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ABSTRACT Accurate modulation identification of the received signals is undoubtedly a central component
in multiple-input multiple-output (MIMO) communication systems, facilitating the demodulation task.
This study presents a flexible and semi-supervised deep learning-driven strategy for automatic modulation
identification. To this end, the multiclass classification problem is treated as multiple binary discrimination
problems to address modulation identification challenges. Here, we merge the features extraction ability of
the Generative Adversarial Network (GAN) model and the semi-supervised anomaly detection scheme, the
one-class Support Vector Machine (1SVM). Essentially, a single GAN-based 1SVM detector is trained using
training data of each class, with the samples of that class as inlier and all other samples as anomalies (i.e., one-
vs.-rest). The 1SVM is trained using the features learned by the GAN model. A dataset consisting of three dig-
ital modulations (i.e., BFSK, CPFSK, and PAM4) and three analog modulations (i.e., AM-DSB, AM-SSB,
and WB-FM), widely used in wireless communications systems, is employed to demonstrate the performance
of the considered deep learning-based methods. Compared to Restricted Boltzmann Machine (RBM) and
Deep Belief Network (DBN)-based 1SVM, the conventional GAN, DBN, and RBM with softmax layer as
discriminator layer, the proposed GAN-based 1SVM detector offers superior discrimination performance of
modulation types by achieving an averaged accuracy of 0.951 and F1-Score of 0.954. Results also showed
that the GAN-1SVM detector dominates the state-of-the-art modulation classification techniques.

INDEX TERMS Modulation recognition, MIMO systems, deep learning, GAN, semi-supervised anomaly
detection.

I. INTRODUCTION
Communication systems are experiencing tremendous

(MIMO) and massive MIMO, is becoming a critical com-
ponent in the recent generation of communication network

growth and fast development in today’s competitive atmo-
sphere due to the massive need for information dissemination.
With higher expectations for meeting the increased require-
ment in terms of speed and underlying diversity to support
the increased capacity of different systems, spatial multiplex-
ing techniques, such as multiple-input and multiple-output
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systems [1]. Several signals in space come from different
systems with distinct modulation types on different frequen-
cies are received, and it is essential to recognize and monitor
them for numerous military and civilian applications [2].
Discriminating signals from different systems makes mod-
ulation and demodulation techniques crucial elements for
ensuring wireless data transmission [3], [4]. Importantly,
the modulation classification (MC) consists in automatically
discovering the modulation type of the received signals
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with limited or without prior information on the signals
parameters [5].

Crucially, modulation enables a certain level of encryption,
particularly in the military domain, making difficult the mes-
sage decryption at the reception without knowing the type
of modulation used on transmission [6], [7]. Thus, the mod-
ulation types must be reliably identified in noncooperative
communication systems to guarantee reliable data trans-
mission. To this end, discriminating modulation types is
undoubtedly a pivotal element to carefully address for achiev-
ing correct demodulation [8], [9]. Of course, developing
effective and automatic modulation classification techniques
is essential to maintain high transmission quality, and it
is a non-trivial task from both communication researchers
and engineers [10]. In recent years, modulation detection
techniques have become necessary for military and com-
mercial applications, e.g., in coding transmission and spec-
trum management. Various procedures aimed at identify-
ing modulation types have been reported in the litterature
[71, [10], [11]. For instance, in [12], an approach based on
Independent Component Analysis (ICA) has been applied
to classify different modulation types in A MIMO system.
The challenge in classifying modulation in MIMO systems
involves handling a set of different signals at the receiving
antenna array. However, in this approach, noise variance
is assumed to be known. In [13], the authors introduced a
blind modulation classification approach for a MIMO sys-
tem without knowing channel matrix and noise variance.
At first, an Expectation-Maximization (EM) algorithm is
applied for every modulation candidate to estimate the chan-
nel parameters. Here, the obtained estimation is utilized for
the likelihood assessment of the corresponding modulation
candidate. Then, the maximum likelihood criterion is used in
the classification decision. Results indicate satisfactory clas-
sification for BPSK, QPSK, and 16-QAM modulations under
white Gaussian noise conditions. In [14], authors addressed
modulation classification as a clustering problem for every
modulation type. Then, the maximum likelihood criteria are
applied for the final classification decision. Results show that
this modulation classifier has a robust performance for a low
SNR. The authors in [5] introduced an approach for modula-
tion classification for PSK signals based on random graphs.
Essentially, this approach is designed through the graph’s
connectivity formed using the Fourier transform of the second
and fourth powers of the acquired signal. Experiments are
conducted using PSK signals generated by Rohde&Schwarz
generator and analyzer. It has been shown that this approach
can be used to classify phase-shift keying (PSK) signals in
MIMO systems. In [15], a modulation classifier has been
presented for multipath signals based on cepstrum. At first,
this approach eliminates the impact of multipath channel
coefficient using the cepstrum-based preprocessing technique
and then applies a logarithmic functional fitting approach for
modulated signals classification. Experimental results reveal
this approach’s capacity in discriminating quadrature PSK
(QPSK), 16-ary quadrature amplitude modulation (16QAM),
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and 4QAM. In [16], a coupled approach is introduced to
classify modulation of MIMO-OFDM signals by combing
ICA and support vector machines (SVM). At first, the ICA
JADE technique is performed for separating the data streams
of the MIMO-OFDM signal. After that, maximum likelihood
and SVM are applied to detect the modulation of separate data
streams. This approach achieved 85% classification rates for
SNR high than 15 dB.

Accurately recognizing modulation type is increasingly
important in wireless communications for enhancing radio
performance. The main objective of this paper is to design
a deep learning-driven detector for modulation identifica-
tion in MIMO systems, which is an essential component
in numerous communications systems. As a data-driven,
the introduced modulation discrimination approach could
be used for both SISO and MIMO systems under varying
channel conditions, such as multipath fading, which is not
the case of many procedures in the literature. Moreover, this
approach is performed without estimating channel/signal-
to-noise ratio (SNR) nor timing and frequency offset cor-
rection. In addition, this is a semi-supervised approach that
does not require labeled data to construct a model to dis-
criminate different types of modulation from the received
signal in MIMO systems. Unlike supervised approaches,
semi-supervised methods are more attractive for modula-
tion discrimination since it is not always easy to get accu-
rately labeled data. Of course, the paper has the following
contributions

o This study presents a semi-supervised deep hybrid

model for modulation identification in MIMO sys-
tems. To this end, the multiclass classification problem
is treated as multiple binary discrimination problems.
Specifically, we merge the features extraction ability of
the Generative Adversarial Network GAN) model and
the detection sensitivity of the one-class Support Vector
Machine algorithm (ISVM). This choice is motivated
by the flexibility of the GAN model in learning rele-
vant information from complex data without the need
for labeled data or prior hypotheses on data distribu-
tion. In addition, 1SVM is an efficient anomaly detec-
tion scheme due to its capability for learning linear
and nonlinear decision boundaries to detect anomalies.
As we know, this is the first time that this hybrid deep
learning model has been applied for automatic mod-
ulation discrimination. Indeed, first, for each modula-
tion, we construct a single GAN-based 1SVM detector
using training data of the considered class, with the
samples of that class as inlier and all other samples
as anomalies (i.e., one-vs.-rest). Then, each detector is
used to sense a specific modulation from the received
signals. This approach builds up a detector to distinguish
between modulation types. The extracted features from
the received signals using the trained GAN discriminator
are used as the input of the 1ISVM scheme. The core
concept of 1SVM consists of determining a hyper-plan
closer to the training data samples corresponding to a
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specific modulation, and no labeling is needed to con-
struct 1ISVM. After that, the newly received samples
are classified as comparable or distinct from the train-
ing data. Of course, 1ISVM is a semi-supervised binary
classifier that has been widely exploited for anomaly
detection in different applications.

o Furthermore, for comparison purposes, we investigated
other deep learning models for modulation identifi-
cation, including Deep Belief Network (DBN) and
restricted Boltzmann machine (RBM)-based 1SVM
methods, as well as the GAN, DBN, and RBM with
softmax layer as discriminator layer for multi-classes
classification. As far as we know, this is the first time that
these methods have not been explored before for modu-
lation classification. The publically available RadioML
2016.10A dataset is employed in this study to assess
the efficiency of investigated deep learning-based meth-
ods. Five statistical indices are employed to compare
the discrimination accuracy of the considered methods:
accuracy, precision, recall, F1Score, and the Area Under
the Curve (AUC). Results demonstrate the effectiveness
of the proposed GAN-1SVM detector for automatic
modulation identification and its superior performance
compared to the other models and the state-of-the-art
techniques.

« Finally, we compared the discrimination performance of
the GAN-1SVM detector with the state-of-the-art meth-
ods, and showed the capacity of the proposed approach
to improve automatic modulation identification.

The rest of the paper is structured as follows. Section II
presents the related work. Section III presents the prelimi-
nary material required in the proposed modulation detection
approach given Section IV. Section V conducts the experi-
ments to assess the proposed approach and compare it with
the baselines. Finally, concluding remarks and some future
lines of improvement are provided in Section VI.

Il. RELATED WORK

Recently, deep learning has emerged as a promising research
line to improve the performance of communication technolo-
gies, both in academia and in industry [17]-[19]. Essentially,
deep learning methods are an efficient tool for automati-
cally retrieving pertinent information from high-dimensional
and voluminous datasets without the need for manual fea-
tures [20]. Deep learning techniques have been applied
for different application, such as communication technolo-
gies [21], resource allocations [22], traffic control [23] and
modulation classification [17]. Nevertheless, deep learning
technologies have not been well exploited and explored in
communications systems. Until recently, few studies have
focused on exploring deep learning technologies for mod-
ulation classification, a crucial element in non-cooperation
communications. For instance, in [24], a two steps-based
deep learning approach called cascaded convolutional neural
network (CasCNN) has been introduced to classify PSK and
QAM modulation formats. This approach is formed of a
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two-block of CNN. The first block is employed to classify
the modulation type, while the second one is used to iden-
tify the indexes of the modulations. An accuracy of 90% is
obtained by using CasCNN at SNR of 4 dB and the sym-
bol length of 256. The authors in [19] employed the CNN
and the long short-term memory (LSTM) for modulation
classification. The advantage of the CNN-LSTM model is
its ability to effectively exploring feature correlation and
the spatial-temporal characteristics of raw complex temporal
signals; the spatial features are extracted using CNN, while
LSTM is powerful in learning time-dependent in time series
data. Here, two streams interact in pairs are used to learn
the features; one stream (i.e., CNN-LSTM) extracts the local
raw temporal features from raw signals, and the other stream
(i.e., CNN-LSTM) learns the knowledge from amplitude and
phase information. Results indicate that the CNN-LSTM
improved modulation classification compared with some
existing state-of-the-art methods. In [17], a Gated Recur-
rent Unit (GRU)-based deep learning approach is proposed
for modulation classification with resource-constrained end-
devices. The classification is performed using a SoftMax
layer as an output of the GRU model. It has been shown that
the GRU-driven model reaches a classification accuracy of
92.4% with a memory footprint of 73.5 kBytes (51.74% less
than the base approach). The study in [18] investigates the
application feasibility of two deep learning models, AlexNet
and GooglLeNet, for modulation classification using signal
constellation diagrams. To this end, different data conver-
sion techniques have generated gray images, enhanced gray
images, and three-channel images. Results showed the supe-
rior performance of deep learning models for modulation
classification compared to traditional methods. In [25], a deep
learning network with three hidden layers is used for modula-
tion classification using 21 features, including cumulants and
instantaneous amplitude. The network has been randomly ini-
tialized rather than using the greedy layer-wise algorithm for
pretraining, making it difficult to exploit the full capacity of
deep learning. In [26], ResNet deep neural-driven approach,
primarily constructed for images classification, is applied
to identify modulation formats. However, its performance is
limited because the time-series data is different from spatially
distributed images.

Bahloul et al. considered two higher-order cumulants of
the transmitted signal streams for classifying modulation
types in MIMO systems [27]. They introduced a soft-decision
fusion technique to find the classification result. In [28],
a classifier based on random graph theory is employed
to identify M-Quadrature Amplitude Modulation (QAM)
signals for MIMO Systems under unsatisfactory channel
conditions. In this approach, the features obtained using dis-
crete Fourier transform and sparse transform are used by the
undirected random graph for classifying the M-QAM sig-
nals. This approach showed satisfactory classification results
based on simulated data. In [29], a three-dimensional convo-
lutional network-based approach has been proposed to clas-
sify MIMO-OFDM modulation from received signals. This
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approach learns the modulation patterns based on the assump-
tion of unknown frequency-selective fading channels and
SNR. Simulation results showed that this approach reaches
the classification accuracy of around 95% at 0 dB SNR.
In [30], Wang et al. considered a supervised deep learning
framework to automatically classify modulation in MIMO
systems using the convolutional neural network-based zero-
forcing (CNN-ZF) approach. Simulation results revealed that
the CNN-ZF approach achieved better classification perfor-
mance than the artificial neural network with high order
cumulants when applied under the perfect channel state infor-
mation condition. However, results showed that the perfor-
mance of the CNN-ZF method is influenced not only by
the channel’s error coefficient but also by the number of
antennas at the transmission (Nt) and the reception (Nr).
For instance, simulated results showed that the CNN-ZF
approach achieved high classification performance when the
channel error coefficient equals 0.2 and SNR=10db, Nr=4,
and Nt=1. Nevertheless, the performance of this approach
has been significantly degraded by obtaining an accuracy
of 50% when using four receiving antennas and four trans-
mitting antennas. The study in [31] focused on the prob-
lem of classification of Superimposed Modulations for 5G
MIMO two-way cognitive relay network over Nakagami-m
channels by using a MultiBoosting (MultiBoostAB) clas-
sifier. Simulation results showed satisfactory classification
performance of the MultiBoostAB classifier even at low
SNR. Also, it has been shown that this approach exhib-
ited superior performance compared to the J48 classifier.
Gao et al. proposed Distribution Test Ensemble (DTE) clas-
sifier to classify M-QAM and M-PSK modulations in MIMO
systems [32]. They included weather data such as cloud
cover and temperature as predictors. They achieved better
classification accuracy than other distribution test classifiers
in different channel conditions. They also showed that even
the DET is inferior to the machine learning classifier in
the AWGN channel, the DTE provides reasonable modu-
lation classification with lower computational complexity
than machine learning classifiers. Wang et al. introduced a
cooperative approach based on a convolutional neural net-
work (CNN) to recognize the modulation types in MIMO
systems [33]. To this end, at first, CNN obtained the classifi-
cation sub-results from every received antenna in the MIMO
systems. After that, a final decision is accomplished using the
sub-results and cooperative decision rules. Simulation results
indicated the promising performance of the coupled CNN and
weighty averaging decision rule in classifying modulation
types. Zhang et al. presented a generalized CNN-driven tech-
nique for modulation recognition in IoT systems [34]. This
approach has been constructed using data with varying noise
conditions, making it more robust compared to the conven-
tional CNN approach. Results show the superior classifica-
tion capacity of this approach compared to the conventional
CNN. Much research has been done on designing modulation
identification mechanisms for MIMO systems. For example,
see some relevant review papers [9], [35]-[37].
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lll. METHODOLOGY

This section briefly introduces the modulation recognition
problem, the GAN models, and the 1SVM-based detector
used to develop our GAN-based 1SVM modulation identi-
fication approach.

A. MODULATION RECOGNITION PROBLEM

This section aims to provide a basic idea behind the modu-
lation classification problem. Generally speaking, the main
elements in wireless communication systems with modula-
tion classification components consist of a transmitter and a
channel model at the system level. The simplified schematic
presentation of a wireless communication system with a mod-
ulation classification unit is depicted in Figure 1. Essentially,
the modulation recognition component is an intermediate
procedure between signal detection and demodulation on
the receiver side. The modulation recognition task aims to
identify the modulation type of the received signal to facilitate
understanding the type of communications system and emit-
ter present. For more details about communication system
components see [38], [39].

Transmitter

Source Modulation | — | Digital-to-analog Signal
Information (D/A) converter —l

Communication
Channel

(A/D) converter

FIGURE 1. A simple illustration of a signal model processing framework.

Noise Source —

Receiver

Destination

Modulation
identification

Information Demodulation

Received
Signal

The received data on the receiver side is a contaminated
version of the emitted data because of different channel
impairments and noise measurements. Thus, the received data
r; can formulated as,

Vi = X¢ k¢ + 1y, (D

where x; denotes the modulated signal, ¢, refers to the
impulse response of the transmitted wireless channel, and n,
represents is the additive noise. On the transmitter side, the
central role of the modulator is to map the information signal
(also called modulating signal), v(¢), into one of the carrier
parameters. The resulting signal from the modulator is the
modulated signal, x;, which is expressed as:

x(t) = R(®)Acexp(j2rfct)) 2)
= Aca(t)cosQnf.t + ¢(1)), 3)

Ac and fc refer to the carrier magnitude and the carrier fre-
quency of the carrier signal, respectively.

At the receiver side, the demodulation task intends to strip
the information signal from the carrier. This could be cor-
rectly accomplished after recognizing the type of modulation
used in the received signal. The most simple receiver to recog-
nize an unknown modulation scheme employed a brute-force
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search strategy by applying several demodulators for every
specific modulation type. By using this strategy, only the
demodulator corresponding to the correct modulation can
achieve the desired performance. However, the implementa-
tion of this strategy is computational and time-consuming,
which makes it undesirable solution. As an alternative, a more
proficient and attractive strategy for modulation recognition
is based on analyzing the received data using data-driven
methods, particularly the machine learning paradigm.

Classically, modulation recognition is treated in supervised
modulation classification as a multiclass classification prob-
lem. More specifically, each class corresponds to a specific
modulation; we have N classes classification problem for N
modulation types. Crucially, the central objective of modula-
tion recognition consists in maximizing the value of

Pi = P(x; € Nily:), “

based on the received signal y(¢), where N; denote the ith
category of all the modulation types.

B. GENERATIVE ADVERSARIAL NETWORKS

GANSs have recently emerged as effective and efficient deep
learning models for data generation and learning data rep-
resentations from unlabeled data [40]-[42]. GAN has been
successfully applied in various areas, such as image data gen-
eration and learning, time-series prediction [43]. Convention-
ally, GANs contain two neural networks called a generator
G and a discriminator D, which are placed in an adversarial
way. They are trained in unsupervised way, making them
very attractive as labeling is an expensive task. Moreover, the
GAN’s generator and discriminator could be trained via only
backpropagation. GAN adopts a clever procedure in training:
the generator model is trained to continually generate fake
data, while the discriminator model seeks to identify between
true and fake (generated) data. Traditionally, the Generator
model is trained to capture the distribution of the training data
and generate new data. At the same time, the discriminator
is simultaneously trained to discriminate real from generated
samples(Figure 3). An adversarial competition process trains
the two networks to improve the quality of the generated
data, which becomes progressively comparable to the ground
truth (training data). The GAN is optimized once the Nash
equilibrium between the two models is obtained, i.e., supe-
rior discriminative ability and suitability generate the fake
data with approximatively identical distribution to the ground
truth [44].
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Synthetic
data

Real data
sample

FIGURE 3. GAN architecture.

Given noise data z distributed following the distribution
Pz(2) (usually uniform distribution), the generator generated
data with distribution pg(x). Then, together with the generated
and the ground truth data p;,.,(x), are sent to the discrimi-
nator, which tries to discriminate the original data from the
generated one. As a composite model, the GAN consists of
two-loss functions, the generator and discriminator losses.
Minimizing the GAN loss function ( known as the min-
max loss) is performed by maximizing D(x) and minimizing
D(G(z)). The GAN training aims to solve the following opti-
mization problem [45]:

Ex~paaa 10§ D(X)]
+E:~p [log(1 = DG (5)

The parameters of the discriminator are updated in training
via the stochastic gradient given in (6).

minmax V(G, D) =
G D

1 & . .
Ved Z[ZOg(D(X’)) + log(1 — D(G(Z)))]. (6
i=1
While the generator updates the model parameter via a
descending stochastic gradient (7).

1 « ;

Vog — ; log(1 — D(G(Z))). (7)
The discriminator D function convergence is given in (8).

D* — Pjata(x) ’ ®)

Pyata(x) + Pg(2)
where Pjata(x) refers to the training data distribution and
Pg(2) is the learned distribution. See [45] for further details
about the GAN model. Crucially, the GAN model is con-
structed by alternately updating the generator’s parameters
and a discriminator using the batch (a subset sampled from
the training data). Even if GAN was initially designed for
computer vision problems, the adversarial training procedure
attained promising performance for the prediction problems.
Of course, the GAN model is trained via a self-supervised
procedure by alternately optimizing the generative and dis-
criminative networks to learn representations of unlabelled
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data [45]. The goal of the training step is to learn the true
distribution that generates the data to resemble the received
signals. Once the model is trained, the discriminator network
is employed for the rest of the study as the role of the genera-
tor is to support the discriminator in differentiating true from
fake (noisy) data. The discriminator automatically extracts
the effective features that provide a compact continuous rep-
resentation of the received signals. In this study, the extractor
features from the trained GAN model will be used as input
for 1ISVM to discriminate the types of modulation used in
the received signals. Thus, the next section is dedicated to the
description of the 1SVM approach.

C. ONE CLASS SVM

This section expounds on the idea of a one-class SVM
(1SVM) algorithm adopted in this study for modulation iden-
tification. The 1SVM algorithm is one of the most popular
anomaly detection techniques, known for its insensitivity to
noise measurements and outliers in training. Crucially, the
ISVM is based on two essential concepts, maximizing the
margin and mapping the data to a high dimensional feature
space induced by a kernel function [46]. It should be noted
that ISVM is a semi-supervised binary classifier [47], [48].
More specifically, the 1SVM is constructed using unlabeled
training data that contains inliers samples (anomaly-free
data). In the training stage, the 1SVM process consists of esti-
mating a boundary area, which contains most of the training
data. This is carried out by determining a hyperplane with the
largest distance to the nearest training data [49]. After that,
the designed 1SVM is used to identify anomalies (outliers) by
checking if a new test data falls within this boundary or not.
Of course, testing data points are declared normal (inlier) if
they are within the previously defined boundary; otherwise,
they are identified as an anomaly (outliers). The 1SVM proce-
dure assures finding a hyperplane that produces a good data
separation by using kernel tricks. Figure 4 provides a basic
illustration of the 1SVM-based anomaly detection concept.

A
~
™ ;
N @ % Outlier
- -
. - - b 4
2 g
% \\ [raining oo %%,
\ -~
*® ) - *e
x ‘e x »® o
/P : - v
x// fiwl vw » *®
e e
R T, ..
Origin sl
Hyper-Plane

FIGURE 4. A basic illustration of 1SVM procedure.

Of course, ISVM aims to classify one class of data and
separate it from any other possible samples (Figure 4). The
samples from the normal class can be classified as inlier by
the ISVM; however, any distinct data compared to the normal
data will be classified as outliers. In other words, the 1ISVM is
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trained to reject data that are dissimilar from the training data.
As a semi-supervised anomaly detection approach, 1SVM
has gained attention in different applications, such as pho-
tovoltaic plant supervision [50], uncovering obstacles in self-
driving cars [51], detection of abnormal air pollution [52],
and water quality monitoring [53].

The essence anomaly detection using the 1SVM scheme
is first trained the 1SVM to recognize normal behavior
and then used to decide on whether the tested data is nor-
mal or not (outliers). To this end, samples are mapped in
high-dimensional space to facilitate separating samples by
using kernel tricks. Explicitly, ISVM separates the data by
determining the hyper-plan that optimizes the data-origin
separation margin. This optimization problem is given as:

l
(1, |
mp (3070 -0+ 5 L)

Subjectto: w. ¥(x) >p—y O]

where [ denotes the training data size, w refers to a weight
vector, v € (0, 1] represents the regularization factor,
whereas y refers to the non-zero slack variable employed
to penalize the samples that do not lie within the decision
boundary in the training phase. Furthermore, p is the margin
separating the origin from the mapped samples in feature
space, known as offset. The ISVM applies a decision function
F defined in (10) that provides —1 for an outlier and 1 for a
typical sample using the predefined hyper-plane.

Fx) = sign(a). Y(x) — ,0) (10)

Here, W denotes a nonlinear function (i.e., kernel)

employed to project data into feature space. The term n
1)
denotes the hyper-plane (Figure 4), and it is, indeed, the

Euclidean distance separating the origin from the support vec-
tor points; this term needs to be maximized. Support vector
points refer to the points closer to the hyperplane and affect
the orientation and position of the hyperplane. The 1SVM
quadratic optimization problem is presented in (11).

1

(Nl 1
- — ). 11
glylg( 5 p+Ul;Vl (11)
Thus, in the 1SVM training process, the aim is to maximize
lw]?

the margin — p and minimizes the average of the slack
variables y. I% this work, the Gaussian radial base function
(RBF) K (12), a popular kernel used for 1ISVM due to its

flexibility, is utilized.
K, x) = (U(x), W(x)) = @1 (12)

where « refers to a parameter controlling how dissimilar x is
to x’.

Since the 1SVM is built using unlabeled data, it is
well suited for modulation identification in MIMO systems.
In addition, the 1SVM detector is known to be robust to noise
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in the training data. Leveraging on the desirable properties of
the GAN methodology and 1SVM detector, this paper aims to
develop a semi-supervised approach to discriminate between
different types of modulations based on the received signals.

IV. THE PROPOSED FRAMEWORK

This study introduces a proficient and semi-supervised
approach to automatically identify modulation types in
MIMO systems. Specifically, this approach is the coupled
GAN-1SVM detector, which addresses modulation classifi-
cation as an anomaly detection problem. The general frame-
work of the proposed modulation identification approach is
presented in Figure 5.

Synthetic data (X*)

-~
| Modulation types

+
]
El
1SVM

| Real samples (X) ‘\

FIGURE 5. lllustration of the modulation identification framework.

The core idea in this work is to construct a GAN-based
deep learning model for each modulation type. Feature
extraction is crucial to the success of modulation identifica-
tion. Essentially, the GAN learns the distribution of the under-
lining training data. The learning procedure comprises two
phases. Firstly, the Generator and Discriminator are trained
in a competitive way to learn the distribution of the training
data to generate a real-like distribution. The parameters of
the discriminator model are fine-tuned to reach the global
optimum. Moreover, in the GAN-1SVM approach, the output
of the GAN model is used to feed the 1SVM scheme. In train-
ing, the ISVM maps the GAN features into kernel space and
determines the threshold hyper-plan that separates the data
points (inliers) from the origin. Crucially, the GAN-1SVM
is constructed to recognize each class separately without
any data labeling, which makes it very attractive for online
applications.

An innovative modulation identification technique based
on deep learning and the semi-supervised once-class SVM is
introduced in this study (Figure 6). In short, the GAN model is
employed as a feature extractor to learn relevant information
from the received signal, and the 1SVM checks the output
of the GAN discriminator to identify the modulation type.
Figure 6 summarizes the main steps in the proposed GAN-
driven 1SVM modulation recognition. In the preprocessing
stage, the training data is normalized via min-max normal-
ization within the interval [0, 1] and used for model training.

The normalization of the received signals, y, is accom-
plished using the following formula.

0’ - ymin)

—_— 13
(ymax _ymin) ( )

V=
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where yin and Yy refer to the minimum and maximum of
the raw received signals, respectively.

For each modulation type, we first train the 1SVM utilizing
the GAN discriminator output based on training data that
contains only data for a specific modulation (Figure 6). Note
that unlabeled data is used for ISVM construction. The train-
ing phase’s essence consists of determining a hyper-plan as
close as possible to the normal samples (data from a specific
modulation type). Unlike supervised methods, ISVM as a
semi-supervised method needs only the data of normal sam-
ples (i.e., signals related to a specific modulation) in training
and without labeling. After that, the constructed GAN-1SVM
is applied to evaluate the dissimilarity of the new test samples
from the training samples. Note that it is not always easy
to get accurately labeled data of different modulation types
in MIMO systems, making the semi-supervised GAN-1SVM
approach very appealing in practice.

In this study, five statistical scores commonly used in the
literature are employed to quantify the performance of the
studied methods computed using a 2 x 2 confusion matrix
(Table 1): Accuracy, Precision, Recall, F1-Score, and Area
under curve (AUC). For a binary detection task, the number
of true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) are employed to compute
the evaluation metrics from a 2 x 2 confusion matrix. The
accuracy (14) calculates the fraction of data points that are
correctly recognized. Recall (15) refers to the capacity to
recognize modulation type correctly. Precision (16) point out
the success probability of correctly identifying modulation
type. The Fl-score (17) calculates the harmonic average of
precision and recall. These evaluation metrics have values in
the range [0, 1], where 1 means the highest performance.

TABLE 1. A 2 x 2 confusion matrix.

Identified modulation

Positive Negative
. Positive True Positive (TP)  False Negative (FN)
Actual Modulation Negative ~ False Positive (FP) T?us: Neegg:tiv: (TN)
TP + TN
Accuracy = . (14)
TP + FP 4+ TN + FN
TP
Recall = ———. (15)
TP + FN
. TP
Precision = ———. (16)
TP + FP
Precision.Recall 2TP
F1 — Score = 2 — = .
Precision + Recall 2TP + FP + FN
(17)

V. RESULTS AND DISCUSSION

A. DATA DESCRIPTION

The efficiency of the proposed method is verified using the
public datasets RadioML.2016.10a, which is widely used as
a benchmark in modulation recognition [54]. In addition, this
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FIGURE 6. lllustration of the GAN-based 1SVM modulation identification framework.

dataset comprises modulations that are widely used in wire-
less communications systems globally. More specifically,
this data comprises radio signals synthetically simulated via
the GNU Radio. More specifically, this data contains radio
signals with different modulations (three analog modulation
and eight digital modulations) collected under varying SNR
levels from —20 dB to +18 dB with a step of 2 dB. Gener-
ally, signals transmitted via radio channels are tainted with
different effects. The generated data have been passed via
several channel imperfections and intersymbol interference
to mimic the realistic wireless systems. Specifically, the
RadioML.2016.10a data are generated by considering these
non-ideal effects, including thermal noise, symbol timing off-
set, Doppler, and phase difference [55]. This study assessed
the considered modulation identification approaches using a
dataset consisting of six modulations. We considered three
digital modulations, Binary Phase Shift Keying (BPSK),
Continuous-phase Frequency-shift Keying (CPFSK), and
Pulse Amplitude Modulation 4 (PAM4) and three analog
modulations (i.e., Amplitude Modulation-Single Side-band
Modulation(AM-SSB), AM-Double Side-band (AM-DSB),
and Wide-band Frequency Modulation (WBFM)), widely
used in wireless communications systems. The datasets have
been modulated by a rate of eight samples per symbol using
a normalized average transmit power of 0 dB.

Figure 7 provides an example of the time evolution of the
raw complex signal at the receiver for different considered
modulation types. We observe that the received signals are
tainted with noise measurements because of channel effects
and different imperfections. Visually, we can see different dis-
tinctive patterns with some similarities between modulations.
It is not easy to visually discriminate between modulations
based on the raw received signals by a human expert, partic-
ularly under noisy conditions.

Of course, we observe that the received signals are dis-
torted, making the automatic recognition of one particular
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modulation by human eyes challenging. Thus, this study aims
to develop a data-driven modulation identification approach
by combining the power of the GAN model as a fea-
ture extractor and the sensitivity of the 1SVM in anomaly
detection.

In this study, we concatenate the imaginary and real val-
ues of the received signals under different SNR levels for
each modulation type. This enables augmenting the size of
the data sets comparing of using amplitude or phase. Then,
data is normalized, and for each class, 80% is used for
training and 20% for testing. For the testing, 20% of the
target class (inliers) is merged with the other classes (out-
liers) to evaluate the proposed approach’s capability to dis-
tinguish between inliers and outliers. This procedure (testing)
is repeated for all classes. This paper combines a generative
deep learning model, namely GAN, as a features extractor and
detector, namely 1SVM, to detect a given modulation class.
Of course, we designed six GAN-1SVM-based modulation
detectors based on features of only received signals of one
type of modulation.

B. MODULATION IDENTIFICATION

In this section, two experiments are conducted to show the
benefit of the proposed modulation identification approach.
DBN and RBM [56], [57], popular unsupervised generative
models, were considered the reference methods for compari-
son. RBMs are generative stochastic models designed with
a simple architecture constituted only by two layers. The
Contrastive Divergence algorithm using Gibbs sampling is
employed in RBM training, which is relatively slow [56].
On the other hand, DBN, which is constructed by stacking
several RBMs, is trained to earn complex features via layer-
by-layer learning strategy [57]. Unlike RBM and DBN, GAN
does not use Monte Carlo approximation in training. For more
details on DBN and RBM, see [58]. The first experiment
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FIGURE 7. Example of received signals of different modulation types: (a) BFSK, (b) CPFSK, (c) PAM4, (d) AM-DSB, (e) AM-SSB, and

(f) WB-FM.

assessed the performance of GAN, DBA, and RBM-based
Softmax classifiers for modulation classification. A soft-
max classifier tops RBM and DBN for multiclass modula-
tion classification. For GAN-based multiclass classification,
a SoftMax classifier is placed at the output of the GAN dis-
criminator. On the other hand, the second experiment aimed
to verify the performance of the GAN, DBA, and RBM-
based 1SVM detectors for modulation identification. The
experiments in this study are conducted using an Intel i7 CPU,
12 Gigabytes for memory. The implemented approaches are
performed using Python 3.6 with Tensorflow 2.3, Keras 2.2,
and Scikit-learn 0.20 under Ubuntu 18.04 LTS.

At first, the models were trained based on training data.
The values of the tuned parameters of the trained models
are listed in Table 2. All the hyper-parameters are com-
puted during the models training by the minimization of the
cross-entropy of the reconstructed error.

TABLE 2. Tuned parameters in the investigated approaches.

Model| Parameters

1SVM| kernel=RBF kernel, nu=0.01, gamma=0.2

RBM | layers: (visible layer 6, hidden layer 32), Dense(1,
activation="Sigmoid’), Epochs=500, n_gibbs_steps
= 5, Loss=Cross Entropy, Optimizer=Rmsprop
layers: 02 RBMs, Epochs=500, batchgize =
1024, n_hidden = (64,32),n_gibbs_steps =
5, Optimizer = Rmsprop, Loss =
CrossEntropy

Generator: 03 Layers (32, 64, 30), Discriminator:
03 Layers (30, 60, 32), Epochs=500, Batch size =
1024, Loss=Cross Entropy, Optimizer=Rmsprop

DBN

GAN

In RBM, DBN, and GAN-based Softmax classifiers, the
training data includes labeled data from all modulation types.
This will help distinguish between them through computing
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the probability of belonging to a class using the softmax
layer. A softmax classifier provides probabilities for each
class. Indeed, the last layer is softmax in the investigated
models (i.e., RBM, DBN, and GAN), acting as a classifier
fed from a features space constructed by the deep models
during the first phase of unsupervised training. The soft-
max layer is trained in a supervised manner permitting to
fine-tune and adjust the deep model parameters learned dur-
ing its unsupervised training. Specifically, the second stage
of training is conducted in supervised learning (fine-tune),
where the deep generative considered models parameters
are adjusted and optimized to improve the classification
performance.

Modulation classification results of RBM, DBN, and
GAN-based Softmax classifiers using testing data are tabu-
lated in Tables (3-5). We first observe that the GAN-based
Softmax slightly outperformed RBM and DBN-based Soft-
max. Specifically, the GAN-based Softmax classifier reached
an averaged accuracy and AUC of 0.56 and 0.54, respectively
(Table 5). While RBM and DBN recorded an averaged AUC
of 0.51 and 0.53, respectively, and an averaged accuracy of
0.53 and 0.54, respectively (Tables 3 and 4). The obtained
results show the RBM, DBN, and GAN-based Softmax clas-
sifiers are not able to accurately discriminate the considered
types of modulations. Even with the high capacity of the
GAN-driven deep learning model in extracting relevant infor-
mation from input signals, the GAN-based 1SVM classifier
cannot accurately discriminate between the six considered
modulations. These unsatisfactory classification results could
be attributed to the limitation of the Softmax classifier in sep-
arating nonlinear features. Specifically, the Softmax classifier
can only represent linear classification boundaries, which
limits its discrimination ability. In addition, this unsuited
result indicates that separating these different modulations is
not an easy task.
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TABLE 3. MC results using RBM-based softmax.

TABLE 6. MC results using RBM-based 1SVM.

Classes Accuracy  Precision Recall F1-Score AUC
AM-DSB 0.68 0.50 0.68 0.57 0.54
AM-SSB 0.89 0.41 0.89 0.56 0.55
CPFSK 0.31 0.71 0.31 0.43 0.47
BPSK 0.55 0.71 0.55 0.62 0.61
PAMA4 0.55 0.71 0.55 0.62 0.61
WBFM 0.22 0.41 0.22 0.28 0.27

TABLE 4. MC results using DBN-based softmax.

Classes Accuracy  Precision Recall F1-Score AUC
AM-DSB 0.50 0.57 0.50 0.53 0.52
AM-SSB 0.69 0.45 0.69 0.54 0.53
CPFSK 0.50 0.47 0.50 0.49 0.48
BPSK 0.60 0.63 0.60 0.61 0.60
PAM4 0.57 0.72 0.57 0.64 0.64
WBFM 0.38 0.51 0.38 0.43 0.43

TABLE 5. MC results using GAN-based softmax.

Classes Accuracy  Precision Recall F1-Score AUC
AM-DSB 0.72 0.50 0.72 0.59 0.57
AM-SSB 0.86 0.40 0.86 0.55 0.54
CPFSK 0.37 0.89 0.37 0.53 0.56
BPSK 0.62 0.59 0.62 0.61 0.60
PAM4 0.63 0.96 0.63 0.76 0.75
WBFM 0.18 0.56 0.18 0.27 0.25

In the second experiment, the effectiveness of the
unsupervised GAN, RBM, and DBN-based 1SVM detec-
tors to discriminate the type of modulation in a MIMO
system is investigated. Contrary to the previous experiment
using supervised classification, we merge the features extrac-
tion ability of the RBM, DBN, and GAN models and the
detection sensitivity of the 1SVM. In other words, we treat
modulation identification as a multiple binary discrimina-
tion problem without considering labeled data. Modulation
identification results when applying RBM, DBN, and GAN-
based 1SVM detectors are listed in Tables 6, 7, and 8§,
respectively. Results in Tables (6-8) exhibit that the amalga-
mation of the deep learning models with the 1SVM detector
considerably improved the capacity of modulation recogni-
tion compared to the previous results obtained with RBM,
DBN, GAN-based Softmax classifier (Tables (3- 5)). The
proposed GAN-based 1SVM detector offers superior dis-
crimination performance of modulation types by achiev-
ing an averaged accuracy of 0.951 and F1-Score of 0.954.
The DBN-based 1SVM obtained an averaged accuracy of
0.911 and an FI-Score of 0.913. The RBM-based 1SVM
approach almost reached comparable detection performance
to the DBN-1SVM approach with averaged accuracy of
0.912 and an F1-Score of 0.914.

To recapitulate the evaluations, we provide the barplot
of the averaged AUC values per method in Figure 8 and
as per method in Figure 9. Overall, Figure 8 confirms that
the GAN-1SVM dominates the other models (RBM and
DBN-based 1SVM) by showing better detection performance
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Target Classes Accuracy  Precision  Recall  Fl-score  AUC
AM-DSB | AM-SSB 0.944 0.957 0.93 0.943 0.944
AM-DSB CPFSK 0.956 0.963 0.948 0.956 0.956
AM-DSB BPSK 0.964 0.975 0.952 0.964 0.964
AM-DSB PAM4 0.964 0.981 0.946 0.963 0.964
AM-DSB WBFM 0.947 0.961 0.932 0.946 0.947
AM-SSB | AM-DSB 0.845 0.789 0.942 0.859 0.845
AM-SSB CPFSK 0.855 0.811 0.926 0.865 0.855
AM-SSB BPSK 0.852 0.794 0.95 0.865 0.852
AM-SSB PAM4 0.87 0.819 0.95 0.880 0.87
AM-SSB WBFM 0.86 0.800 0.96 0.873 0.86
CPFSK AM-DSB 0.887 0.849 0.942 0.893 0.887
CPFSK AM-SSB 0.883 0.849 0.932 0.888 0.883
CPFSK BPSK 0.885 0.840 0.952 0.892 0.885
CPFSK PAM4 0.884 0.854 0.926 0.889 0.884
CPFSK WBFM 0.886 0.847 0.942 0.892 0.886
BPSK AM-DSB 0.946 0.936 0.958 0.947 0.946
BPSK AM-SSB 0.96 0.953 0.968 0.960 0.96
BPSK CPFSK 0.944 0.934 0.956 0.945 0.944
BPSK PAM4 0.941 0.926 0.958 0.942 0.941
BPSK WBFM 0.944 0.939 0.95 0.944 0.944
PAM4 AM-DSB 0.874 0.883 0.862 0.872 0.874
PAM4 AM-SSB 0.86 0.873 0.842 0.857 0.86
PAM4 CPFSK 0.861 0.897 0.816 0.854 0.861
PAM4 BPSK 0.856 0.872 0.834 0.853 0.856
PAM4 WBFM 0.868 0.872 0.862 0.867 0.868
WBFM AM-DSB 0.964 0.979 0.948 0.963 0.964
WBFM AM-SSB 0.956 0.973 0.938 0.955 0.956
WBFM CPFSK 0.966 0.981 0.95 0.965 0.966
WBFM BPSK 0.962 0.981 0.942 0.961 0.962
WBFM PAM4 0.966 0.979 0.952 0.966 0.966

TABLE 7. MC results using DBN-based 1SVM.

Target Classes Accuracy  Precision Recall  Fl-score  AUC
AM-DSB | AM-SSB 0.95 0.957 0.942 0.950 0.95
AM-DSB CPFSK 0.951 0.965 0.936 0.950 0.951
AM-DSB BPSK 0.955 0.961 0.948 0.955 0.955
AM-DSB PAM4 0.949 0.959 0.938 0.948 0.949
AM-DSB WBFM 0.96 0.962 0.958 0.960 0.96
AM-SSB | AM-DSB 0.838 0.780 0.942 0.853 0.838
AM-SSB CPFSK 0.852 0.792 0.954 0.866 0.852
AM-SSB BPSK 0.856 0.803 0.944 0.868 0.856
AM-SSB PAM4 0.853 0.795 0.952 0.866 0.853
AM-SSB WBFM 0.858 0.792 0.972 0.873 0.858
CPFSK AM-DSB 0.888 0.845 0.95 0.895 0.888
CPFSK AM-SSB 0.895 0.848 0.962 0.902 0.895
CPFSK BPSK 0.895 0.852 0.956 0.901 0.895
CPFSK PAM4 0.878 0.835 0.942 0.885 0.878
CPFSK WBFM 0.872 0.826 0.942 0.880 0.872
BPSK AM-DSB 0.963 0.958 0.968 0.963 0.963
BPSK AM-SSB 0.949 0.946 0.952 0.949 0.949
BPSK CPFSK 0.939 0.931 0.948 0.940 0.939
BPSK PAM4 0.943 0.942 0.944 0.943 0.943
BPSK WBFM 0.939 0.930 0.95 0.940 0.939
PAM4 AM-DSB 0.865 0.889 0.834 0.861 0.865
PAM4 AM-SSB 0.858 0.891 0.816 0.852 0.858
PAM4 CPFSK 0.863 0.889 0.83 0.858 0.863
PAM4 BPSK 0.88 0.906 0.848 0.876 0.88
PAM4 WBFM 0.871 0.904 0.83 0.865 0.871
WBFM AM-DSB 0.972 0.974 0.97 0.972 0.972
WBFM AM-SSB 0.959 0.973 0.944 0.958 0.959
WBFM CPFSK 0.96 0.981 0.938 0.959 0.96
WBFM BPSK 0.959 0.966 0.952 0.959 0.959
WBFM PAMA4 0.956 0.962 0.95 0.956 0.956

in identifying modulation types from the received signals.
In addition, both digital and analog modulation can be rec-
ognized by the proposed GAN-1SVM approach.

In summary, these results prove that the GAN-1SVM
approach provided satisfactory results in identifying modu-
lation types from the received signals. The main reason that
the proposed hybrid approach outperformed the rest of the
methods is related to its principle-based on (i) the recognition
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TABLE 8. MC results using GAN-based 1SVM.

Target Classes Accuracy  Precision  Recall ~FI-Score = AUC
AM-DSB | AM-SSB 0.976 1 0.952 0.975 0.976
AM-DSB CPFSK 0.972 1 0.944 0.971 0.972
AM-DSB BPSK 0.959 0.973 0.944 0.958 0.959
AM-DSB PAM4 0.977 0.998 0.956 0.977 0.977
AM-DSB WBFM 0.954 0.971 0.936 0.953 0.954
AM-SSB | AM-DSB 0.967 0.974 0.96 0.967 0.967
AM-SSB CPFSK 0.959 0.966 0.952 0.959 0.959
AM-SSB BPSK 0.962 0.977 0.946 0.961 0.962
AM-SSB PAM4 0.955 0.952 0.958 0.955 0.955
AM-SSB WBFM 0.969 0.976 0.962 0.969 0.969
CPFSK AM-DSB 0.767 0.697 0.944 0.802 0.767
CPFSK AM-SSB 0.972 1 0.944 0.971 0.972
CPFSK BPSK 0.853 0.791 0.96 0.867 0.853
CPFSK PAM4 0.917 0.899 0.94 0.919 0.917
CPFSK WBFM 0.78 0.706 0.96 0.814 0.78
BPSK AM-DSB 0.978 0.998 0.958 0.978 0.978
BPSK AM-SSB 0.973 1 0.946 0.972 0.973
BPSK CPFSK 0.971 0.994 0.948 0.970 0.971
BPSK PAM4 0.978 1 0.956 0.978 0.978
BPSK WBFM 0.967 0.978 0.956 0.967 0.967
PAM4 AM-DSB 0.974 1 0.948 0.973 0.974
PAM4 AM-SSB 0.981 1 0.962 0.981 0.981
PAM4 CPFSK 0.988 1 0.976 0.988 0.988
PAM4 BPSK 0.975 1 0.95 0.974 0.975
PAM4 WBFM 0.977 1 0.954 0.976 0.977
WBFM AM-DSB 0.938 0.942 0.934 0.938 0.938
WBFM AM-SSB 0.972 1 0.944 0.971 0.972
WBFM CPFSK 0.984 1 0.968 0.984 0.984
WBFM BPSK 0.972 0.996 0.948 0.971 0.972
WBFM PAM4 0.968 1 0.936 0.967 0.968
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of each class separately, (ii) the approximation of the data
distribution by the creation of latent space, which is appro-
priate in the representation of original data, and (iii) the high
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capability of ISVM in separating atypical features from the
training data.

Now, the execution time of the considered models is ana-
lyzed. We conducted all experiments using CPU intel i3
with 8 G.B to guarantee a fair comparison. We implemented
the investigated methods via Python with Tensorflow 2.3,
Keras, and Scikit-Learn 0.22. The averaged testing times of
the GAN-1SVM, DBN-1SVM, and RBM-1SVM are 0.3057,
0.24, and 0.21, respectively. We observe that the RBM-1SVM
approach requires a lower testing time compared to DBN-
1SVM and GAN-1SVM. The RBM model has a simple struc-
ture compared to DBN and GAN models. The GAN-1SVM
model requires, on average, 0.3057s for testing, in which the
average of 1SVM predicting time is 0.000325s. Note that the
training is performed offline, and once the model is trained,
it can be used for detection. After training the GAN model,
we used only the discriminator model, a feed-forward neural
network. Each hidden neuron performs a linear combination
of inputs X and applies a non-linear (or activation) function:
sigmoid (XW + b) with W and b are respectively the weights
matrix and bias vector. It is worth noting that the central char-
acteristic of a model is its capability to accurately recognize
the modulation type. Thus, there exists a trade-off between
training time and performance. The RBM-1SVM and DBN-
1SVM approaches require less training time, but the GAN-
ISVN shows better detection performance. In addition, the
training is performed offline. Crucially, the selection of the
modulation identification approach should be based not only
on detection accuracy but also on model complexity. The
time complexity provides relevant information about the time
needed for the investigated model for the execution, generally
computed using O notation. Assume that an algorithm will
process n data points. An algorithm will have a constant
complexity (i.e., O(1)) if not relying on n. However, if the
model depends on n, the complexity depends on the line code
in the model (e.g., O(n), 0n?)) [59].

The computational complexity of deep learning models
(e.g., GAN, DBN, and RBM) relies principally on the struc-
ture of the model: the number of layers and the number of
neurons in each layer. The time complexity of the proposed
GAN-1SVM approach can be evaluated with regard to feature
extraction by the GAN model and modulation identification
using the 1SVM algorithm. The primary components of the
GAN architecture are two neural networks: an encoder and
a decoder. As described in TAble 2, the GAN encoder and
decoder consist of a neural network with three layers. The
time complexity of neural networks during training and test-
ing are O(dNtrIL) and O(dNte), respectively [60]. Where
d is the data dimension, L denotes the number of layers,
Ntr is the number of training data points, Nte denotes the
number of testing data points. The time complexity of 1ISVM
is O(Nte3 ) [59], [61]. Then, the total computational complex-
ity of the GAN-1SVM model in training is O2(dNtrIL) +
(Nte3)). As reported in [62], the time complexity of DBN is
similar to that of SVM, O(Nte3), which is relatively high. The
time complexity for training the RBM model is O(c(m + n)),
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where n and m denote the number of visible and hidden units,
and ¢ denotes the number of iterations [57], [63].

C. COMPARISON WITH THE STATE-OF-THE-ART

This section compares the performance of the proposed
RBM, DBN, and GAN-based 1SVM detectors with state-
of-the-art (SOTA) methods applied to RadioML 2016.10a.
Several deep learning-driven methods have been developed
to address the problem of automatic modulation recogni-
tion, including LSTM [64], CNN [65], CNN-LSTM [66],
CLDNN [65], CM-CNN [65], SCNN2 [67], combined
Fourth-order cumulant with SVM [68], 2-layer GAM-
HRNN-GRU [69], and GAM-HRNN-GRU [69]. Table 9
compares the achieved average accuracy of the proposed
approaches (RBM, DBN, and GAN-based 1SVM) with those
of the state-of-the-art methods. It should be noted that the
average accuracies of the SOTA methods listed in Table 9 are
estimated from the provided accuracy curves in the original
papers. This is because the original papers do not provide
specific classification accuracy values. Table 9 shows that
combining traditional feature extractors with shallow classi-
fiers leads to the worst recognition performance. Specifically,
in [68], an approach combining higher-order cumulants and
SVM for modulation classification. Specifically, high-order
cumulants are extracted from the received signals and used
as input for the SVM to classify modulation types. This
combined approach achieved improved performance than the
standalone SVM, but its average classification accuracy is not
satisfactory, i.e., 0.473. This indicates that traditional features
are not efficient in characterizing the modulation schemes
of received signals, maybe due to the different effects of
various noises. The study in [65] introduced a correction
module (CM) to mitigate signal distortion to improve the
modulation accuracy. They revealed that CM combined with
CNN, CM+CNN, achieved better accuracy (0.59) than CNN
(0.52) and Convolutional Long short-term Deep Neural Net-
works (CLDNN) (0.55). However, the classification accu-
racy is still below the desired performance even with CM.
Authors in [67] presented a spectrum analysis-based convo-
lutional neural network (SCNN) scheme for modulation clas-
sification and achieved an accuracy of 0.611. This approach
applies SCNN to spectrogram images obtained by applying
the short-time discrete Fourier transform to the observed
signals. In [70], an approach called LSTM-IQFOC achieved
an average accuracy of 0.519 by merging the raw In-Phase
and Quadrature (IQ) data, Fourth-order Cumulants (FOC),
and LSTM for modulation recognition. Besides, the average
accuracy obtained by using LSTM [70] is 0.624. This means
that the modulation recognition has not been improved even
by using powerful deep learning models. In [69], by combin-
ing modified hierarchical recurrent neural networks with a
grouped auxiliary memory GRU (GAM-HRNN-GRU), sig-
nificantly improved results have been obtained by reach-
ing an accuracy of 0.916. Also, in [69], an accuracy of
0.922 has been obtained by using the 2-layer GAM-HRNN-
GRU approach. Table 9 revealed that the GAN-based 1SVM
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method outperformed the SOTA methods by achieving a sat-
isfying recognition accuracy of 0.951. Thus, we can deduce
that the GAN-1SVM scheme is well adapted for discrim-
inating modulation schemes from the received signals and
presents an effective and flexible way for automatic modu-
lation recognition than other deep learning-driven methods.

TABLE 9. Comparison with the state-of-the-art methods.

Refs ‘ Model Average accuracy
[67] SCNN2 0.611
[68] Fourth-order cumulant + SVM  0.473
[69] 2-layer GAM-HRNN-GRU 0.922
[69] GAM-HRNN-GRU 0.916
[64] LSTM 0.624
[70] LSTM-IQFOC 0.519
[65] CNN 0.520
[65] CLDNN 0.550
[65] CM-CNN 0.590

Proposed | RBM-1SVM 0.912

Proposed | DBN-1SVM 0.911

Proposed | GAN-1SVM 0.951

VI. CONCLUSION

To guarantee reliable performances complying with wire-
less communication, accurate recognition of modulation
types of signals is becoming an indispensable component
in MIMO systems. This study introduced a semi-supervised
deep learning-based strategy for modulation discrimination
in MIMO systems. Importantly, we addressed the problem
of multiclass classification as an anomaly detection problem
based on unlabeled data. The designed data-based scheme
merges the extended capacity of the GAN features extractor
and the discrimination ability of the 1SVM-based anomaly
detection scheme. Specifically, the ISVM detector is applied
to the features extracted by the GAN model for separating
modulation types. The efficiency of the proposed method is
verified using the public datasets RadioML.2016.10a. Five
statistical scores have been utilized to judge the detection
accuracy of the studied methods, including accuracy, preci-
sion, recall, F1-Score, and AUC. Results revealed that the
proposed GAN-1SVM offers superior discrimination perfor-
mance of modulation types and dominates the investigated
methods (RBM and DBN-based 1SVM) and the state-of-the-
art techniques.

Despite the improved identification of the modulation
type from the received signal using the GAN-1SVM, future
works will be aimed at improving the robustness of the
GAN-1SVM model to noisy measurements by developing
a wavelet-based GAN-1SVM detector. To this end, we will
use wavelet decomposition to capture multivariate informa-
tion in the time and frequency domains and then employ
a GAN model to extract relevant features that will be fed
to the 1ISVM for modulation identification. It is expected
that by applying wavelet-based multiscale denoising to the
received signals, noise effects will be reduced, thus improving
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the modulation recognition of the GAN-1SVM. Further-
more, another direction of improvement consists of using data
augmentation techniques to generate large-sized data, which
improves the construction of deep learning models and thus
enhances modulation recognition. Although the proposed
GAN-1SVM approach provided superior performance for
automatic modulation recognition than the other models, this
approach has a significant execution time cost. An interesting
direction for future work is to further reduce its computational
complexity while maintaining high modulation recognition
accuracy. This could be done by integrating feature selection
procedures or incorporating an attention mechanism in the
GAN model to focus only on the relevant features.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Bouchenak, R. Merzougui, and F. Harrou, “A hybrid beamforming
massive MIMO system for 5G: Performance assessment study,” in Proc.
Int. Conf. Innov. Intell. Informat., Comput., Technol. (ICT), Sep. 2021,
pp. 371-375.

M. R. Bahloul, M. Z. Yusoff, A.-H. Abdel-Aty, M. N. M. Saad, and
M. Al-Jemeli, “Modulation classification for MIMO systems: State of
the art and research directions,” Chaos, Solitons Fractals, vol. 89,
pp. 497-505, Aug. 2016.

Q. Zheng, P. Zhao, Y. Li, H. Wang, and Y. Yang, “Spectrum interference-
based two-level data augmentation method in deep learning for auto-
matic modulation classification,” Neural Comput. Appl., vol. 33, no. 13,
pp. 7723-7745, Nov. 2020.

B. Ramkumar, “Automatic modulation classification for cognitive radios
using cyclic feature detection,” IEEE Circuits Syst. Mag., vol. 9, no. 2,
pp. 27-45, Jun. 2009.

Y. A. Eldemerdash, O. A. Dobre, O. Ureten, and T. Yensen, “A robust
modulation classification method for PSK signals using random graphs,”
IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 642-644, Feb. 2018.

R. A. Poisel, Introduction to Communication Electronic Warfare Systems.
Norwood, MA, USA: Artech House, 2002.

Z.Zhu and A. K. Nandi, Automatic Modulation Classification: Principles,
Algorithms and Applications. Hoboken, NJ, USA: Wiley 2015.

M. Narendar, A. P. Vinod, A. S. M. Kumar, and A. K. Krishna, ‘“Automatic
modulation classification for cognitive radios using cumulants based on
fractional lower order statistics,” in Proc. 30th URSI Gen. Assem. Sci.
Symp., Aug. 2011, pp. 1-4.

O. A. Dobre, “Signal identification for emerging intelligent radios: Clas-
sical problems and new challenges,” IEEE Instrum. Meas. Mag., vol. 18,
no. 2, pp. 11-18, Apr. 2015.

H. B. Chikha, A. Almadhor, and W. Khalid, ‘“Machine learning for 5G
MIMO modulation detection,” Sensors, vol. 21, no. 5, p. 1556, Feb. 2021.
M. S. Miihlhaus, M. Oner, O. A. Dobre, H. U. Jkel, and F. K. Jondral,
“Automatic modulation classification for MIMO systems using fourth-
order cumulants,” in Proc. IEEE Veh. Technol. Conf. (VIC Fall),
Sep. 2012, pp. 1-5.

E. Kanterakis and W. Su, “Modulation classification in MIMO systems,”
in Proc. IEEE Mil. Commun. Conf., Nov. 2013, pp. 35-39.

Z. Zhu and A. K. Nandi, “Blind modulation classification for MIMO
systems using expectation maximization,” in Proc. IEEE Mil. Commun.
Conf., Oct. 2014, pp. 754-759.

J. Tian, Y. Pei, Y. D. Huang, and Y.-C. Liang, “Modulation-constrained
clustering approach to blind modulation classification for MIMO sys-
tems,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4, pp. 894-907,
Dec. 2018.

Z. Xing and Y. Gao, “A modulation classification algorithm for multipath
signals based on cepstrum,” IEEE Trans. Instrum. Meas., vol. 69, no. 7,
pp. 47424752, Jul. 2020.

H. Agirman-Tosun, Y. Liu, A. M. Haimovich, O. Simeone, W. Su, J. Dabin,
and E. Kanterakis, “Modulation classification of MIMO-OFDM signals
by independent component analysis and support vector machines,” in
Proc. Conf. Rec. 45th Asilomar Conf. Signals, Syst. Comput. (ASILOMAR),
Nov. 2011, pp. 1903-1907.

76634

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

R. Utrilla, E. Fonseca, A. Araujo, and L. A. Dasilva, “Gated recurrent
unit neural networks for automatic modulation classification with resource-
constrained end-devices,” IEEE Access, vol. 8, pp. 112783-112794, 2020.
S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani,
and Y.-D. Yao, ‘“Modulation classification based on signal constellation
diagrams and deep learning,” [EEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 3, pp. 718-727, Mar. 2018.

Z. Zhang, H. Luo, C. Wang, C. Gan, and Y. Xiang, ‘““Automatic modula-
tion classification using CNN-LSTM based dual-stream structure,” /[EEE
Trans. Veh. Technol., vol. 69, no. 11, pp. 13521-13531, Oct. 2020.

F. Harrou, Y. Sun, A. S. Hering, and M. Madakyaru, Statistical Process
Monitoring Using Advanced Data-Driven and Deep Learning Approaches:
Theory and Practical Applications. Amsterdam, The Netherlands: Else-
vier, 2020.

B. Mao, F. Tang, Z. M. Fadlullah, and N. Kato, “An intelligent route com-
putation approach based on real-time deep learning strategy for software
defined communication systems,” IEEE Trans. Emerg. Topics Comput.,
vol. 9, no. 3, pp. 1554-1565, Jul. 2021.

H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
“Deep learning for physical-layer 5G wireless techniques: Opportuni-
ties, challenges and solutions,” IEEE Wireless Commun., vol. 27, no. 1,
pp. 214-222, Feb. 2019.

H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 1065-1069, Jan. 2019.

J. Huang, S. Huang, Y. Zeng, H. Chen, S. Chang, and Y. Zhang, ‘‘Hierarchi-
cal digital modulation classification using cascaded convolutional neural
network,” J. Commun. Inf. Netw., vol. 6, no. 1, pp. 72-81, Mar. 2021.

B. Kim, J. Kim, H. Chae, D. Yoon, and J. W. Choi, “‘Deep neural network-
based automatic modulation classification technique,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2016, pp. 579-582.

X. Liu, D. Yang, and A. E. Gamal, “Deep neural network architectures
for modulation classification,” in Proc. 51st Asilomar Conf. Signals, Syst.,
Comput., Oct. 2017, pp. 915-919.

M. R. Bahloul, M. Z. Yusoff, A.-H. Abdel-Aty, M. N. Saad, and A. Laouiti,
“Efficient and reliable modulation classification for MIMO systems,”
Arabian J. Sci. Eng., vol. 42, no. 12, pp. 5201-5209, Dec. 2017.

M. Sarfraz, S. Alam, S. A. Ghauri, A. Mahmood, M. N. Akram,
M. J. U. Rehman, M. F. Sohail, and T. M. Kebedew, ‘‘Random graph-based
M-QAM classification for MIMO systems,” Wireless Commun. Mobile
Comput., vol. 2022, pp. 1-10, Apr. 2022.

T. Huynh-The, T.-V. Nguyen, Q.-V. Pham, D. B. da Costa, and D.-S. Kim,
“MIMO-OFDM modulation classification using three-dimensional con-
volutional network,” IEEE Trans. Veh. Technol., vol. 71, no. 6,
pp. 6738-6743, Jun. 2022.

Y. Wang, J. Gui, Y. Yin, J. Wang, J. Sun, G. Gui, H. Gacanin, H. Sari, and
F. Adachi, “Automatic modulation classification for MIMO systems via
deep learning and zero-forcing equalization,” IEEE Trans. Veh. Technol.,
vol. 69, no. 5, pp. 5688-5692, May 2020.

H. Ben Chikha and A. Almadhor, “Automatic classification of superim-
posed modulations for 5G MIMO two-way cognitive relay networks,”
Comput., Mater. Continua, vol. 70, no. 1, pp. 1799-1814, 2022.

7Z. Gao, Z. Zhu, and A. K. Nandi, ‘“Modulation classification in
MIMO systems with distribution test ensemble,” IEEE Access, vol. 8,
pp. 128819-128829, 2020.

Y. Wang, J. Wang, W. Zhang, J. Yang, and G. Gui, “Deep learning-based
cooperative automatic modulation classification method for MIMO sys-
tems,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4575-4579, Apr. 2020.
T. Zhang, C. Shuai, and Y. Zhou, “Deep learning for robust automatic
modulation recognition method for IoT applications,” IEEE Access, vol. 8,
pp. 117689-117697, 2020.

Y. A. Eldemerdash, O. A. Dobre, and M. Oner, ““Signal identification for
multiple-antenna wireless systems: Achievements and challenges,” IEEE
Commun. Surveys Tuts., vol. 18, no. 3, pp. 1524-1551, 3rd Quart., 2016.
O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic mod-
ulation classification techniques: Classical approaches and new trends,”
IET Commun., vol. 1, no. 2, pp. 137-156, Apr. 2007.

S. Peng, S. Sun, and Y.-D. Yao, “A survey of modulation classifica-
tion using deep learning: Signal representation and data preprocessing,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Jun. 14, 2021, doi:
10.1109/TNNLS.2021.3085433.

X. Yang, “An ensemble automatic modulation classification model with
weight pruning and data preprocessing,” Ph.D. dissertation, Dept. Elect.
Comput. Eng., Univ. British Columbia, Vancouver, BC, Canada, 2020.

VOLUME 10, 2022


http://dx.doi.org/10.1109/TNNLS.2021.3085433

S. Bouchenak et al.: Semi-Supervised Modulation Identification in MIMO Systems: A Deep Learning Strategy

IEEE Access

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-end learn-
ing from spectrum data: A deep learning approach for wireless signal
identification in spectrum monitoring applications,” IEEE Access, vol. 6,
pp. 18484-18501, 2018.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Process., vol. 35, no. 1, pp. 53-65, Jan. 2018.

L.Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, ‘‘Generative adversar-
ial networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 9, pp. 5046-5063, Sep. 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Commun. ACM, vol. 63, no. 11, pp. 139-144, 2020.

F. Kadri, A. Dairi, F. Harrou, and Y. Sun, “Towards accurate prediction
of patient length of stay at emergency department: A GAN-driven deep
learning framework,” J. Ambient Intell. Humanized Comput., pp. 1-15,
Feb. 2022, doi: 10.1007/s12652-022-03717-z.

W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and
1. Goodfellow, “Many paths to equilibrium: GANs do not need to decrease
a divergence at every step,” 2017, arXiv:1710.08446.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1-9.

H. J. Shin, D.-H. Eom, and S.-S. Kim, “One-class support vector
machines—An application in machine fault detection and classification,”
Comput. Ind. Eng., vol. 48, no. 2, pp. 395-408, Mar. 2005.

F. Harrou, Y. Sun, A. S. Hering, M. Madakyaru, and A. Dairi, “Unsu-
pervised deep learning-based process monitoring methods,” in Statistical
Process Monitoring Using Advanced Data-Driven and Deep Learning
Approaches. Amsterdam, The Netherlands: Elsevier, 2021, pp. 193-223.
F. Harrou, N. Zerrouki, A. Dairi, Y. Sun, and A. Houacine, ‘“‘Automatic
human fall detection using multiple tri-axial accelerometers,” in Proc.
Int. Conf. Innov. Intell. Informat., Comput., Technol. (ICT), Sep. 2021,
pp. 74-78.

B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural Comput., vol. 13, no. 7, pp. 1443-1471, 2001.

F. Harrou, A. Dairi, B. Taghezouit, and Y. Sun, ““An unsupervised monitor-
ing procedure for detecting anomalies in photovoltaic systems using a one-
class support vector machine,” Sol. Energy, vol. 179, pp. 48-58, Feb. 2019.
A. Dairi, F. Harrou, M. Senouci, and Y. Sun, “Unsupervised obstacle detec-
tion in driving environments using deep-learning-based stereovision,”
Robot. Auto. Syst., vol. 100, pp. 287-301, Feb. 2018.

F. Harrou, A. Dairi, Y. Sun, and F. Kadri, “Detecting abnormal ozone
measurements with a deep learning-based strategy,” IEEE Sensors J.,
vol. 18, no. 17, pp. 7222-7232, Sep. 2018.

T. Cheng, A. Dairi, F. Harrou, Y. Sun, and T. Leiknes, ‘“Monitoring
influent conditions of wastewater treatment plants by nonlinear data-based
techniques,” IEEE Access, vol. 7, pp. 108827-108837, 2019.

T.J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation
recognition networks,” in Proc. Int. Conf. Eng. Appl. Neural Netw. Cham,
Switzerland: Springer, 2016, pp. 213-226.

VOLUME 10, 2022

[55]

[56]

(571

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

T. J. O’shea and N. West, “Radio machine learning dataset generation with
gnu radio,” in Proc. GNU Radio Conf., vol. 1, 2016, pp. 1-6.

G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” in Neural Networks: Tricks of the Trade. Cham, Switzerland:
Springer, 2012, pp. 599-619.

G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554, 1960.

B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Restricted Boltz-
mann machine and deep belief network: Tutorial and survey,” 2021,
arXiv:2107.12521.

A. Abdiansah and R. Wardoyo, “Time complexity analysis of support
vector machines (SVM) in LibSVM,” Int. J. Comput. Appl., vol. 128, no. 3,
pp. 28-34, Oct. 2015.

M. Z. Asghar, M. Abbas, K. Zeeshan, P. Kotilainen, and T. Himéldinen,
“Assessment of deep learning methodology for self-organizing 5G net-
works,” Appl. Sci., vol. 9, no. 15, p. 2975, Jul. 2019.

R. Maji, A. Biswas, and R. Chaki, “A novel proposal of using NLP
to analyze IoT apps towards securing user data,” in Proc. Int. Conf.
Comput. Inf. Syst. Ind. Manage. Cham, Switzerland: Springer, 2021,
pp. 156-168.

N. Burlutskiy, M. Petridis, A. Fish, A. Chernov, and N. Ali, “An investiga-
tion on online versus batch learning in predicting user behaviour,” in Proc.
Int. Conf. Innov. Techn. Appl. Artif. Intell. Cham, Switzerland: Springer,
2016, pp. 135-149.

M. Sun, T. Min, T. Zang, and Y. Wang, “CDL4CDRP: A collaborative deep
learning approach for clinical decision and risk prediction,” Processes,
vol. 7, no. 5, p. 265, May 2019.

Y. Sang and L. Li, “Application of novel architectures for modulation
recognition,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS),
Oct. 2018, pp. 159-162.

K. Yashashwi, A. Sethi, and P. Chaporkar, “A learnable distortion correc-
tion module for modulation recognition,” IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 77-80, Feb. 2019.

Y. Wu, X. Li, and J. Fang, “A deep learning approach for modulation
recognition via exploiting temporal correlations,” in Proc. IEEE 19th Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018,
pp. 1-5.

Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, “Spectrum anal-
ysis and convolutional neural network for automatic modulation recog-
nition,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp.929-932,
Jun. 2019.

F. Yang, Z. Li, S. Zeng, B. Hao, P. Qi, and Z. Pang, “A novel method
for wireless communication signal modulation recognition in smart grid,”
J. Commun., vol. 11, no. 9, pp. 813-818, 2016.

K. Zang and Z. Ma, “Automatic modulation classification based on hier-
archical recurrent neural networks with grouped auxiliary memory,” IEEE
Access, vol. 8, pp. 213052213061, 2020.

M. Zhang, Y. Zeng, Z. Han, and Y. Gong, ‘“‘Automatic modulation
recognition using deep learning architectures,” in Proc. IEEE 19th Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018,

pp. 1-5.

76635


http://dx.doi.org/10.1007/s12652-022-03717-z

