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ABSTRACT Detecting and eliminating sprouted potatoes is a basicmeasure before potato storage, which can
effectively improve the quality of potatoes before storage and reduce economic losses due to potato spoilage
and decay. In this paper, we propose an improved YOLOv5-based sprouted potato detection model for
detecting and grading sprouted potatoes in complex scenarios. By replacing Conv with CrossConv in the C3
module, the feature similarity loss problem of the fusion process is improved, and the feature representation is
enhanced. SPP is improved using fast spatial pyramid pooling to reduce feature fusion parameters and speed
up feature fusion. The 9-Mosaic data augmentation algorithm improves the model generalization ability;
the anchor points are reconstructed using the genetic algorithm k-means to enhance small target features,
and then multi-scale training and hyperparameter evolution mechanisms are used to improve the accuracy.
The experimental results show that the improved model has 90.14% recognition accuracy and 88.1% mAP,
and the mAP is 4.6%, 7.5%, and 12.4% higher compared with SSD, YOLOv5, and YOLOv4, respectively.
In summary, the improved YOLOv5 model, with good detection accuracy and effectiveness, can meet the
requirements of rapid grading in automatic potato sorting lines.

INDEX TERMS Object detection, convolutional neural network, sprouting potato recognition, mosaic,
hyperparametric optimization, spatial pyramid pooling.

I. INTRODUCTION
Potatos are one of the most consumed food crop worldwide,
and is cultivated in more than 100 countries. As the fourth
largest crop after maize, wheat, and rice, potato production is
of significant concern to the food industry, supporting many
research projects and, in particular, potato storage which is
the basis of the potato industry [1]. Potatoes are taken as a
kind of strategic staple food in China, which indicates a need
to improve potato processing. The bottleneck in this strategy
is the selection of suitable raw materials, technologies, and
equipment for processing potatoes. Potato sprouting during
storage is lethal for the whole industry, with sprouted potatoes
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containing as little as 0.2 mg/g of solanine leading to asphyx-
iation and even death [2], [3], with resulting net industrial
losses and increased food waste.

Since the beginning of the twentieth century, many
researches has been conducted on identifing and grading of
sprouted potatoes, some of which are based on the exter-
nal quality detection of traditional computer vision systems,
mainly: Jing et al. [4] proposed the Otsu method to remove
potato image background. He used the perception learning
algorithm (PLA) to classify two kinds of potatoes, and finally
used the K-nearest neighbor classification algorithm (KNN)
to identify surface sprouted potatoes. Weidong and Zhong [5]
proposed a method to extract the feature vectors of multidi-
mensional representations of shapes within a single potato
region using principal component analysis (PCA) to reduce
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the dimensionality and a ten-fold cross-validation technique
to bring a single potato image into a parameter-optimized
SVM model for automatic potato classification. There are
also studies on how hyperspectral and multispectral imaging
techniques can be used to acquire full spatial multidimen-
sional features. Hai-Long et al. [6] presented a comparative
study on high penetration emission and reflection imaging
techniques using reflection and transmission spectroscopy to
select randomly placed potato damage identification through
subwindow alignment analysis (SPA). Ye et al. [7] proposed
a non-destructive detection method based on the moisture
method to obtain the average spectrum of each potato by
masking, using the correlation coefficient algorithm SA opti-
mization, for SNV processing data for dimensionality reduc-
tion, and applied grid search algorithm to optimize modeling
parameters to achieve the classification of potato damage
degree.

With the continuous development of deep learning tech-
nology in recent years, the target detection technology has
wide application in various industries due to its good in-depth
feature perception capability [8], [10], [11], [12]. Among the
applications in agriculture for example, apple-related recog-
nition [13], [14], [15], tomato recognition [16], [17], [18]
and crop disease recognition [20], [21], etc. In the research
of potato recognition, Marino et al. [22] mainly focused on
a weakly supervised deep learning method to classify and
localize segment defects on potatoes, by improving convo-
lutional neural network(CNN) using defect activation map
(DAM), motivating CNN to predict key regions of a certain
class, and using a coarse-to-fine segmentation method to
obtain more accurate defect sizes thus enables a method for
classifying defects in multiple potato images. Rui et al. [23]
Improved the Faster R- CNN method for potato bud-eye
recognition by also acquiring image data under a fixed image
acquisition system and optimizing the NMS algorithm in
R-CNN using a Gaussian weight reduction function, thus
in order to improve the recognition of a potato bud-eye.
The recognition methods mentioned above are proposed in
a specific scenario that is predicted, and the data model
constructed needs to satisfy the image acquisition system set
up. These techniques proposed by previous studies mainly
satisfy the quality grading of potatoes in an actual state or
a positive scene using different detection means. In contrast,
the detection and grading of potatoes in various complex
scenarios using computer vision techniques are less involved.

This paper presents a deep learning-based image detec-
tion algorithm for sprouted potatoes. The algorithm aims to
achieve efficient and accurate intelligent grading and screen-
ing of potatoes in the storage process and daily quality inspec-
tion, since the use of human power to detect sprouted potatoes
is a common practice throughout the potato grading process
while relying on human power to be able to detect sprouted
potatoes in complex scenarios. Therefore, the identification
of sprouted potatoes in various scenarios must be satisfied.
Suppose real-time, online, and high-throughput detection of
sprouted potatoes can be achieved. In that case, it will save

labour costs and avoid errors caused by distracted staff, erro-
neous detection by human eyes, and missed detection, which
will make a significant contribution to the whole production
line. In summary, this paper proposes a germinating potato
image recognition method based on an improved YOLOv5
model based on the structure of the YOLOv5 model. More-
over, the following two contributions are made.

-Firstly, we built the sprouted potato dataset, covering
three types of potatoes: healthy potatoes, sprouted potatoes
and rotten potatoes. We also propose improved data aug-
mentation methods for image augmentation and optimiza-
tion to strengthen small target features and improve model
generalization.

-Secondly, we optimize the YOLOv5 algorithm from sev-
eral perspectives. A new feature extraction network is pro-
posed, which improves the original convolutionmodule using
CrossConv based on intra-graph convolution to enhance fea-
ture similarity. SPPF (Fast Spatial pyramid pooling) replaces
SPP in the original network structure, which reduces the
number of fusion parameters and accelerates the fusion speed.
The k-means of the genetic algorithm is used to reconstruct
the anchor size and improve the detection accuracy, followed
by fine-tuning the accuracy of the model using the hyperpa-
rameter evolution mechanism and training with a multi-scale
strategy to improve the generalization ability of the model.

II. RELATED WORK
A. YOLOv5 FRAMEWORK
Ultralytics launched YOLOv5 [24] in June 2020. So far,
seven iterations have been introduced since the introduction
of YOLOv5-v1.0, which incorporates better experimental
networks as a parameter structure into the backbone. Cross
Stage Partial Network (CSPNet) is used to improve back-
bone, mixed precision (FP16) is used to accelerate small
target inference, and PANet [25] is used to reduce param-
eters. Its detection speed and accuracy on COCO datasets
are better than previous YOLOv4 and YOLOv3 algorithms.
Four models with different weights, v5s, v5m, v5l and v5x,
are developed, and the depth and width of the models
are controlled by the depth_multiple and width_multiple
parameters, correspond-ing to the four different model levels
of YOLOv5. The mAP for each model is enhanced sequen-
tially, and the speed is decreased sequentially while the
parameters are increased. The YOLOv5 network structure
consists of an input layer of 640×640 image, Backbone
Network, Neck Network and Detector (shown in Fig. 1).

The Backbone Network is the core structure of YOLOv5,
consisting of Focus, Conv, C3 (CSPNet Bottleneck with
three convolutions), and Spatial Pyramid Pooling (SPP)
modules. The Focus module slices the Mosaic image input
vertically and horizontally and then stitches it together. Com-
pared with convolutional downsampling, the Focus output
depth is increased four times, and more image information
is retained. Conv is the basic convolution unit of YOLOv5,
which sequentially performs two-dimensional convolution,
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FIGURE 1. YOLOv5 model structure.

FIGURE 2. Improved YOLOv5 model structure.

regularization, and activation operations on the input. C3 is
composed of 3 Convs and several bottlenecks. The Concat
operation is carried out with the original value after the
input is subjected to a 1×1 three-layer convolution with the
convolution kernel. Bottleneck completes the residual fea-
ture transfer without reducing the features. SPP is a spatial
pyramid pooling layer. SPP performs three different sizes of
maximum pooling operations on the input, and the output

result is spliced into Concat, and the output depth is the
same as the input depth. The 11 and 15 layers of the Neck
Network use the upsample module to expand the features.
The number 4 and 15 layers after upsampling are further
fused using Concat to form a more extensive feature map and
output to the Detector for prediction. YOLOv5 has three fea-
ture detection scales suitable for feature detection of different
sizes.
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B. IMPROVED NETWORK MODEL DETECTION SCALE
The advanced feature mapping of the YOLOv5 network
model has a broader acceptance domain and focuses on rep-
resenting abstract semantic information. However, because
it focuses on extracting more comprehensive features, it is
insensitive to small target features, resulting in poor perfor-
mance on tiny target datasets. YOLOv5 includes three feature
detection scales. The largest feature map is 80×80. When
the input image size is 640×640, means that feature maps
smaller than 8×8 are not detectable. In this paper, a detection
scale is added. Themaximum feature map is 160×160, which
satisfies the detection target of more than 4×4 pixels and can
meet the detection requirements of more acceptable targets.
The structure of the improved YOLOv5 model is shown in
Fig. 2, and the parameters are shown in Table 1.

TABLE 1. Improved YOLOv5 network structure.

The parameter ‘‘From’’ indicates that the input from the
previous layer of the network is accepted; for the Concat
layer, ‘‘From’’ indicates that the existing layer is integrated

with the features of the specified layer. ‘‘Params’’ are the net-
work layer parameters of the current layer; modules indicate
the name of the model used in the current layer. In this paper,
a detection head is added to the original detection scale, an
up-sampling layer is added, the layer with serial number 20 is
merged with the second layer, and the output feature map is
regarded as a 4-fold sampling detection. The values in the
‘‘Arguments’’ column indicate the number of input channels,
the number of output channels, the size of the convolution
kernel, and information about the step size of the module,
respectively.

C. CROSSCONV IMPROVED C3
CrossConv [26] transfers features between two feature
map structures to be matched. A similarity matrix is con-
structed by calculating the similarity of any two vectors
between the two graphs. The Sinkhorn algorithm is used to
solve the similarity matrix to obtain a matching relationship,
and the predicted matching relationship is used as the span
between the two graph structures. The weight of the graph
is updated. Therefore,the cross-graph convolutional layer
simultaneously considers the information of the two graphs to
bematched during thematching process. Through CrossConv
update the initially relatively similar features between the two
graphs will be more similar. Therefore, the C3C module in
Table 1 represents the C3 module before the improvement,
while Fig. 3 represents the use of CrossConv to improve the
Conv in the YOLOv5 model C3.{

h(k)1i

}
← CrossConv

(
Ŝ,
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FIGURE 3. CrossConv improved C3 structure of YOLOv5.

In formula (1), (2), (3), Ŝ replaces the adjacency
matrix, Ŝ

T
is the transposed matrix of Ŝ, and the transposed

matrix Ŝ
T
represents the transformation of primitive infor-

mation; the image augmentation operation is regarded as a
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fine-grained matrix transposition; Select v1 of the k-1 layer
from Ŝ or Ŝ

T
, v2 is the feature vector

{
h(k)2j

}
obtained by

CrossConv,
{
h(k)1i

}
is the updated weight.

D. IMPROVE MOSAIC DATA AUGMENTATION
The proposal of Cutmix [27] changed the method of data aug-
mentation that relied on experience in the past. The included
Mixup, Cutout, and Cutmix combinations enhance the data,
and many verifications show the correctness of this method.
The 9-Mosaic data augmentation method proposed in this
paper is improved on Cutmix, and a new data processing
method is proposed: load an original picture, randomly select
eight pictures, combine them, and use the hyperparameters
translate, scale, and scale in Table 3 shear to deal with it.
The effect diagram is shown in Fig. 4. The advantage of this
method is to enrich the background of the detected object;
especially the random scaling increases the tiny target so
that the robustness of the network is improved to a certain
extent. On the other hand, with 9-Mosaic data augmentation,
the model input will calculate nine images, which implicitly
increases the batch size and allow the model to converge
quickly and reduces the requirement for GPU performance.

FIGURE 4. 9-Mosaic data augmentation.

E. K-MEANS CLUSTERING ALGORITHM TO REGAIN THE
INITIAL ANCHOR
The Detector structure prepares initial anchors of different
widths and heights for the three Detect modules. The initial
anchors contain prior knowledge of the target data, and their
selection will positively affect the learning of the network
and the target detection effect. This paper uses k-means of
genetic algorithm to match the best anchor points, as shown
in Fig. 5. The iterations are 1500 times with img_size=640

or 940 and thr=0.4, where img_size is the size of the input
image. Increasing img_size helps to improve the recognition
accuracy but increases the computational burden. The thr
determines the aspect ratio of the target box. Under the same
thr parameter, the number of iterations, img_size and the
number of anchor points K together determine the optimal
anchor point. Improving these parameters can help improve
the accuracy of recognition. Fig. 6 shows the relationship
between the change in gain due to different parameter com-
binations as the number of iterations increases. When K=9
transmitted iterations 500 times, the fitness of img_size=960
is greater than img_size=640. After 800 iterations of genetic
iterations, the fitness remains steady; by comparison, when
K=12, the fitness of the first three cycles fitness improves
quickly and remains steady after the 800th genetic cycle.
Compared with K=9, there is a certain improvement effect.
In this paper, img_size=640, four layers of anchor points,
namely K=12, 1500 genetic iterations to reacquire the initial
anchor as shown in Table 2.

FIGURE 5. Genetic algorithm to calculate the anchor process.

FIGURE 6. Calculation results of genetic algorithm using different
combinations of parameters.
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TABLE 2. Genetic iteration to obtain anchor results.

F. SPPF IMPROVES SPP
In the improved YOLOv5 network structure, Table 1 serial
number 8 can generally be understood as the eighth layer of
the model network; the eighth layer is the Backbone layer,
SPP [28] is generally at the end of the Backbone. It is gen-
erally believed that the ability to extract features is enhanced
with the deepening of the network. SPP in the original net-
work structure shown in Fig. 7(a) uses three scales 5, 9, 13 for
multi-scale fusion; if the shape of the fused potato feature
map is more uniform, small target location information with
overlap will become inaccurate during the fusion process,
or even lost in severe cases. Due to many potato shoots in
the dataset that overlap and cross with rotten potatoes, there
will be missed detections and reduced accuracy. Here SPPF
is used instead of SPP in the original network structure. the
improved SPPF shown in Fig. 7(b) uses a single parameter5
for pooling, which reduces the number of fusion parameters,
accelerates fusion pooling, and improves the accuracy of
potato detection after fusion.

FIGURE 7. SPPF improvement SSP comparative analysis.

G. HYPERPARAMETER EVOLUTION MODEL MECHANISM
Hyperparametric optimization [29] occupies an essen-
tial place in machine learning research. We constantly
want to tune hyperparametric optimization models as part
of the scientific process. Hyperparameters are different
from model parameters and need to be set before the
model is trained. Hyperparameters are usually not intu-
itive, but they have a significant impact on the model’s
performance. Unlike model parameters, hyperparameters are
usually unpredictable. Therefore, optimization of hyperpa-
rameters usually requires an empirical search to evaluate

the model’s performance on training and validation samples.
The efficiency of hyperparameter tuning has been further
improved after automatic hyperparameter optimization has
been proposed, but not all datasets are suitable for automatic
hyperparameter tuning. This paper uses automatic stochastic
search to explore the more necessary hyperparameters. The
stochastic search sets a random value for the hyperparame-
ters, evaluates the model after each training, and then selects
the optimal value for the parameter settings; since the dataset
of this paper has only 2316 images, all data are included in
the hyperparameter evolution process. The hyperparameters
were evolved 300 times, and finally, the hyperparameters
were finalized during the evolution of 256 epochs (as shown
in Table 3), and training the model with these hyperparame-
ters usually results in better performance.

TABLE 3. Hyperparameters for optimizing YOLOv5.

III. MODEL VALIDATION
The potato dataset consists of a web crawler and
data extracted from Fruits360 [30]. (The dataset is
available at https://www.agridata.cn/data.html#/datadetail?
id=289632). The data were filtered according to the rule of
excluding potatoes with differentiated potato buds, sprouted
potatoes with a single scene and non-potato images, and
finally obtained a total of 513 images that met the rule, plus
1803 potato images from Fruits-360, totaling 2316 images;
used to create training and test datasets. The dataset con-
sisted of healthy potatoes with sprouted potatoes and rotten
potatoes, As shown in Fig. 9. The data acquired through the
network is not well standardized, and there exists a large
number of images of various types of different sizes, in order
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FIGURE 8. Data set samples healthy potatoes (a), sprouted potatoes (b), rotten potatoes (c).

to unify the data; the potato image data was processed using
waifu2x-caffe [31] with parameters set in RGB image mode
with noise reduction Level1 and conversion mode two and
saved in JPG format. The potato samples were divided into
the training set and test set in the ratio of 8:2. The number
of images in the training set was 1843, and the number of
images in the test set was 461, of which the number of label
categories in the training set is shown in the table below.

TABLE 4. Number of label categories in the training data set.

After pre-processing, the potato dataset was analyzed using
the Table 2 anchor points, and the data visualization results
were obtained by taking a normalized approach. In Fig. 8(a),
x and y refer to the location of the center point, and the blue
square represents the location of the point the more concen-
trated the center point of the target box. The width and height
in Fig. 8 (b) represent the width and height of the objects
in the dataset labels, respectively. From Fig. 8 (a)(b), it can
be seen that the dataset objects are more evenly distributed,
and the proportion of small andmedium-sized objects is more
prominent, which also indicates that the dataset is suitable for
fusion features with small sampling values. In addition, the
presence of darker colored square blocks for the coordinate
values in Fig. 8 (a) indicates that there is much overlap
in the potato germination in the dataset. In this paper, the
problem of identifying overlapping germinating potatoes can
be improved by using CrossConv to modify the C3 model.

A. TRAIN THE NETWORK MODEL
The experimental model in this paper was trained using
ultralytics YOLOv5. The model provides powerful model
configuration capabilities for each module on a fine-grained
basis, without the worry of tedious process control. Since the
potato dataset is not correlated with ImageNet [32], we do
not use the preset weights here. We performed training with
300 epochs using the hyperparameters in Table 3, with batch

FIGURE 9. Dataset analysis graph.

size adjusted to 64 and image size adjusted to 640×640,
using approximately 5 hours. Table 5 shows our experimental
environment configuration, and Fig. 10 shows the different
performances of the improved model in the training and
validation sets.

TABLE 5. Experimental environment configuration.

Three different types of losses are shown in Fig. 10: box
loss (box_loss), target loss (obj_loss), and classification loss
(cls_loss). Box loss indicates the extent to which the algo-
rithm can locate the center of an object and the extent to which
the predicted bounding box covers the object. Target loss is
essentially a measure of the probability that an object exists in
the proposed region of interest. If the objectivity is high, the
image window may contain objects. Classification loss gives
the ability of the algorithm to predict the correct class of a
given object. The model improves rapidly in precision, recall,
and average accuracy, leveling off after about 200 epochs.
The validation data’s box, target, and classification loss also
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FIGURE 10. Plots of box loss, objectness loss, classification loss, precision, recall and mean average precision (mAP) over the training epochs for the
training and validation set.

show a rapid decrease. We use an early stopping strategy to
select the best weights and stop training at 295 epochs.

B. MODEL EVALUATION METRICS
In order to achieve the evaluation of potato detection models,
the models were evaluated using the most commonly used
metrics in the field of target detection, Precision, Recall, F1,
and Mean Average Precision (mAP). This paper uses test
data consisting of 461 potato images for performance testing.
Except for the three categories of labels in the potato dataset
in Table 4, other categories of images will not be detected.

Recall =
TP

TP+ FN
=

TP
all ground truths

(4)

Precision =
TP

TP+ FP
(5)

F1 =
2× Recall× Precision
Recall+ Precision

(6)

AP =
1
n

∑n

i=1
Precisioni (7)

mAP =

∑Q
i=1APi
Q

(8)

In equation (4), TP includes the proportion of positive
examples of rotten potatoes that can be found correctly; the
proportion of positive examples of healthy potatoes that can
be found correctly; and the proportion of buds of positive
examples of potatoes that can be found correctly. FP includes
misclassification of negative cases of rotten potatoes, the mis-
classification of negative cases of healthy potatoes, misclas-
sification of the proportion of negative cases of potatoes with
shoots. FN includes the proportion of misclassified positive
examples of rotten potatoes, the proportion of misclassified
positive examples of healthy potatoes, and the proportion of
misclassified positive examples of potatoes with shoots. The
three categories of potato classification described above are
represented by the label categories in Table 4. In Equation (8),

mAP was calculated as the average AP value for multiple
individuals in the germinating potato test set, mAP is defined
as the mean value of the AP under all categories at an
Intersection over Union (IOU) threshold of 0.5, as shown
in (4-8).

C. ANALYSIS OF TEST RESULTS
According to the experimental results in Table 6 and Table 7,
it is clear that the improved YOLOv5 model in this paper can
effectively improve the detection accuracy of healthy pota-
toes, potato sprouts, and rotten potatoes. The test dataset con-
sisting of 461 potato images was tested under the improved
model and the original YOLOv5s model separately. The
improved model had an average detection accuracy of 90.1%
for all classes (all), 81.2% for sprouted potato buds (germ),
81.2% for healthy potatoes (potato), and 97.1% for rotten
potatoes (badpotato). The mAP of the three classifications
reached 88.1%, which was 7.4% higher than the mAP of
the original YOLOv5s model. Under the potato category, the
mAP of the original model is 2.6% higher than that of the
improved model; compared to the original model, there is
a bizarre situation of a decrease in mAP. By comparing the
F1 of the model before and after the improvement are 91%,
it is found that the improved model has negligible effect on
the negative gain of accuracy under this category, and the
problem of the negative optimization model of the original
model can be ignored. Under the germ and badpotato, the
improved model is 15.1% and 9.9% higher than the original
model mAP, respectively, indicating that the improved model
has a more significant effect on the accuracy rate improve-
ment of the latter two. This shows that the model is excellent
in potato detection and grading accuracy and can meet the
requirements of potato grading detection with high accuracy
in multiple scenarios.

In order to compare the specific performance of the
improved methods proposed in this paper with YOLOv5,
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TABLE 6. Ablation test of YOLOv5s with different improvement methods.

TABLE 7. Performance of the YOLOv5s model.

TABLE 8. Improving the performance of the YOLOv5s model.

we tested each of the five improved methods with YOLOv5,
followed by a combination of methods in a cumulative man-
ner, and the full test results are shown in Table 8. The
proposed five improvement method (No.10) improves 7.5%
compared to the YOLOv5s model mAP. CrossConv improve-
ment C3 (No.6) has a large improvement in model accuracy
with 7.9% improvement in accuracy and 4.7% improvement
in mAP. In addition, the hyperparameter improvement for
YOLOv5s (No.5) has the least improvement in performance
among the five improvement methods. Overall, the proposed
improvement methods all improve the YOLOv5s model
performance.

The performance index comparison results of the model
proposed in this paper with SSD, Faster R-CNN, YOLOv3,
YOLOv4, YOLOv5, and YOLOX target detectionmodels are
shown in Table 9. The bolded fonts are the optimal values
of the models, and it is clear from the data in the table that
the model proposed in this paper can obtain higher detec-
tion accuracy. Regarding time, the average detection time
of 100 images is higher than YOLOv5 and SSD. However,
it has a good detection speed compared with the other four
models to obtain higher accuracy at the expense of less time.
Therefore, combining accuracy and speed, the model in this
paper is more suitable for the detection task of sprouting
potatoes.

According to the analysis of the above results, the model
in this paper has a higher performance advantage than the
other six models. The improved model makes fuller use of
low-level feature information, which improves the detection
rate in small target detection; it improves the effect of occlu-
sion target detection and improves the performance of the
model more substantially.

D. PRACTICAL SCENARIO TEST ANALYSIS
We selected three representative potato images from the
validation set, representing the recognition of potatoes in
complex scenes, and the recognition results can be gener-
alized to a certain extent to guarantee the effectiveness of
potato recognition in natural scenes. As shown in Fig. 11,
Fig. 11 (a) represents the potato recognition results under
the original YOLOv5s model, and Fig. 11 (b) represents
the potato recognition results under the improved YOLOv5
model in this paper. Where the red arrows in Fig. 11 (a) indi-
cate the difference from the identification in Fig. 11 (b),
the difference being precisely in the blue boxes missing to
varying degrees; the black arrows in Fig. 11 (a) indicate the
negation of the identification result in Fig. 11 (b), specifically
in the blue boxes incorrectly identifying the non-defined
semantic label categories, as present feature targets. By anal-
ysis, Fig. 11(a) from top to bottom relative to Fig. 11(b),
the unidentified three types of feature boxes are 5, 2, and 5,
respectively, with a total of 12 feature labels lost, and an aver-
age of 4 labels lost in one image. The images in the middle of
Fig. 11 (a) and Fig. 11 (b), compared with the other two types
of images, exhibit the characteristics of larger potato targets
and less masking, and the actual results of detection by the
original YOLOv5 model perform slightly better compared
with the other two types of results in Fig. 11(a); however,
for the intermediate images, Fig. 11(a) shows the problem
of repeatedly identifying the same potatoes and repeatedly
identifying the same targets compared to Fig. 11(b), which
indicates that the original YOLOv5 model is shallow for fea-
ture extraction. Meanwhile, the germ feature pointed by the
black arrow in the bottom image of Fig. 11 (a) does not appear
in Fig. 11 (b), indicating that the original YOLOv5 model has
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FIGURE 11. Images form the test dataset showing the performance for detecting the three classes potato; germ; badpotato.

TABLE 9. Comparison of performance indicators for different detection algorithms.

poor generalization for generalization feature recognition.
It also shows that the improved YOLOv5 model detects small

targets andmultiple occlusions better than the original model.
In addition, we tested the performance of the improved
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FIGURE 12. The test data set images show the performance of detecting three classes of normal potatoes, sprouted potatoes and rotten potatoes
without sprouting.

YOLOv5 model on images of regular potatoes, sprouted
potatoes, and rotten potatoes without sprouting. Fig. 12 shows
that the model proposed in this paper can correctly identify
the three types of labels in the potato dataset. It is also able to
identify the smaller potato shoots for localization correctly.
In the problem of complex sprouted unspoiled and rotten
unsprouted potatoes, the model can effectively distinguish
between the two types of cases, and potatoes with a high num-
ber of sprouts can also be treated as rotten potatoes promptly,
basically realizing the critical need for potato quality grad-
ing. In summary, the improved YOLOv5 model effectively

solves the potato high-throughput grading problemwith good
robustness in complex environments.

IV. CONCLUSION
The purpose of this paper is to use the improved YOLOv5
detection algorithm to detect sprouting potatoes in various
complex environments. First, we built a sprouted potato
dataset containing 2316 images of sprouted potatoes in com-
plex scenes. Next, we optimized the YOLOv5 model struc-
ture and adjusted the transfer rules of model features by
CrossConv instead of Conv in the C3 module to connect
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two intra-graph convolutions and enhance feature similar-
ity. The introduced 9-mosaic data augmentation, genetic
algorithm-based k-means with fast spatial pyramid SPPF to
improve recognition accuracy, enhance feature similarity and
strengthen small target features. In addition, hyperparametric
evolution with a multiscale training mechanism is employed
to improve the accuracy further. It solves the problems of
YOLOv5, such as insensitivity to medium and large targets,
minor defect misses and false detections, and overcomes the
existing research on detecting sprouting potatoes based on
specific scenarios. Finally, for practical application needs,
the improved YOLOv5 model was shown to detect the three
states of potatoes with higher accuracy, detecting mAP con-
sistently above 88.1%. In the same test set, the accuracy was
improved by 7.4% compared to the original model. All tests
and results demonstrate that the model has good performance
and sufficient speed to generalize strongly in multiple scenar-
ios of sprouting potato recognition and maintain stability in
recognition accuracy.

Nevertheless, since the data set contains sprouted, healthy
and rotten potatoes, the model can only detect three states of
potatoes. In actual production, mechanical damage to potato
tubers and skin greening is also crucial for grading potatoes
for quality inspection. Future research will include collect-
ing images of potato mechanical damage and skin greening
for detection. In addition, consideration should be given to
simplifying and deploying the model on a mobile platform to
build a more practical potato quality grading system to meet
practical agricultural needs.
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