the change of user preferences
over time as well as trust among users, respectively. Under
different scenarios, each user may have varying preferences
for items and to capture this aspect, dual preferences based
MF was proposed in [14]. For solving the data sparsity
problem, especially for cold-start items, a transfer learning
method for MF was proposed in [15] for sharing the knowl-
edge from domains that are relatively rich in information.
An attention-based convolutional MF was proposed in [16]
to model the side information of items and users. But most of
these techniques ignore the contextual factors when predict-
ing the rating, and are applicable only for non-context-based
recommender systems. A kernel context-aware recommender
system was proposed in [17] to model the different contexts
under a non-linear mapping of feature vector spaces. Context
similarity using a similarity kernel was determined in [18] for
both users and items to determine the predicted ratings under
varying contexts. A simplified version of differential context
weighting (DCW) based on context similarity was analyzed
in [19]. An implicit hierarchical latent context representation
was learned in [20] using autoencoder and hierarchical clus-
tering. The context-awareMF (CAMF)method was proposed
in [21] to model the multi-dimensional contexts using the
simpler matrix factorization principles. Due to its simplicity,
we adopt CAMF and its variants as the baseline in this work
and propose several enhancements for improving the system
performance.

Since the rating tensor is usually highly sparse, besides
the explicit rating information available, the implicit feed-
back is also modeled for each user to get an understanding
of the user’s affinities towards different items in an indi-
rect manner [22]. In [23], an implicit user feedback matrix
was learned incrementally using the matrix co-factorization
approach where the users, items, and feedback features are
jointly decomposed in the shared latent space. An exten-
sive empirical study was performed in [24] to determine the
efficacy of implicit feedback for enhanced user engagement.

The implicit feedback was modeled in [25] using soft target
enhancements instead of using the softmax activations in neu-
ral networks. The implicit feedback information is projected
to a feature space of low dimensions in [26] and only the
primary learned features are retained using the concept of
embedding. In [27], the explicit and implicit feedback matri-
ces are learned in the shared feature space simultaneously
and are jointly optimized using standard gradient descent
algorithms.

To avoid over-fitting that can occur when learning the
model parameters, regularization terms are often included to
constrain the parameter values. In [28], the weights of users
and items are learned and applied directly to the optimization
function; these weights attempt to reduce the impact of mali-
cious users who tend to give bad or incorrect ratings. Several
variations of MF were proposed in [29] for regularizing the
optimization of matrix-completion based on the frequency
of users and items contribution. Dynamic regularization was
proposed in [30] for modeling the dynamic changes (e.g. user
preferences drift over time, seasonal factors, etc.) in online
collaborative filtering. In [31], it was proposed to use different
hyper-parameters for the regularization terms based on the
popularity of users and items. The explicit feedback of users’
latent representations is applied in [32] for the regulariza-
tion term that is shown to perform better than the standard
regularization method. In [33], differentiating regularizing
functions (linear, logarithmic) are proposed to adjust each
hyper-parameter of the regularization term for solving the
problem of cold-start in recommendation systems. In line
with this, we propose to apply weighted regularization for
different terms of the objective function depending on the
importance of items and the effort of users.

III. BASELINE METHODS
In this section, the CAMF model and its improved version
ICAMF is discussed to serve as the baseline for the proposed
work. Table 1 shows the notations used in this paper for quick
reference. The sparse rating dataset is denoted as K which
includes few known ratings and several unknown ratings.
The dataset of observed ratings is denoted by D ⊂ K,
which is split in two sets: a training set Dtr and a testing
set Dte. K′ represents the set of tuples for whom the rating
is to be predicted. The context vector is denoted as c =
〈C1, . . . , CL〉, where L is the number of context dimensions.
Each context dimension has the context conditions denoted
by Cn = {0, 1, . . . ,Zn}, where 0 refers to unknown condition
(or N/A), and the remaining values refer to specific condi-
tions. The total number of context conditions are thus given
by Z1 + . . .+ ZL .

The block diagram for the baseline CAMF and ICAMF
methods is shown in Fig. 1. Both CAMF and ICAMFmethods
are trained using Dtr and evaluated using Dte. The rating
prediction functions for CAMF and ICAMF are slightly dif-
ferent and both use the least square loss function as the
optimization function for training using Stochastic Gradient
Descent (SGD) to optimize the learnable model parameters.

VOLUME 10, 2022 75583

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

FIGURE 1. Block diagram of CAMF and ICAMF.

TABLE 1. Notations used in this work.

Using the trained parameters, the ratings are predicted using
the prediction function for the test set, and the performance
is measured using Root Mean Square Error (RMSE) as well
as Mean Absolute Error (MAE).

A. CAMF
Context-aware matrix factorization (CAMF) is an extension
of the standard Matrix Factorization (MF) by considering the
contextual factors in the function for rating prediction. The
CAMF rating prediction function is given by Eq. (1), whereµ
is the global average of the ratings in Dtr , pu ∈ RF is the
latent feature vector of uth user, qi ∈ RF is the latent feature
vector of ith item, F is the dimensionality of latent feature

vectors, α is the user-context interaction bias term, and β
is the item-context interaction bias term. The optimization
function of CAMF is given by Eq. (2) using the least-squares
loss function and regularization terms for the trainable param-
eters θ = {pu,qi, αuCn , βiCn} ∀ u, i, Cn ∈ Dtr to avoid over-
fitting. Typically, same hyper-parameter is chosen for each
regularization term, i.e. λp = λq = λα = λβ = λ for
simplicity.

r̂uic = µ+
L∑
n=1

αuCn +
L∑
n=1

βiCn + pTu qi (1)

min
θ

∑
u,i,c∈Dtr

(r̂uic − ruic)2 +
λp

2
‖pu‖2 +

λq

2
‖qi‖2

+
λα

2

L∑
n=1

α2uCn +
λβ

2

L∑
n=1

β2iCn (2)

B. IMPROVED CAMF
An improved version of CAMF called ICAMF was intro-
duced in [34] to also include the latent feature vectors for
each context. While CAMFmodels only the user-context and
item-context bias terms, ICAMF alsomodels the user-context
and item-context latent feature interaction. Accordingly, the
ICAMF rating prediction function is given by Eq. (1), where
hCn denotes the latent feature vector of n

th contextual condi-
tion. The optimization function of ICAMF is given by Eq. (4).

r̂uic = µ+
L∑
n=1

αuCn +
L∑
n=1

βiCn + pTu qi

+

L∑
n=1

pTu hCn +
L∑
n=1

qTi hCn (3)

min
θ

∑
u,i,c∈Dtr

(r̂uic − ruic)2 +
λp

2
‖pu‖2 +

λq

2
‖qi‖2

+
λh

2
‖hCn‖

2
+
λα

2

L∑
n=1

α2uCn +
λβ

2

L∑
n=1

β2iCn (4)

IV. PROPOSED WORK
In this work, we propose a rating prediction framework called
Kernel CAMF (KCAMF) which modifies the ICAMF model

75584 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

by incorporating user and item implicit feedback.We also use
a kernel loss function instead of the conventional least square
error loss function and apply weighted regularization for the
hyper-parameters for optimizing using SGD.

Fig. 2 shows the working of the proposed method, where
the input is the sparse dataset K that is split into D, which
is the set of observed ratings and K′, which is the set of
unobserved ratings. The set of observed ratings D is further
split into training and test sets Dtr and Dte, respectively. The
rating prediction function is modeled usingDtr , and the opti-
mization function is kernel loss function which is optimized
using SGD with weights applied on the regularization terms.
The trained model parameters are used for predicting the
ratings of the test set Dte; these predicted ratings are then
compared with the known test ratings and the performance is
measured using RMSE and MAE. Further, the trained model
is used to compute the ratings for the set of tuples K′ to
solve the rating prediction problem resulting in the dense
dataset, which can be used for recommending items to the
end-user.

A. KCAMF RATING PREDICTION
The KCAMF rating prediction function is given by Eq. (5),
which includes the user-context bias, item-context bias, user-
item latent feature interaction, user-context latent feature
interaction, item-context latent feature interaction, as well as
the user and item implicit feedback terms.

The implicit feedback is incorporated to model the rat-
ing preferences for users and items since we can determine
implicitly which user has rated which item irrespective of the
rating values. The advantage of including implicit feedback is
that it normalizes the estimated rating by encouraging more
deviations from the baseline ratings for those heavy users
(i.e. users who have rated several items). On the contrary, for
users who have rated fewer items, it is desirable that the pre-
dicted rating stays closer to the baseline. This phenomenon
is modeled for both users as well as items (heavy-rated items
v/s items that received fewer ratings).

To include the user implicit feedback, a binary matrix
B ∈ R|U |×|I | is constructed where each element determines
whether the uth user has rated the ith item, regardless of
the rating value. The matrix Y ∈ R|I |×F represents the
implicit item affinities y for each user. The user latent feature
matrix P is thus updated to P+ BY, and each row of B is
unit-normalized by |N (I)

u |
−

1
2 , where N (I)

u is the set of items
rated by the uth user. Similarly, to include the item implicit
feedback, a binary matrix A ∈ R|I |×|U | is constructed where
each element determines whether the item i rated by the
user u, irrespective of the rating value. The matrix G ∈

R|U |×F represents the implicit user affinities q for each item.
The item latent feature matrix Q is thus updated to Q+ AG,
and each row of A is unit-normalized by |N (U)

i |
−

1
2 , where

N (U)
i is the set of users who have rated the ith item.
The KCAMF rating prediction function is thus given by

Eq. (5), where the updated user and item latent feature vectors

are given by (6) and Eq. (7), respectively.

r̂uic = µ+
L∑
n=1

αuCn +
L∑
n=1

βiCn + p
′T
u q′i

+

L∑
n=1

p
′T
u hCn +

L∑
n=1

q
′T
i hCn (5)

p′u = pu + |N (I)
u |
−

1
2
∑
j∈N (I)

u

yj (6)

q′i = qi + |N
(U)
i |
−

1
2
∑

v∈N (U)
i

gv (7)

B. KERNEL LOSS FUNCTION
The loss function is typically computed as the least squares
error estimate given by Eq. (8), where the residual error e is
the difference between the predicted and the true observed
rating in the training dataset.

JLS (euic) = e2uic = (r̂uic − ruic)2 (8)

However, the derivative of the least-squares loss function
is unbounded since it is given by J ′LS (e) = 2e, which grows
linearly with the residual error. Also, its second derivative
J ′′LS (e) = 2 is a constant scalar, i.e. the average rate of change
of the gradient of the least-squares loss function does not vary,
as illustrated in Fig. 3.

Also, the least-squares error estimate assumes that the
ratings can be projected along a low-dimensional linear man-
ifold across users, items, and context dimensions with the
matrix factorization approach. However, this assumption is
violated for non-linear interaction between ratings and the
(user, item, context) tuples as illustrated in Fig. 4.
Thus, we transform the ratings into a non-linear kernel

space as T → 9(T) for the actual rating tensor and T̂ →
9(T̂) for the predicted rating tensor, where 9(·) is any non-
linear function. The residual error in the non-linear space can
be calculated as

d(T̂ , T)

= ‖9(T̂)−9(T)‖2

= 〈9(T̂), 9(T̂)〉+〈9(T), 9(T)〉−2〈9(T̂), 9(T)〉

= ~(T̂ , T̂)+ ~(T , T)− 2~(T̂ , T)

= 2
[
1− ~(T̂ , T)

]
(9)

We use the Gaussian kernel given by ~(r̂, r) =

exp
(
−γ (r̂ − r)2

)
, thus the proposed kernel loss function is

given by Eq. (10) for a specific (u, i, c) tuple.

JK (euic) = 2
[
1− exp

(
−γ (r̂uic − ruic)2

)]
(10)

The proposed kernel loss function has the following
properties:
(a) The kernel loss function has a unique optimal solution.

Proof: The first derivative of the kernel loss function
is given by J ′K (e) = 4γ e exp(−γ e2) and its second

VOLUME 10, 2022 75585

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

FIGURE 2. Block diagram of KCAMF for rating prediction and obtaining the dense rating tensor.

derivative, using the chain rule, is given by J ′′K (e) =
4γ
[
1− 2γ e2

]
exp(−γ e2), as shown in Fig. 5. For any

arbitrary residual error e, we have exp(−γ e2) > 0.
For the second derivative to be positive, we need[
1− 2γ e2

]
> 0, which can be satisfied for any

γ < 1
2e2

. If the rating scale of the dataset is r ∈ [0, 5],
then the range of residual error will be e ∈ [−5, 5],
and thus the maximum squared error will be 25, which
leads to γ < 1

50 . Let G = dom(JK) refer to the domain
of the kernel loss function. Then, it can be shown that
JK (e) is a strictly convex function for a convex G and
J ′′K (e) > 0 ∀e ∈ G. Since the kernel loss function is
twice differentiable for all f , h ∈ G, consider f 6= h
with f < h. According to Taylor’s theorem, for any
ζ ∈ [f , h], we have

JK (h) = JK (f)+ J ′K (f)(h− f)+
J ′′K (ζ)
2!

(h− f)2

Since J ′′K (ζ) > 0 for any γ < 1
50 , this reduces to

JK (h) > JK (f)+ J ′K (f)(h− f)

Consider 0 < ν < 1 and z = νf + (1 − ν)h. Then,
we have

JK (f) > JK (z)+ J ′K (z)(f − z) (11)

JK (h) > JK (z)+ J ′K (z)(h− z) (12)

Multiplying Eq. (11) with ν and Eq. (12) with 1−ν and
adding them, we obtain

νJK (f)+ (1− ν)JK (h) > JK (z) = JK (νf + (1− ν)h)

This proves that the kernel loss function is strictly
convex, and thus it has a unique optimal solution.

1) The kernel loss function is robust to attacks by mali-
cious users.
Proof: The least-squares loss function is highly sen-
sitive to outliers. For any malicious user, the residual
error e will be a large value and thus the impact of such
error on JLS (e) = e2 will be significantly larger, which
impacts the learning of model parameters (biases and

latent feature vectors), and thus the model solution can
be sub-optimal. However, for the kernel loss function
JK (e) = 2[1−exp(−γ e2)], the impact of large residual
errors is small. This is because the kernel loss function
is bounded as shown in Fig. 5, since the absolute value
of its first derivative is |J ′K (e)| = 4γ |e| exp(−γ e2),
where e ∈ [−c, c] in general with c as the maxi-
mum rating scale range, and thus |J ′K (e)| ≤ 4γ |e|.
The robustness of the kernel loss function against
malicious user attacks is demonstrated experimentally
in Sec. V-D3.

2) The kernel loss function results in a loss smaller than
the least-squares loss function.
Proof: Consider the difference between the kernel loss
estimate and the least-squares error estimate as

f (e) = JK (e)− JLS (e) = 2[1− exp(−γ e2)]− e2

Its first derivative is given by

f ′(e) = −2(−2γ e) exp(−γ e2)− 2e

= 2 e
[
2γ exp(−γ e2)− 1

]
For any γ < 1

50 ,
[
2γ exp(−γ e2)− 1

]
< 0, where

e ∈ [−5, 5] and the difference function is continuous
in [−5, 5]. When e ∈ [−5, 0), f ′(e) > 0 which implies
that the difference function is monotonically increas-
ing. When e ∈ (0, 5], f ′(e) < 0 impliying that the
difference function is monotonically decreasing. Thus,
the difference function attains the maximum value at
e = 0. Thus, f (e) < 0 and hence JK (e) < JLS (e) as
illustrated in Fig. 6.

C. OPTIMIZATION WITH WEIGHTED REGULARIZATION
The loss function is typically optimized using Stochastic
Gradient Descent (SGD) or its variants, namely RMSProp,
ADAM, etc. In this work, the kernel loss function is mini-
mized using SGD due to its simplicity. To avoid over-fitting,
regularization terms are added to the kernel loss function.
In most existing relevant work, a common regularization
hyper-parameter λ is used for user, item latent feature vectors,

75586 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

FIGURE 3. Least-squares loss function.

FIGURE 4. Ratings of users for items for a specific context; the linear
hyperplane cannot capture all available ratings whereas the kernel
function is appropriate to model the non-linearity.

FIGURE 5. Kernel loss function.

and the bias interaction terms. However, this strategy is too
naive since we should handle the heavy users and popular
items and the less active users and long-tail items separately.
For popular items, since many ratings are available, the corre-
sponding item latent features could give more clues, whereas,
for long-tail items, little information is available, and thus the
corresponding item latent features could be noisy. Likewise,
if a user interacted more with the system, i.e. provided more
ratings, then the corresponding user latent features can better

FIGURE 6. Difference between JK and JLS .

represent this user’s preferences and for less active users,
the corresponding user latent features could be noisy due to
limited information.

To solve this problem, we apply weights for each regu-
larization term to avoid over-fitting for new users and new
items. For heavy users (i.e. users who rated more items)
and popular items (i.e. items for which several ratings are
available), the over-fitting would be typically less and thus
the penalty for such users should be subsequently less. On the
contrary, for users who are not active as well as for items
in the long-tail, the penalty should be more since there is a
high chance of over-fitting. Thus, the penalty can be adjusted
based on the number of items rated by each user as well as the
number of users who rated each item. As a result, the weight
for each regularization term is inversely proportional to the
corresponding cardinality of either N (I)

u or N (U)
i .

The optimization function of KCAMF is minθ S(θ) where
S(θ) is given by Eq. (14), as shown at the bottom of the next

page, N (I)
u is the set of items rated by user u, N (U)

i is the set of

users who rated item i, and N (U)
j is the set of users who rated

item j. The KCAMF learnable model parameters are given by
Eq. (13). For each parameter, the SGD update can be obtained
using the general form θt ← θt−1 − δ

∂S
∂θt−1

, where t refers to
the iteration index, and δ is the learning rate.

θ =
[
p1, . . . ,p|U |,q1, . . . ,q|I |, y1, . . . , y|I |,

g1, . . . , g|I |,hC1 , . . . ,hCL ,

α1C1 , . . . , α|U |CL , β1C1 , . . . , β|I |CL
]

(13)

The update equations for the model parameters via SGD are
given by Eq. (15) to Eq. (21), as shown at the bottom of the
next page.

D. ALGORITHMS
Algorithm 1 outlines the steps for training the KCAMFmodel
parameters θ using SGD. The input for training is the training
setDtr and the hyper-parameters. In line 1, the model param-
eters are initialized randomly using a standard normal distri-
bution N (0, 1). From lines 2 to 11, the process is iteratively
repeated till convergence, i.e. until the kernel loss becomes

VOLUME 10, 2022 75587

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

less than a threshold |St − St−1| < 10−4. For each tuple of
user, item, and context in the training set, the user and item
latent features are determined in line 4 using implicit feed-
back terms following which the rating r̂uic is predicted using
the KCAMF rating prediction function. In line 6, the error
between the true rating available from the training dataset and
the predicted rating is computed. The model parameters are
then updated using the error ewith stochastic gradient descent
updates in lines 7 to 9.

Algorithm 2 outlines the steps for testing the KCAMF
model as well as computing the ratings of the tuples of the
dataset for whom ratings are not available. In line 1, K \Dtr
results in the set of tuples of the test set Dte as well as K′,
i.e. the set of tuples for which the ratings are unavailable.
In lines 2 to 4, the ratings r̂uic are predicted for each tuple
in the test set and the performance is measured using RMSE
and MAE in line 5. Further, the ratings are predicted for each
tuple in K′ resulting in the dense rating tensor.

E. COMPUTATIONAL COMPLEXITY
We compare the model complexity and time complexity of
the proposed method with the baseline CAMF method. The
model complexity depends on the number of parameters to
be learned during training. For CAMF, the learnable param-
eters are P ∈ R|U |×F , Q ∈ R|I |×F , α ∈ R|U |×L , and
β ∈ R|I |×L . Thus, the total model complexity of CAMF
is
(
(|U | + |I |) × (F + L)

)
where, F and L are number of

features and number of context variables, respectively and

Algorithm 1: KCAMF Training
Input : Training dataset Dtr , λ, δ, γ , F
Output: Trained parameters: θ

1 Initialize parameters θ randomly
2 Repeat
3 for (u, i, c) ∈ Dtr do
4 Compute: updated user and item latent feature

vectors with implicit feedback p′u and q
′
i

respectively using Eq. (6) and Eq. (7)
5 Compute: predict rating r̂uic using Eq. (5)
6 Compute: error e = r̂uic − ruic
7 Update parameters: puf , qif , hCnf , αuCn , βiCn

using Eq. (15) to Eq. (19) , ∀ n = 1 . . . L
8 ∀ j ∈ N (I)

u , update yjf using Eq. (20)
9 ∀ v ∈ N (U)

i , update gvf using Eq. (21)
10 end for
11 Until convergence

|U | and |I | are the number of users and number of items in
the training dataset, respectively. For the proposed method of
KCAMF, there are seven learnable parameters P ∈ R|U |×F ,
Q ∈ R|I |×F , α ∈ R|U |×L , β ∈ R|I |×L , H ∈ RL×F , Y ∈
R|I |×F andG ∈ R|U |×F . Thus, the total model complexity of
KCAMF is

(
(|U | + |I |)× (2F + L)+ LF

)
, which is slightly

higher compared to CAMF (note that, typically L � F).

S(θ) =
∑

u,i,c∈Dtr

2
[
1− exp(−γ (r̂uic − ruic)2)

]
+
λ

2
|N (I)

u |
−

1
2 ‖pu‖2 +

λ

2
|N (U)

i |
−

1
2 ‖qi‖2 +

λ

2

∑
j∈N (I)

u

|N (U)
j |
−

1
2 ‖yj‖2

+
λ

2

∑
v∈N (U)

i

|N (I)
v |
−

1
2 ‖gv‖2 +

λ

2
|N (I)

u |
−

1
2

L∑
n=1

α2uCn +
λ

2
|N (U)

i |
−

1
2

L∑
n=1

β2iCn +
λ

2

L∑
n=1

‖hCn‖
2 (14)

puf ← puf − η

[
4γ e exp(−γ e2)

(
q′if +

L∑
n=1

hCnf

)
+ λ|N (I)

u |
−

1
2 puf

]
(15)

qif ← qif − η

[
4γ e exp(−γ e2)

(
p′uf +

L∑
n=1

hCnf

)
+ λ|N (U)

i |
−

1
2 qif

]
(16)

hCnf ← hCnf − η
[
4γ e exp(−γ e2)

(
p′uf + q

′
if

)
+ λhCnf

]
(17)

αuCn ← αuCn − η
[
4γ e exp(−γ e2)+ λ|N (I)

u |
−

1
2αuCn

]
(18)

βiCn ← βiCn − η
[
4γ e exp(−γ e2)+ λ|N (U)

i |
−

1
2 βiCn

]
(19)

yjf ← yjf − η

[
4γ e exp(−γ e2)|N (I)

u |
−

1
2

(
q′if +

L∑
n=1

hCnf

)
+ λ|N (I)

u |
−

1
2 yjf

]
(20)

gvf ← gvf − η

[
4γ e exp(−γ e2)|N (U)

i |
−

1
2

(
p′uf +

L∑
n=1

hCnf

)
+ λ|N (U)

i |
−

1
2 gvf

]
(21)

75588 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

Algorithm 2: Rating Prediction

Input : K′ with unknown ratings, test set Dte, trained
model parameters θ

Output: Dense rating tensor, RMSE, MAE
1 Obtain: set of tuples K \Dtr to predict ratings; this
includes K′ and Dte

2 for (u, i, c) ∈ Dte do
3 Predict rating r̂uic using Eq. (5)
4 end for
5 Evaluate RMSE and MAE on test dataset Dte
6 Predict ratings for tuples in K′ using Eq. (5)

The time complexity of CAMF for computing the loss S
over one epoch is O

(
|Dtr | × (F + L)

)
where, |Dtr | is the

number of tuples in the training dataset. For the proposed
method of KCAMF, during each epoch, the time complexity
for computing the gradients ∂S

∂puf
, ∂S
∂qif

, ∂S
∂hCnf

, ∂S
∂αuCn

, ∂S
∂βiCn

,
∂S
∂yjf

, and ∂S
∂gvf

is O
(
|Dtr | × (F + L)

)
, O

(
|Dtr | × (F +

L)
)
, O

(
|Dtr | × (F + L)

)
, O

(
|Dtr | × L

)
, O

(
|Dtr | × L

)
,

O
(
|Dtr | × (F + L) × j

)
, and O

(
|Dtr | × (F + L) × v

)
,

respectively, where j is the average number of items rated
by users and v is the average number of users who rated
items.

The overall time complexity of KCAMF for each epoch
is thus O

(
|Dtr | × (F + L) × max(j, v)

)
. Since typically,

L � F , the time complexity of KCAMF for T epochs is
O
(
T × |Dtr | ×F ×max(j, v)

)
, which is linear relative to the

size of the training dataset. Compared to the time complexity
of CAMF for T epochs of O

(
T × |Dtr | × F

)
, the overall

time complexity of KCAMF is only marginally higher since
j� |Dtr | and v� |Dtr |.

V. EXPERIMENTAL RESULTS
We use five benchmark context-aware datasets to evaluate the
performance of the proposed KCAMF model and provide a
comparison with existing state-of-the-art methods for solving
the rating prediction problem.

A. DATASETS
The context-aware datasets used in this work are InCar-
Music [35] and TripAdvisor [36], DePaulMovie [37], LDos
Comoda [38] and Frappe [39] having varying number of con-
text factors and conditions. All these datasets belong to varied
domains such as music, travel, movie rating, and mobile app
usage, and can be categorized as small, medium and large
datasets. The InCarMusic dataset developed for music rec-
ommendations contains ratings of vehicle drivers for songs
of 10 genres based on various contexts of driving and traffic
scenarios. Even though the InCarMusic dataset has a low
number of 4012 ratings, 42 users, and 139 items (songs),
it has more context factors including driving style, sleepiness,

TABLE 2. Context-aware datasets used in this work.

road type, landscape, mood, traffic conditions, natural phe-
nomena, and weather; the total number of context conditions
for this dataset is 34. The TripAdvisor dataset consists of
14,175 ratings given by 2,371 users for 2,269 hotels based on
one context factor, i.e. trip type with five context conditions
including business, solo, family, couples, and friends. The
DePaulMovie dataset contains 5,043 ratings of 79 movies
given by 97 students based on three context factors of time,
location, and companion with a total of 10 context conditions.

The LDos Comoda dataset is context-rich with 2,294 rat-
ings given by 121 users on 1232 items under 12 different
contextual factors, namely time, daytime, season, location,
weather, social, endEmo, dominantEmo, mood, physical,
decision, and interaction resulting in 61 contextual condi-
tions. The Frappe dataset monitors the usage of mobile appli-
cations over a duration of two months by 957 users for 4,082
different apps. As per [40], we apply the log transformation
on the frequency of usage to convert it to the rating scale of
0 to 4.46, and use 22 contextual conditions obtained from
three contexts of daytime, weekday and weather.

A summary of these five datasets is given in Table 2.

B. METHODS FOR COMPARISON
The proposed work is compared with the following conven-
tional and modern methods:
(a) Traditional: The Biased matrix factorization

method [22]models only the global mean, user bias and
item bias for predicting the ratings as r̂uic = µ+αu+βi
and ignores the contexts. The SVD++ method [41]
models user latent features pu, item latent features qi
and adds user implicit feedback for updating the user
latent feature vector to p′u by incorporating the implicit
preferences of users. However, it ignores the item
implicit feedback which we have incorporated in
KCAMF.

(b) PMF: The Probabilistic Matrix Factorization (PMF)
method [42] models rating as a conditional distribution
using Gaussian random variables with priors on the
user and item latent feature vectors. PMF maximizes
the log-posterior which is equivalent to the minimiza-
tion of the least square error loss function by including
the regularization terms. However, PMF is computa-
tionally expensive and also ignores the contexts.

(c) NMF: The Non-negative Matrix Factorization (NMF)
method [43] imposes the constraint that the user and

VOLUME 10, 2022 75589

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

item latent features should not be negative, which is
achieved by re-scaling the learning rate to discard the
negative components while updating each learnable
parameter. Like PMF, the NMF method has a high
computational cost and also ignores the contexts.

(d) CPTF: The Candecomp/Parafac (CP) tensor factoriza-
tionmethod [44], which is the tensor equivalent form of
SVD, factorizes the entire tensor to a sum of rank-one
tensors using outer products. CPTFmodels the contexts
but it is computationally quite expensive compared to
matrix factorization.

(e) KMR/KCR: The Kernel Mapping Recommender
(KMR) method [45] determines a non-linear mapping
between the vector spaces representing the rated items
and a probability density for user’s preferences. The
KMR method was extended in [17] to utilize the con-
text information resulting in Kernel Context Recom-
mender (KCR) system, which makes use of various
context kernels depending on the dataset and combine
them with the rating prediction kernel.

(f) CUBCF/CIBCF: In [18], the similarity between con-
texts with respect to users was computed to obtain
the CUBCF (context-similarity user-based collabora-
tive filtering) system where the similarity was mea-
sured using the Chi-square similarity kernel. A similar
strategy was adopted to obtain the similarity between
contexts with respect to items to obtain the item-based
CIBCF system.

(g) IHSR: An extension of matrix factorization using
hierarchical user and item structures was proposed
in [20]. The latent context representation is learned
in an unstructured manner using auto-encoder and in
a structured manner using agglomerative hierarchical
clustering. The Hybrid IHSR model integrates both
latent context representations to obtain the predicted
ratings.

(h) NDs-DCW: An empirical comparison of various con-
text similarity approaches was done in [19] and it
was found that the non-dominated simplified differen-
tial context weighting method performed better than
the other methods and hence we use this method for
comparison.

(i) CAMF and ICAMF: These are the context-aware base-
line methods based onmatrix factorization as discussed
in detail in Sec. III.

C. EVALUATION PROTOCOL
The sparse rating tensorK is split into the set of known ratings
D and the set of unknown ratings K′. The set D is split in
the ratio of 80% : 20% to obtain the training set Dtr and the
test set Dte. For each existing and the proposed method, the
training dataset is split into train and validation sets. The best
hyper-parameter λ is obtained through a grid-search using the
values [0.001, 0.01, 0.1, 1, 10, 100, 1000]. The models are
trained using each possible value of λ and the RMSE scores
are computed on the validation set. The best λ is chosen as the

one resulting in the least RMSE score and this value is used to
again train the model with the entire training dataset Dtr and
the model performance is reported for the test dataset Dte.
The learning rate δ is initialised to 0.01 and as the train-

ing progresses, the learning rate is adaptively updated using
Eq. (22), where δt ,St and δt−1,St−1 refers to the learning rate
and loss in t th iteration and (t − 1)th iteration, respectively.
If the previous loss is more than the current loss (i.e. the
error has reduced), then the learning rate is increased by 5%,
otherwise the learning rate is drastically reduced by 50%.

δt =

{
δt−1 ∗ 1.05 if |St−1| > |St |
δt−1 ∗ 0.5 otherwise

(22)

The prediction performance of each model is quantified
using the metrics of Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) on the test dataset, given by
Eq. (23). Both metrics measure the difference between the
actual ratings ruic and the predicted ratings r̂uic for all user,
item, context tuples in Dte.

RMSE =

√√√√ 1
|Dte|

∑
u,i,c∈Dte

(ruic − r̂uic)2

MAE =
1
|Dte|

∑
u,i,c∈Dte

|(ruic − r̂uic)| (23)

To evaluate the robustness of algorithms against malicious
attacks, the prediction shift given by Eq. (24) is computed for
all user, item, context tuples in the test dataset, where r̂ ′uic is
the post-attack predicted rating and r̂uic is the pre-attack pre-
dicted rating. Lower prediction shift implies that the method
is resistant to various malicious/shilling attacks on the recom-
mender system [46].

PS =
1
|Dte|

∑
u,i,c∈Dte

|r̂ ′uic − r̂uic| (24)

D. RESULTS AND DISCUSSION
1) COMPARATIVE ANALYSIS
The proposed KCAMF method for solving the rating predic-
tion problem is evaluated on five benchmark datasets men-
tioned in Sec. V-A and compared with several comparative
methods detailed in Sec. V-B using the evaluation protocol
mentioned in Sec. V-C.
Table 3 shows the comparative results of KCAMF with

existing methods using RMSE and MAE metrics with the
latent feature dimensionality F = 80. It can be observed
that SVD++ has an advantage of improving the scores over
Biased MF, PMF, NMF, and CPTF due to the inclusion of
user implicit feedback. The results reported in the existing
work of KMR, KCR, CUBCF, CIBCF, IHSR and NDs-DCW
for specific datasets are mentioned. KMR and KCR gives a
better performance than the standard baseline methods for
the movie datasets. The CUBCF and CIBCF methods result
in a slightly higher RMSE since it is based only on context
similarity and does not capture the latent user, item and

75590 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

TABLE 3. Performance evaluation of proposed method and comparison with existing methods.

context interactions. The IHSR method performs better than
the PMF and NMF methods due to its learning of latent
context features but results in higher RMSE compared to
other recent methods. The method of NDs-DCW obtains a
lower MAE relative to all other existing methods for three
datasets, but it does not capture the latent interactions of users,
items and contexts. The scores are improved with CAMF and
ICAMF since these methods model the context interactions
for predicting the rating. KCAMF method outperforms all
existing works and has a significant improvement in both
RMSE and MAE metrics over CAMF, ICAMF, and other
existing methods. Since the TripAdvisor dataset has only
one context (trip type), the improvement due to KCAMF
is significantly higher than for other datasets having more
context factors.

Fig. 7 compares the RMSE and MAE performance of
the existing methods and KCAMF for varying latent feature
dimensionality F from 10 to 80. It can be observed that
for almost all methods, the scores converge after F = 60.
CAMF and ICAMF have better performance compared to
Biased MF, SVD++, PMF, and NMF even at lower F due to
explicitly incorporating the contexts. KCAMF outperforms
all existing methods for all values of F and the performance
improves with increasing F . The advantage of KCAMF is
observed for the InCarMusic dataset which has more context
factors than other datasets, since KCAMF models user, item,
and context interactions effectively using both user and item
implicit feedbacks with the kernel loss function.

2) ABLATION STUDY
We further conduct an ablation study with F = 80 to deter-
mine the impact of each component of KCAMF as shown in

Fig. 2. The components of KCAMF analyzed are the kernel
loss function (KLF), user/item implicit feedbacks (IFU / IFI),
both user and item implicit feedbacks (IFUI), and weighted
regularization (WR). Table 4 shows the results of the ablation
study of KCAMF for F = 80 and the comparison with
both CAMF and ICAMF over all five context-aware datasets
viz. InCarMusic, TripAdvisor, DePaulMovie, LDos Comoda,
and Frappe dataset. With only the kernel loss function (3rd

row), KCAMF improves the rating prediction performance
on all five datasets. By using only weighted regularization
(4th row) without implicit feedback and using the traditional
least square loss function, the performance is better than
both CAMF and ICAMF, since the regularization terms for
the latter methods use the same hyper-parameter λ, whereas
KCAMF applies different weights on each regularization
term. Further, using the kernel loss function and weighted
regularization (5th row) without the implicit feedback, the
performance still improves primarily due to the properties of
the kernel loss function as discussed in IV-B. By modeling
the user and item implicit feedbacks, we observe that there
is a marginal improvement when learning the item implicit
feedback over the user implicit feedback. Finally, using all the
components of KCAMF, the rating prediction performance
improves significantly over both CAMF and ICAMF meth-
ods. This indicates that combining the kernel loss function
with user and item implicit feedbacks and weighted regular-
ization improves the overall performance relative to existing
work.

3) ROBUSTNESS TO ATTACKS
To determine the robustness of the proposed KCAMF
method, shilling attacks are inserted in the dataset and the

VOLUME 10, 2022 75591

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

FIGURE 7. Performance of existing methods and KCAMF as a function of latent feature dimensionality. The KCAMF results are statistically
significant as measured with the paired t-test at the significance level of 5%.

TABLE 4. Results of ablation study for F = 80. Here, KLF: kernel loss function, IF: implicit feedback, IFU: user implicit feedback, IFI: item implicit
feedback, WR: weighted regularization.

performance is evaluated using the prediction shift. Various
shilling attacks are suggested in the literature for targeting
specific items by attackers [46]. Here, we implement two
shilling attacks, namely, Average attack for pushing the rating
of target items to the maximum scale and Love/Hate attack
for nuking the rating of target items to the minimum scale.
These attacks are intended to disrupt the learning behavior
of the recommender systems so that the target item either
gets promoted or demoted for end-users. However, to avoid
easier detection of such attacks, profile injection is done in
the dataset, where the profile consists of fake users (malicious
attackers), the items in the target setAT , and the items in the
filler set AF . The rationale for using the filler set is to trick

the learning model to consider the attackers as genuine users.
While the profile injection for shilling attacks also involve the
set of selected itemsAS , this is ignored in this work since this
set is not required for the Average and Love/Hate attacks. The
shilling attacks are implemented on LDos Comoda dataset,
which is medium-sized but context-rich, and TripAdvisor
dataset, which is large-sized but has only one context dimen-
sion. We consider |AF | = 1%, i.e. the size of filler item
set is 12 for LDos Comoda dataset and 22 for TripAdvi-
sor dataset. For both datasets, we use three sizes of tar-
get items as |AT | = 1, 5, 10, where all attackers attack
the same target item(s). Further, we vary the attack size as
1%, 3%, 5%, 10%, 15%, 20% of the total number of actual

75592 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

FIGURE 8. Prediction shift of learning models against malicious user attacks.

TABLE 5. Paired t-test for RMSE comparison of CAMF with KCAMF.

users in the dataset. The items inAF are chosen randomly for
both type of attacks and their rating value is average rating
of specific items for Average attack and maximum rating for
Love/Hate attack. The items inAT are chosen such that their
rating value is below the global mean for Average attack and
above the global mean for Love/Hate attack. The rating value
of the items inAT is maximum for Average (push) attack and
minimum for Love/Hate (nuke) attack. Fig. 8 illustrates the
prediction shift obtained by CAMF as well as the proposed
KCAMF methods for both type of shilling attacks and for
various attack sizes with varying number of target items.
We observe that KCAMF is relatively resistant to shilling
attacks due to lower prediction shift, i.e. the rating prediction
value does not change drastically even after the attack profiles
are injected in the datasets.

4) STATISTICAL SIGNIFICANCE TESTING
Next, we conducted a statistical significance testing using
paired t-test at the significance level of 5% to verify if the

results obtained by KCAMF are statistically significant over
other methods. The null hypothesis is H0: there is no statisti-
cally significant difference between KCAMF and the existing
method under consideration, and the alternative hypothesis
isH1: there is indeed a statistically significant difference. The
paired t-test is conducted between KCAMF and CAMF as
well as between KCAMF and ICAMF using the RMSE met-
ric. Each experiment is repeated five times and the resulting
mean RMSE values of the two methods are measured asMA1
and MA2 and the t value is calculated using Eq. (25), σ is
given by Eq. (26) where σ 2 denotes the variance of the two
scores, nA1 and nA2 are the number of samples (here, 5).

t =
MA1 −MA2

σMA1−MA2

(25)

σMA1−MA2
=

√
σ 2
A1

nA1
+
σ 2
A2

nA2
(26)

To compute the t value, the degree of freedom for the
paired t-test is determined using Eq. (27). Using the dof , the

VOLUME 10, 2022 75593

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

TABLE 6. Paired t-test for RMSE comparison of ICAMF with KCAMF.

t value is obtained using the standard t-test table from which
the corresponding p-value can be found. If the determined
p-value is less than 0.05, then the null hypothesis can be
rejected indicating that the difference between the two meth-
ods A1 and A2 is not due to chance and there is indeed a statis-
tically significant difference between the two; otherwise, the
null hypothesis has to be accepted.

dof =
(σ 2
A1
/nA1 + σ

2
A2
/nA2)

2

(σ 2
A1
/nA1)2/(nA1 − 1)+ (σ 2

A2
/nA2)2/(nA2 − 1)

(27)

Tables 5 and 6 shows the results of paired t-test between
A1 = CAMF, A2 = KCAMF, and A1 = ICAMF, A2 =
KCAMF, respectively. In both cases, the proposed method of
KCAMF performs better since the p-value obtained is less
than 0.05 for all five datasets, thus H0 can be rejected.

VI. CONCLUSION
In this work, we proposed a novel method for rating predic-
tion of context-aware recommender systems as an improve-
ment over the existing techniques. The item implicit feedback
is also learned besides the conventional user implicit feed-
back resulting in better predictions as shown in the ablation
studies. The kernel loss objective function is proposed and
its properties are exploited to obtain fewer errors during the
optimization compared to the least-squares loss function. The
kernel loss function is shown to be robust against various
shilling attacks. Also, weighted regularization is proposed to
reduce the impact of malicious users who may intentionally
give incorrect ratings and also tackle the cold-start prob-
lem in recommender systems. The experimental evaluation
validated the performance of the proposed method over the
baseline and existing methods, and a detailed ablation study
demonstrated the impact of each enhancement of the pro-
posed method. For further work, we will extend this method
for solving the recommendation problem by applying suitable
ranking techniques and generating a list of recommended
items personalized to each user.

REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, ‘‘Incor-

porating contextual information in recommender systems using a multidi-
mensional approach,’’ ACM Trans. Inf. Syst., vol. 23, no. 1, pp. 103–145,
Jan. 2005.

[2] Z. Y. Khan, Z. Niu, S. Sandiwarno, and R. Prince, ‘‘Deep learning tech-
niques for rating prediction: A survey of the state-of-the-art,’’ Artif. Intell.
Rev., vol. 54, no. 1, pp. 95–135, Jan. 2021.

[3] X. Xin, B. Chen, X. He, D. Wang, Y. Ding, and J. Jose, ‘‘CFM: Convolu-
tional factorizationmachines for context-aware recommendation,’’ inProc.
28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 3926–3932.

[4] Q. Wang, B. Peng, X. Shi, T. Shang, and M. Shang, ‘‘DCCR: Deep col-
laborative conjunctive recommender for rating prediction,’’ IEEE Access,
vol. 7, pp. 60186–60198, 2019.

[5] M. Ahmadian, M. Ahmadi, S. Ahmadian, S. M. J. Jalali, A. Khosravi, and
S. Nahavandi, ‘‘Integration of deep sparse autoencoder and particle swarm
optimization to develop a recommender system,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2021, pp. 2524–2530.

[6] S. Ahmadian, N. Joorabloo, M. Jalili, and M. Ahmadian, ‘‘Alleviating data
sparsity problem in time-aware recommender systems using a reliable rat-
ing profile enrichment approach,’’ Expert Syst. Appl., vol. 187, Jan. 2022,
Art. no. 115849.

[7] M. Unger, A. Bar, B. Shapira, and L. Rokach, ‘‘Towards latent
context-aware recommendation systems,’’ Knowl.-Based Syst., vol. 104,
pp. 165–178, Jul. 2016.

[8] J. Zhao, W. Wang, Z. Zhang, Q. Sun, H. Huo, L. Qu, and S. Zheng,
‘‘TrustTF: A tensor factorization model using user trust and implicit
feedback for context-aware recommender systems,’’ Knowl.-Based Syst.,
vol. 209, Dec. 2020, Art. no. 106434.

[9] S. Shukla, I. Kalsi, A. Jain, and A. Verma, ‘‘A tensor decomposition based
approach for context-aware recommender systems (CARS),’’ in Proc. 13th
Int. Conf. Contemp. Comput. (IC3), Aug. 2021, pp. 438–442.

[10] X. Wu, B. Shi, Y. Dong, C. Huang, and N. V. Chawla, ‘‘Neural tensor
factorization for temporal interaction learning,’’ in Proc. 12th ACM Int.
Conf. Web Search Data Mining, Jan. 2019, pp. 537–545.

[11] J. Fan, ‘‘Multi-mode deep matrix and tensor factorization,’’ in Proc. Int.
Conf. Learn. Represent., 2021, pp. 1–25.

[12] H. Tahmasbi, M. Jalali, and H. Shakeri, ‘‘TSCMF: Temporal and social
collective matrix factorization model for recommender systems,’’ J. Intell.
Inf. Syst., vol. 56, no. 1, pp. 169–187, Feb. 2021.

[13] K. Davagdorj, K. Park, and K. Ryu, ‘‘A collaborative filtering recommen-
dation system for rating prediction,’’ inAdvances in Intelligent Information
Hiding and Multimedia Signal Processing. Singapore: Springer, 2020,
pp. 265–271.

[14] Y. Li and K. Mu, ‘‘Matrix factorization model with dual preferences for
rating prediction,’’ in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf.
(COMPSAC), vol. 1, Jul. 2019, pp. 364–372.

[15] Q. Zhang, J. Lu, D. Wu, and G. Zhang, ‘‘A cross-domain recommender
system with kernel-induced knowledge transfer for overlapping entities,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 7, pp. 1998–2012,
Jul. 2019.

[16] B. Zeng, Q. Shang, X. Han, F. Zeng, and M. Zhang, ‘‘RACMF: Robust
attention convolutional matrix factorization for rating prediction,’’ Pattern
Anal. Appl., vol. 22, no. 4, pp. 1655–1666, Nov. 2019.

[17] M. Iqbal, M. A. Ghazanfar, A. Sattar, M. Maqsood, S. Khan, I. Mehmood,
and S. W. Baik, ‘‘Kernel context recommender system (KCR): A scal-
able context-aware recommender system algorithm,’’ IEEE Access, vol. 7,
pp. 24719–24737, 2019.

[18] H. X. Huynh, N. Q. Phan, N. M. Pham, V.-H. Pham, L. H. Son,
M. Abdel-Basset, and M. Ismail, ‘‘Context-similarity collaborative filter-
ing recommendation,’’ IEEE Access, vol. 8, pp. 33342–33351, 2020.

[19] Y. Zheng, ‘‘Context-aware collaborative filtering using context similarity:
An empirical comparison,’’ Information, vol. 13, no. 1, pp. 1–18, 2022.

75594 VOLUME 10, 2022

V. A. Patil et al.: Kernel-Based Matrix Factorization With Weighted Regularization for CARS

[20] M. Unger and A. Tuzhilin, ‘‘Hierarchical latent context representation for
context-aware recommendations,’’ IEEE Trans. Knowl. Data Eng., vol. 34,
no. 7, pp. 3322–3334, Jul. 2022.

[21] L. Baltrunas, B. Ludwig, and F. Ricci, ‘‘Matrix factorization techniques for
context aware recommendation,’’ in Proc. 5th ACM Conf. Recommender
Syst. (RecSys), 2011, pp. 301–304.

[22] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009.

[23] S. Anyosa, J. Vinagre, and A. Jorge, ‘‘Incremental matrix co-factorization
for recommender systems with implicit feedback,’’ in Proc. Companion
Web Conf., 2018, pp. 1413–1418.

[24] Q. Zhao, F. Harper, G. Adomavicius, and J. Konstan, ‘‘Explicit or implicit
feedback? Engagement or satisfaction? A field experiment on machine-
learning-based recommender systems,’’ in Proc. 33rd Annu. ACM Symp.
Appl. Comput., 2018, pp. 1331–1340.

[25] M. Cheng, F. Yuan, Q. Liu, S. Ge, Z. Li, R. Yu, D. Lian, S. Yuan, and
E. Chen, ‘‘Learning recommender systems with implicit feedback via soft
target enhancement,’’ in Proc. 44th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., Jul. 2021, pp. 575–584.

[26] B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S. Liu, and N. Xiong, ‘‘Deep
matrix factorization with implicit feedback embedding for recommenda-
tion system,’’ IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4591–4601,
Aug. 2019.

[27] S. Chen and Y. Peng, ‘‘Matrix factorization for recommendation
with explicit and implicit feedback,’’ Knowl.-Based Syst., vol. 158,
pp. 109–117, Oct. 2018.

[28] Y. Gu, X. Yang, M. Peng, and G. Lin, ‘‘Robust weighted SVD-type
latent factor models for rating prediction,’’ Expert Syst. Appl., vol. 141,
Mar. 2020, Art. no. 112885.

[29] M. Sharma and G. Karypis, ‘‘Adaptive matrix completion for the users
and the items in tail,’’ in Proc. World Wide Web Conf. (WWW), 2019,
pp. 3223–3229.

[30] K. Li, X. Zhou, F. Lin,W. Zeng, B.Wang, andG.Alterovitz, ‘‘Sparse online
collaborative filtering with dynamic regularization,’’ Inf. Sci., vol. 505,
pp. 535–548, Dec. 2019.

[31] W. Shi, L. Wang, and J. Qin, ‘‘User embedding for rating prediction in
SVD++-based collaborative filtering,’’ Symmetry, vol. 12, no. 1, pp. 1–14,
2020.

[32] H. Zhang, I. Ganchev, N. S. Nikolov, and M. Stevenson, ‘‘UserReg:
A simple but strong model for rating prediction,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 3595–3599.

[33] H.-H. Chen and P. Chen, ‘‘Differentiating regularization weights—A sim-
ple mechanism to alleviate cold start in recommender systems,’’ ACM
Trans. Knowl. Discovery Data, vol. 13, no. 1, pp. 1–22, Feb. 2019.

[34] J. Li, P. Feng, and J. Lv, ‘‘ICAMF: Improved context-aware matrix fac-
torization for collaborative filtering,’’ in Proc. IEEE 25th Int. Conf. Tools
Artif. Intell., Nov. 2013, pp. 63–67.

[35] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin,
K. Lüke, and R. Schwaiger, ‘‘InCarMusic: Context-aware music recom-
mendations in a car,’’ in E-Commerce and Web Technologies. Berlin,
Germany: Springer, 2011, pp. 89–100.

[36] Y. Zheng, B. Mobasher, and R. Burke, ‘‘Context recommendation using
multi-label classification,’’ in Proc. IEEE/WIC/ACM Int. Joint Conf. Web
Intell. (WI) Intell. Agent Technol. (IAT), vol. 2, Aug. 2014, pp. 288–295.

[37] Y. Zheng, B. Mobasher, and R. Burke, ‘‘CARSKit: A Java-based context-
aware recommendation engine,’’ in Proc. IEEE Int. Conf. Data Mining
Workshop (ICDMW), Nov. 2015, pp. 1668–1671.

[38] A. Kosir, A. Odic, M. Kunaver, M. Tkalcic, and J. F. Tasic, ‘‘Database
for contextual personalization,’’ Elektrotehniski Vestnik, vol. 78, no. 5,
pp. 270–274, 2011.

[39] L. Baltrunas, K. Church, A. Karatzoglou, and N. Oliver, ‘‘Frappé: Under-
standing the usage and perception of mobile app recommendations in-the-
wild,’’ 2015, arXiv:1505.03014.

[40] M. Unger, A. Tuzhilin, and A. Livne, ‘‘Context-aware recommendations
based on deep learning frameworks,’’ ACM Trans. Manage. Inf. Syst.,
vol. 11, no. 2, pp. 1–15, Jun. 2020.

[41] Y. Koren, ‘‘Factorization meets the neighborhood: A multifaceted collab-
orative filtering model,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2008, pp. 426–434.

[42] R. Salakhutdinov and A. Mnih, ‘‘Bayesian probabilistic matrix factoriza-
tion using Markov chain Monte Carlo,’’ in Proc. 25th Int. Conf. Mach.
Learn. (ICML), 2008, pp. 880–887.

[43] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, ‘‘An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1273–1284,
May 2014.

[44] Y. Kolda, G. Tamara, X. Bader, and W. Brett, ‘‘Tensor decomposition and
applications,’’ SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[45] M. A. Ghazanfar, A. Prügel-Bennett, and S. Szedmak, ‘‘Kernel-mapping
recommender system algorithms,’’ Inf. Sci., vol. 208, pp. 81–104,
Nov. 2012.

[46] A. P. Sundar, F. Li, X. Zou, T. Gao, and E. D. Russomanno, ‘‘Understanding
shilling attacks and their detection traits: A comprehensive survey,’’ IEEE
Access, vol. 8, pp. 171703–171715, 2020.

VANDANA A. PATIL received the B.E. degree
in computer engineering from Savitribai Phule
Pune University, India, in 2004, and the M.E.
degree in computer engineering from the Univer-
sity of Mumbai, India, in 2012. Currently, she is an
Assistant Professor at the St. Francis Institute of
Technology, University of Mumbai. Her research
interests include machine learning and intelligent
systems, specifically focusing on recommender
systems.

SANTOSH V. CHAPANERI (Senior Member,
IEEE) received the B.E. degree in electronics and
telecommunication engineering from the Univer-
sity of Mumbai, Mumbai, India, in 2001, and
the M.S. degree in electrical and computer engi-
neering from The University of Arizona, USA,
in 2008. He has worked as a Software Developer
at Patni Computer Systems Ltd., Mumbai, and at
Microsoft Corporation, Seattle, USA. Currently,
he is an Assistant Professor at the St. Francis Insti-

tute of Technology, University of Mumbai. His research interests include
machine learning and signal processing. He is a Reviewer of IEEE ACCESS,
IET Communications, IET Computer Vision, IET Electronics Letters, IET
Signal Processing, and IET Transactions on Image Processing.

DEEPAK J. JAYASWAL received the B.E. degree
in electronics engineering from Shivaji Univer-
sity, Kolhapur, India, in 1991, the M.Tech. degree
in communication engineering from IIT Bombay,
in 2002, and the Ph.D. degree in computer engi-
neering from the National Institute of Technology,
Surat, India, in 2010. He is currently a Profes-
sor and the Dean of the Post-Graduate Program,
St. Francis Institute of Technology, University
of Mumbai, India. His research interests include

image and video processing and machine learning. He is a Reviewer of
IETE Journal of Education, Evolutionary Intelligence (Springer), and IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS.

VOLUME 10, 2022 75595

