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ABSTRACT Short-term load forecasting plays an essential role in the efficient management of electrical
systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a
concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result depends on
initial randomweights and thresholds that affect the stability of the forecast. Althoughmuch devotion is being
given to improving the forecast accuracy, convergence, complexity, and resilience need to be considered for
stable predictive models. To overcome this limitation, this work has jointly considered the Wavelet Neural
Network (WNN) and Self-Adaptive Momentum Factor (SAMF) to achieve fast convergence, stability, and
high accuracy. The proposed hybrid model is developed by combining the Feature Engineering (FE) and
SAMF with the WNN model. The FE removes the irrelevant data and shallow features to ensure high
computational performance. In contrast, the SAMF combines the wavelet transform’s time and frequency
domain properties and adjusts theWNNmodel’s corresponding parameters. This ensures the global optimum
solution while returning accurate predictive results. Finally, the SAMF is used to tune the control parameters
of WNN by initializing the random weights and thresholds to accelerate the convergence rate and improve
the accuracy compared to the Back-Propagation (BP) method. The proposed hybrid model is tested on
the real-time datasets taken from the Australian states of (New South Wales (NSW), and Victoria (VIC)).
Experimental results show that the developed model outperforms other benchmark models such as WNN-
IGA, BPNN, WNN-AMBA, and Enhanced WNN in terms of instability, rate of convergence, and accuracy.

INDEX TERMS Load forecasting, self-adaptive momentum factor, wavelet transform, wavelet neural
networks, convergence accuracy.

I. INTRODUCTION
Short-term load forecasting (STLF) is an essential task in the
energy management system (EMS) for maintenance schedul-
ing [1], energy generation accumulation, operation and plan-
ning of an energy utility system [2], security and market

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

demand assessments, load switching, cost reductions, and
ensuring a continuous supply of electricity [3]. The incom-
plete and insufficient predictive capabilities can cause sig-
nificant power losses and even power outages. Therefore,
developing appropriate forecasting strategies and enhanced
predictive capabilities has become crucial [4]. However, the
resilience and accuracy of load forecasts (LFs) depend on
various variables such as population perspective, weather,
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geographic limits, time, consumer behavior, power load con-
ditions, energy prices, holidays, law, technological progress,
politics, and economy, environmental change, and social
activities. These variables make forecasting a problematic
task [5].

In recent years, LF approaches have been divided into three
main classes: classical statistical techniques, intelligent fore-
casting processes, and multiple forecasting models, includ-
ing mixed, composite, fused, and hybrid forecasting models.
The classical statistical approaches mainly depend on sta-
tistical and mathematical modeling. They have Box-Jenkins
models [6], the Regression Analysis (RA) method [7],
Auto-Regressive Integrated Moving Average (ARIMA) [8],
Exponential Soothing (ES) [9], Kalman Filtering (KF)
method [10], and the State-Space (SS) model [11]. How-
ever, these approaches are processed by linear analysis and
are not sufficient for nonlinear load series [12]. The intelli-
gent forecasting techniques are processed in non-linear time
series to enhance the effectiveness and performance of the
forecasting model [13]–[18]. The model does not require
quantitative correlation or complex mathematical modeling.
Intelligent approaches are widely used in STLF because they
are adequate to deal with indeterminate processes (like load
time series) [19], [20]. For instance, ANN [21]–[23], Support
Vector Machines (SVM) [24], Expert Systems (ES) [25] and
Fuzzy Logic (FL) [26] have been developed. Furthermore,
the two major network management factors, stability and
adaptability characterize a network with fast convergence and
stable learning [27]. The use of ANN for STLF has received
a lot of attention. However, a single predictive model rarely
works well in all cases [28], [29]. Each method has its draw-
backs, and it is not always possible to achieve the desired level
of accuracy. For example, linear regression cannot capture
non-linear and seasonal features. The Gray Forecasting (GF)
technique can only solve specific problems with exponential
biases. The ES depends upon the knowledge base. The final
result of ANN relies on the thresholds and initial random
weights that influence the forecasting instability. Therefore,
the use of multiple predictive models to leverage a single
model has been presented [30]–[33] to improve the forecast
accuracy. Researchers used several optimization algorithms
to optimize the thresholds and initial random weights of the
ANN to address the instability of the final result for building
up the STLF hybrid model.

ANNs are the most widely implemented methods in fore-
casting electrical energy consumption. However, there are
some advantages and disadvantages needed to be acknowl-
edged when ANNs are used, as listed in Table. 1. Since the
complexity of electrical energy system is very high due to
several factors, the ability of ANN in performing non-linear
analysis is an advantage in executing electrical energy con-
sumption forecasting.

The forecasting combinations initiated by Elliott and
Timmermann [34] have long been considered an effective
and efficient method to intact the forecast stability. It is
an improvement over a single model. Later, Diebold and

Pauly [35] and Pesaran & Timmermann [36] developed
some enhancements in forecasting combination methodol-
ogy. In [37], the authors used the adaptability of individual
models and combined different types of ANN to anticipate
electric load to address these shortcomings,. The fully unified
and fusion predictive models are insightful solutions that
take full advantage of the desired functionalities of individ-
ual models to ensure exceptional efficacy [31], [33]. For
ELF, a hybrid model based on improved differential evo-
lution (IDE) and WNN is being devised [38]. To validate
the proposed model, valid comparisons with other models
such as genetic algorithm ANN (GA-ANN), evolutionary
programmingANN (EP-ANN), and particle swarm optimiza-
tion ANN (PSO-ANN) are performed. In [6], the predic-
tion accuracy is improved by adjusting the SVR parameters
in a hybrid model based on DE and SVR. The proposed
model outperforms the SVR, BP-ANN, and regression mod-
els. A model thata combines SVR and the Fruitfly Algo-
rithm (FFA) has been developed in [39] to solve the parameter
selection problem and improve the accuracy of load predic-
tion. In addition, new approaches have been developed that
hybridize the firefly optimization algorithm (FFOA) with the
SVR model to adjust hyperparameters and optimally guar-
antee accurate load prediction [4], [40]. The above hybrid
model can be regarded as promising and valuable in the
field of improving prediction accuracy by properly adjusting
SVR hyperparameters. However, the authors of these articles
focus on optimizing random weights and bias initialization,
or properly adjusting and selecting hyperparameters. Also,
none of these models considered accuracy, stability, and rate
of convergence at the same time. As a result of numerous
analyzes and investigations, one factor (optimization of ran-
dom weighting and bias initialization, or correct setting and
selection of hyperparameters) and one criterion (accuracy,
stability, rate of convergence) are not enough. Therefore,
a robust hybrid model is needed to overcome the problems
of existing models while improving prediction accuracy and
stability with fast convergence rates. This paper presents
a navel WNN prediction model based on the SAMF to
overcome low convergence problems and abruptly fall into
the local optimum. The adaptive momentum factor (MF),
which utilizes the wavelet theory, is a practical scheme to
solve the shortcomings of conventional algorithms [41]–[43].
In article [44], the MF does not accelerate convergence in the
initial stages. Still, it oscillates the error curve of the network,
making it challenging to adjust the impulse term value. This
paper proposes an adaptive MF with a weight update phase in
which the network automatically adjusts the MF to solve the
problem of dealing with a steep and slow failures on curved
surfaces.

A. CONTRIBUTIONS
• This paper proposes a novel robust hybrid framework,
which integrates FE and SAMFwithWNN in order to to
cater to non-linear time-series predictions. The FE over-
comes the redundancy and irrelevancy (dimensionality
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TABLE 1. Advantages and disadvantages of ANN.

reduction) problem, and SAMF algorithm intelligently
selects and tunes hyperparameters of the WNN model
to improve the forecast accuracy and stability with a fast
convergence rate simultaneously. The integration of FE
and SAMF algorithm effectively boosts the performance
of the SVR model.

• The WNN model has high computational complexity
and is poor in processing uncertain information. In load
forecasting, redundant and irrelevant features pose com-
plexity that slows down the training process of WNN
and also negatively affects the forecast accuracy.To over-
come these problems, FE consists of a hybrid fea-
ture selector (HFS) technique by fusing two algorithms:
XGboost and decision tree classifiers (DTC) schemes,
to monitor and control the feature selection process
and feature extractor (FX) based on RFE to resolve the
dimensionality reduction issue. In this way, the compu-
tational efficiency of the SVR model is enhanced.

• The SAMF acquires and tunes the appropriate parame-
ters ofWNNmodel to avoid trapping into local optimum
and returns accurate forecasting results. Besides, most
literature studies are immersed in a forecast accuracy
refinement. However, the forecasting model’s effective-
ness and productiveness are determined equally by its
stability and convergence rate.

• To evaluate the effectiveness and applicability of the
proposed framework, actual half-hourly load data of two
states of Australia (NewSouthWalesNSW) andVictoria
(VIC)) are employed as a case study.

• Experimental results show that the proposed framework
outperforms benchmark frameworks in terms of accu-
racy, stability, and convergence rate.

B. PAPER ORGANIZATION
The rest of the paper is organized as follows: The developed
model is described in section 2. Section 3 describes the
performance evaluation measures. Simulation results, perfor-
mance assessment,comparison of models and discussion are
described in Section 4. Finally, we have completed the work
by showing possible future directions in section 5.

II. PROPOSED MODEL
This work presents a novel FE-SAMF-WNNmodel for STLF.
The devised model has three main modules: (i) FE module
comprising of hybrid feature selector (HFS) and extractor,

FIGURE 1. Schematic architecture of a new hybrid framework developed
based on FE, WNN, SAMF for electrical load prediction.

(ii) forecasting module based onWNN, and (iii) optimization
module based on SAMF. Firstly, the real site historical data
are retrieved from cloud services or warehouses and given
to the pre-processing phase, where cleansing, integration,
rectification, outlier removal, normalization, and structuring
operations are performed on the datasets to prepare the data
for effective forecasting. The clean data is fed to the FE phase,
which uses a hybrid feature selector and extractor to remove
redundant, irrelevant, and ambiguous features and select the
most relevant features. The prepared data is divided into
training and testing data samples. The constructed training
and testing samples are given to the WNN-based forecaster
that forecasts future electric load. The forecaster output is
given to the optimizer part of the framework based on the
SAMF, which selects and tunes WNN hyperparameters to
yield accurate, stable, and fast forecasting results. The picto-
rial diagram of the proposed framework is depicted in Fig. 1.
In this developed hybrid model, SAMF plays an important
role in optimizing WNN’s thresholds and initial random
weights. This enables the developed model to generate pre-
dictive significance and evaluate accuracy, stability, and rate
of convergence.

A. FE
FE transforms the data into an easily interpretable for-
mat. Translucent data efficiently interprets intelligent model
prediction problems and improves accuracy. FE picks and
removes attributes from the input data so that the ML frame-
works can sufficiently capture. Diverse data mining tech-
niques include Principal component analysis (PCA), DTC,
Mutual information (MI), Relief-F, Random Forest, and
XGboost. These techniques pick and remove attributes from
the data. XGboost and DTC among these techniques, are
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considered for feature selection (FS), and RFE is devised
for feature extraction (FX). The FE module of the devised
model comprises two phases: (i) FS part and (ii) FX part. The
explicit illustration is as follows.

1) FS PHASE
This section describes the model’s FS process. We have
proposed a hybrid feature selector (HFS) that combines
XGboost, DTC, and defined thresholds i.e. µ to control fea-
ture selection. HFS consists of two feature evaluators i.e. α
and β. These two evaluators calculate the feature importance
separately. In the FS process, the features are selected by
joining the feature importance generated by the two evalu-
ators. Feature selection is based Uα and Uβ , which can be
normalized by:

Uα
= Uα/max

(
Uα
)

(1)

Uβ
= Uβ/max

(
Uβ
)

(2)

Then the FS perform as:

Fs =

{
reserve Uα

[
τj
]
+ Uα

[
τj
]
> µ

drop, Uβ
[
τj
]
+ Uβ

[
τj
]
≤ µ

(3)

Uα
[
τj
]
represents the feature importance calculated by

evaluator XGBoost, Uβ
[
τj
]
shows feature importance given

by the DT.µ is the threshold controlling the FS. Features have
also redundancy among them. To remove further redundancy
and dimension reduction, they sent to FX pahse.

2) FX PHASE
The FX process is described in this section. The features
selected by HFS are considered to have no irrelevant features,
however, it contains redundant features. To reduce dimension
and redundancy of features, RFE is applied for removing
redundancy. To find a suitable low dimensional embedding,
data needs non-linear mapping in electricity load forecasting.
Thus RFE is applied to reduce nonlinear dimension.

B. WNN MODULE
Wavelet neural network (WNN) is a combination of wavelet
analysis theory and neural network (NN). Wavelet analysis
has the characteristics of time-frequency localization, which
can analyze the data variously and extract the local informa-
tion of the signal effectively [45]. The NN has the ability
of self-learning and self-adaptation [46]. WNN has both the
characteristics of wavelet analysis and NNs. The expansion
factor and translation factor of the wavelet are adaptively
adjusted during the training process of the network. There-
fore, WNN can extract the local features of the training data
to the maximum extent, which has a strong nonlinear approx-
imation ability, stability, and faster convergence speed [47].
WNN is a significant improvement over the original NN
with multi-layer feed-forward [7].WNNs convert the original
hidden layer activation function to a wavelet function, which
has excellent symmetry and local features based on wavelet
analysis. Considering θ (t) ∈ L2(r), where L2(r) denotes

FIGURE 2. Structure of WNN.

the real-number square integral space and that the Fourier
function θ (ω), if θ (ω) meets the following requirements as
presented in Eq. 4: ∫

r

∣∣θ ′(ω)∣∣2
ω

<∞ (4)

However, θ (t) is a fundamental parental wavelet or wavelet
feature and a required precondition for a wavelet func-
tion [48], [49]. Scalability (a) and shifting transformation (b)
can have the following functions as represented in Eq. 5, after
scaling and shifting:

θa,b(t) =
1
√
a
θ

(
t − b
a

)
(5)

where θa, b(t) is the spectral analytical function. The fol-
lowing functions can achieved by taking the intermediate
component of the signal x(t) [50]:

fx(a, b) =
1
√
a

∫
∞

−∞

x(t)θ
(
t − b
a

)
dt (6)

where a > 0, If thewavelets is linearized by transfer function:

fx(a, b) =
1
√
a
1t

N∑
k=1

x(k1t)φ
(
k1t − b

a

)
(7)

In Eq. 7, the lens is pushed towards or away from the target
by the scaling factor a, while the lens is parallel to the target
by the translational factor b. By altering the wavelet basis
function, the local characteristics of the signal can achieve
localization of time series and time-frequency. The Morlet
function [51] is mostly used, as presented in Eq. 8:

φ(x) = cos(1.70x) exp
(
−
x2

2

)
(8)

Wavelet transform has the properties of multi-resolution anal-
ysis in local features in the time and frequency domains. The
network structure depicts in Fig. 2.

In Fig.2, to train WNN features, following three steps
involved: (1) Assume that there are three layers ofWNN,with
M input neurons, I hidden layer neurons, and J output layer
neurons. (2) Assume the input layer’s mth neuron is xm, the
hidden layer’s ith neuron is ki, and the output layer’s jth neuron
is yj. (3) The relative weights of the connections ωmi and ωij.
Assume f (.) is the hidden layer activation function (wavelet
function), and g(.) is the output layer scale parameter. Fig.3
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FIGURE 3. Training flow chart of WNN.

indicates the structural flow chart of the wavelet nerve. The
output of the input layer is equal to the whole network’s
input signal, and the ith neuron input is equal to the weighted
amount of the input layer νmM (n):

νmM (n) = x(n) (9)

uiI (n) =
M∑
m=1

ωmiν
m
M (n) (10)

As a result, the output of each neuron’s ith hidden layer is:

νiI (n) = f
(
uiI (n)

)
(11)

The input of the jth neuron in the output layer is equal to the
weighted sum of νiI (n):

ujJ (n) =
I∑
i=1

ωijν
i
I (n) (12)

The output of the jth neuron is in the output layer:

ν
j
J = g

(
ujJ (n)

)
(13)

where the output layer’s error is:

ej(n) = dj(n)− ν
j
J (n) (14)

The network’s overall error is:

e(n) =
1
2

J∑
j=1

e2j (n) (15)

When the predicted error value exceeds the target error value
set. First, alter the weighing parameterωij between the hidden

layer and the output layer. Calculate the gradient set ∂e(n)
∂ωij

of
error ωij, Adjust in the other way along this axis after that:

1ωij(n) = −ϕ
∂e(n)
∂ωij

(16)

ωij(n+ 1) = 1ωij(n)+ ωij(n) (17)

The partial derivative may be used to calculate the gradient:

∂e(n)
∂ωij

= −ej(n)gt
(
ujJ (n)

)
νiI (n) (18)

where, the weight correction is expressed in Eq. 19 [52]:

1ωij(n) = ϕej(n)g′
(
ujJ (n)

)
νiI (n) (19)

The local gradient is introduced [53]:

δ
j
J = −

∂e(n)
∂uj(n)

= −
∂e(n)
∂e(n)

·
∂ej(n)
∂vj(n)

·
∂vjJ (n)

∂uj(n)

= ej(n)g′
(
ujJ (n)

)
(20)

As a result, the weight adjustment can be presented as
1ωij(n) = ϕδ

j
Jν

i
I (n). We can compute the weight adaptation

from the hidden layer to the input layer as:

1ωmi(n) = ϕδ
j
Jv
m
M (n) (21)

Finally, through use of continual learning, decide if the error
fulfills the criteria.

C. SAMF MODULE
The conventional NN is slowly converging and may easily be
reduced to the optimal local practice [54], [55]. The method
is sensitive to the momentum factor parameter since it has
a substantial influence on the convergence rate and steady-
state error. This paper offers a SAMF forWNN.Assume there
are x, y, and z nodes in the input, hidden, and output layers,
respectively. S =

(
Su,v

)
y×z is the loss function that connects

the hidden and output layers, T =
(
Tu,v

)
x×y is the input and

hidden layer weight matrix, h(.) is the function for activation
and vector function definition [56] is described in Eq. 22:

F(x) = (h (x1) , h (x2) , . . . , h (xn))T (22)

For any x, x = (x1, x2, . . . xn)T ∈ Rn. For any input vector
θ ∈ Rm, the output of the network is

γ = F
(
S
(
F
(
T θ
)))

(23)

Among them γ ∈ Rj, let

w =
(
S11, S12, . . . , S1y, S21, . . . Syz,

T11, . . . ,T1x ,T21, . . . ,Txy
)T

=

(
wT1 ,w

T
2

)T
(24)

where

w1 =
(
S11, S12, . . . , S1y, S21, . . . Syz

)T (25)

w2 =
(
T11, . . . ,T1x ,T21, . . . ,Txy

)T (26)
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w1, w2 are the network proprietary vector values. The offline
method updates the weight value after all of the samples are
submitted and not according to the criterion if the samples are
significant. As a result, the online algorithm uses here [57].
Set the goal output OεRj of the input θ ∈ Rm, and the error
presented in Eq. 27:

E =
1
2

(
O− F

(
G
(
F
(
H θ
))))T

·

×
(
O− F

(
G
(
F
(
H θ
))))

(27)

During theKth training, samples θk ,Ok are randomly selected
from sample set N . Set ∇E(k) as the gradient of w in w(k)
when E is θ = θk , O = Ok , k = {1, 2, 3, . . . , n}. At this
point, when the initial value w(0) and w(1) are given, the
weight value is updated in Eq. 28:

w(k + 1) = w(k)− ϕ∇E(k)+ α(w(k)− w(k − 1)) (28)

make ∇w1E(k) and ∇w2E(k) respectively, when

θ = θk ,

O = Ok , the vector weight at w = w(k) is the gradient E . The
online algorithm with adaptive algorithm weight update form
at this moment has been established in Eq. 29:

w1(k + 1) = w1(k)− ϕ∇w1E(k)

+ e−δ−
∥∥∇w1E(k)∥∥ (w1(k)− w1(k)) (29)

w2(k + 1) = w2(k)− ϕ∇w2E(k)

+ e−δ−
∥∥∇w2E(k)∥∥ (w2(k)− w2(k)) (30)

The algorithm weight acquires the ability to withstand vibra-
tion and increase the convergence speed by incorporating the
momentum component, where delta is a constant that governs
the magnitude of the momentum factor. When the gradient is
greater, the error changes more quickly, and the error hook
face is steeper. When the gradient is small, the error change
is gradual and the error hook face is rather uniform.

D. WNN MODEL PARAMETERS TUNING WITH SAMF
The hyperparameters settings influence the prediction accu-
racy and stability of the WNN model. Still, no recommended
algorithm exists that can optimally tune the parameters of the
WNN model. Thus, in this work, the SAMF is introduced to
optimally tune hyperparameters of the WNNmodel to ensure
accurate and stable forecasting performance. The developed
SAMF determines optimal values of hyperparameters and
takes the error function as an optimization objective to fur-
ther improve forecast accuracy by reducing error. The error
function is expressed in terms of the popular form MAPE as:

MAPE =

 1
M

M∑
τ−1

∣∣∣urτ − uβτ ∣∣∣∣∣upτ ∣∣
× 100 (31)

The MAPE is used as an objective function by the SAMF.
Furthermore, the SAMF algorithm selects and tunes hyperpa-
rameters for optimal training of WNN. By using MAPE as

an objective function, we determine the optimal function as
per the best values of MAPE. Finally, WNNmodel employes
the SAMF to get more accuarte and stable predictions with
stable values of MAPE.

E. PROPOSED MODEL COMPUTATIONAL COMPLEXITY
This work demonstrates that theWNN performance is mainly
determined by its parameter setting, and different parameter
settings correspond to different data structures and character-
istics. For this reason, the parameter setting is most informa-
tive inWNNmodeling process and can represent the structure
and characteristic of a specific training data set. However, the
computational complexity ofWNN isO(Z×M3) (whereM is
the size of the training dataset, and Z is the evaluation number
of the parameter selection process), and how to reduce this
computational complexity is an open issue. Hence its appli-
cation is often limited for large-scale data. More specifically,
the WNN modeling process may suffer a computationally
expensive inference, thus increase the running time for the
WNN. Thus,WNN based on SAMF is an effective method to
reduce the computational complexity of WNN learning.

Supposing that the number of training data is denoted by
M , the number of model evaluation is denoted by Z , the
size of momentum factor is denoted by f , the step size of
SAMF-WNN is denoted by u, the dimension of input data
is denoted by b. Generally, u is a relatively small num-
ber, f ≤ M the large sample learning. As mentioned ear-
lier, the model selection complexity of the WNN model is
O(Z × M3). Thus, the model selection complexity of the
proposed SAMF-WNN model is O(Z × u × f 3). The com-
plexity of SAMF algorithm in this paper is equivalent to
the generation algorithm of non-repetitive random sequence,
that is, the complexity of self-adapative momentum pro-
cess is O(u). In summary, the computational complexity of
SAMF-WNN is O(u) + O(Z × u × f 3) = O(Z × u × f 3).
In order to compare the complexity of different non-linear
models, the mainstream non-linear models support vector
machine (SVM) is considered. The following Table 2 shows
the computational complexities of standard WNN, SAMF-
WNN and SVM [58]. We can observe from the above Table2
that the SAMF-WNN significantly speeds up the calculation
speed of WNN: O(Z × u × f 3) ≤ O(Z × M3) indicates
the complexity of SAMF-WNN is lower than the standard
WNN; When The momentum factor satisfies f < M1/3,
the SAMF-WNN will have lower computational complexity
than SVM. Furthermore, we also calculated the complexity of
benchmark models and observed that proposed model have
lower computational complexity as compared to the other
benchmark models as depicted in Table 2.

III. PERFORMANCE ASSESSMENT METRICS
This work uses stability, accuracy, and rate of convergence to
test the effectiveness of the developed model. Statistical tests
and Diebold Mariano (DM) test [59] are used to justify these
three goals.
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TABLE 2. Computational complexities of proposed and other forecasting
models (single and hybrid).

A. STATISTICAL INDICATORS
Five standard statistical indicators are used: Pearson correla-
tion coefficient, MAPE, MSE, RMSE, and Willmott’s index
(WI) [60].

MAPE =

 1
M

M∑
τ−1

∣∣∣urτ − uβτ ∣∣∣∣∣upτ ∣∣
× 100 (32)

MSE =
1
M

M∑
τ=1

(
uατ − u

β
τ

)2
(33)

RMSE =

√√√√ 1
M

M∑
τ=1

(
uατ − u
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WI = 1−

1
M

∑M
τ=1

(
uBτ − u

β
τ

)2
∑M
τ=1

(∣∣uqτ − ūατ ∣∣+ | uττ − ūττ )2 (36)

where M is the number for forecasting steps, uατ and ūατ are
the targeted and mean targeted values, while uβτ and ūβτ are
the forecasted and mean forecasted values respectively.

IV. SIMULATION RESULTS AND PERFORMANCE
EVALUATION
This section describes the experimental results and perfor-
mance evaluation of the developed FE-WNN-SAMF predic-
tion model. The simulation is run on MATLAB 2017b to
demonstrate the effectiveness of the developed model. The
developed model is compared to benchmark models such as
WNN-IGA [52], BPNN, WNN-AMBA [61], and Enhanced
WNN (without SAMF). These models are considered bench-
mark models because their architecture is comparable to the
proposed framework. To guarantee fair experiments between
the proposed and benchmark models, we set the neuron num-
bers of ANNs according to the most accurate one. In general,
there is not a clear theory to help people develop the neuron
number of an ANN. This study selected the number of nodes

by trial and error [62], [63]. After we did many experiments,
we set the neuron number of each model according to the
most accurate one (as shown in Table 3) to evaluate the
proposedmodel more efficiently. Then, based on the obtained
neuron number by trial and error, each ANN experiment was
repeated 200 times to avoid the uncertainty effects. The reli-
ability of the final results and the independence of the initial
random weight values of the ANNs are ensured. The control
parameters remained constant to compare the proposed and
existing benchmark models properly. The developed model is
evaluated using the historical data of AEMO. The data com-
prises New South Wales (NSW), and Victoria (VIC) states
of Australia. Different variables (humidity, temperature, dew
point, and hour of the day) that are typical for the training
forecasting model are used. Historical information covers the
four years from 2017 to 2021 at hourly intervals. The data
consists of humidity, temperature, and load values. Historical
information covers the four years from 2017 to 2021 at hourly
intervals. The datasets goes through the FE module of the
proposed model and transforms it into the desired format
to determine the necessary functionality from the specified
dataset. The processed data is divided into training datasets
and test datasets. 80% of the information is used for training,
and 20% is used for testing. The statistical data is shown in
the Table 4.

A. FS USING XGboost AND DTC
In the FE module, XGboost and DTC-based HFS are applied
to AEMO (NSW) data, selecting preferred attributes and
discarding irrelevant attributes. Each feature sequence is in
vector format. Vectors with different timestamps have feature
values. To predict the energy load of the data, called load
demand, we can extract features that slightly affect the energy
load. HFS calculates the relationship between feature and
electrical load, as shown in the Fig. 4. From the Fig 4, we can
see that the order of most features exceeds the 0.5 value
of µ. Five characteristics, such as DACC, RTMLC, RTCC,
DAMLC, and RSP, are of lower grade than the selected
µ and are therefore discarded during the selection process.
Features with a value more excellent than µ are retained,
and features with a value less than µ are discarded. Use
different thresholds to control the FS process and visualize the
importance of FE in the WNN model. For example, updating
µ from 0.50 to 0.55, 0.65, and 0.75will reduce RTLM, RTEC,
Rgcp, and RT demand, respectively. The results show that as
µ increases, many features are dropped, reducing prediction
accuracy while increasing training speed. Important features
are sent to the FX phase for dimension reduction.

B. FX USING RFE
Fig. 5 shows the FX through REF and comparison with PCA,
accumulative contribution comparison among REFwith PCA
is shown. When the accumulative contribution rate reaches
95% REF extract most of the component thus we select REF
to guarantee forecasting accuracy.
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TABLE 3. Experimental parameter values.

TABLE 4. Statistical parameters of the historical datasets. (NSW and VIC.)

C. LEARNING ASSESSMENT
Australia’s New South Wales training and testing datasets
obtained from the FE module are sent to the SAMF-based
WNN model for network training and validation. Fig. 6
shows thec learning behavior over several iterations using
the testing and training datasets. The proposed framework
is generalized. In addition, it is not affected by overfitting
or underfitting. In addition, the results shown in Fig.6 that
the proposed framework has a small gap between training
and test errors. There is no variance and bais. Therefore, the
developed model was trained to predict the electrical load of
the day-ahead and week ahead. Investigations are conducted

FIGURE 4. Features selected by HFS (XGboost & DTC): (a) NSW.

FIGURE 5. FX through REF and comparison with PCA.

to estimate the effectiveness of the developed model, taking
into account the rate of convergence, accuracy, and stability.
The detailed test results are as follows:

D. TEST-I: AUSTRALIAN’s STATE (NSW)
In this experiment, we consider actual hourly resolution-based
data from the Australian state (NSW) as a case study to
validate the developed model for STLF in terms of stabil-
ity, accuracy, and rate of convergence. The Figs. 7, 8 and
Tables 5, 6 show the pictorial and numerical results confirmed
during the 200 iteration. The proposed model closely follows
the target load curve approximated to the benchmark models.
However, the developedmodel shows optimistic performance
proximate to other models.

Results demonstrate the following observations:
1) The statistical analysis for the 200 iterative experiments

is depicted in Table 5. The results show stability test.
From the Table 5, MAPEs of the devised and bench-
mark frameworks are 0.3190, 0.3489, 0.5671, 0.4910,
and 0.2190 respectively. The proposedmodel has lower
MAPE as compared to the other models. This shows
that the devised model is more stable and consistent
as compared to the benchmarks models as shown in
Tables 5 and 6.
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TABLE 5. Stability analysis in terms of DM test & MAPE and forecasting accuracy of proposed and other benchmark models considering the Australian
states (NSW, and VIC) hourly resolution load datasets.

TABLE 6. Performance evolution of proposed and other benchmark frameworks considering hourly resolution load dataset of NSW based on MSE, MAPE,
RMSE, R, and WI as well computational time.

FIGURE 6. The learning assessment of devised model on training and
testing datasets from AEMO (a) NSW.

2) The devised model achieves an accuracy of 98.2%with
the lowest mean error of 0.52% approximated to other
existing models. Forecast accuracy results are shown in
Table 5. The experimental investigation demonstrates
that the proposed model for evaluating accuracy sur-
passes the other benchmark models.

3) The convergence rate of the devised model compared
to the benchmark models is evaluated with three test
functions. The test functions results are illustrated
in Tables 6. We observed that the devised model
converged after 21 iterations. While other bench-
mark frameworks such as WNN-IGA, WNN-AMBA,
BPNN, and Enhanced WNN (without SAMF) con-
verged after 43, 131, and 129 iterations, respectively.
The network training times for the devised and other
the benchmark models are 97s, 121s, 145s, and 105s,
respectively. The results demonstrate that the proposed
model has a high convergence rate with low computa-
tional complexity like other existing models.

Remark 1: The proposed framework is considered supe-
rior to the benchmark frameworks in all performance metrics
based on experimental results. This remarkable performance
is because the FE extracts repetitious, irrelevant, and extra-
neous features from the prepared data and determines the
desired features that contribute significantly to forecasting
efficiency. However, the SAMF optimizes the WNN model to
enhance accuracy, stability, and convergence rate simulta-
neously. Therefore, integrating FE and SAMF can improve
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FIGURE 7. Relative analysis of the devised FE-WNN-SAMF model on
Australian’s state (NSW) hourly load data considering stability,
convergence rate, and accuracy: day-ahead forecasting (a) Monday; Week
ahead forecasting (b) from 12/04/2017 to 12/04/2017.

predictive efficacy and be effectively used with different meth-
ods in other areas.

E. TEST-II: AUSTRALIAN’s STATE (VIC)
In this experiment, we consider actual hourly resolution-based
data from theAustralian state (VIC) as a case study to validate
the developed model for STLF in terms of stability, accuracy,
and rate of convergence. The Tables 5, 8 show the numerical
results confirmed during the 200 iteration. The proposed
model closely follows the target load curve approximated to
the benchmark models. However, the developed model shows
optimistic performance proximate to other models.

Results demonstrate the following observations:

1) The statistical analysis for the 200 iterative experiments
is depicted in Table 5. The results show stability test.
From the Table 5, MAPEs of the devised and bench-
mark frameworks are 0.3289, 0.5134, 0.6217, 0.6145,

FIGURE 8. Relative analysis of the devised FE-WNN-SAMF model on
Australian’s state (NSW) hourly load data considering stability,
convergence rate, and accuracy: (a) Accuracy; (b) Convergence rate profile.

and 0.2219 respectively. The proposedmodel has lower
MAPE as compared to the other models. This shows
that the devised model is more stable and consistent
as compared to the benchmark models as shown in
Tables 5.

2) The devised model achieves an accuracy of 97.5%with
the lowest mean error of 0.49% approximated to other
existing models. Forecast accuracy results are shown in
Table 5. The experimental investigation demonstrates
that the proposed model for evaluating accuracy sur-
passes the other benchmark models.

3) The convergence rate of the devised model com-
pared to the benchmark models is evaluated with
three test functions. The test functions results are
illustrated in Tables 5. We observed that the devised
model converged after 21 iterations. While other
benchmark frameworks such as WNN-IGA, WNN-
AMBA, BPNN, and Enhanced WNN (without SAMF)
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TABLE 7. Relative assessment of WNN model with and without SAMF and FE, and WNN with other optimization modules for STLF.

TABLE 8. Performance evolution of proposed and other benchmark frameworks considering hourly resolution load dataset of VIC based on MSE, MAPE,
RMSE, R, and WI as well computational time.

TABLE 9. comparisons of the mean difference of MAPE, RMSE and R2 of all models across various datasets (NSW and VIC).

converged after 44, 132, and 128 iterations, respec-
tively. The network training times for the devised and
other the benchmark models are 96s, 123s, 142s, and
103s, respectively. The results demonstrate that the
proposed model has a high convergence rate with low
computational complexity like other existing models.
Furthermore, it is added that complexity of the frame-
work depends upon the time at which it converged.

Remark 2: The proposed FE-SAMF-WNN framework is
expected to achieve the lowest MAPE from the above experi-
ments, demonstrating that the proposed model is more accu-
rate than other benchmark models. On the other hand,
FE-SAMF-WNN is the most stable framework and has a
minor standard deviation of MAPE among the benchmark
frameworks. FE-SAMF-WNN includes FE and the optimiza-
tion process, but its response time is minimal compared to
the benchmark frameworks. Therefore, it is clear that the
proposed three-purpose framework is the most accurate, sta-
ble, and fastest of all the frameworks analyzed. The main
reasons for choosing different Australian states such as NSW
and VIC for the case study are the significant differences
in geographic features, climatic characteristics, geographic

location, economic development, industrial structure, and
regional size. Suppose the proposed forecasting framework
performs better in significantly diverse environments. In that
case, it could be reasonably concluded that the developed
framework has notable forecasting performance and broad
applicability in various areas for the same indicator under
different circumstances and is practicable in price, genera-
tion, and wind speed forecasting of the power system.

F. LOAD FORECASTING MODEL CONSIDERING SEASONAL
FACTORS
The performance is ranked in terms of MAPE, RMSE and
R2 of the 200 times in NSW and VIC. Prediction accuracy
measure of different models for the two testing datasets(NSW
and VIC) are presented in details in Table 9. Table 9 shows
the comparisons of MAPE, RMSE and R2 of all models
across various datasets. In all models, the single BPNN
model has the worst performance on R2. The reason might
be the intrinsic limitations of the single BPNN model for
load forecasting, such as overfitting on training sets and local
optimum. Comparing the classical WNN-IGA model and
the WNN-AMBA models, the WNN-AMBA model achieves
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TABLE 10. The DM test values between the proposed model and other
models in the two real-world datasets.

lower accuracy because of not considering the other relevant
covariates, such as the temperature. However, hybrid models
WNN-AMBAandWNN-IGAobtain better performance than
singlemodels. Furthermore, FE-PSO-BPNNhas good perfor-
mance on R2, which is due to the optimization technique of
PSO and the feature engineering. Comparing the WNN-IGA
model, the proposed FE-SAMF-WNN model is more accu-
rate by using the optimization of SAMF. For the analysis
of error measures above, the proposed hybrid model was
achieved higher performance than other examined models.
Error measures with the best performance are highlighted in
bold in Table 9. Furthermore, the FE-PSO-SVR modeling
framework proposed in [64], which dealt with univariate
short-term load forecasting based on SVR optimized using
PSO, is compared with the proposed model of this paper for
emphasizing mainly the importance of exogenous variable
and the effectiveness of multivariate decomposition. To fur-
ther verify the performance of prediction, statistical method
(DM test [59]) is employed to determine whether a statisti-
cally significant difference exist among the examined models
for load forecasting. Note that the DM test can effectively
eliminate the constraint of random sampling dynamics and
provide comprehensive evaluation for accuracy and stability.
The DM test results in the testing sets are shown in Table 4.
The forecasting errors of single and different hybrid models
were tested using the DM test, and the DM test results indi-
cated that the FE-SAMF-WNN test result consistently exceed
the 5% significance level upper bound in all cases. According
to the comprehensively evaluation of DM test, it can be
reasonably concluded that the proposed modeling framework
not only has higher forecasting accuracy than other models,
but also shows significant differences at a certain significant
level, which further verifies the performance robustness of the
proposed model in load forecasting.

G. DISCUSSION
This section describes comparative assessments, including
the importance of predicting outcomes and effectiveness with
each purpose aspect. The proposed framework has reduced
MAPE compared to WNN-IGA, WNN-AMBA, BPNN, and
enhanced WNN (without SAMF) models. In addition, the
proposed framework shows stable performance compared
to WNN-IGA, WNN-AMBA, BPNN, and enhanced WNN
(without SAMF) models. Similarly, the accuracy of the pro-
posed framework is 98.2%. In contrast, WNN-IGA has an
accuracy of 95.6%, WNN-AMBA has 93.2%, BPNN has

93.2%, and Enhanced WNN (without SAMF) has 87.54%.
In addition, comparative experiments are performed using
WNNs that do not use SAMF, WNNs that use SAMF, and
WNNs that use other optimization algorithms. The usefulness
of the devised model over WNN with and without various
optimization algorithms is reflected in Fig. 9. The results
acquired are shown in Table. 7. The performance of WNN
optimized by SAMF is functional compared with WNN opti-
mized by other benchmark algorithms because SAMF oscil-
lates the error curve of the network in which the network
automatically adjusts the momentum coefficient according
to a steep and slow error on the curved surface. Hence, the
devised three-objective FE-WNN-SAMF model is accurate,
stable, and converged among the benchmark models as ana-
lyzed in Fig. 9 for future ELF.

H. COMPARISON OF WNN MODEL WITH SVM
Comparative experiments are conducted using SVM without
optimization algorithms, SVM with optimization algorithms,
and SVM with proposed SAMF. The purpose is to reflect
the comparison of the proposed WNN model with the SVM
model. The obtained results are listed in Table 11. It is evident
from the results that SVM without optimization algorithms
has the highest MAPE (6.901), MSE (9089.89), RMSE
(125.181), and lowest R (0.5189) and WI (0.4978). In con-
trast, the SVM with optimization algorithms (PSO and FFA)
has a relatively low error and correlation statistics (R and
WI) near 1. Thus, the results illustrate that the SVM model
with optimization algorithms produced better performance
(lowest MAPE, RMSE, MSE, and largest R and WI) than the
SVM model without optimization algorithms. This relatively
better behavior is due to the integration of the optimization
algorithms with the SVMmodel. On the other hand, the SVM
model with the SAMF has the lowest error statistics (MAPE
(1.6082), MSE (4678.17), RMSE (30.9191)), and near one
correlation coefficients (0.8878, 0.8919). The minimum error
statistics and R and WI near 1.0 means a perfect match
between observed and predicted values. This significantly
improved the performance of the SVMmodel with the SAMF
compared to the SVM model with other optimization algo-
rithms because the SAMF algorithm uses an adaptive control
procedure that improves both local and global searchability.
From the comparison mentioned above, we observed that the
single/individual SVM model has a relatively low error and
correlation statistics (R and WI) near one as compared to sin-
gle/individual WNN model, as depicted in Tables 7 and 11.
In contrast, the hybridization of the WNN (with FE and
SAMF) model has a relatively low error and correlation
statistics (R and WI) near one as compared to the hybridiza-
tion of SVM (with FE and SAMF). Based on the analysis,
it is evident that the proposed framework (FE-SAMF-WNN)
achieves the lowest MAPE values compared to the frame-
work (FE-SAMF-SVM), which endorses that the devised
model FE-SAMF-WNN has fast, accurate, and stable
performance.
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TABLE 11. Comparative assessment of SVM model with and without SAMF and FE, and SVM with other optimization modules for STLF.

FIGURE 9. Comparison of Proposed WNN model with SVM model.

I. LIMITATIONS AND FUTURE WORK
Power grids are anticipated to be more complex with the
development of emerging renewable energy (RE) technolo-
gies. The uncertainties of smart grid systems are increasing
as many factors may simulate electricity demand. This paper
focuses not on the future load demand from a long-term per-
spective but the short-term load fluctuation. The forecasting
framework devised in this research does not consider other
related factors but is only based on the detailed historical
short-term load. Many key impacts may be missing, and there

are also significant research gaps there. From the perspective
of life cycle assessment (LCA), research on the whole system
from ‘‘cradle to grave’’ is introduced, which can be employed
in forecasting models. Moreover, scientific scenarios can be
inducted to combine long-term and short-term forecasting,
and more work must be done in related fields. Follow-up
studies could be performed in the future work, including but
not limited to:
• The forecasting model can consider additional factors or
parameters to improve the STLF effectiveness.

• Research on energy systems, particularly the use of RE,
needs to be studied so that the distribution and structures
of future RE can be well known, which is a critical factor
for STLF.

• Paying close attention to developing data cleaning tech-
nologies to deal with irregular and unstable short-term
load data so that the adverse impacts of noise can be
effectively controlled.

• A dynamic model selection strategy could be considered
when determining the weights of hybrid or combined
models.

• LCA-basedmodeling and scenario analysis can be intro-
duced into forecasting models.

• More case studies in different smart grid systems could
be done to show the scalability of the proposed forecast-
ing model.

J. APPLICATIONS AND POLICIES OF STLF
STLF plays a pivotal role in balanced energy distribution,
economics, and power system’s secure and reliable opera-
tions. Accurate load forecasting reduces power grid collapse,
alleviates costs and risks, improves power grid security, and
helps policymakers in optimal planning and decision making,
thereby making power grid cost-effective and environment-
friendly. Moreover, it provides a strategic insight into the
present power situation to estimate the amount of energy
imported or exported. In the smart grid (SG), STLF is
imperative for strategic decisions like operation and plan-
ning management, maintenance scheduling, load switching,
power generation expansion, security and demandmonitoring
assessments, and ensuring a reliable provision of electricity.
In contrast, electric load forecast overestimation or underes-
timation can introduce various challenges to the SG strategic
decisions.

Electric load forecast overestimation results in the estab-
lishment of unnecessary spinning reserves, generation
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capacity, and insufficient energy distribution, leading to
increased operating cost. Contrarily, electric load forecast
underestimation poses reliability, power quality, security, and
monitoring problems. Therefore, accurate and precise ELF is
needed for SG distribution system operators (DSOs) to ensure
sustainable, secure, and reliable power system operation.
Inadequate and ineffective forecasting abilities of DSOs lead
to significant power losses and even blackouts. For exam-
ple, New York suffered from a severe blackout on 17 July
2006. Due to the blackout, many people of Queens bor-
ough of New York were affected, hundreds of businesses
were stopped, prison complex at Rikers Island started their
standby generators, escalators and elevators in commercial
and industrial buildings were paralyzed, traffic signals were
non-functional in roads and streets, and various incidents
occurred at two terminals of the airport. The electrical power
systems were entirely restored until 18 Aug 2006.

Similarly, a large blackout was recorded in Moscow on the
morning of 25May 2005. At the same time, the power system
of Tula Oblast and Kaluga Oblast was also disrupted, which is
200 kilometers apart from Moscow. This blackout adversely
affected residential activity, commercial business, industrial
production, transportation, and communication services [3].
Such blackouts might be avoided if an early warning message
is issued based on accurate and reliable forecasts to timely
enact response measures. Thus, large-area blackout causes
economic loss. Moreover, inaccurate prediction increases the
utility cost; for example, a 1% increase in the prediction error
will increase the overall utility cost by 10 million [67]. With
this motivation, efforts are initiated to ensure fast, accurate,
and stable load forecasting in order to guarantee secure,
safe, and reliable power grid operation, which alleviates both
economic and power losses [4].

V. CONCLUSION
STLF plays a vital role in the economics and safety of energy
system operations. Promising forecasts have a significant
effect on the economy. Recently, industry and academia are
increasingly focusing on STLF. Exemplary predictive effi-
ciency can minimize risks and costs, facilitate the security
of energy systems, assist managers in making optimal plans,
and improve grid management’s financial and social ben-
efits. Robustness, convergence rate, and accuracy are cru-
cial in predictive models. It is desirable to build an STLF
method that achieves these three aspects simultaneously.
The present research proposes a navel WNN-based hybrid
model FE-WNN-SAMF that uses SAMF to optimize the
threshold values and initial random weights of the WNN for
STLF. Furthermore, the FE module is integrated to improve
computational performance and address dimensionality con-
cerns. The goal is to achieve improved accuracy, outstanding
stability, and fast convergence simultaneously. The devel-
oped model compares with benchmark frameworks such
as WNN-IGA, WNN-AMAB, BPNN, and Enhanced WNN
(without SAMF), considering stability, accuracy, and conver-
gence rate. Based on many predictions and analyses, We can

conclude that the effectiveness of the developed model out-
weighs the effectiveness of the other models considered.

Accordingly, the proposed hybrid model can become a
suitable modeling framework in load forecasting. However,
we considered only the historical load and the corresponding
temperature as input variables of load forecasting. Some
other lagged variables and more exogenous variables might
be examined for improving the forecasting performance.
Additionally, SAMF and its relevant factors are usually
time-consuming to search for the optimal parameters of
WNN. Therefore, some heuristic algorithms should be called
upon for addressing the computational cost in the further
investigation.
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