IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 2 July 2022, accepted 11 July 2022, date of publication 19 July 2022, date of current version 26 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192436

== RESEARCH ARTICLE

Synthesis of a Controller Algorithm for
Safety-Critical Systems

FELLIPE GUILHERME REY DE SOUZA ', CELSO MASSAKI HIRATA,
AND SIMIN NADJM-TEHRANI -2

! Department of Computer Science, Instituto Tecnolégico de Aerondutica, Sio José dos Campos 12228-900, Brazil
2Department of Computer and Information Science, Linkoping University, S-581 83 Linkoping, Sweden

Corresponding author: Fellipe Guilherme Rey de Souza (fellipeguilhermerey @ gmail.com)
The work of Celso Massaki Hirata was supported in part by the Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico under
Grant 309620/2021-0, and in part by the Fundacdo de Amparo a Pesquisa do Estado de Sdo Paulo under Grant 2022/01051-7. The work of

Simin Nadjm-Tehrani was supported by the Swedish Governmental Agency for Innovation Systems-Vinnova, as part of the National
Projects on Aeronautics (NFFP7), Project CLASSICS, under Grant NFFP7 2017-04890.

ABSTRACT Systems of today are becoming more complex; they have many levels of the control hierarchy,
are software-intensive, use different networks, have increasing processing power, use a diversity of devices,
and require more integration. Systems-Theoretic Process Analysis (STPA) is a technique that is being used
to analyze the safety of those systems at the concept stage. For the design phase, STPA can be combined with
SysML modeling activities, including simulation and formal verification of systems models to produce the
control software more efficiently. However, for the design phase, when starting from the STPA analysis there
is no support to elaborate the control algorithm. Building the control algorithm is one of the most difficult
tasks in the design phase. We propose a method to synthesize the control algorithm for safety-critical systems
from the STPA analyses and the functional requirements. Our method maps the control structure (STPA) into
ablock diagram (SysML), and it uses the STPA results to generate an initial state machine diagram (SysML)
for automated controllers, actuators, and sensors. We use our method to generate the control algorithms for
an Adaptive Cruise Control system. We evaluate the synthesized algorithms by performing model simulation
and formal verification. This illustrates that our method is a systematic way to synthesize control algorithms
that satisfy both safety and functional requirements.

INDEX TERMS Safety, systems modeling language, model checking, control system synthesis, system
analysis, and design.

I. INTRODUCTION
Systems that we are building today are becoming more

Systems-Theoretic Accident Model and Processes
(STAMP) [1] is an accident causality model based on system

complex. They have many levels of control hierarchy,
including human operators, decision makers, automated con-
trollers, and autonomous controllers. They use different net-
works, have increasing processing power, use a diversity of
devices, and require more integration. They are also software-
intensive, which makes the development more expensive and
longer. Software plays an essential role in systems control
performing safety-critical tasks, where an error can lead to
a loss.

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian

VOLUME 10, 2022

theory and system thinking. Unlike the traditional safety
analysis techniques based on the reliability theory, System-
Theoretic Process Analysis (STPA) is a top-down hazard
analysis technique based on STAMP. STPA identifies all
causal scenarios found by the traditional techniques and
more causal scenarios (often software-related) [2]. Moreover,
STPA identifies more hazard scenarios involving software
and component interaction than Failure Mode and Effect
Analysis (FMEA) [3].

Souza et al. [4] propose a method that combines STPA with
SysML modeling activities. The method allows for simula-
tion and formal verification of systems models. Their method

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76351

https://orcid.org/0000-0002-7717-6595
https://orcid.org/0000-0002-9746-7605
https://orcid.org/0000-0002-1485-0802
https://orcid.org/0000-0002-8169-5347

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

employs SysML use case and sequence diagrams to perform
analysis and SysML block diagrams to specify the system
behavior. Inside each block, there is a state machine diagram
that establishes the behavior (algorithm) of the block. How-
ever, the method does not provide any systematic support to
elaborate the state machine diagram or design the software
logic of the controller. Building the software is one of the
most difficult tasks in the design phase since it must consider
all the inputs to produce a controller that meets all the require-
ments, including the functional and safety requirements.

Recently, there have been significant advances in assess-
ing the information identified in the STPA analysis through
the combination of STPA with NuSMV [5], UPPAAL [6],
or Event-B [7]. Although these approaches provide ways to
support the safety assessment of the systems, they rely on the
expertise of the designer in UPPAAL, Event-B, or NuSMV.
The main challenge is how to assess the results identified in
the STPA analysis in a way that the designer does not need to
have major experience in modeling diagrams and how to use
model checkers.

We propose a method that combines the STPA analysis
and the functional requirements to systematically synthe-
size the control algorithm for non-human controllers. The
method synthesizes a block diagram based on the STPA’s
control structure and an initial state machine diagram for
automated controllers, actuators, and sensors. The advantages
of using the proposed method are threefold. First, it allows
checking the behavior of controllers through simulation and
formal verification. Second, the method permits checking the
correctness and completeness of the design and the STPA
analysis (considering that STPA is the basis of the generation
of the control algorithm). Last, it allows detecting existing
conflicts in the safety requirements and between the STPA
requirements and the functional requirements.

We generate the block and state machine diagram
using Systems Modeling Language (SysML) [8]. Besides
SysML, other feasible options are Unified Model Language
(UML) [9], Arcadia/Capella [10], Modeling and Analy-
sis of Real-Time and Embedded System (MARTE) profile
for UML [11], Architecture Analysis & Design Language
(AADL) [12], and Simulink [13]. We choose SysML because
it is a widely used language for the development in the Sys-
tems Engineering field. Moreover, the SysML profile Auto-
mated Verification of Real-Time Software (AVATAR) [14]
allows designers to elaborate, simulate and formally verify
their diagrams having minor modeling skills with SysML
or with temporal languages such as Computation Tree
Logic (CTL) or UPPAAL [15].

We organize the remainder of this paper as follows.
Section II provides the background required to understand
the proposed method. Section III presents the related works
and the novelty of our method. Section IV introduces the
Adaptive Cruise Control system (ACC), used as a running
example to illustrate the method. Section V introduces the
method and its activities. Section VI introduces a tool that
supports our method. Section VII provides the results of

76352

performing simulation and formal verification in the ACC.
Section VIII presents the concluding remarks, discussion,
recommendations, and suggestions for future work.

Il. BACKGROUND WORK

This section briefly introduces the four steps of STPA and
the activities of Souza et al. [4] method to combine STPA
analysis and SysML modeling. These works are fundamental
for the understanding of our method.

A. SYSTEM-THEORETIC PROCESS ANALYSIS
Systems-Theoretic Process Analysis (STPA) is a hazard anal-
ysis technique based on Systems-Theoretic Accident Model
and Processes (STAMP) [1]. STAMP has its theoretical foun-
dation on systems theory, and it considers safety as an emer-
gent property that arises from component interaction.

STPA has four steps [2]. The first step is “Define the
purpose of the analysis”. The safety experts define the sys-
tem engineering foundation of the analysis, identifying the
losses, hazards, system-level safety constraints, and the rela-
tions between them. The second step is “Model the control
structure”’. The hierarchical control structure is a concept
from systems theory, where components of each level impose
constraints on components of the level beneath. The safety
experts must define the controllers, actuators, sensors, and
controlled processes that compose the system. Moreover,
they establish the relationships between components, such as
control actions and feedback links.

The third step is “Identify unsafe control actions”. Each
controller identified in the previous step has a set of control
actions (commands that must be issued to provide the sys-
tem’s functionality, keeping the system safe). In this step,
the safety experts must identify why providing a control
action anytime, not providing it, providing it at the wrong
time or order, and applying a continuous control action too
long or stopping it too soon causes a hazard. The last step
is “Identify loss scenarios”. It requires brainstorming of the
safety experts to identify the loss scenarios in which the
controller issues an unsafe control action. Moreover, they
must identify recommendations to eliminate or mitigate these
loss scenarios.

B. COMBINING STPA ANALYSIS AND SysML MODELING
Souza et al. [4] propose a method that combines STPA with
SysML modeling activities, including simulation and formal
verification of system models. Figure 1 depicts the nine activ-
ities of the Souza et al. method. There are two sets of activities
in the figure. The first set is SysML (represented by the
upper and lower part in the figure), which shows the activities
related to the SysML modeling, model simulation, and model
verification. The second set (represented by the part in the
middle) represents the activities of the STPA analysis.

The first activity is stating the Model Assumptions. The
output of this activity is list of assumptions that the sys-
tem engineers and safety experts make to proceed with
the analysis. The second activity is Capture Requirements,

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

SysML

[Model Assumptions]—p[Capture Requirements]—

Define the purpose of the] Model the control
analysis structure

Identify unsafe control) . .
. ——»| Identify loss scenarios
actions

-

L[Perform analysis]—v[Perform design }—‘ .
[Perform simulation and

formal verification

O

FIGURE 1. Method for combining STPA with SysML modeling [4].

corresponding to requirements elicitation from users, cus-
tomers, and stakeholders.

The next four activities are the STPA steps (Section II-A).
The activity Perform Analysis provides ways to use sequence
and use case diagrams to confirm if the system’s components
and interactions were adequately identified in the activity
Model the control structure. In the Perform Design activity,
the system engineers must design the block diagram based
on the control structure produced within STPA. For each
block of the block diagram, there is a state machine diagram
corresponding to the behavior of each component.

The last activity is Perform simulation and formal verifi-
cation. This activity enables the system engineers to perform
a simulation and use a model checker (such as UPPAAL) to
check the safety properties. The simulation aids the system
engineers in checking which paths of the model are being
explored, including those related to safety and functional
requirements.

IIl. RELATED WORK

Zhong et al. [5] propose an adaption of STPA based on
SysML/MARTE and NuSMV (STPA-SN), which aims to
improve the formalization of STPA. Their proposal includes
(i) the use of the SysML internal block diagram in STPA
step “Model the control structure”; (ii) definition of the

VOLUME 10, 2022

unsafe control action as a state and the unsafe control action
as a command received by the controlled process (instead
of issued by the controller) in STPA step “Identify unsafe
control actions”; and (iii) automatic definition of loss sce-
narios through the conversion between SysML state machine
diagrams and NuSMV models. They use model checking
to verify the safety constraints (converted into CTL/LTL
properties) and the NuSMV model (constructed considering
the MARTE’s state machine diagrams after the addition of
the causal factors from the “Identify Loss Scenario” step).
Contrary to our method, their method does not provide any
support to generate the internal block diagram and the system
state machine diagrams (MARTE) automatically.

Zhao et al. [6] propose a method to perform a safety assess-
ment of Reconfigurable Integrated Modular Avionics (IMA)
using STPA and UPPAAL. Starting from the control struc-
ture of the STPA analysis, they provide the STPA-UPPAAL
modeling rules to elaborate the timed automata manually for
the IMA controller. They used the UPPAAL model checker
to validate the controller, creating a statement for each unsafe
control action and loss scenario identified using STPA. Dif-
ferent from our method, their work is tailored to the IMA
systems. Although they introduce the STPA-UPPAAL mod-
eling rules, they not describe how to use STPA to elaborate
the timed automata automatically.

Howard et al. [16] present a methodology (named
SE-STPA) to combine safety and security using unified con-
cepts and processes based on STPA and Event-B. They con-
struct the initial formal system model using Event-B and the
tool Rodin, translating the artifacts of STPA into Event-B arti-
facts (such as control actions of STPA into events of Event-
B). They also add Manipulation Points (MPs) in the control
structure to determine how adversaries can access the system
under analysis. They aim to generate critical requirements
from the third step of STPA and the MPs to extend and
refine their model. Their methodology aims to combine safety
and security but they generate the contexts from Event-B.
Meanwhile, we intend to generate automatically the behavior
of the controller using safety and functional requirements.

Dghaym et al. [7] propose a framework for elicit-
ing mission requirements for squads of autonomous mis-
sions. They use and refined the methodology proposed by
Knorreck et al. [15] to formalize the critical requirements
identified with Event-B models. They propose an approach
with nine steps for building a correct-by-construction system.
Their approach allows increasing the number of require-
ments identified through an iterative and continuous anal-
ysis. According to the authors, the main limitation of their
approach is the expertise required in Event-B and formal
methods. In their method, the system engineer must define
the context of Event-B manually as opposed to generating the
Event-B context through the SE-STPA.

Dakwat and Villani [17] propose a method that combines
STPA and model checking. They used a robot flight simulator
to demonstrate the effectiveness of their work. They pro-
vide a formal and unambiguous representation of the system

76353

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

through a method that has six steps borrowed from STPA and
UPPAAL. They use the two first steps of STPA to create an
UPPAAL model and then use the list of unsafe control actions
and safety constraints to review the STPA analysis and refine
the UPPAAL model. Contrary to our method, they do not
provide an algorithm to create the UPPAAL timed automata
(corresponding to the state machine diagram, in our case).
Moreover, they consider that STPA is sufficient to elaborate
the model, disregarding the functional requirements that do
not lead to a loss.

Wang et al. [18] propose an integrated model-checking
scheme based on SysML and Model-Based Safety Analysis,
conducting a model transformation between the SysML dia-
gram and the NuSMV symbolic model checker. The block
definition diagram (bdd) describes the structural composition
of the system, and the state machine diagram (stm) represents
the system behavior. They translate the bdd to the main mod-
ule of NuSMYV and its sub-modules, and define transforma-
tion rules to transform the stm into NuSMV based on the state
machine’s elements (e.g., status, event, and transition). The
authors claim that their method can ensure model consistency,
improve usability in engineering, and find defects in product
development. Different from our work, they neither propose
a way to produce the SysML diagrams automatically nor
use STPA.

Krishnan and Bhada [19] propose an Integrated System
Design and Safety (ISDS) framework that is capable of inte-
grating Model-Based Systems Engineering (MBSE) with tra-
ditional safety analysis techniques, such as FMEA and Fault
Tree Analysis (FTA). The framework follows the “V” sys-
tem development lifecycle model and contains three phases.
First, they use their own SysML profile to initiate the system
design and safety analyses at the system level to produce
the system-level FMEA and fault trees. Subsequently, they
construct the system design and safety analyses at the sub-
system or component level. Last, they verify the safety of
the system design at the system and subsystem level using
unit testing and methods such as fault injections. The authors
only complete Phase 1, and the results of phases two and
three are not elaborated. They claim that it is possible to
use a model checker in their frameworks without further
elaboration. It also leaves the choice of FMEA and FTA
unclear.

Ding et al. [20] present a method that combines Finite
State Machine (FSM) and model checking. They aim to avoid
system abnormalities in the safety analysis method caused
by errors in the control signals. The method creates an FSM
model by combining the state transition diagram and the
state transition table. They extract the state of the system and
examine the input and output of each state to analyze the
transition between states to build the state transition diagram.
Finally, they convert the FSM model to the Symbolic Model
Verifier (SMV) program through a mapping between FSM
and the NuSMV program. Once the conversion is complete,
it is possible to use NuSMV to check the SMV program
against a Linear Temporal Logic (LTL) specification. They

76354

demonstrate their method using an aircraft Engine control
software. They do not relate a hazard analysis technique to
their work, arguing that their primary concern is to explain
how multiple causes can lead to an accident.

Pétin et al. [21] present a combination of the SysML
semi-formal modeling approach to identify and refine safety
requirements, design the control system using formal models
and verify its dynamic properties. Their system modeling
approach combines non-formal methods based on SysML
requirements, block diagrams, and model checking using
UPPAAL to prove that the local behavior of each system
component contributes to satisfying the system requirements.
Although they produce the block diagram and the behavioral
diagram (through UPPAAL timed automata), they focus only
on safety properties, not the functional requirements. How to
translate the state machines from SysML to timed automata
from UPPAAL is not elaborated. However, it is clear that their
aim is not to elaborate the behavioral diagram automatically.

Abdulkhaleq et al. [22] propose an approach that gener-
ates test cases from the safety requirements of STPA to
design the model of the system. They formalize the safety
requirements of STPA in Linear Temporal Logic (LTL) and
construct the safe Software Behavioral Model (SBM) using
the Stateflow diagram notation. Then, they transform the
SBM into Symbolic Model Verifier (SMV) to check the
model against the LTL statements and generate an Extended
Finite State Machine (EFSM) from the SBM. Finally, they
produce the test cases from the ESFM using tree search-based
algorithms (such as depth-first search, breadth-first search,
and both combined) that can be tested both on the ESFM or
in an generated source code. While their work generates test
cases for a source code, our work aims to model the controller
at the design phase. At the same stage of system development,
they did not provide any aid to create the SBM — according
to the authors, the elaboration of the SBM depends on the
designer’s skills.

IV. STPA APPLIED TO AN ADAPTIVE CRUISE CONTROL
We present the Adaptive Cruise Control system (ACC) as a
running example to describe our synthesizer in Section V.
ACC is an extension of the standard Cruise Control. ACC
controls the speed of the vehicle, but it cannot be considered
an autopilot. The driver of the vehicle referred to as Driver
must intervene in situations such as maintaining the vehicle
in the lane and diverting from obstacles.

ACC has one or more sensors (such as radar and computer-
connected cameras) installed in front of the vehicle. The
sensor is responsible for measuring two data: the speed of
the forward vehicle (FV) and the distance between the ego
vehicle and FV. If ACC is engaged and there is no FV,
ACC behaves like the standard cruise control, maintaining
the speed set by Driver. When ACC is on, and there is a
FV, ACC shifts from the speed control mode (standard cruise
control) to spacing control mode (or following mode). In this
last mode, ACC controls the vehicle’s speed to maintain the
preset distance from FV. Driver is responsible for setting the

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

Engaging_ACC

<4<Requiremeant=> q
|

1D=1

Text="Adaptive Cruise Caontroller shall engage the
ACC when it receives the Turn ACC On' signal
from the driver”

Kind="Functional*

<<Requirements» q
Increasing_Desired_Speed i

<<Requirements> q
Decreasing_Desired_Speed i

D=7
Text="Adaptive Cruise Contraller shall increase the
desired speed in ane meter per second when

the driver presses the 'Guick Accel button and

the current value of the desired speed is not
equals to 33 meters per second.”
Kind="Functional"

D=8

Text="Adaptive Cruise Contraller shall decrease the
desired speed in ane meter per second when

the driver presses the 'Guick Decel hutton and

the current value of the desired speed is not
equals to 8 meters per second.”

Kind="Functional"

Text="Adaptive Cruise Controller shall set the

#<Requirement>> q‘ﬁ <<Requiremants>
Disengaying_ACC Accel_Reaching_Desired_Speed qf
D=2
) : ; ; D=9
EFE’“;C’%‘E\,‘J,}Q'E i?rrg“fe?\,ggmffUﬁﬂﬁ%’g'g?p”gage Text="Adaptive Cruise Controller shall accelerate the
i iwar" yehicle when the speed is lower than the
sighal from the driver 1 : .
Kind="Functional® gggﬁgdqlpeed and there is no foreard vehicle
Kind="Functional"
<<Requiremants> q =<Requiremants> q
Disengaging_ACC_Off_Speed_Limits J Accel_Reaching_Desired_Gap J
D=3 o] ID=10
Text="Adaptive Cruise Controller shall disengage SR f Tex="Adaptive Cruise Controller shall accelerate
the ACC when tha speed af the vehicle i off Adaptive_Cruise._Controlier the vehicle when the distance hetween the
the limits: lower than 8 meters per second [35] subject and forward vehicles are greater
or greater than 33 meters per second.” t}?_ar&thl—g Settgap.i'
Kind="Functional* ind="Functional*
5 <<Requiremeant>= .
<<Requirements> Y M H qf
Disensaging_ACC_Brake_Pedal qf = Brake_Reaching_Desired_Speed
1D=4 =il . .
Text="Adaptive Cruise Controller shall disengage \Tgﬁ}zl?3@%2‘?@rgi'aseeeS?Sngfélgtgf?haglnbﬁeke e
il AT iz e ETEY [HESSEs i desired speed and there is no forward vehicle
brake pedal. detected”
Kind="Functional G "
Kind="Functional
<4Requirements> Y <<Requirements> 3
Setting_Desired_Speed ‘ig i Brake_Reaching_Desired_Gap qf
<<Requirements> q —
D=5 Setting_Desired_Gap i ID=12

Text="Adaptive Cruise Controller shall hrake the

current speed ofthe vehicle as the desired ID=6

speed when the driver presses the 'Set Speed’
huttan.”
Kind="Functional*

Kind="Functional"

Text="Adaptive Cruise Controller shall setthe gap
with the value defined by the driver”

vehicle when the distance between the
subject and forward vehicles are lower than
the setgap."

Kind="Functional"

FIGURE 2. Functional requirements for ACC system.

safe distance (gap) between both vehicles. In this section,
we provide the assumptions, functional requirements, use
cases specifications, and the STPA analysis for ACC.

A. MODEL ASSUMPTIONS

When analyzing a system, the system engineers must doc-
ument the assumptions about the system and environment
that the development team must consider to conduct their
analysis. We strive to perform the analysis presented herein,
aligning it with the system specifications described in the ISO
15622:2018 [23]. To this end, we made six assumptions to
serve as a guide to conduct the STPA analysis for ACC. The
assumptions are:

e A-1: According to Moon et al. [24], ACC has two
controllers: An upper-level controller, responsible for
calculating the desired acceleration using the longitu-
dinal velocity, relative distance, and relative velocity;
and a lower-level controller, responsible for physically
manipulating the throttle and brake actuator to reach the
desired acceleration. Our focus is the upper-level con-
troller. Therefore, we will not consider the mathematical
equations of throttle angle and torques.

e A-2: The focus of the analysis is the ACC. Despite
other classes of Advanced Driver-Assistance Systems
(such as anti-lock braking system, lane-keeping system,
traffic sign recognition, and others) improve the driver’s
experience and work jointly with ACC, they will be not
considered in this analysis.

VOLUME 10, 2022

o A-3: ACC must not be used when the weather is poor.
Therefore, we will not consider rain, fog, or snow. More-
over, we will not consider the lack of the tire grip due to
ice-covered roads or hydroplaning.

o A-4: The focus of the analysis is the Limited Speed
Range ACC (LSRA) [23] equipped in a vehicle that is
traveling on a highway (a road where pedestrians and
non-motorized vehicles are prohibited to use). Since
LSRA does not operate at low velocities, the analysis
does not consider traffic and the stop-and-go function.

o A-5: The vehicle has ACC type LSRA 2, where no
manual clutch operation is required (vehicle equipped
with automatic transmission).

e A-6: We will not consider rear-end collisions. Even if
ACC brakes abruptly, the driver of the vehicle behind
has the responsibility of maintaining the safe distance
between the vehicle ahead (in this case, the vehicle
with ACC).

B. REQUIREMENTS

After the assumptions, we elicit the requirements. Based
on our knowledge of the Adaptive cruise controller system,
we capture twelve requirements. Figure 2 illustrates them.
The links with the box in the middle indicate that the sur-
rounding boxes (requirements) are related to the Adaptive
cruise controller. Each requirement has an identifier (ID),
the text of the requirement, and its kind (Functional or
Non-Functional).

76355

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

Y distance
Accelerate command DRIVER
Brake command
Turn ACC On, Turn ACC Off ACC Status
_ Set Speed, Set Gap, Desired Speed
Quick Accel, Quick Decel Gap, Speed
ACCELERATOR STEERING INSTRUMENT BRAKE PEDAL
PEDAL WHEEL CLUSTER
Turn ACC On, Turn ACC Off ACC Status
Set Speed, Set Gap, Desired Speed Speed
Quick Accel, Quick Decel Gap
ADAPTIVE CRUISE
CONTROLLER
Process Model
ACC Status: On, Off
Desired speed: Set, Not set
Speed: Lower than Desired speed, Equals to Desired
speed, Greater than Desired speed
Gap: Set, Not set
FV distance: Lower than Gap, Equals to Gap, Greater
) . than Gap, Not detected L Fant
speed: Lower than Desired speed, Equals to Desired "\
%{;:deb RADAR —r Fl\:/lessnggge ;Yees‘ GreI;lrver lhtan D[;sired sp’eed, N%)T de[e(cle?j
Accelerate Brake |BrakePedalPressed Braking signal
Acceleration Speed
Signal
—> ENGINE BRAKE
CONTROLLER Speed F
Brake
Brake Command WHEEL SPEED
Mechanical SERVICE SENSOR
Force BRAKE
Friction *
Speed
WHEELS >

FIGURE 3. Control structure for ACC system. Adapted from Leveson and Thomas [2].

C. THE SYSTEM-THEORETIC PROCESS ANALYSIS (STPA)
FOR ACC

1) DEFINE THE PURPOSE OF THE ANALYSIS

Here, we start conducting the STPA analysis. The first step is
to define the purpose of the analysis. Table 1 shows the losses,
hazards, and system-level safety constraints identified for the
ACC system. Each hazard is associated with one or more
losses, and each system-level safety constraint is associated
with one or more hazards. The association is the identifier
between brackets at the end of the hazard or system-level
safety constraint.

2) MODEL THE CONTROL STRUCTURE

The second step is to model the control structure. The con-
trol structure is a representation of the model of the system
composed of feedback control loops. The boxes represent
the components (such as controllers, actuators, sensors, and
controlled processes). The downward arrows are the control

76356

TABLE 1. Losses, hazards, and system-safety constraints for ACC system.

Losses Hazards System-level safety

constraint

L-1: Vehicle occu-
pants are injured.

L-2: Vehicle dam-
age.

L-3: The
occupants of the
forward vehicle
are injured.

H-1: Safe distance to
the forward vehicle is
not respected [L-1] [L-
2] [L-3]

H-2: Disengaged ACC
controls the vehicle [L-
1] [L-2] [L-3].

H-3: The ACC does not
follow the parameters
defined by the Driver
[L-1] [L-2] [L-3].

SSC-1: The safe distance
to the forward vehicle
must be respected. [H-1]

SSC-2: The ACC must
control the vehicle only
when it is engaged [H-2].
SSC-3: The ACC must
follow the parameters
defined by the Driver
[H-3]

actions or control action enforcements. The upward arrows
are the feedback. The horizontal arrows without a source
component are the external information (that comes from the
environment or external systems).

Figure 3 depicts the control structure for ACC. We cus-
tomize the ACC’s control structure of Leveson and

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

Thomas [2] to be compliant with our system under analysis.
The system has a human controller, named Driver. Driver
is responsible for accelerating and braking the vehicle when
necessary.

Moreover, Driver controls ACC through four buttons in
Steering wheel, which are the following control actions: Set
Speed, Set Gap, QuickAccel, and QuickDecel. Set Speed sets
the current speed of the vehicle as to the Desired speed. Set
Gap sets the current distance between the vehicle with ACC
and Forward Vehicle (FV) as the Gap (desired distance).
QuickAccel increases the Desired speed by one unit, and
QuickDecel decreases the Desired speed by one unit.

The process model for the process that the Driver is
controlling has five variables, which are: ACC Status, with
values On and Off'; Desired speed, with values Set and Not
set; Speed, with values Lower than Desired speed, Equals
to Desired speed, and Greater than Desired speed; Gap,
with values Set and Not Set; and FV distance, with values
Lower than Gap, Equals to Gap, Greater than Gap, and Not
detected.

The actuator Steering wheel receives the control actions
from Driver and forwards them to Adaptive cruise controller.
The sensor Instrument cluster receives ACC Status, Desired
speed, and Gap from Adaptive cruise controller and Speed
from Wheel speed sensor and forwards them to Driver.

The Adaptive cruise controller is responsible for control-
ling the vehicle when Driver engages ACC. Adaptive cruise
controller provides two control actions to accelerate and
decelerate (or Brake) the vehicle. Its process model has six
variables, where five of them are equals to the variables of
Driver: ACC Status, Desired speed, Speed, Gap, and FV
distance. The additional variable is FV speed, with values
Lower than Desired speed, Equals to Desired speed, Greater
than Desired speed, and Not detected. The radar senses the
speed (FV speed) and distance (FV distance) of the forward
vehicle. The ACC receives Speed, FV distance, and FV speed
as input. The ACC Status, Gap, and Desired speed are process
model variables of ACC. Moreover, ACC receives the Brake
Pedal Pressed signal from the Brake Controller.

When ACC commands the acceleration or Driver presses
Accelerator pedal, Engine is responsible for accelerat-
ing the vehicle. In this analysis, we consider Engine
as an actuator. However, the engine is a complex com-
ponent that encompasses other components (such as
the Engine control module and the Electronic throttle
body).

Brake controller receives the signal to brake the vehi-
cle from Brake pedal and Adaptive cruise controller. Brake
controller activates Service brake to slow down the vehi-
cle. Brake controller has the variable Speed, with the
same value as defined in Driver. Wheel speed sensor
measures the speed of Wheels (the vehicle speed) and
sends it to Brake controller and Instrument cluster. Since
the focus is the Adaptive cruise controller, we suppress
the Process Model from Driver and Brake controller in
Figure 3.

VOLUME 10, 2022

TABLE 2. Unsafe control actions for the Adaptive cruise controller.

CONTROL ACTION: ACCELERATE
Providing Adaptive cruise controller provides Accelerate
causes hazard | when ACC Status is Off [H-2].
Adaptive cruise controller provides Accelerate
when ACC Status is On, and Desired speed is Not
set [H-3].
Adaptive cruise controller provides Accelerate
when ACC Status is On, and Desired speed is Set,
and Speed is Equals to Desired speed [H-3].
Adaptive cruise controller provides Accelerate
when ACC Status is On, and Desired speed is Set,
and Speed is Greater than Desired speed [H-3].
Adaptive cruise controller provides Accelerate
when ACC Status is On, Desired speed is Set, Gap
is Set, and FV distance is Equals to Gap [H-3].
Adaptive cruise controller provides Accelerate
when ACC Status is On, Desired speed is Set, Gap
is Set, and FV distance is Lower than Gap [H-1].
Not providing | No unsafe control actions
causes hazard
Providing in | No unsafe control actions
wrong time or
order causes
hazard No
unsafe control
actions
Stopping Adaptive cruise controller applies Accelerate too
too soon or |long when ACC Status is On, Desired speed is Set,
applying too | and Speed is Equals to Desired speed [H-3].
long causes | Adaptive cruise controller applies Accelerate too

hazard long when ACC Status is On, Desired speed is Set,
Gap is Set, and FV distance is Equals to Gap [H-1].
CONTROL ACTION: BRAKE

Providing Adaptive cruise controller provides Brake when

causes hazard | ACC Status is Off [H-2].

Not providing | Adaptive cruise controller not provide Brake when
causes hazard | ACC Status is On, Desired speed is Set, and Speed
is Greater than Desired speed [H-3].

Adaptive cruise controller not provide Brake when
ACC Status is On, Desired speed is Set, Gap is Set,
FV distance is Lower than Gap [H-1].

Providing in | Adaptive cruise controller provides Brake too late
wrong time or | when ACC Status is On, Desired speed is Set, and
order causes | Speed is Greater than Desired speed [H-3].

hazard No | Adaptive cruise controller provides Brake too late
unsafe control | when ACC Status is On, Desired speed is Set, Gap
actions is Set, and FV distance is Lower than Gap [H-1].
Stopping Adaptive cruise controller stops Brake too soon
too soon or | when ACC Status is On, Desired speed is Set, and
applying too | Speed is Greater than Desired speed [H-3].

long causes | Adaptive cruise controller stops Brake too soon
hazard when ACC Status is On, Desired speed is Set, Gap
is Set, and FV distance is Lower than Gap [H-1].

3) IDENTIFY UNSAFE CONTROL ACTIONS
Each controller has a set of commands (named as control
actions in STPA) that it must provide to achieve the system’s
goals and maintain the system safe. In the third step of STPA,
the safety experts must identify which contexts are unsafe to
provide or not provide a control action. The context describes
the system’s state at any given time (combination of the pairs
variable and value).

The list of UCAs (unsafe control actions) is necessary for
generating the guard transitions of the state machine diagram
in our method. For the generation, the system engineer must

76357

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

Synthesizer

(o s T T T e s s —ms————--e 2
1 1
1 ~ ~ 1
! Define variables, control Detect and solvi nflicts !
1 . Elaborate the use case etec Solve contiie Elaborate the block !
1 actions, and automated I between control actions and . !
1 specification . . diagram !
1 controllers functional requirements 1
1 1
1 1
1 1
1 1
1 (PR) 1
H Elaborate the initial state 1
! machine diagram for b
! controllers Verify the state machine .
b . . . Tailor the block and state b
. r — ~ Verify the block diagram diagram for controllers, hine di h
. Elabora'te th? initial state actuators, and sensors e agrams H
! machine diagram for !
1 actuators and sensors !
1 \. J

1 1
L PP SRR 2

FIGURE 4. Method to synthesize the controller algorithm for safety-critical systems.

write the UCA following the structure proposed by Leve-
son and Thomas [25]. They suggest that the UCA has four
components. The first component is the operator (controller
that provides the control action). The second is the type
(control action provided or not, provided in wrong time or
order, and stopped too soon or applied too long). The third
is the control action itself. The last is the context (pair of
variables and value), such as “ACC Status is Off”’.

Table 2 shows the UCAs identified for the Adaptive cruise
controller. Each UCA is associated with a hazard from
Table 1. Therefore, we consider the provision of the control
action as hazardous in the following contexts: When the
minimum space between the ego and the forward vehicles is
not respected (Hazard 1); When the Driver thinks the ACC is
disengaged (ACC Status equals to Off) but the ACC controls
the vehicle and causes unintended actions (Hazard 2); When
an engaged ACC does not follow the parameters provided by
the Driver when controlling the vehicle (Hazard 3).

Since our focus is on ACC, we will only show the UCAs
for ACC. We write all UCAs using the structure of Leveson
and Thomas [25], and the name of components, variables, and
signals are consistent with the control structure. We consider
that both Accelerate and Brake commands always change the
Speed. Therefore, we disregard the constant acceleration (to
maintain the Speed) in the unsafe control action list.

4) IDENTIFY LOSS SCENARIOS

The last activity of the STPA set is to “Identify loss scenar-
ios”. The goal is to identify the scenarios and the associated
causal factors that can lead to one (or more) losses - in our
case, the losses defined in Table 1. We found fifty-four loss
scenarios. The quantity of identified scenarios relies on the
system engineers’ expertise in the system under analysis.
The loss scenarios help identify the safety recommendations.
The recommendations must be considered in the logic of

76358

the controller. However, they are too domain-specific to be
systematically generated in the method.

An example of a loss scenario is “Collision between
vehicles due to radar sensor obstruction”. This scenario is
related to the UCA ““Adaptive cruise controller not provide
Brake when ACC Status is On, Desired speed is Set, Gap
is Set, FV distance is Lower than Gap [H-1]”. For instance,
a safety recommendation is to duplicate the number of radars,
links, and input interfaces of ACC. The duplication affects
the design, i.e., the block diagrams. Therefore, we decide
not to consider the safety recommendations of this step in
the synthesis. We still consider the safety restrictions of the
STPA step Identify “Unsafe Control Actions”. We omit the
description of the results of the activity Identify loss scenarios
here.

V. A CONTROL ALGORITHM SYNTHESIZER

In this section, we present the method for synthesizing the
control algorithm for safety-critical systems. The proposal of
Souza et al. [4] is a method that combines STPA analysis
and SysML modeling. Our synthesizer aims to systematize
the Perform Design activity from Figure 1, automatically
generating the block diagram and initial state machine dia-
grams. We call initial because the system engineer can tailor
the state machine diagram later to consider, for instance, the
safety recommendations of the STPA step “Identify Loss
scenarios”.

From STPA’s control structure, our method generates the
block diagram and the initial state machine diagrams for
actuators and sensors. Moreover, it synthesizes the initial
state machine diagram for the automated controllers using the
functional requirements and the safety constraints associated
with each unsafe control action, as exemplified in the rows
“Not providing causes hazard” of Table 2. We do not intend
to generate the state machine diagram for human controllers.

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

We argue that it is difficult to model human behavior because
a human controller may not behave exactly in the same way
under the same conditions (unlike automated controllers).
Moreover, we do not intend to generate the state machine
diagram for external information (such as process input and
output on the controlled process). It contains information
outside the system under analysis, and therefore must be
adequately modeled by system engineers with the aid of
stakeholders and other system’s experts.

Figure 4 illustrates our method. The single circle represents
the initial state, the double circle is the final state, and the
boxes represent the activities. The arrows indicate the control
flow (order) of the activities. The method contains nine activ-
ities, where the Define variables, control actions, and auto-
mated controllers, Elaborate the use case specification, and
Detect and solve conflicts between control actions and func-
tional requirements (boxes with the blue background) serve
as preparation for the remaining activities of the method. The
activities Elaborate the block diagram, Elaborate the initial
state machine diagram for controllers, and Elaborate the ini-
tial state machine diagram for actuators and sensors (boxes
with the yellow background) are the method’s core. The
activities Verify the block diagram, Verify the state machine
diagram for controllers, actuators, and sensors, and Tailor
the block and state machine diagrams (boxes with the green
background) are complementary (are not synthesized by our
method and must be conducted manually). They include
manual verification and tailoring of the diagrams synthesized
by the method. The activities to elaborate the initial state
machine diagram for controllers, actuators and sensors are
shown as concurrent because there is no specific order to
synthesize them.

Recall that our method is an automation of the activity
Perform Design proposed by Souza et al. [4], we illustrate
our method using the case study in Section IV. In Section IV,
we reviewed and applied the first activities of the
Souza et al. method: Model Assumptions (Section IV-A),
Capture requirements (Section IV-B), Define the Pur-
pose of the analysis (Section 1V-C1), Model the control
structure (Section I1V-C2), Identify unsafe control actions
(Section IV-C3), and Identify loss scenarios (Section IV-C4).

In the Perform Analysis activity, Souza et al. [4] suggest
using sequence or use case diagrams to check the com-
pleteness of the control structure (the components and their
interactions). To conduct this activity, we opt for the use case
diagrams. However, we suppress the diagram here because
(i) we have already confirmed the control structure, and (ii)
the use case diagrams are already specified for the Adaptive
cruise controller in Section V-B. In the following subsections,
we describe the activities of our method (as illustrated in
Figure 4).

A. DEFINE VARIABLES, CONTROL ACTIONS, AND
AUTOMATED CONTROLLERS

This activity aims to enhance the STPA’s control structure
information to synthesize a control algorithm compliant with

VOLUME 10, 2022

TABLE 3. Transforming discrete variables into continuous.

Variable Discretized form Num;ru.: form
(numeric interval)
. Set >0
Desired speed Not set =0
Lower than Desired speed < Desired speed
Speed Equals to Desired speed = Desired speed
Greater than Desired speed | > Desired speed
Gap Set >0
Not set =0
Lower than Gap < Gap
. Equals to Ga = Gaj
FV distance G(r]eater than lz}ap > Gag
Not detected =0
Lower than Desired speed < Desired speed
Equals to Desired speed = Desired speed
FV speed G?eater than DesireI()i speed > Desired sgeed
Not detected =0

an executable model. Therefore, the input and the output of
this activity are the control structure. The activity has three
sub-steps. The first sub-step aims to assign types to the vari-
ables and define their initial value. Assign types to variables
means assessing if it is required to change the variable type
(discretized in STPA) to a continuous form (such as numeric)
for simulation purposes. The goal of the second sub-step is
to classify the control actions as continuous or discrete. The
last sub-step aims to categorize the controllers as human or
automated. Next, we describe each sub-step and show its
application using ACC.

It is common to discretize the variables of the process
model when conducting an STPA analysis. The discretization
aids in delimiting the range of values that the variables can
assume, easing the analysis. When designing the model of the
system, however, it may be better to work with the variables
assuming values from the real numbers. The system engineers
must complete the definition of variables manually before the
synthesis of the control algorithm begins.

To assign types to the variables, the system engineers
define the type of a variable as Boolean or numeric. To assign
a variable to Boolean, the system engineer must define the
variable that will have values true and false. Assigning the
variable to numeric brings about inconsistency because of
their discretization in STPA - it is impossible to equate a
number with a string. To solve this problem, the system
engineer must modify each value of the variables abstracted
in the STPA analysis, using mathematical operators (such as
equals, greater than, and others) to maintain the semantics.
Moreover, the system engineers can choose not to change the
variable. In this case, the method generates a data type by
default (similar to the abstract data type enum of program-
ming languages).

For ACC, we maintain the ACC Status variable in the
discretized form. Therefore, the method will generate a new
data type in the block diagram. We transform the other
variables into numeric, as shown in Table 3. Moreover, we do
not assign any variable to the Boolean type.

The next step is to define the initial value of each variable
of the process model. It is a required step in our method

76359

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

TABLE 4. Excerpt from use case specifications for ACC.

Id Precondition Trigger Postcondition Include
UCo1 Receive signal Turn ACC On (Steering wheel) - ACC Status = On UCo0s5
Uuco2 Receive signal Turn ACC Off (Steering wheel) - ACC Status = Off UCo0s5
UC03 Speed <8 OR Speed >33 - ACC Status = Off UCO05
uco4 Receive signal Brake pedal Pressed (Brake con- | - ACC Status = Off UCo5
troller)

UCO05 - ACC Status (Instrument | - -

cluster)
UCo06 Receive signal Set Speed (Steering wheel) - Desired speed = Speed uco7
uco7 - Desired speed (Instrument |- -
cluster)

uCo8 Receive signal Set Gap (Steering wheel) - Gap = FV distance uco9

UC09 - Gap (Instrument cluster) - -

UCl10 Receive signal QuickAccel (Steering wheel) AND | - Desired speed = Desired speed + 1 uco7
ACC Status = On AND Speed <33

UCI1 Receive signal QuickDecel (Steering wheel) AND | - Desired speed = Desired speed - 1 uco7
ACC Status = On AND Speed >8

UuC12 ACC Status = On AND Speed <DesiredSpeed | Accelerate (Engine) ACC Status = On AND (Speed = DesiredSpeed | -
AND (FVDistance = 0 OR Gap <FVDistance) AND (FVDistance = 0 OR Gap <FVDistance)

UCl13 ACC Status = On AND Speed <DesiredSpeed | Accelerate (Engine) ACC Status = On AND Speed <= DesiredSpeed | -
AND Gap >FVDistance AND Gap = FVDistance

ucCl4 ACC Status = On AND Desired speed >0 AND | Brake (Brake controller) ACC Status = On AND Speed = Desired speed -
Speed >Desired speed

UcCl15 ACC Status = On AND Gap >0 AND FV distance | Brake (Brake Controller) ACC Status = On AND Gap >0 AND FV distance | -
<Gap = Gap

because when performing the simulation of the model, the
controller issues the control actions based on the process
model. Therefore, the process model of the controller when
the simulation begins must equal to the system’s initial state.
For the Adaptive cruise controller, we define the value of
ACC Status as Off and Desired speed, Speed, Gap, FV dis-
tance, and FV speed with value zero.

We classify the control actions similarly to the variables.
Some control actions are a discrete event signal issued by
the controller. However, some control actions are applied
continuously and have a duration time. Therefore, the system
engineer must define if the control actions are discrete or not.
In the synthesized model, we intend to associate a variable
to each continuous control action to determine the duration
of the command, i.e., how long the control action is applied.
For ACC, we define the Accelerate and Brake command
(issued by Driver) and the Brake command (issued by the
Brake controller) as continuous. The other control actions
remain discrete. We assume the Adaptive cruise controller
always sends a control action to accelerate or break that lasts
one unit of time (if necessary, the controller will issue the
control action another time). Therefore, the Accelerate and
Brake commands are modeled as a sequence of one-unit time
control actions.

In the controller’s categorization, the system engineer must
define the controllers as human or automated. As stated
before, the method does not synthesize the control algorithm
for human controllers because they may not behave exactly
in the same way when exposed to the same input/set of
values (differently from automated controllers). For ACC,
we define the Adaptive cruise controller and Brake con-
troller as automated controllers and Driver as human
controller.

76360

B. ELABORATE THE USE CASE SPECIFICATION

System engineers can identify some functional requirements
using STPA. The “Identify unsafe control actions” step from
STPA provides a list of control actions that maintain the
system safe (type “Not providing causes hazard”’). However,
STPA only identifies the functional requirements that impact
safety (i.e., that can lead to a hazard or loss). Therefore,
STPA does not consider the behavior of commands that are
not hazardous. The input of this activity is the requirements
diagram, and the output is the use case specification.

The requirements diagram (Figure 2) shows the functional
requirements for ACC system in a textual form. To formalize
the requirement, we employ the use cases (focusing on the use
case specification). The use case specification must have the
following elements: Use case id (a unique identification), the
primary actor (the component responsible for initiate the use
case), the precondition (conditions that must be satisfied to
begin the use case), the trigger (the event that initiates the use
case, e.g., the control action itself), the basic flow steps (that
gives the sequence of steps for the main success scenario),
and the postcondition (the conditions that must be satisfied at
the end of the use case).

Table 4 shows the excerpt of the use case specifica-
tions, describing the id, precondition, trigger, postcondition,
and if the use case includes others or not. The primary
actor of the use cases is the Adaptive cruise controller.
We considered the following use cases: Engaging ACC
(UCO01); Disengaging ACC at Driver’s command (UC02),
when speed is out of boundaries (UC03), and after Driver
brakes the vehicle (UC04); Feedbacking ACC Status to
Driver (UCO05); Setting Desired speed (UC06); Feedback-
ing Desired speed to Driver (UCO07); Setting Gap (UCO08);
Feedbacking Gap to Driver (UC09); Increasing Desired speed

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

(UC10); Decreasing Desired speed (UC11); Accelerating to
reach Desired speed (UC12) or desired Gap (UC13); Braking
to reach Desired speed (UC14) or desired Gap (UC15).

The precondition of UCO1 is the receiving of Turn ACC
On (Steering wheel). It means the Adaptive cruise controller
receives the Turn ACC On command from Steering wheel
component. UCOS does not have a precondition, but it is
included in other use cases. Therefore, it only contains a
trigger (representing the signal sending).

C. DETECT AND SOLVE CONFLICTS BETWEEN CONTROL
ACTIONS AND FUNCTIONAL REQUIREMENTS

Conflicts may arise between a control action and a functional
requirement or between two (or more) control actions or
functional requirements [26]. In our method, two control
actions that (or a control action and a functional requirement)
have the same context and opposite effects, conflict with
each other. They may be the result of wrong or incomplete
analysis. The conflicts may result in an unfeasible logic of the
controller. This activity aims to identify conflicts arising from
the identified UCAs. We use the identified UCAs as input
to identify conflicts. After identifying the conflicts, we solve
them by refining the context so that conflicts do not exist.
Solving conflict is manual. We only address the conflicts
arising from the opposing unsafe control actions.

Algorithm 1 shows the pseudocode to detect conflicts
between commands. The method uses the context table [25]
to verify in which contexts a conflict can arise. The con-
text table contains all possible combinations of the pair
variable-value of the process model. Moreover, the method
adds a variable in the context table: the controller’s last
signal received. Considering the Adaptive cruise controller,
it receives ten signals and has seven variables (ACC Status,
Desired speed, and Gap with two values; Speed with three
values; FV distance and FV speed with four values). The
context table for this controller has 3840 rows (or possible
combinations). We obtain the number of rows by multiplying
the number of possible values from each variable with the
number of signals received (e.g., 10x2x2x2x3x4x4 =
3840).

Table 5 provides information to synthesize the Adaptive
cruise controller based on functional requirements (use case
specifications from Section V-B) and STPA (“Not provid-
ing causes hazard” UCAs from Section IV-C3). We do not
consider the other UCAs types because they are hazardous
when provided anytime or at the wrong time/order. The
Guard Condition is a Boolean expression representing the
context (STPA) or the precondition for a transition when it
is true. The State Id is the name of the control action (prefix
CA) or the use case (prefix UC) followed by its identifier. The
Trigger is the event (e.g., Accelerate, Brake, or none “—"")
that the controller issues. For states that do not have a trigger
event, the Effect is an internal behavior performed during the
transition (the postcondition). Table 5 is based on Table 4,
but we remove the use cases that do not have a precondition
(because they are included by other use cases).

VOLUME 10, 2022

The method iterates over the 3840 contexts from the
context table, checking if the current context satisfies the
Guard Condition from Table 5 (i.e., if the Guard Condi-
tion evaluates true for the current context). None or one
Guard Condition evaluating true means there is no conflict in
the current context. When two (or more) Guard Conditions
evaluate true, there is a conflict or reinforcement between
the commands. We call as reinforcement when the same
context satisfies a safety property and a functional require-
ment, issuing the same command. For the Adaptive cruise
controller, we observed conflicts between the UC04, UCO06,
UC08, UC10, and UC11 with the CAO1, CA02, UC12,UC13,
UC14, and UCI15. Since the Guard Condition of the first set
of commands is mostly feedback receiving, there is a conflict
between both sets. For instance, the following context satis-
fies both UC08 and UC13: ACC Status = On AND Desired
speed > 0 AND Speed < Desired speed AND Gap > 0 AND
FV distance < Gap AND FV Speed <= Desired speed AND
Feedback = Set Gap (Steering wheel).

Therefore, we need to change the context (control action)
or precondition (use case) of the second set to avoid these
conflicts. We solve it by adding the following conditions to all
commands into the second set (CAO01, CA02, UC12, UC13,
UC14, and UCI1S5): LastSignalReceived != Brake pedal
Pressed (Brake controller) AND LastSignalReceived != Set
Speed (Steering wheel) AND LastSignalReceived != Set
Gap (Steering wheel) AND LastSignalReceived != QuickAc-
cel (Steering wheel) AND LastSignalReceived != QuickDecel
(Steering wheel). Moreover, we notice redundancy between
(i) CAO1 and UCI15 and (ii) CA02 and UC14. Therefore,
we opt to maintain both control actions (CAO1 and CA02)
and discard the use cases (UC14 and UC15).

In the previous example, the issuances of commands at
the same time are undesirable. However, in some cases, the
controller must provide two or more control actions in a
specific order. For these cases, system engineers can define
the order of two (or more) commands in this activity. Once we
identify the possible conflicts between commands (control
actions and use cases), our method can synthesize the block
diagram.

D. ELABORATE THE BLOCK DIAGRAM

This activity aims to elaborate the system’s architecture in
the form of a block diagram. Inside each block, there is a
state machine diagram that determines the behavior of the
block. The input of this activity is the control structure from
the STPA, and the output is the block diagram. The block
diagram describes the blocks, their connections, variables,
signals, and data flows. The “‘block diagram” we use is from
AVATAR [14] and encompasses a block definition diagram
and internal block diagram.

Algorithm 2 describes the straightforward transformation
between the control structure of STPA into the block dia-
grams of SysML. The method transforms STPA components
(actuator, controlled process, controller, and sensor) into the
SysML blocks. The method also transforms the connections

76361

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

Algorithm 1 Detecting Conflicts Between Commands

Require: Controller’s process model, control actions, and use case specifications
Ensure: Conflicting commands and respective context when they conflict

1: Generate the context table
2: for each context in the context table do
3: conflictingCommands < [|

4: for each command issued by the controller do > Command is a control action or a functional requirements
5: if a Guard Condition from the command evaluates to true within the current context from the context table then
6: conflicting Commands.push(currentContext)
7: end if
8: end for
9: if conflictingCommands.length > 2 then
10: Exhibit the conflicting commands and the current context
11: end if
12: end for

TABLE 5. Controller's command (trigger) and their respective context (guard condition).

State Id Guard Condition Trigger

Effect

<Gap

CAO01 ACC Status = On AND Gap >0 AND FV distance | Brake (Brake Controller) -

Speed >Desired speed

CAO02 ACC Status = On AND Desired speed >0 AND | Brake (Brake Controller) -

UCo1 Receive signal Turn ACC On (Steering wheel) -

ACCStatus = On

UcCo2 Receive signal Turn ACC Off (Steering wheel) -

ACCStatus = Off

UCo3 Speed <8 OR Speed >33 -

ACCStatus = Off

uco4 Receive signal Brake pedal Pressed (Brake con- | -
troller)

ACCStatus = Off

UcCo06 Receive signal Set Speed (Steering wheel) -

DesiredSpeed = Speed

UCo08 Receive signal Set Gap (Steering wheel) -

Gap = FVDistance

ucCl10 Receive signal QuickAccel (Steering wheel) AND | -
ACC Status = On AND Speed <33

DesiredSpeed = DesiredSpeed + 1

UCl11 Receive signal QuickDecel (Steering wheel) AND | -
ACC Status = On AND Speed >8

DesiredSpeed = DesiredSpeed - 1

AND (FVDistance = 0 OR Gap <FVDistance)

UCl12 ACC Status = On AND Speed <DesiredSpeed | Accelerate (Engine) -

AND Gap >FVDistance

UCl13 ACC Status = On AND Speed <DesiredSpeed | Accelerate (Engine) -

Speed >Desired speed

UCl14 ACC Status = On AND Desired speed >0 AND | Brake (Brake controller) -

<Gap

UCl15 ACC Status = On AND Gap >0 AND FV distance | Brake (Brake Controller) -

between STPA components into connections and the standard
ports in the SysML blocks. Each variable in the control
structure model is also a variable in the SysML block. The
method uses the information from the Define variables, con-
trol actions, and automated controllers activity to assign the
type and the initial state of the variables in the block diagram.
The method creates the corresponding data type if a variable
has no type assigned. Moreover, the method creates a variable
corresponding to the duration time for continuous control
actions. Each control action and feedback are signals in the
SysML block. A step-by-step description of the Algorithm is
provided using the ACC system.

Figure 5 depicts the block diagram generated from the
control structure (Figure 3) of ACC. Due to space limitations,
we resize the blocks. Therefore, some signals may be missing
in Figure 5.

Some tools enable code generation. Although code
generation is not our focus, the method suits the name of

76362

components, variables, control actions, and feedback defined
in STPA to satisfy the rules of variable names in a program-
ming language (removing spaces or replacing them with an
underscore, for instance).

Following the algorithm, the first step is to create a
block for each component of the control structure. There-
fore, the method synthesizes the following blocks: Driver,
Accelerator_Pedal, Steering_Wheel, Instrument_Cluster,
Brake_Pedal, Radar, Adaptive_Cruise_Controller, Engine,
Brake_Controller, Service_Brake, Wheel_Speed_Sensor, and
Wheels. We use the Snake_Case convention to create the
name of the blocks (we replace the spaces for underscores,
and each word has the first letter capitalized). Additionally,
Driver receives one external information (FV distance),
and the Radar receives two external information (FV dis-
tance and FV speed). Therefore, the method creates an
additional block named EXT, responsible for the external
information.

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

Algorithm 2 Synthesizing the Block Diagram

Require: Functional control structure (STPA)
Ensure: Block diagram (SysML/AVATAR)
1: for each component in the control structure do

2: Create a block with the name in the Snake_Case convention
3: for external information received by a controller do
4: Create a block with the name EXT
5: end for
6: end for
7: for each connection in the control structure do
8: if a channel between two components does not exist then
9: Create an asynchronous channel between both blocks
10: end if
11: end for
12: for each component in the control structure do
13: if the component is a controller or controlled process then
14: Create a variable in the current block using the PascalCase convention
15: Define the variable type as set in the first activity of the method
16: if no type was assigned then
17: Create a new type with the name Variable_DataType > Variable is the name of the variable in PascalCase
18: end if
19: end if
20: if the component is an actuator then
21: if the received control action is continuous then
22: Create a numeric variable in the block with the name DUR_SignalName
23: end if
24: end if
25: if the component is a sensor then
26: for each feedback sensed do
27 Create a variable equal to the defined in the process model of the controlled process or controller
28: end for
29: end if
30: end for
31: for each component in the control structure do
32: for each control action or control action enforcement do
33: Create a signal (output) named sendSignal using the camelCase convention > Signal is the name of the signal
34: end for

35: for each feedback do

36: Create a signal (input) named receiveSignal using the camelCase convention

37: end for
38: end for
39: for each channel in the block diagram do

> Signal is the name of the signal

40: Link the signal in of one component (receiveSignal) with the signal out of the other component (sendSignal)

41: end for

Next, the method defines the connections between the
blocks. The control structure has directional connections (for
instance, the downward arrows are control actions and the
upward arrows are feedback). In the block diagram, the con-
nections are bidirectional. Therefore, the method creates a
connection in the block diagram following the connections
in the control structure without duplicity (e.g., there are two
one-way connections between the Adaptive cruise controller
and Brake controller in the control structure. In the block

VOLUME 10, 2022

diagram, there is one bidirectional connection). The hollow
squares in the edge of the connections mean that the connec-
tor type is asynchronous.

Once the blocks are connected, the method creates the
variables. The variable name follows the PascalCase con-
vention (i.e., it capitalizes the first letter of each compound
word in the variable). The variables receive the same data
type and initial value as defined in the Define variables,
control actions, and automated controllers activity. For the

76363

I EEE F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

block
Driver
- Speed =0 int;
[T ACCStatus =2 : int;
- DesitedSpeed =0 : int;
- Gap=0:int
- Fubistance =0 : int:
- DUR_AccelerateCommand =0 : int;
- DUR_BrakeCommand = 0 : int; L
- lastSignalReceived = 0 : int:
- DT_ACCStatus | ACCStatus_DataType:
1 - 516_Driver : Driver_Signals: 1
block q hlock
Accelerator_Pedal & otk il U camen) Brake_Pedal
out sendTumACCOG
. BUR_AccelerateCommand = 0 - int; i out send TumnACCO) - DUR_BrakeCommand =0 : int;
i~ outsendSetSpead])
~ in receiveAccelerateCommand(int DUR_AccelersteCommandy ||% outsendSetGap ~ in receiveBrakeCommandgint PUR_BrakeCommand)
~ ut enfarcedos lerateCommanddint DUR._AccelerateCommand) ||&~ @utsendCuickAceel) ~ aut enforseBrakeCommandgint PUR_Brake Command)
o ! . t
{1 {1
block L block
Steering_vhes! Instrument_Cluster
- Speed=0:int;
~ in receive TUMACCONQ - ACCStatus=2 : ink;
~ in receiveTumACCOff) - DesiredSpeed=0:int; [1
~ in receiveSetSpeed(- Gap=0:int
~ in receiveSetdap) - DT_ACCStatus : ACCStatus_DataType;
= i o o
~ in receiveQuickDecel() i~ in senseSpeed(int Speed)
~ gut enforce TUmACCOND | [& in senseACCStatusint ACCStatus)
M
T T
= block =
; y L
Adaptive_tCruise_Contraller
- ACCStatus=2 : int;
- DesiredSpaed =0 : int;
- Gap=0:int;
- Speed=0:int;
- FVSpeed =0 int;
r - FyDistance =0 : int;
block [block - lastSignalReceived =0 : int;
ExT Radar - DT_ACCStatus : ACCStatus_DataType;
- 516_AdaptiveCiseController : Adaptive CruiseCantroller_Signals;
- = @ i - FuSpeed =0 Int;
- FWDistance =0 : int; T PvDistance =0 : inf; [H:I: outsendAccelerate
out 0
4 out sendFUSpeedioRadarint FuSpead) ~ in senseFYSpeedint FUSpesed) i~ in receivaSpaed(int Speed)
& out sandFUDIstancetoRadarint FYDlstance) ~ in senseFYDistance(int FuDistance) i~ in receivaFUSpaediint FUSpeed)
& out sandFUDistancetoDriverint FuDistance) ~ out sendFUSpeediint FVSpesd) i in receiveFUDistanc efint FuDistance)
~ out sendFVDistanc e(int FuDistance) i in receiveBrakePedalPressed()
i~ i receive TumACCONG
e i i re ceive TumACCOH()
ACCSIaIuaSpralaType i~ in receiveSetSpead)
P r— i~ in receivaSetGap)
“On=1:int
[i i re ceiveQuickAccel])
i ins in receiveQuickDecel)
<<datape-> in out sendACCStatus(int ACC Status)
AdaptiveCruiseCantralier_Signals % i~ out sendDesiredSpeed(int DesiredSpeed)
~BrakePedalPressed = 1 int; = “”‘““de"'”(':l el -
- Gpeed =2 : ink; 17 e |
- TumACCOn =3 :int; L1 i, Dloek |
- TumACCOf = 4 int: block Gy g L™
5:int; Engine Brake_Controller
int: L
- Qui =7 {1
. g::zﬁ::: : ::: - BUR_AccelerateCommand =0 : ink - PUR_BrakeCommand = 0 : int; block
z ' - Speed=0:int
- FWSpeed = 3 N) C _ Wheel_Speed_Sensor
- FWDistance = 10 : int; ~in receiveAcceleratel) - lastSignalReceived = 0 : int;
A p— d(int DUR_) - 51%_BrakeContraller ; BrakeController_Signals; L spesd=0int
Z<datatyper> ~out dint DUR_ ommand) i,
BrakeController Signals £ ol R TE) _ ~ sutsendBrakePedalPressed) ~ in senseSpeedint Speed)
- Brake =1 :int:) b - °“: S g it BUR Braker . ~ out sendSpeedToBrakeCantrollerint Spead)
- BrakeCommand =2 : int; ~ sutsendBrakeCommandiint BUR_Brake Command) ~ out sendSpeedTolnstrumentClusterint Speed)
- Speed =3 . int: w in receiveSpead(int Speed) In
~ in receiveBrake()
w in receiveBrakeCommandin rake Comman
S;sg}agpggg i iwe Brakel: d(int BUR_Braket: d
518 = outsendSpeediint Speed)
- Speed =1 int: ™
- ACCStatus =2 int; e
- DesiredSpeed =3 ; int; block
- Gap=4:int)
- FuDistance = 5 : int; Service Brake

- DUR_BrakeCommand =0 - int;

~ in raceiveBrake()

~ in receiveBrakeCommand(int DUR_BrakeCommand)

~ out enforceBrake]

~ out enforceBrakeCommand(int DUR_BrakeCommand)
I

=,

{1
hlock
‘Wheels

- Speed=0:int;

- BUR_AccelerateCommand = 0 - int;
- BUR_BrakeCommand = 0 : int;

{1

m
Lt

~ in receiveAccelerateCommandint DUR_Accelarat.
~ in receiverocelerate()

~ in receiveBraken

~ in receiveBrakeCommand(int DUR_BrakeCommand)
~ outszndSpeed(int Speed)

FIGURE 5. Block diagram for ACC synthesized by our method.

76364 VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

ACC Status variable (not defined as a numeric or Boolean
variable), the method creates a new data type named ACC-
Status_DataType. The name of the data type is composed of
the variable name (in PascalCase) and the suffix _DataType.
The method creates the variable ACC Status as a numeric
(because it is similar to the enum type). However, the vari-
able only assumes the values of the data type. Addition-
ally, the method creates a variable in the block named
DT_ACCStatus, with the prefix DT_ representing the data
type.

Next, the method creates the signals. Since the compo-
nent can receive and send a signal with the same name,
we differentiate the feedback and control actions by adding
the prefix receive (sense, for sensors) and send (enforce, for
actuators) in the signal name. Using the Instrument cluster
as an example, it receives three signals: ACC Status (Adap-
tive cruise controller), Gap (Adaptive cruise controller), and
Speed (Wheel speed sensor). Therefore, the method cre-
ates the following signals (type: input): senseACCStatus(int
ACCStatus), senseGap(int Gap), and senseSpeed(int Speed).
Similarly, it sends three signals: ACC Status (Driver), Gap
(Driver), and Speed (Driver). Therefore, the method cre-
ates the following signals (type: output): sendACCStatus(int
ACCStatus), sendGap(int Gap), and sendSpeed(int Speed).
The name of the signals follows the camelCase convention
(similar to PascalCase, except for the first letter of the name
that is not capitalized).

Control actions usually do not have a parameter. However,
continuous control actions (as defined in Section V-A) must
have the duration as the parameter. For instance, Driver sends
the Brake Command to the Brake pedal. Therefore, we cre-
ate an associated variable named DUR_BrakeCommand,
where the prefix DUR_ means duration. Additionally, the
method creates a variable with the same name in the
block.

The last step is to connect the signals in the con-
nections. We need to define that when Driver issues
the signal sendTurnACCOn(), the Steering wheel receives
this signal through the receiveTurnACCOn() signal. The
signal’s data type contains the list of the signals that
the controller can receive. Using Driver as an exam-
ple, it can receive the signals ACCStatus, Speed, Desired
speed, Gap, and FVDistance. Additionally, the method cre-
ates a numeric variable named LastSignalReceived. To that
end, the method also creates a data type for each con-
troller, where the name of the data type is the con-
troller’s name in PascalCase followed by the suffix _Signals.
This data type is associated with the LastSignalReceived
variable.

Once the method synthesizes the block diagram, it is pos-
sible to elaborate the state machine diagram. We separate
this into two activities, where the first synthesize the initial
state machine diagram for controllers and the second for
actuators and sensors. The method performs both activities
concurrently.

VOLUME 10, 2022

E. ELABORATE THE INITIAL STATE MACHINE DIAGRAM
FOR CONTROLLERS

Each block from the block diagram has a state machine
diagram associated with it. The method aims to generate a
state machine diagram to controller’s blocks. We also syn-
thesize the state machine diagrams for actuators and sensors,
but they are generally simple. Algorithm 3 shows how the
method synthesizes the state machine diagram for automated
controllers.

We consider that controllers of real-time safety-critical
systems have three states. The first state is WaitingForln-
formation, where the system is idle waiting to receive
some information (control action or feedback from systems
components or external system). In the second state, named
InformationReceived, the system receives information from a
higher-level component, sensor, or external system and must
decide on a control action to issue. If the controller does not
have a control action to issue, it returns to the WaitingForln-
formation state. The last state is Commandlssued, where the
system issued a control action to maintain the system safe.
The only path possible is to return to the Waiting ForInforma-
tion state.

Figure 6 depicts the initial state machine diagram
for the Adaptive cruise controller synthesized by our
method. Due to space limitations, we suppress some
elements from the Figure 6, such as the following
signals (receiveTurnACCOYff, receiveSetSpeed, receiveSet-
Gap, receiveQuickAccel, receiveQuickDecel, receiveSpeed,
and receiveFVDistance) and the following commands
(CA02, UCO02, UC02_UCO05, UCO03, UC03_UCO05, UC04,
UCo04_UCO05, UC06, UC06_UCO7, UCO08, UC08_UCO09,
uclo, ucClo_uco7, UCl11, UC11_UC07, UCI12, and
UCl13).

The initial state is WaitingForInformation. Therefore, the
Adaptive cruise controller waits for receiving feedback, con-
trol actions from higher-level components, or external com-
munication. The concave pentagon represents the receiving
signal. An example of information received is receiveTur-
nACCOn(), sent by the Steering wheel. The remaining signals
(type: input) defined in the block diagram follow the same
idea. After receiving a signal, the control flows to the state
InformationReceived.

The next step is to determine which commands the con-
troller must provide and in which context. The method resorts
to the third step of STPA (Identify unsafe control actions) and
the SysML diagrams (use case specifications) to determine
the commands to be issued (see Table 5). The third step
of STPA provides a list of UCAs of “not providing causes
hazard” type (i.e., the controller must issue these control
actions to maintain the system safe). The use case specifi-
cation contains the functional requirements that complement
the controller. Therefore, the Adaptive cruise controller may
provide twelve different commands — as stated in Table 5
(we excluded UC14 and UC15 due to reinforcement reasons).
The value of the column State Id is the name of the state.

76365

I E E E ACC@SS F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

Algorithm 3 Synthesizing the Initial State Machine Diagram for Controllers

Require: Block Diagram (SysML/AVATAR), Controller’s control actions and functional requirements
Ensure: State Machine Diagram (SysML/AVATAR)
1: Create an initial state

2: Create the WaitingForInformation state
3: Add a transition between the states initial and Waiting Forinformation
4: Create the InformationReceived state
5: Create the CommandlIssued state
6: for each received signal from the controller’s block do
7 Create the receive signal state
8: Add a transition between the states Waiting ForInformation (source) and receive signal (target)
9: Add a transition between the states receive signal (source) and InformationReceived (target)
10: end for
11: Add a transition between the states InformationReceived (source) with Waiting ForInformation (target) with the guard else
12: for each unsafe control action from ‘“‘not provided™ type and functional requirements do
13: Create the state CAindex > index is the identifier of the control action
14: Create the send signal state > signal is the control action
15: Add a transition between the states InformationReceived and CAindex with the guard equal to the context of the UCA
16: Add a transition between the CAindex and send signal state
17: while there are control actions to be issued in a specific order do
18: Create the state CAindex_CA2index > CA2index is the identifier of the control action issued in order
19: Create the send signal state to issue the second control action
20: Add a transition between the send signal state (first CA) and CAindex_CAZ2index
21: Create a transition between the send signal state (second CA) and Commandlssued
22: end while
23: if there are not control actions to be issued in a specific order then
24: Create a transition between the send signal state and CommandIssued
25: end if
26: end for
27: for each use case specification do
28: Create the state UCindex > index is the identifier of the use case
29: if there is a precondition then
30: Add a transition between the states InformationReceived and UCindex with the guard equals to precondition
31: end if
32: if there is a frigger then
33: Create the send signal state > The signal is the trigger
34: Add a transition between the states UCindex and send signal
35: end if
36: if there is a postcondition and there is not a trigger then
37: Add a transition between the states send signal and Commandlssued with the effect equals to the postcondition
38: end if
39: while there are included use cases do
40: Create the state UCindex_UC2index > UCindex_UC2index is the identifier of the second use case
41: Repeat the steps from lines 29 to 38, replacing UCindex for UC2index
42 end while
43: if there are not included use cases then
44 Add a transition between the send signal state and the Commandlssued
45: end if
46: end for

47: Add a transition between the CommandlIssued and WaitingForlnformation

The transition to these states has a guard condition, which is pentagon. If no guard condition is satisfied, there is a path
the value of the Context (Preconditions) column. The repre- with a [else | where the system returns from Information-
sentation of a control action (signal type: output) is a convex Received state to WaitingForInformation state. In ACC, each

76366 VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

WaitingForInformation

LastSignalReceived = §IG_adaptiveCruiseCantraller TurnACCOn

LastSignalReceived = SIG_Adaptiv

L i L 4

Cruisecontroller.BrakePedalPressed

LastSignalReceived = SIG_Adaptive CruiseCaontraller. FWSpeed
k

receiveTurnACCOnOl

receiveBrakeF‘edaIPressedﬁ|

receiveFVSpeed(FVSpeed)|

r

F

InformationReceived

[else]

(LastSignalReceived I= Sig| AdaptiveCruiseController. SetGap) and

(LastSignalReceived I= Sig

cam

¥

sendBrake{Speed):>

[(LastSignalReceived 1= Sig | AdaptiveCruiseContraller SetSpeed) and

(LastSignalReceived I= Sig] AdaptiveCruiseController.QuickAccel) and
| AdaptiveCruiseContraller.GuickDecel) and
(LastSignalReceived = Sig| Adaptive CruiseController BrakeFPedalPressed) and
(ACCStatus == OT_ACCEtatus.On) and (Gap = 0 and (FWDistance = Gap)]

[{LastSignalReceived == 5G] AdaptiveCruiseController TUPNACCON |

uco1

ACCEtatus =DT_ACCStatus . On

F
uco1_ucos

k
sendACCSiatus(AC T Status)

Commandlssued

FIGURE 6. State machine diagram for the adaptive cruise controller.

context satisfies a single command. However, the controller
must provide two (or more) commands in the same context.

The method uses the information provided in the activity
Detect and solve conflicts between control actions and func-
tional requirements (Section V-C) to determine the order of
the commands in the state machine diagram (for instance, if a
use case includes others or if a control action must be issued
before other). The UCO1 includes the UCO05 (see Table 4
and Figure 6). The method creates the state UCO1 (with its
respective guard condition) and, after that, it creates the state
UCO1_UCOS. The state indicates that the UCO1 includes the
UCO05. The method places both use cases one after the other
and follows the same rules defined previously (preconditions
are the guard conditions, and if there is a trigger, it sends a
command).

VOLUME 10, 2022

The method follows the same algorithm to synthesize the
state machine diagram for the Brake controller. The method
does not synthesize the state machine diagram for Driver con-
troller because it is human. Therefore, the system engineer
must design it.

F. ELABORATE THE INITIAL STATE MACHINE DIAGRAM
FOR ACTUATORS AND SENSORS

Usually, actuators and sensors have a simple operation. The
actuator stays in a standby state, waiting to receive signals.
After receiving the signal, the actuator performs the mechani-
cal force required to enforce the command. Similarly, the sen-
sor observes the controlled process (or another component).
When it senses a change, it sends feedback to the controller
(i.e., the change of the observed variable).

76367

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

The method synthesizes the state machine diagram for
actuators and sensors since actuators receive commands from
the controller and enforce them, and sensors observe the
controlled process. It excludes external sensors and sensors
coupled to the process input or process output from the con-
trolled process. Algorithm 4 shows how the method creates
the state machine diagram for actuators and sensors.

The method synthesizes the state machine diagram for
actuators using the following model: There is a state named
Standby, which represents the actuator in its idle state
(i.e., waiting for receive commands). There is a connection
between the Standby state and each signal (type: input) of the
actuator. The signal represents the control actions issued by
the controller. When the actuator receives the signal, it enters
a new state named signalReceived (replacing signal with the
name of the signal received). Then, it immediately forwards
the corresponding signal (type: output). It enters in a new
state named signalEnforced (replacing signal with the name
of the signal sent) and goes back to the Standby state.

The state machine diagram for sensors follows the same
idea. However, instead of Standby, we use the name Sensing.
In the intermediate state, instead of the name signalReceived,
we use signalSensed. Figure 7 depicts the initial state machine
diagram for the sensor Instrument cluster (left side of the
Figure 7) and the actuator Steering wheel (right side of the
Figure 7). Due to space limitation, we suppress the signals
for sensing the Desired speed and Gap (Instrument cluster)
and the signals to enforce the commands SetSpeed, SetGap,
QuickAccel, and QuickDecel (Steering wheel).

G. VERIFY THE BLOCK DIAGRAM

The method generates the block diagram from the control
structure. However, there may be inconsistencies in the block
diagram, probably because the STPA analysis is incorrect
or incomplete. The verification is manual, and it includes
performing a manual comparison between the block dia-
gram (STPA) and the initial control structure (STPA). There-
fore, it is the responsibility of the system engineer to verify if
the block diagram is similar to the control structure.

H. VERIFY THE STATE MACHINE DIAGRAMS FOR
CONTROLLERS, ACTUATORS, AND SENSORS

Following the same idea of the previous section, the system
engineer must verify the initial state machine diagram for
controllers, actuators, and sensors. In this activity, the sys-
tem engineer can manually check the initial state machine
diagrams to discover if the STPA analysis and the use case
specifications are complete and consistent.

I. TAILOR THE BLOCK AND STATE MACHINE DIAGRAMS

The last activity of the proposed method is to tailor the
block diagram and the state machine diagrams. In this step,
the system engineer must change the block diagram or state
machine diagrams (if necessary) and create the state machine
diagrams that are not synthesized by our method (human
controllers, controlled process, and external information).

76368

First, we modify the block diagram. We rename the block
EXT to EXT_Forward_Vehicle. This change has no impact
on the model, and we only did it to improve the readability
of the block. Therefore, we need to design the state machine
diagram for the following blocks: EXT Forward_Vehicle,
Driver, and Wheels.

We define the behavior of the EXT Forward_Vehicle
(including the initial value of its variables) based on (i) our
expertise in the system under analysis, (ii) and the knowl-
edge acquired from our previous models (manually designed,
without the method support). For the EXT_Forward_Vehicle,
we elaborate the state machine diagram considering the sys-
tem does nothing in the first fifty units of time. We did it
to guarantee that Driver accelerates the vehicle and engages
ACC before detecting a vehicle ahead. After this time, the
forward vehicle block sends the FVDistance equals to one
hundred followed by sixty information about the forward
vehicle’s speed and distance (each message after one unit
of time). The initial value of the FVSpeed is twenty-eight.
We use two variables to change the speed at each itera-
tion. The first variable is the randomValue, which assumes
the values zero, one, or two. The second is islncrementing,
which receives the values zero (false) or one (true). Both
variables receive the return of the TTool’s [27] function RAN-
DOMO(minValue, maxValue). The function generates integer
numbers between (and including) minValue and maxValue
using a discrete uniform distribution. If isIncrementing is one,
it means that we add the randomValue to the FVSpeed. Oth-
erwise, we decrement the randomValue from the FVSpeed.

After sixty units of time, the block sets the value of
FVSpeed and FVDistance to zero and sends them to the radar,
indicating there is no forward vehicle detected. We did a
minor change in the Adaptive cruise controller, adding the
following instruction after the FVSpeed receiving: FVDis-
tance = FVDistance + FVSpeed - Speed. Without this
instruction, it is impossible to calculate the FVDistance since
there is no way to simulate the current distance between
vehicles without this mathematical expression.

We model the block Wheels with two main states:
Stopped and Moving. The vehicle starts in the Stopped
state and goes to Moving state when Driver presses the
Accelerator pedal, i.e., it receives the receiveAccelerate-
Command(DUR_AccelerateCommand) from Driver. We also
consider that the acceleration and deceleration rate is two.
That means the vehicle accelerates incrementing the speed in
two units per time and brakes decrementing the speed in two
units per time. Moreover, Wheels also receives the commands
to accelerate and brake through ACC. We implement the
natural deceleration of the vehicle using timers. When the
vehicle remains without receiving any command to accelerate
or decelerate for more than two units of time, the vehicle
will decrease the speed in one unit. When the speed is zero,
it returns to the Stopped state.

To test all commands, we model Driver using the following
behavior. First, Driver accelerates the vehicle until the veloc-
ity of thirty units. Then, Driver turns on ACC and sets the

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

Algorithm 4 Synthesizing the Initial State Machine Diagram for Actuators and Sensors

Require: Block Diagram (SysML/AVATAR)
Ensure: State Machine Diagram (SysML/AVATAR)
1: for each actuator in the block diagram do

2: Create the Standby state
3: for signal received from the actuator block do
4: Create the receive signal state
5: Add a transition between the states Standby and receive signal
6: Create the state signalReceived > signal is the name of the receive signal
7 Add a transition between the states receive signal and signalReceived
8: Create the send signal state
9: Add a transition between the states signalReceived and the send signal state
10: Create the state signalEnforced > signal is the name of the send signal
11: Add a transition between the states signalEnforced and Standby
12: Create the receive signal state
13: end for
14: end for
15: for each sensor in the block diagram do
16: Create the Sensing state
17: for signal received from the actuator block do
18: Create the receive signal state
19: Add a transition between the states Sensing and receive signal
20: Create the state signalSensed > signal is the name of the receive signal
21: Add a transition between the states receive signal and signalSensed
22: Create the send signal state
23: Add a transition between the states signalReceived and the send signal state
24: Create the state signalSent > signal is the name of the send signal
25: Add a transition between the states signalSent and Standby
26: Create the receive signal state
27: end for
28: end for

current Speed as the Desired speed. Then, Driver presses the
brake of the vehicle for two units of time (decrementing the
Speed in four units). It deactivates ACC (UC04). After that,
Driver turns on ACC and presses the buttons QuickAccel and
QuickDecel. Driver waits for the Adaptive cruise controller
to control the vehicle’s Speed for twenty units of time, and
when a forward vehicle is detected, it sets the current dis-
tance (FVDistance) as the Gap. It waits for sixty units of
time, observing the Adaptive cruise controller controlling the
vehicle’s Speed. When no forward vehicle is detected, Driver
turns ACC off and ends the execution (final state).

VI. CHECKING THE IMPLEMENTATION OF THE
ALGORITHMS

In the previous section, we elaborated the block and initial
state machine diagrams (for automated controllers, actuators,
and sensors) manually, following the Algorithms 1 to 4.
To check if the algorithms are consistent, we implemented a
prototype of the synthesizer using the algorithms to generate
the diagrams automatically. We also integrated the prototype
of the synthesizer’s module in a STPA tool named Web-
STAMP [28]. WebSTAMP is a web application that supports
STPA analyses.

VOLUME 10, 2022

We later compared the diagrams generated by the tool
and the diagrams generated manually. Disregarding the
synthesizer’s module, STPA supports five activities from
the Souza et al. [4] method: Model assumptions (SysML);
Define the purpose of the analysis (STPA); Model the control
structure (STPA); Identify unsafe control actions (STPA);
Identify loss scenarios (STPA). Currently, WebSTAMP does
not support the activity Capture requirements.

The synthesizer’s module adds four features to the
extended WebSTAMP. The first three features correspond
to the following activities of our method: Define variables,
Elaborate the use case specification, and Detect conflicts
between control actions and functional requirements (Algo-
rithm 1). The last feature generates an XML file containing
the results of the activities: Elaborate the Block Diagram
(Algorithm 2), Elaborate the initial state machine for con-
trollers (Algorithm 3), and Elaborate the initial state machine
for actuators and sensors (Algorithm 4).

In the Define variables activity, the systems engineer can
assign a type to the variables (numeric, Boolean, or a new data
type), define the new values (numeric interval for numeric
variables, and true/false for the Booleans), and determine the
initial state. Moreover, we do not allow to define a variable as

76369

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

!

Standby

| Sensing
SenseACCStatus(ACCStatuS)| E senseSpeed(Speead)
F r
| ACCStatusSensed | SpeedSensed
L 4 L J
| sendAC CStatus(ACTStatus) sendSpeed{Speed):
r
| ACCStatusSent | SpeedSent
|

receiveTUrnACCONg

TurnACCOnReceived

enfarceTurnAC Cong

receive TUurnAC SO

TurnACCOffReceived

¥

enforceTurnAC COMD »

TurnACCOffEnforced

F
TurnACCOnEnforced

FIGURE 7. State machine diagram for the instrument cluster (left) and steering wheel (right).

Boolean in the tool if the number of states is not exactly two.
The first activity of our method also requires the definition of
type of control action (as continuous or discrete) and type of
controller (as human or automated). However, WebSTAMP
demands these definitions in the Model the control structure
activity. With tool support, it was possible to define the
variables, control actions, and controllers in the same way as
manually.

In the Elaborate the use case specification activity, the tool
provides an environment to store the following attributes for
each use case: identifier, name, preconditions, trigger, effects,
postconditions, and if there is an included use case. System
engineers define the identifier, name, and effects using natural
language. The preconditions, trigger, inclusion of another
use case, and postconditions are defined systematically. The
trigger has the controller’s output defined in the Model the
control structure activity, and the included use case has a list
of the use cases already created in the system (and the option
“No” if the current use case does not include other).

Figure 8 depicts the preconditions of the use case Engaging
ACC (UCO01). When the ACC Status is Off, and the controller
receives the Turn ACC On from the Steering Wheel, the
precondition is satisfied. The token “—’ indicates that the
variable is not relevant to the current use case specification.
The addition of the postcondition follows the same design
as the precondition. The tool creates the precondition using
only the AND operator. Therefore, the system engineers must
split preconditions with the OR operator (e.g., UC03) in two
use cases, one with precondition Speed < 8§ (named UC03_A)
and another with precondition Speed > 33 (named UC03_B).
That was the only difference between the activity performed
manually and with tool support.

The tool generates the context table in the Detect and solve
conflicts between control actions and functional requirements
activity. If two or more control actions (or use cases) satisfy

76370

a context of the table, it means there is a possibility of
conflict or reinforcement. The tool exhibits the conflicting
commands and the context where the conflict occurs. The
system engineers must solve the conflicts manually (changing
the context of control actions or the preconditions of use case
specifications). The tool found 6304 conflicts or reinforce-
ments (considering the commands from Table 5).

Once the STPA analysis and the pre-steps of the model are
complete, the tool generates the XML. We use TTool [27]
as the SysML toolkit to run our models. The only difference
between the diagrams generated manually in Section V and
with tool support is the arrangement of the elements in the
diagrams. Moreover, TTool has a syntax checker that finds
errors in the model (such as inconsistency of names, signals
not connected, malformed guard conditions, and others). The
model generated by the tool does not have any syntax error.

Figure 9 depicts a fragment of the initial state machine
diagram for the Adaptive cruise controller generated by
the tool prototype. Due to space limitations, we sup-
press some elements of Figure 9, such as some sig-
nals: receiveBrakePedalPressed(), receiveTurnACCOn(),
receiveTurnACCOJff(), receiveSetSpeed(), receiveQuickAc-
cel(), receiveFVSpeed(FVSpeed), and receive FVDistance(FV
Distance), and commands: CAO0I, UC0I, UC0I_UCO05,
Uco2, UC02_UCO05, UC03_A, UCO03_A_UCOS5, UCO4,
UC04_UCO05, UC06, UC06_UCO7, UCOS8, UCOS_UCO09,
ucio, uclo_ucorz, UCll, UCI2_A, UCII_UCO07,
UCI2_B, UCI4,and UCI5.

The fragmented diagram shows the relevant parts of the
diagram synthesized for the Adaptive cruise controller. The
complete diagram has 64 transitions, 28 states, 26 signals,
19 effects, and 16 guard conditions, and some of the ele-
ments overlap in its visual presentation, making its read-
ability difficult. The complete diagram contains all control
actions and the use cases defined in the previous activities.

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

Precondition

Signal Received ACC Status Desired Speed Speed FV speed FV distance
Brake pedal pressed (Brak | On >0 >0 < Desired Speed < Desired Speed < Gap
Speed (Brake Controller) Off =0 =0 = Desired Speed = Desired Speed = Gap
Tum ACC On (Steering W ~ > Desired Speed ~ || » Desired Speed | > Gap -

FIGURE 8. Adding a precondition in the elaborate use case specification activity.

An enhancement of the user interface to make the graphics
more user-friendly is part of our future works.

VII. RESULTS AND DISCUSSIONS

The output of our method is a model with the state machine
diagrams for each block from the block diagram. There are
two ways to check if the synthesized model is correct. First,
the system engineers check the model analyzing if the method
synthesized the block and initial state machine diagrams
correctly (sections V-G and V-H). Next, they can perform
simulation and formal verification to check if the diagrams’
behavior is the same as defined in the STPA and functional
requirements. Perform simulation and formal verification is
the last activity of Souza et al. [4] method. We discuss the
results of the model generated in Section VI with the tailoring
described in Section V-1.

To conduct this activity, we use TTool [27], a toolkit that
supports the modeling of SysML diagrams and enables sim-
ulation of the model and formal verification using UPPAAL.
We chose TTool because it is an open-source environment
that supports the AVATAR profile [14]. Moreover, the authors
claim that designers that use TTool can elaborate their models
even with minor knowledge of UML/SysML and formal
languages such as UPPAAL [15]. However, we believe the
same results can be achieved by tools with the same features
of TTool.

We performed several simulations of ACC using TTool.
We considered that each simulation has two parts. The first
part encompasses Driver’s interactions with the vehicle (such
as accelerating and braking) and with the Adaptive cruise
controller (engaging ACC, setting Desired speed and Gap).
The second part encompasses ACC controlling the vehicle’s
speed while Driver observes. The first part has the same
results in all simulations. However, the second part has differ-
ent results for each simulation. The differences in the results
were due to the elaboration of the state machine diagram for
the block EXT_Forward_Vehicle.

We considered the speed of the forward vehicle equal to
twenty-eight at the beginning of the simulation. In the follow-
ing sixty units of time, the variable isIncrementing assumed
the values zero or one, and the variable randomValue received
the values zero, one, or two. If the value of islncrementing
is zero, we decrement the speed according to the content of
variable randomValue. The same is valid for isIncrementing
equal to one, but instead of decrementing the speed, we incre-
ment it. At each unit of time, the variables isIncrementing
and randomValue receives the return of the TTool’s function

VOLUME 10, 2022

RANDOMO(minValue, maxValue), which uses a uniform dis-
tribution function to generate the values (where the minValue
is zero and maxValue is one for isIncrementing and two for
randomValue).

There are differences in the simulation when analyzing
the second part because of the randomness of the F'V Speed.
The differences are in the number of times Adaptive cruise
controller issues the commands that control the vehicle when
there is a forward vehicle (CAO1, CA02, UC12, and UC13) -
In some scenarios, the Adaptive cruise controller will Accel-
erate more than Brake and vice-versa. Despite that, we did not
detect an unsafe or unexpected behavior in any simulation.

Figure 10 depicts the interactive simulation window of
TTool. For ACC, one of the simulations ended after 139
(one hundred thirty-nine) units of time and after 14034 (four-
teen thousand thirty-four) transactions. The coverage indi-
cates that, during the simulation, the model visited 97.3%
(ninety-seven and three tenths) of all states, considering all
state machine diagrams from all blocks. The exceptions were
UCO03_A and UCO03_B (disengaging ACC when Speed is
out of the boundaries). The simulation did not achieve these
states because the Adaptive cruise controller maintained the
Speed between eight and thirty-three when ACC was On
(the minimum FV Speed is ten and the maximum is thirty,
within the ACC’s Speed limit). We executed the simulation
using the “‘step-by-step” feature that runs one transaction
at a time (defined in the “Nb of steps” input). We can see
the simulation running in the state machine diagrams like a
sequence diagram in the inferior part of Figure 10.

There is information on the right side of Figure 10 that
aids the analysis of the simulation results. The figure shows
the variables of Adaptive cruise controller at the end of the
simulation, where the speed of the vehicle with ACC and
the forward vehicle is zero (i.e., the vehicle is stopped and
no forward vehicle is detected). By exploring the simulation
feature, we also can analyze: (i) The number of transactions
of each block in the “Blocks” panel; (ii) Information about
each transaction (such as the block, state, time when it begins,
duration, and time when it ends) in the ‘“Transactions’ panel;
(iii) The number of times each state was visited in “Met
states” panel.

We can use formal verification into our model using the
UPPAAL model checker. TTool performs the formal verifica-
tion verifying each safety property (or pragma) defined by the
systems engineer. Figure 11 depicts some of the safety prop-
erties verified for ACC system. We wrote the properties using
the ““leads to” operator. The meaning is when the state on the

76371

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

WaitingForinformation

Y

receiveSpeed(Speed)|

¥

lastSignalReceived 4 SIG_AdaptiveCruiseContraller Speed

il

g receiveSetGap)

lastSignalReceived = SIG_AdaptreCruiseCDntmIIer.SetGap

E receiveuickDecel ()

lastSignalReceived =

[else]

IG_AdaptiveCruiseController. QuickDecel

| InformationRecened |

4
uco3_B

[ACCEtatus == DT_ACCStatus.0n) and (DesiredSpeed = M and (Gap = 0) and (FYDistance = Gap)]
[iACCStatus == DT_ACCStatus.On) and (Speed = 33)]

[ilastSignalReceived 3= SIG_AdaptiveCruiseControllet Quickdceel) and (ACCStatus = DT_ACCStatus.On) and (Speed = 33)]
[(AZCStatus == DT ACCStatus.On and (Speed < DesiredSpead) and (FYDistance = Gap)]

. SN
uco3_B_UCDS

ACCStatus=DT_ACCStatus. Of
F

sendBrake(>

——

uc10

k 4
uc13
sendAccelerate>

DesiredSpeediDesiredSpead+1

uc10_Uco?

| sendACCStatusACo Status)

¥

|sendDesiredSpeed(DesiredSpeed)

Commandissued |

FIGURE 9. Initial state machine diagram for the adaptive cruise controller generated by the method.

left of the arrow (—>) becomes true, the state on the right of
the operator will inevitably become true. For example, when-
ever Driver accelerates the vehicle (Driver.Accelerating), the
Wheels must move (Wheels.Moving). The checkmark before
each safety property indicates the safety pragma is satisfied.
If a pragma is not satisfied, the tool displays the Crossmark
instead. We created the safety pragmas based on STPA step 3
(Identify unsafe control actions) and the use cases. As stated
in Figure 11, we were able to check that all functionalities of
the ACC were satisfied.

According to Knorreck et al. [15], when the models
achieve a certain level of detail, they are not amenable to
formal verification. Unfortunately, this was the case with our
model. To check the safety pragmas using UPPAAL in a
tolerable time for us (less than thirty minutes per property)
and to reach in Figure 11, we need to reduce the number of
iterations of the forward vehicle, e.g., from sixty to five.

Besides ACC, we also applied our method to the Train
door system (TDS), a simple but widely discussed example in
the STPA literature [1], [25]. The method adequately synthe-
sized the block diagram and state machine diagram for the
TDS system, including its four control actions from “Not

76372

providing causes hazard” and one functional requirement.
Moreover, all the ten safety pragmas were satisfied.

We faced two main challenges when conceiving the
method. The first challenge was to discover how to synthesize
the control algorithm based on the STPA analysis and how to
complement it with the functional requirements (dealing with
the conflicts/reinforcements and maintaining the safety). The
second challenge was to reach the model of the initial state
machine diagram for controllers (generic enough to fit any
non-human controller).

The main advantage of our method is to check if the
automated controllers are behaving safely and as expected.
Using our method, the system engineers can achieve it with
little effort while they perform their usual safety analysis and
elicit the requirements for their systems.

The proposed method has some limitations. The first lim-
itation is not considering the safety recommendations of
the “Identify Loss Scenarios” step of STPA to synthesize
the control algorithm. Considering a safety recommendation
as ‘“‘sensor replication”, the method should synthesize the
block diagram with the replicated component (and, there-
fore, the state machine diagram for controllers should receive

VOLUME 10, 2022

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

IEEE Access

| £ Interactive simulation

‘ 0 Terminate simulation and quit

Commands

l/ControI r Save trace r Statistics

w4

Simulation information

Status: Terminated Time: 139 Transactions: 14034 Coverage: 97.3%

F #] Displayed blocks |/ £] Latencies |/$:| Randomness |/$:| Asynch. msg |

Options r &1 Blocks r %1 variables r £ Transactions |/ &1 Met states |

Nb of steps: |1

Pending transactions

Block Name | Type MName Value

Brake_Controller |int Speed 0 il
Brake_Controller |int DUR_BrakeCo... |1

Brake_Controller |int LastSignalRece.. |3

Brake_Controller |int SIG_BrakeCaont... |1

Brake_Controller |int SIG_BrakeCont... |2 1
Brake_Controller |int SIG_BrakeCont... [3 T
Brake_Controller [int Deceleration 1 |
Adaptive_Cruis ... |int ACCStatus 2

Adaptive_Cruis... |int DesiredSpeed 30

Adaptive_Cruis... [int Speed 0

Adaptive_Cruis... [int Gap a5

Adaptive_Cruis... |int FvDistance 0

Adaptive_Cruis... [int FWSpeed 0

Adaptive_Cruis... |int LastSignalRece.. |7 ~|

WaitingFor]

WiaitingF orinformation

Zoom -

FIGURE 10. Interactive simulation window of TTool after execute the simulation of ACC.

Safety Pragmas
« Driver.Accelerating--=¥Wheels. Maving

«w" Adaptive

« Driver. TurningACCOn--=Adaptive_Cruise_Controller. LIC01

« Adaptive_Cruise_Contraller. JC01_UC05--=(Driver ACCTurnedOn || Driver ACCTurnedOnAgain)
« Wheel_Speed_Sensor.SendingSpeedTolnstrumentCluster--= Instrument_Cluster. SpeedSensed
« Driver.SettingDesiredSpeed--=Adaptive_Cruise_Contraller. JCOE

« Adaptive_Cruise_Contraller. JC06_UCO7--=Driver.DesiredSpeedSet

« Driver.IncreasingDesiredSpeed--=Adaptive_Cruise_Caontroller. LC10

« Adaptive_Cruise_Controller. JC10_UCO7--=Driver.DesiredSpeedincreased

« Driver.DecreasingDesiredSpeed--=Adaptive_Cruise_Contraller.JC11

« Adaptive_Cruise_Controller.JC10_UCO7--=Driver.DesiredSpeedDecreased

« Driver.BeginF orwardvehicleDetection--=EXT_Farward_Vehicle BeginFvDetection

« Driver.SettingGap--=Adaptive_Cruise_Controller. JC08

« Adaptive_Cruise_Contraller. JC08_UC0S--=Driver. GapReceived

« Adaptive_Cruise_Controller.CAD1--=Wheels. BrakingThroughAC C

Cruise_Controller. CADZ--=Wheels BrakingThroughACC

« Adaptive_Cruise_Contraller. UG 2--=Wheels AcceleratingThroughAC C

« Adaptive_Cruise_Contraller. U1 3--=Wheels AcceleratingThroughAC C

FIGURE 11. Satisfied safety properties for ACC system.

data from both sensors). We did not address this limitation
because these recommendations are specific and require ad
hoc changes in the block diagrams and control algorithm.
Since the identification of loss scenarios is a cognitive activity
and is currently based on expert knowledge, Artificial Intel-
ligence methods may be useful for identifying loss scenarios
in existing systems where operational data can be collected.
However, the loss scenarios in existing systems and systems
that are subject to our concept design stage activities may
or may not be related and finding methods to study the
relationship is an open area of research.

The second limitation is that the method considers that
all components (mainly automated controllers, sensors, and
actuators) are always available (On). Since our focus is the

VOLUME 10, 2022

controller’s behavior (checking if the controller issues all
commands adequately), we did not concern about creating an
Off state. Due to this fact, we believe the behavioral diagram
synthesized by the method is insufficient for code generation
(although we do not intend to produce source code).

Another limitation of the method is the conflict resolution.
Conflict resolution is a manual task and depending on the
number of unsafe control actions identified (added to the
functional requirements), it can be a laborious task. Currently,
the method only shows the conflicts, and the system engineers
must resolve them. There is no additional aid from the method
to solve the conflicts automatically.

The tool prototype has a limitation when defining the
preconditions and postconditions. Currently, it only allows

76373

IEEE Access

F. G. R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems

the AND operator, not supporting the OR operator between
variables or states of the same variable. Implementing the OR
operator in the tool is a trade-off because it adds a feature to
the system; however, it increases the complexity, making the
tool harder to use. Moreover, the current way to define the
precondition is more laborious than defining them textually
using natural language. However, using natural language is
more difficult to generate the guard condition (due to the
author’s writing style) and prone to error.

Another limitation is related to the use of TTool.
We considered including the stop-and-go function in ACC.
We intended to use the mathematical expressions defined by
Kesting et al. [29] to calculate the vehicle’s acceleration.
However, TTool does not support floating-point numbers
(required to calculate the acceleration). Despite TTool’s lim-
itation, we decided to keep using it due to its features.

The synthesizer generates the initial state machine diagram
for controllers, actuators, and sensors. It does not synthesize
the state machine for the controlled process and external
components. However, we do not consider these restrictions
as limitations of the method because there is no such infor-
mation in the STPA analysis or requirements diagram (it is
out of the scope of the analysis).

In the ACC logic synthesis, we did not consider perfor-
mance requirements. Performance requirements are critical
to some safety-critical systems such as flight control systems.
In these systems, the controller has deadlines to process all the
inputs and issue commands. To address performance require-
ments for controllers, time-out events can be easily added
in the state machine diagrams. A time-out event is sched-
uled when a certain condition holds and the occurrence of
a time-out event may trigger commands to other components
in the state machine diagrams. If the processing unit of the
controller is not reliably capable to process all the events and
generate the commands in due time, more processing units
may be required. The addition may affect the design of the
blocks and their state machine diagrams.

VIIl. CONCLUDING REMARKS

We proposed a method to synthesize the control algorithm
for automated controllers (state machine diagram) that meets
the safety and functional requirements. We provide an auto-
mated method to the Perform Design activity that combines
the STPA analysis and SysML modeling [4]. The proposed
method is iterative and may be used to evaluate the automated
controllers, detect conflicts and redundancies between com-
mands (control actions and functional requirements), check
if the control algorithm fulfills both safety and functional
requirements, and help to evaluate the impact of the changes
of the STPA analysis. We evaluated our method using the
Adaptive Cruise Control as a running example. By perform-
ing model simulation and formal verification to assess the
Adaptive cruise controller’s behavior, we checked that the
method synthesized a controller that satisfied the safety prop-
erties and followed the functional and safety requirements.

76374

Based on the current limitations of the method, we recom-
mend the improvement of the initial state machine diagrams
(approaching them to components’ original state) and the
inclusion of the information from the “Identify loss scenar-

b}

ios” step in the block diagram. Other future works include
exploring other functions of TTool to improve simulation
results, such as defining a channel between blocks as lossy.

A systematic method for conflict resolution, identifying
the redundant commands automatically, and grouping them
conveniently to perform the analyses was not the goal of
this work, but is needed for the whole method to be useful
in practice. Moreover, we suggest improving the method to
consider the security requirements together with safety and
functional requirements.

It is not easy to claim cost and time reductions due to
using this method without several controlled experiments
in realistic industrial environments. Nonetheless, we believe
that the systematic generation of the control algorithm con-
sidering the results of the first three steps of STPA and the
functional requirements gives a useful aid in the development
of complex systems we are building today.

REFERENCES

[11 N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety, 1st ed. Cambridge, MA, USA: MIT Press, 2011. Accessed:
May 7, 2022. [Online]. Available: http://sunnyday.mit.edu/safer-world.pdf

[2] N. G. Leveson and J. P. Thomas. (Mar. 2018). STPA Handbook.
Accessed: May 7, 2022. [Online]. Available: https://psas.scripts.mit.edu/
home/get_file.php?name=STPA_handbook.pdf

[3] S. M. Sulaman, A. Beer, M. Felderer, and M. Host, “Comparison of
the FMEA and STPA safety analysis methods—A case study,” Softw.
Quality J., vol. 27, no. 1, pp.349-387, Mar. 2019, doi: 10.1007/
s11219-017-9396-0.

[4] FE. G. R. de Souza, J. de Melo Bezerra, C. M. Hirata, P. de Saqui-
Sannes, and L. Apvrille, “Combining STPA with SysML modeling,”
in Proc. IEEE Int. Syst. Conf. (SysCon), Aug. 2020, pp.1-8, doi:
10.1109/SysCon47679.2020.9275867.

[5] D. Zhong, R. Sun, H. Gong, and T. Wang, ““System-theoretic process
analysis based on SysML/MARTE and NuSMV,” Appl. Sci., vol. 12, no. 3,
p. 1671, Feb. 2022, doi: 10.3390/app12031671.

[6] C.Zhao, L. Dong, H. Li, and P. Wang, *“Safety assessment of the reconfig-
urable integrated modular avionics based on STPA,” Int. J. Aerosp. Eng.,
vol. 2021, pp. 1-14, Jan. 2021, doi: 10.1155/2021/8875872.

[7] D. Dghaym, T. S. Hoang, S. R. Turnock, M. Butler, J. Downes, and
B. Pritchard, “An STPA-based formal composition framework for trust-
worthy autonomous maritime systems,” Saf. Sci., vol. 136, Apr. 2021,
Art. no. 105139, doi: 10.1016/j.ss¢i.2020.105139.

[8] OMG Systems Modeling Language (OMG SysML), document Version 1.6,
Dec. 2019.

[9] OMG Unified Modeling Language (OMG UML), Superstructure, docu-
ment Version 2.4.1, Jul. 2011.

[10] P. Roques, “MBSE with the Arcadia method and the capella tool,” in
Proc. 8th Eur. Congr. Embedded Real Time Softw. Syst. (ERTS), Jan. 2016,
pp. 2-11.

[11]1 UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems), document Version 1.2, Apr. 2019.

[12] P. H. Feiler and D. P. Gluch, Model-Based Engineering With AADL: An
Introduction to the SAE Architecture Analysis & Design Language, 1st ed.
Reading, MA, USA: Addison-Wesley, 2012.

[13] J. B. Dabney and T. L. Harman, Mastering Simulink, 1st ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[14] G. Pedroza, L. Apvrille, and D. Knorreck, “AVATAR: A SysML environ-
ment for the formal verification of safety and security properties,” in Proc.
11th Annu. Int. Conf. New Technol. Distrib. Syst., May 2011, pp. 1-10, doi:
10.1109/NOTERE.2011.5957992.

VOLUME 10, 2022

http://dx.doi.org/10.1007/s11219-017-9396-0
http://dx.doi.org/10.1007/s11219-017-9396-0
http://dx.doi.org/10.1109/SysCon47679.2020.9275867
http://dx.doi.org/10.3390/app12031671
http://dx.doi.org/10.1155/2021/8875872
http://dx.doi.org/10.1016/j.ssci.2020.105139
http://dx.doi.org/10.1109/NOTERE.2011.5957992

F.G.

R. D. Souza et al.: Synthesis of a Controller Algorithm for Safety-Critical Systems I E E E ACC@SS

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “TEPE: A SysML
language for time-constrained property modeling and formal verification,”
ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1-8, Jan. 2011, doi:
10.1145/1921532.1921556.

G. Howard, M. Butler, J. Colley, and V. Sassone, “A methodology for
assuring the safety and security of critical infrastructure based on STPA and
Event-B,” Int. J. Crit. Comput.-Based Syst., vol. 9, pp. 56-75, Mar. 2019.
Accessed: May 5, 2022, doi: 10.1504/IICCBS.2019.098815.

A. L. Dakwat and E. Villani, “System safety assessment based on STPA
and model checking,” Saf. Sci., vol. 109, pp. 130-143, Nov. 2018, doi:
10.1016/j.ss¢1.2018.05.009.

H. Wang, D. Zhong, T. Zhao, and F. Ren, “Integrating model checking
with SysML in complex system safety analysis,” IEEE Access, vol. 7,
pp. 16561-16571, 2019, doi: 10.1109/ACCESS.2019.2892745.

R. Krishnan and S. V. Bhada, “An integrated system design and safety
framework for model-based safety analysis,” IEEE Access, vol. 8,
pp. 146483-146497, 2020, doi: 10.1109/ACCESS.2020.3015151.

Y. Ding, W. Li, D. Zhong, H. Huang, Y. Zhao, and Z. Xu, “System states
transition safety analysis method based on FSM and NuSMYV,” in Proc.
2nd Int. Conf. Manage. Eng., Softw. Eng. Service Sci. (ICMSS), 2018,
pp. 107-112, doi: 10.1145/3180374.3181346.

J. F. Pétin, D. Evrot, G. Morel, and P. Lamy, “Combining SysML and
formal methods for safety requirements verification,” in Proc. 22nd Int.
Conf. Softw. Syst. Eng. Their Appl., Nov. 2010, pp. 1-11.

A. Abdulkhaleq, S. Wagner, and N. Leveson, “A comprehensive
safety engineering approach for software-intensive systems based on
STPA,” Proc. Eng., vol. 128, pp.2-11, Jan. 2015, doi: 10.1016/].
proeng.2015.11.498.

Intelligent Transport Systems Adaptive Cruise Control Systems Perfor-
mance Requirements and Test Procedures, document ISO 15622:2018,
Sep. 2019.

S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation
of a full-range adaptive cruise control system with collision avoid-
ance,” Control Eng. Pract., vol. 17, no. 4, pp.442-455, 2009, doi:
10.1016/j.conengprac.2008.09.006.

N. G. Leveson and J. P. Thomas, An STPA Primer. Cambridge, MA, USA:
Massachusetts Institute of Technology, 2015.

D. P. Pereira, C. M. Hirata, R. M. Pagliares, and S. Nadjm-Tehrani,
“Towards combined safety and security constraints analysis,” in Proc.
Int. Conf. Comput. Saf., Rel., Secur. (SAFECOMP), 2017, pp. 70-80, doi:
10.1007/978-3-319-66284-8_7.

L. Apvrille, “TTool for DIPLODOCUS: An environment for design space
exploration,” in Proc. 8th Int. Conf. New Technol. Distrib. Syst. (NOTERE),
2008, pp. 1-3, doi: 10.1145/1416729.1416764.

F. G. R. de Souza, D. P. Pereira, R. M. Pagliares, and C. M. Hirata,
“WebSTAMP: A web application for STPA & STPA-sec,” in Proc.
Int. Cross-Ind. Saf. Conf. (ICSC) Eur. STAMP Workshop Conf.
(ESWC) (ICSC-ESWC), Feb. 2019, Art.no.02010, doi: 10.1051/
matecconf/201927302010.

A. Kesting, M. Treiber, M. Schonhof, and D. Helbing, “Adaptive
cruise control design for active congestion avoidance,” Transp. Res. C,
Emerg. Technol., vol. 16, no. 6, pp. 668—683, Dec. 2008, doi: 10.1016/j.
trc.2007.12.004.

VOLUME 10, 2022

FELLIPE GUILHERME REY DE SOUZA
received the B.Sc. degree in computer sci-
ence from the Universidade Federal de Alfenas
(UNIFAL), and the M.Sc. degree in electron-
ics and computer engineering from the Instituto
Tecnolégico de Aerondutica (ITA), where he is
currently pursuing the Ph.D. degree in electronics
and computer engineering.

CELSO MASSAKI HIRATA received the B.S. and
M.S. degrees in mechanical-aeronautical engineer-
ing and operations research from the Instituto Tec-
nolégico de Aerondutica (ITA), in 1982 and 1987,
respectively, and the Ph.D. degree in computer sci-
ence from the Imperial College London, in 1995.

From 1986 to 2014, he was an Assistant Pro-
fessor with the Department of Computer Science,
ITA. Since 2014, he has been a Full Professor
with the Department of Computer Science, ITA.
His research interests include distributed systems, cyber-physical systems,
machine learning, and big data.

Dr. Hirata was a recipient of the ACM SAC Best Symposium Paper Award,
in 2011.

SIMIN NADJM-TEHRANI received the B.Sc.
degree from Manchester University, U.K., and the
Ph.D. degree in computer science from Linkoping
University, Sweden, in 1994.

During 2006 to 2008, she was a Full Professor
at the University of Luxembourg. She is currently
a Professor of dependable distributed systems at
the Department of Computer and Information Sci-
ence, Linkoping University, where she has been
led the Real-Time Systems Laboratory, since 2000.
Since 2015, she has been leads the National Research Centre on Resilient
Information and Control Systems (RICS) financed by Swedish Civil Con-
tingencies Agency which focuses on security for industrial control systems.
Her research interests include networks and systems with dependability
requirements and resource constraints, with applications in aerospace, edge
networking, and intelligent systems.

76375

http://dx.doi.org/10.1145/1921532.1921556
http://dx.doi.org/10.1504/IJCCBS.2019.098815
http://dx.doi.org/10.1016/j.ssci.2018.05.009
http://dx.doi.org/10.1109/ACCESS.2019.2892745
http://dx.doi.org/10.1109/ACCESS.2020.3015151
http://dx.doi.org/10.1145/3180374.3181346
http://dx.doi.org/10.1016/j.proeng.2015.11.498
http://dx.doi.org/10.1016/j.proeng.2015.11.498
http://dx.doi.org/10.1016/j.conengprac.2008.09.006
http://dx.doi.org/10.1007/978-3-319-66284-8_7
http://dx.doi.org/10.1145/1416729.1416764
http://dx.doi.org/10.1051/matecconf/201927302010
http://dx.doi.org/10.1051/matecconf/201927302010
http://dx.doi.org/10.1016/j.trc.2007.12.004
http://dx.doi.org/10.1016/j.trc.2007.12.004

