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ABSTRACT Digital signal processing relies on the Nyquist-Shannon sampling theorem that applies to
and requires a continuous signal with limited bandwidth. However, many systems or networks of signal
processing involve nonlinear functions, which could generate new frequency components beyond the original
bandwidth and lead to aliasing. Indeed, aliasing-induced shift variance has long been a nuisance and unsolved
problem in convolutional neural networks and has recently been found to severely impair the performance of
machine learning applications. The same problem exists in other fields such as computational lithography.
In this paper, a new method and algorithms are introduced to solve the problem of aliasing induced by
nonlinear functions involving operations other than linear convolutions and pointwise multiplications. Said
new method and algorithms employ implicitly defined functions that are implemented via iterations of
polynomial operations so that aliasing is completely avoided by upsampling signals before polynomial
operations and limiting signal spectra before downsampling. Theoretical analyses and exemplary algorithms
are presented to implement nonlinear functions commonly used in signal processing networks. In particular,
exemplary embodiments and numerical experiments are reported to illustrate and verify aliasing-free
operations of Wiener-Padé approximants, which are already universal in their ability to approximate any
continuous activation functions to the desired accuracy.

INDEX TERMS Convolutional nonlinear networks, aliasing, translation invariance, shift-invariance, implic-
itly defined functions, iterative multiplications, spectrum control.

I. THE PROBLEM OF ALIASING IN NONLINEAR SIGNAL
PROCESSING
The advent and wide applications of modern digital com-
puters have made computing or signal processing ubiquitous
and indispensable in industries, scientific researches, and
daily lives. Many computational or signal processing systems
involve a number of functional steps or function applications,
interchangeably called signal processing modules or stages,
each of which applies a predetermined function on an input
signal or image and transforms it into an output signal or
image. Such functional steps or signal processing modules
are interconnected to constitute a signal processing network,
or just a network in short. In this paper, the terms signal
and image are used interchangeably and refer to a physical
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quantity, or its digitized representation on a computer, that is
distributed in a region of space, time, or spacetime.

In most applications, such a physical quantity of con-
cern is a continuous and smooth distribution in spacetime,
and in many cases, has its spatial or temporal spectral con-
tents supported by a compact set in the corresponding fre-
quency domain, thus being called a band-limited signal or
image, for which, the largest separation between two spectral
points in the compact frequency support along a specific
frequency axis is called the bandwidth of the image or signal
along the specified frequency axis. Thanks to the celebrated
Nyquist-Shannon sampling theorem, a band-limited signal
can be represented by and fully reconstructed from a dis-
cretely sampled version of the original signal, so long as
the sampling rate is beyond the so-called Nyquist rate [1].
Moreover, any linear translation-invariant (LTI) function or
system [1] transforms a band-limited input signal into a
band-limited output signal with a compact support that is the
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same as or within the compact support of the input signal.
Therefore, an LTI network consisting of only LTI signal
processing modules can have all of the input, intermediate,
and output signals discretely sampled at the same rate, which
can represent and reconstruct the corresponding continuous
and smooth distributions of physical quantities without loss
of information or accuracy. This is the fundamental principle
behind the wide applications of digital signal or image pro-
cessing in modeling and simulating real physical, chemical,
or engineering processes on computers.

Unfortunately, not all signal processing tasks can be done
by linear functions. Many signal transformations involve
nonlinear operations. In fact, a certain nonlinearity is nec-
essary in order for a signal processing network to be a
universal approximator, able to approximate any continu-
ous or (Lebesgue) integrable function arbitrarily well as the
width or depth of the network grows. Without loss of gen-
erality, this paper is focused on the so-called convolutional
nonlinear networks (CNNs), which comprise interconnected
stages of LTI signal transformations (i.e., convolutions) and
spatiotemporally on-site nonlinear operations. Archetypi-
cal CNNs include the classical Volterra-Wiener systems
[2]–[4] as well as the recently fashionable convolutional
neural networks [5], [6]. In such CNNs, a typical nonlinear
operation on an originally band-limited signal will gener-
ally generate new spectral components beyond the presumed
compact frequency support of the original signal, so that the
original sampling rate sufficient for the input signal becomes
insufficient for the output signal. In terms of digital sig-
nal processing (DSP) on a computer, applying a nonlinear
function pointwise to each pixel of an image array repre-
senting a discretely sampled input signal produces an out-
put image array that no longer represents and is no longer
able to reconstruct the would-be continuous and smooth
distribution as the ideal result of nonlinearly transforming
the continuous and smooth input signal. Rather, when the
Nyquist-Shannon sampling theorem is invoked, such an out-
put image array reconstructs and represents a distorted ver-
sion of the ideal continuous and smooth output signal, leading
to the so-called aliasing problem due to spectrum rollback and
overlapping [1].

One detrimental effect of nonlinearity-induced aliasing is
a loss of symmetry that is inherent in the physical signal
and system. Translation invariance, or called shift-invariance,
is one important symmetry but is easily lost due to aliasing.
The convolutional neural networks, widely and successfully
applied inmachine learning, especially deep learning applica-
tions, are designed to embed the property of shift-invariance
through its explicit incorporation of convolutions. Unfortu-
nately, they also employ activation functions such as rational
functions, sigmoid, hyperbolic tangent, ReLU, Swish, max
pooling, Softmax, and SoftPool, etc. [7]–[12], which are
highly nonlinear and create high-frequency contents beyond
the sampling rates of the signals or images, resulting in
aliasing and shift variance. Recent studies have shown that
image classification and speech recognition systems based on

convolutional neural networks are not really shift-invariant,
and a small coordinate shift to input images or signals can
induce significant degradation and fluctuations in the clas-
sification or recognition performances. In refs. [13]–[15],
it has been found that a slight spatial shift of input images,
as small as a single pixel and indiscernible to human eyes, can
lead to significantly different classification outputs in pattern
recognition applications using multi-layered convolutional
neural networks. Generally, it is understood that such shift
variance is a result of aliasing due to the nonlinear activation
functions in the neural networks. Ref. [16] demonstrated
the impact of aliasing on audio and speech processing via
deep convolutional neural networks. Countermeasures such
as low-pass filtering before nonlinear operations have been
proposed and tested in applications [17], [18], which may
mitigate the problems of aliasing but not remove them com-
pletely. A consensus is that ‘‘the problem of insuring invari-
ance to small image transformations in neural networks while
preserving high accuracy remains unsolved’’ [15], [19].

Other striking examples come from the field of computa-
tional lithography, where the Volterra-Wiener type of mod-
els [20]–[22] and convolutional neural networks [23]–[28]
have been employed to simulate the diffusive and nonlinear
process of photochemistry, which turns an optical image of
photoexposure in a photoresist material into a 3D topography
of a developed photoresist. There, the optical image is sam-
pled at near or slightly over the Nyquist rate determined by
a bandwidth limit of the optical imaging system, with pixels
sized on the order of tens of nanometers. While the process
of photochemistry is highly nonlinear to induce seemingly
unavoidable aliasing, such that a minuscule coordinate shift
by a small fraction of the pixel size could induce a significant
change in the results, manifesting themselves in lithographic
patterns having size or position errors approaching even
exceeding a nanometer, becoming unacceptable in advanced
high-density lithography processes. It is now widely recog-
nized that aliasing-induced shift variance poses a fundamen-
tal challenge to computational lithography using CNNs.

To summarize, aliasing in nonlinear signal processing
affects many practical applications and is a fundamental
problem in pressing need of a solution. In the past, methods
such as upsampling an input signal at a higher rate than its
frequency bandwidth before applying a nonlinear operation
and then downsampling the output signal, have been applied
and proven useful in combating aliasing-induced signal dis-
tortions. Indeed, for a nonlinear operation that is associated
with a polynomial function, such as those incorporated in
a Volterra-Wiener model truncated to a finite order, upsam-
pling input signals by a factor equal to or above the degree
of the polynomial could have aliasing completely avoided.
However, many CNNs involve nonlinear functions that are
non-polynomial, for which, although upsampling does help to
reduce aliasing-induced problems, no amount of upsampling
could have aliasing completely avoided, so there is always
a vestigial distortion. Worse yet, in a large CNN having
multiple nonlinear operations cascaded in series, there is a
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risk of multiple stages of aliasing distortions compounding
and snowballing exponentially into a large and unacceptable
error. Such an exponential growth of aliasing-induced errors
is a new form of numerical instability, which could severely
limit the sustainable depth of a useful nonlinear network.

In the absence of a known theory or method to unravel
signal distortions after several aliasing stages, the only
possibility of saving a CNN from serious aliasing-induced
signal distortions seems to be making each nonlinear oper-
ation aliasing-free or aliasing-reduced very efficiently at an
affordable increase in computational cost. A greedy objective
is to have aliasing-induced errors reduced to exponentially
small at a linearly increased computational cost. Therefore,
it is a theoretically interesting and practically important
question whether non-polynomial signal operations can be
implemented or well approximated in such a manner that
aliasing-induced signal distortions are avoided or exponen-
tially suppressed, while the incurred computational cost
increases only linearly. In this paper, I propose, test, and
demonstrate a new method of realizing a nonlinear opera-
tion via an implicitly defined function, whose algorithmic
implementation involves an iterative solver to compute an
output signal through numerical iterations, where each iter-
ation involves only polynomial functions. It also employs
upsampling, spectral limiting, and downsampling to ensure
aliasing-free operations, such that the overall iterative solver
and the produced output signal are aliasing-free. A CNN that
incorporates such implicitly defined functions and operates
in an aliasing-free manner is called an implicit convolutional
nonlinear network (iCNN).

II. CONTINUOUS AND DISCRETE SIGNALS, THE
NYQUIST-SHANNON SAMPLING THEOREM,
ALIASING AND SHIFT VARIANCE
Let an interested region of spacetime be coordinated by a
variable vector x ∈ Rd , d ∈ N and I (x) denote an interested
image or signal over the spacetime region. For any given
coordinate shift δx ∈ Rd , let Tδx denote a spacetime trans-
lation operator such that [TδxI ](x)

def
= I (x − δx), with TδxI

representing the coordinate-shifted version of I . It is easy to
see that for any δx ∈ Rd , the operator Tδx is invertible and
T−1δx = T−δx .
Definition 1: A function f on continuous signals is

called translation-invariant, or shift-invariant, if f (TδxI ) =
Tδx[f (I )] holds for any legitimate input signal I and for any
coordinate shift δx.
For a given δx ∈ Rd , let fδx

def
= T−1δx fTδx

def
= T−1δx ◦ f ◦

Tδx denote a composite function that shifts an input signal
forward by δx, then applies the function f , and finally shifts
the resulted signal backward by−δx. Equivalently, a function
f is translation-invariant if and only if fδx = f holds for
any δx ∈ Rd . An LTI function or system, as mentioned
above, is both linear and translation-invariant. A single step
of signal processing, or a system having many steps of signal
processing as a whole, being represented by an input-output
function f , is not translation-invariant, or said to violate the

symmetry of translation-invariance, when there exists one
legitimate input image I and one coordinate shift vector
δx ∈ Rd , such that fδx(I ) 6= f (I ).

The celebrated Nyquist-Shannon sampling theorem [1]
states that if a continuous signal in spacetime is band-limited,
then it can be sampled into a discrete signal at a sampling rate
faster than the so-called Nyquist rate, and such continuous-
to-discrete (also called analog-to-digital) signal conversion
is information lossless, in the sense that, whenever needed,
the original continuous signal can be fully recovered from
the sampled discrete signal using the Whittaker-Shannon
interpolation formula [1]. The Nyquist-Shannon sampling
theorem laid down the foundation for DSP and the subse-
quent information revolution and information age. In prac-
tice, a DSP algorithm or device constitutes a DSP system,
which processes a discrete/digital signal sampled from a
continuous/analog signal at a predetermined sampling rate,
referred to as the DSP sampling rate hereafter.

To analyze a DSP system, let S denote the operation of
sampling a continuous, smooth, band-limited signal I into a
discrete image array J = S(I ), and conversely, let S∗ rep-
resent the reverse operation of reconstructing a continuous,
smooth, band-limited signal I ′ = S∗(J ′) from a discrete
image array J ′ using the Whittaker-Shannon interpolation
formula. Note that the operator composition SS∗ def

= S ◦ S∗
always reduces to an identity operator 1, transforming any
discrete image array back to itself, while S∗S def

= S∗ ◦S maps
identically only for band-limited continuous and smooth sig-
nals and when the S and S∗ operations are done at a sufficient
DSP sampling rate. It is another manifest of aliasing that S∗S
does not reduce to the identity operator 1 when acting on
signals having excessive spectral contents.

A DSP system represented by a function g on digital sig-
nals takes as input a discrete image array S(I ) that is sampled
from a continuous, smooth, band-limited signal I , and trans-
forms S(I ) into an output discrete image array g(S(I )), which
would reconstruct and represent a continuous, smooth, band-
limited signalS∗(g(S(I ))) per the Nyquist-Shannon sampling
theorem, where the S and S∗ operations are performed at
the same DSP sampling rate. In other words, such a DSP
algorithm or system represented by a function g on digital
signals implements an effective composite function f =
S∗gS def

= S∗ ◦ g ◦ S, whose domain and range are two spaces
of continuous signals or images that may or may not be the
same.
Definition 2: A DSP system represented by a function g

on discrete signals is called translation-invariant, or shift-
invariant, if and only if the composite function S∗gS is
translation-invariant over the space of band-limited signals,
whose bandwidth is below the DSP sampling rate.

Specifically, the Nyquist-Shannon sampling theorem
requires that a continuous signal in time (using a signal
in time just for example) containing a maximum frequency
component at Fmax Hz must be sampled at a rate of Fs
samples/second, with Fs > 2Fmax, in order for the sampled
discrete signal to be aliasing-free and able to reconstruct
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the original continuous signal. Otherwise, if a continuous
signal contains a spectral component that oscillates faster than
Fs/2 Hz, or a discrete signal has gone through a nonlinear
operation creating new spectral components with a frequency
exceeding Fs/2 Hz, then the discrete signal could suffer from
aliasing and experience signal distortions such as shift vari-
ance. A shift variance detector would be useful tomonitor and
measure such an aliasing-induced problem. The following
algorithm provides an exemplary embodiment.

Algorithm 1 (Shift Variance Detection)
1.1 Receive a function to be tested, a test signal as input, and

a spacetime shift;
2.2 Apply said function to the test signal and obtain the first

output;
3.3 Shift the test signal by the spacetime shift and obtain a

shifted input;
4.4 Apply said function to said shifted input and obtain a

shifted output;
5.5 Shift the shifted output backward by the spacetime shift

and obtain a second output;
6.6 Compute and report a difference between said first output

and said second output.

The example above is a straightforward algorithm for
detecting violations of shift-invariance, which literally fol-
lows the definition of shift-invariance. It should be noted that
the spacetime shift is often a fraction of a spacetime pixel,
so the operation of shifting the signals or images in spacetime
is implemented using fast Fourier transforms (FFTs) by virtue
of the ‘‘(space)time shifting’’ property of the Fourier trans-
form [1], namely, a spacetime signal or image is first trans-
formed to the spectral domain via FFT, then each frequency
component is phase-modulated by a phasor depending on the
frequency and the spacetime shift, and finally an inverse FFT
is applied to transform the spectral signal or image into a
shifted signal or image in spacetime. Another useful note is
on the number to report for the difference between the first
and second outputs in Algorithm 1, whose customary choice
is an L1, L2, or L∞ norm of the difference signal or image
between the two outputs. In the following, the L∞ norm of
the difference signal or image will be used as an indicator of
shift variance, which is simply the maximum of the absolute
values among all of the spacetime sampling points of the
difference signal or image. As a definitive measure of shift
variance, a number called the relative shift variance (RSV)
will be used, which is defined as the ratio between the L∞

norm of the difference signal or image and the L∞ norm of
the average of the first and second outputs.

An optical image from a computational lithography sim-
ulator is chosen as a test image, which is a 128 ×
128 two-dimensional (2D) array of discrete samples from
a band-limited optical intensity distribution, with the spac-
ing between adjacent pixels, known as the grid size, being
50 nm in both the horizontal and the vertical directions. The
test image is shown in Fig. 1 (a), where the colormap has

FIGURE 1. The original test image in real space and its power spectral
density.

bright yellow representing high-intensity values close to 1 (in
arbitrary unit) and dark blue indicating low-intensity values
near 0. Fig. 1 (b) shows the power spectral density of the test
image in log scale, displaying the logarithm of the absolute
value squared of the amplitudes of the spectral components,
where the colormap has bright yellow representing large
positive values indicating a relatively high power density
and dark blue representing large negative values indicating
a vanishingly small power density. From Fig. 1 (b), it can
be clearly seen that the test image has been sampled at a
DSP sampling rate slightly higher than the Nyquist rate, such
that its spectral image has a small margin with vanishing
amplitudes for the highest frequency components. The same
colormaps will be used in the following for images in the
2D real space and the spectral domain respectively, without
repeating how they should be interpreted.

Said computational lithography simulator models a lithog-
raphy process where a photomask containing designed pat-
terns is illuminated by a light source, the light transmitted
from the photomask is focused by a projection lens and forms
an optical image on a silicon wafer coated with a photoresist,
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triggering complicated photochemical reactions in the pho-
toresist, which later develops into desired topography that
selectively covers or exposes areas in the underlying silicon
wafer. The optical image is band-limited by fundamental
physics because the light wave has a finite wavelength and
the projection lens can only receive and transmit light beams
at a finite angle. Therefore, the optical image can be properly
sampled into a discrete 2D array without aliasing. By con-
trast, a highly nonlinear function is needed to model the pho-
tochemical process in the photoresist, which generates a lot
of high-frequency signal components beyond the Nyquist fre-
quency, even though the input optical image is band-limited
and moderately upsampled. In particular, a so-called Padé
approximant [29] as a rational function, namely, a quotient
between two polynomial functions, is particularly suitable for
modeling the sigmoid curve-like response of a photoresist,
which has the property of suppressing low-intensity image
values further down toward 0 while saturating toward the
maximum value 1 for high-intensity image values.

FIGURE 2. The Gauss-blurred image in real space and its power spectral
density.

For a smoke test to check the methodology and utili-
ties coded in Octave using double precision floating point

numerics, a shift variance detector is applied to an LTI func-
tion that simply blurs an input image by convolving it with a
Gaussian kernel (2πσ 2)−1 exp[−(x2 + y2)/2σ 2], σ = 2 pix-
els, namely, 100 nm in the real space. Using the test image of
Fig. 1 as input, theGauss-blurred image and its power spectral
density are shown in Fig. 2 (a) and (b) respectively, with
Fig. 2 (b) showing that themargins around the high-frequency
spectral regions with near-zero amplitudes are significantly
widened in comparison to Fig. 1 (b), as a result of the
Gaussian filter heavily attenuating the high-frequency sig-
nal components. Theoretically, such a Gauss-blurring func-
tion should induce no aliasing and suffer no shift variance.
Indeed, when a typical shift vector (δx, δy) = (0.3, 0.4)
pixel, namely, (δx, δy) = (15, 20) nm in the real space is
used to forward-shift the input image and backward-shift the
output image, an RSV value of 1.35 × 10−15 is obtained,
which is on the order of numerical rounding errors. Repeated
experiments with many other randomly chosen shift vectors
(δx, δy) all produce similar, vanishingly small RSV values
on the order of 10−15, indicating the absence of shift vari-
ance associated with the example Gauss-blurring function,
just as shift-invariance is theoretically expected for any LTI
function.

III. CLASSICAL METHODS OF ALIASING AVOIDANCE BY
UPSAMPLING
Given a (d ∈ N)-dimensional continuous image I ′ having
a finite bandwidth W − ε, with W > 0, ε > 0, ε � W
being an arbitrarily small number, suffice it to sample I ′ at
the Nyquist rate W into a discrete image I , whose domain
in the frequency space, denoted by FDom(I ) ⊆ Zd , has
a width W in each of the d frequency axes. The set of
frequency points on which I assumes a nonzero spectral
amplitude is called the support of I in the frequency space,
denoted by FSupp(I ), which is a subset of FDom(I ). Many
applications choose to oversample I ′ at a higher rate uW ,
u > 1, yielding a so-called upsampled discrete image J with
an enlarged domain FDom(J ) = uFDom(I ) in the frequency
space, even though the spectral amplitudes of J vanish in
the set FDom(J ) \ FDom(I ). Such oversampling serves the
purpose of either better spatial resolution or anti-aliasing in a
subsequent operation.
Definition 3: A discrete image I is said to be upsampled

into a discrete image J , conversely, J is said to be downsam-
pled into I , when FDom(J ) = uFDom(I ), I and J correspond
to the same continuous signal, that is, S∗(J ) = S∗(I ). The
number u > 1 is called an upsampling factor (USF).

A simple application of Fourier analysis asserts that the
discrete I is upsampled into the discrete J if and only if
FSupp(J ) = FSupp(I ) ⊆ FDom(I ) and J and I assume
identically the same spectral amplitudes on FSupp(I ). Oper-
ationally, to upsample a discrete image I by a USF u > 1,
firstly apply an FFT to I if it is not already in the fre-
quency space, then create an all-zero image J in the fre-
quency space with FDom(J ) = uFDom(I ), then copy the
spectral amplitudes of I in FSupp(I ) to the corresponding
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frequency points in FDom(J ), finally apply an inverse FFT
to J if it is desired to be in the spacetime representation.
Conversely, to downsample a discrete J into a discrete I , with
FDom(I ) = FDom(J )/u, just copy the spectral amplitudes
within the set FDom(I ) from J to I when both are in the
frequency space, and discard the high-frequency components
beyond FDom(I ). Alternatively, when u is an integer, J is
spectrally clipped or limited such that FSupp(J ) ⊆ FDom(I )
and brought back in the spacetime representation, then the
operation is simply spacetime downsampling which copies
pixels of J that are indexed by multiples of u into I [1].
When a band-limited signal goes through a nonlinear func-

tion, there are usually new and higher frequency components
generated, which if exceeding the sampling rate of the input
and output discrete signals, will lead to aliasing and shift
variance. Nevertheless, it follows from the Nyquist-Shannon
sampling theorem [1] that, when the nonlinear function is
a polynomial of degree k ∈ N, the signal bandwidth is
broadened by no more than k fold, and aliasing can be com-
pletely avoided by having the input signal upsampled with a
USF ≥ k before undergoing the polynomial transformation,
so that the upsampled larger image array has a sufficient
bandwidth to accommodate newly generated high-frequency
signal components by the polynomial function without any
spectrum overlapping or aliasing taking place.

Fig. 3 (a) and (b) show the output image in real space
and its power spectral density respectively, when the test
image of Fig. 1 without upsampling is transformed by a
square function, where in Fig. 3 (b) it is seen that the spectral
margin in the high-frequency region has been closed, and it is
reasonable to suspect that spectrum overlapping and aliasing
have taken place. Indeed, when the square function is subject
to the above-described shift variance detector, using the usual
test image as input and the typical shift vector (δx, δy) =
(0.3, 0.4) pixel in the real space, a large value 3.68 × 10−2

is reported for the RSV. By contrast, when the test image is
upsampled by a USF = 2 before being square-transformed,
the output image is shown in Fig. 4 (a), whose log-scaled
power spectral density is shown in Fig. 4 (b), where it is
apparent that the spectral content is basically doubled by
the square function, which nonetheless is still well within
the enlarged bandwidth and still leaves a clear margin in the
high-frequency regions, so to have spectrum overlapping and
aliasing completely avoided. Indeed, when testing with the
shift vector (δx, δy) = (0.3, 0.4) pixel in the real space, the
shift variance detector reports an RSV = 2.24 × 10−15, still
on the order of numerical rounding errors for double precision
floating point numerics.

For another experiment, a cubic function is also tested,
which transforms the test image of Fig. 1 without upsam-
pling into an output image as shown in Fig. 5 (a), whose
log-scaled power spectral density is shown in Fig. 5 (b),
which displays no spectral margin in the high-frequency
regions and indicates risks of spectrum overlapping and alias-
ing. Indeed, under the same (δx, δy) = (0.3, 0.4) pixel in
the real space as a typical shift vector, the shift variance

FIGURE 3. The squared image in real space and its power spectral density.

detector reports an even larger value of RSV = 5.54× 10−2,
indicating a severer problem of aliasing than the square func-
tion. By contrast, when the test image is firstly upsampled
with a USF = 3 before undergoing the cubic transformation,
then spectrum overlapping and aliasing can be completely
avoided, and the cubically transformed output image is shown
in Fig. 6 (a), whose log-scaled power spectral density is
shown in Fig. 6 (b), which displays a clear spectral mar-
gin in the high-frequency regions, indicating the absence of
spectrum overlapping and aliasing. Indeed, with the same
arbitrarily chosen shift vector (δx, δy) = (0.3, 0.4) pixel, the
shift variance detector reports an RSV = 4.00 × 10−15, still
on the order of numerical rounding errors.

Depending on applications, the output signal from a
polynomial function may need to be spectrum-limited and
downsampled back to a lower sampling rate. Such downsam-
pling after upsampling is especially necessary when multi-
ple nonlinear functions are cascaded in series, in order to
stop the image arrays from snowballing into an unwieldy
size. Note that the downsampling operation is linear and
aliasing-free.
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FIGURE 4. The squared upsampled image in real space and its power
spectral density.

IV. ALIASING-FREE SIGNAL PROCESSING VIA
IMPLICITLY DEFINED FUNCTIONS
Most convolutional neural networks employ nonlinear acti-
vation functions. Moreover, they have mostly involved
non-polynomial activation functions, until the recent intro-
duction of quadratic functions to neural networks [30]–[32].
Commonly used activation functions include rational func-
tions, sigmoid, hyperbolic tangent, ReLU, Swish, max pool-
ing, Softmax, and SoftPool, etc. [7]–[12], all of which induce
spectral broadening without a definitive frequency cutoff,
so that aliasing cannot be completely avoided no matter how
many times the input signal is upsampled, although a larger
USF does reduce the severity of aliasing-induced problems.
ReLU and max pooling involve the absolute value function,
which is not just non-polynomial but actually non-analytic.
The non-polynomial characteristics of other named activation
functions are attributable to the exponential function and
the division operation, which are at least analytic so long
as division by zero is averted. The absolute value function
must be avoided whenever possible, and new methods should
be developed to implement the exponential function and the
division operation in an aliasing-free fashion.

FIGURE 5. The cubed image in real space and its power spectral density.

For a concrete example, consider a so-called
Wiener-Padé functionWP employed in computational lithog-
raphy to model the photochemical response of a photoresist,
transforming an optical image I (x, y) into a resist image
J (x, y), (x, y) ∈ R2, such that

J (x, y) = WP[I (x, y)] def
=

(1+ a){[I ∗ h](x, y)}2

I2m + a{[I ∗ h](x, y)}2
, (1)

where h(x, y) def
= (2πσ 2)−1 exp[−(x2 + y2)/2σ 2] is a

two-dimensional Gaussian kernel meant to simulate the spa-
tial blurring effects due to chemical diffusion, σ > 0 and
a > 0 are constant parameters, Im > 0 is the maximum
value of the image I (x, y), and the ∗ operator represents a two-
dimensional convolution. It is easily seen from equation (1)
that theWP function, being rational and a Padé approximant,
characterizes the sigmoid curve-like response of a photore-
sist, which suppresses small [I ∗ h](x, y) values further down
toward 0 and saturates toward the maximum value 1 for large
[I ∗ h](x, y) values.
Unfortunately, the division operation for the WP function

makes it difficult to avoid aliasing, even if the input image
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FIGURE 6. The cubed upsampled image in real space and its power
spectral density.

I (x, y) is upsampled. For example, even if the test image of
Fig. 1 is 2× upsampled as an input image to theWP function
of equation (1), with σ = 7.5 nm, a = 2.52, Im = 1.0, the
output image as shown in Fig. 7 (a) and (b) still suffers from
spectrum overlapping and aliasing, and the shift variance
detector reports an RSV = 2.45× 10−3 under a typical shift
vector (δx, δy) = (0.5, 0.3) pixel, which may not seem to
be very large but already goes beyond tolerance, due to the
extremely stringent accuracy requirements in computational
lithography. Next, even if the test image of Fig. 1 is 3×
upsampled as an input image to the same WP function, the
output image as shown in Fig. 8 (a) and (b) still suffers from
spectrum overlapping and aliasing, and the shift variance
detector reports an RSV = 2.54 × 10−4 under the same
shift vector (δx, δy) = (0.5, 0.3) pixel, which has been
much reduced but is still a significant source of error for
computational lithography, not to mention that such result is
only obtained at the heavy costs of 9×memory usage and 9×
runtime.

In a large CNN or an iterative optimization loop where
a signal or image goes through multiple non-polynomial

FIGURE 7. The output image in real space and its power spectral density
from the Wiener-Padé function, when the input image is 2× upsampled.

functions in cascade, a more serious and fundamental prob-
lem is that such aliasing-induced shift variance, though not
very large per each non-polynomial transformation, will
accumulate and snowball into a substantially large random
variance and eventually exceed the error tolerance of a spe-
cific application. Worse still, some initial experiments seem
to indicate that such aliasing-induced errors are compounded
and grow at a rate faster than a polynomial function (e.g., N
or Nα for a fixed α > 0) of the number N of non-
polynomial stages. Rather, the growth of such compounded
aliasing-induced errors is likely to follow an exponential
function ofN orNα ,α > 0, indicating the possibility of a new
form of numerical instability when aliasing-induced errors
are compounded after a series of non-polynomial functions.
At any rate, there is a need to solve the problem of aliasing
due to non-polynomial functions.

As a general method to enforce aliasing-free signal pro-
cessing in CNNs that seemingly require non-polynomial
functions, I propose to avoid using any explicitly defined
non-polynomial function f to transform an input signal or
image I into an output signal or image J = f (I ), instead,
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FIGURE 8. The output image in real space and its power spectral density
from the Wiener-Padé function, when the input image is 3× upsampled.

to employ a numerical procedure that involves only poly-
nomial operations on signals or images, to iteratively com-
pute or approximate the desired output J as an implicitly
defined function of the input I , either by solving an alge-
braic equation p(I , J , J−1) = 0, or by minimizing the norm
of a polynomial p(I , J , J−1) of signals or images, with p
being a polynomial in I and J or J−1 def

= 1/J as variables.
Normally, it is either J or J−1 appearing in the polyno-
mial p(I , J , J−1) as variables, although it is not forbidden
for J and J−1 to appear simultaneously. To substitute an
explicitly defined non-polynomial function J = f (I ), one
could construct a polynomial p(I , J , J−1), such that, either
the algebraic equation p(I , J , J−1) = 0 or the minimization
of ‖p(I , J , J−1)‖ defines an implicit function J = g(I ),
with the function g well approximating the non-polynomial
function f . Here ‖·‖ is a general norm of signals or images,
with the usual choices being L1, L2, L∞, etc. The well known
Newton-Raphson methods [33] solve an algebraic equation
p(I , J , J−1) = 0 iteratively and produce an approximant
to the non-polynomial function J = f (I ). There are many
gradient-based optimization methods, such as the method

of gradient descent and the conjugate gradient method
[33], [34], which use numerical iterations to find an approxi-
mant for J = f (I ) to minimize ‖p(I , J , J−1)‖.

When implemented in numerical simulations or signal
processing systems, the numerical iterations for solving an
algebraic equation p(I , J , J−1) = 0 or minimizing the norm
of a polynomial p(I , J , J−1) of signals or images should
only involve aliasing-free operations on signals or images,
such as global amplitude scalings, additions and subtractions,
linear convolutions, and polynomial operations with proper
upsampling and subsequent downsampling if needed. Said
polynomial functions are usually either p(I , J , J−1) itself
or its partial derivatives. At the n-th iteration, n ∈ N, the
iterative algorithm produces a signal or image Jn as the
n-th implicit approximant to the desired output J = g(I ).
With a good iterative algorithm, the n-th implicit approximant
Jn(·) converges to the function g(·) as n ∈ N increases.
In practice, an iterative algorithm is always terminated at a
finite n-th iteration with a predetermined n ∈ N, and outputs
the signal or image Jn(I ) as a function of the input I , so that
the algorithm realizes a function Jn(·) as the n-th implicit
approximant to the implicitly defined function g(·). Clearly,
a larger n ∈ N is able to produce a closer approximant to
the original explicitly defined non-polynomial function but
entails a higher computational cost. A practical choice of
n ∈ N should be a reasonable tradeoff that achieves a satis-
fiable approximant within an affordable computational cost.
It is important to note that a resulting n-th implicit approxi-
mant Jn(·), ∀n ∈ N is guaranteed to be aliasing-free regardless
of at which stage the iteration algorithm terminates, since
each iteration step is made aliasing-free.

The following is a general algorithm for implement-
ing a non-polynomial function without aliasing by solving
an implicitly defined function iteratively using polynomial
operations.

Algorithm 2 (Aliasing-Free Implementation of Non-
Polynomial Functions)
2.1 Construct either an algebraic equation or an optimization

problem in terms of polynomials of the input and the
output or its reciprocal, whose solution corresponds to
a desired non-polynomial function;

2.2 Construct an iterative procedure that employs
polynomial operations to produce increasingly accurate
approximants to the solution of said algebraic equation
or optimization problem;

2.3 Execute said iterative procedure numerically in terms of
linear shift-invariant and polynomial operations on sig-
nals or images, avoiding aliasing by upsampling, down-
sampling, and spectrum-limiting.

For an exemplary embodiment, consider the (pointwise)
square root function, which takes a pointwise non-negative-
valued image I (x), x ∈ Rd , d ∈ N as input and returns an
image J such that J (x) =

√
I (x), ∀x ∈ Rd . The functional

relationship is equivalently and implicitly defined through
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the rational equation p(I , J , J−1) def
= J2−I = 0, or the

problem of minimizing ‖p(I , J , J−1)‖ def
= ‖J2 − I‖. Such

equivalence is exact when the images I and J are continu-
ous and have an unlimited bandwidth. However, when the
input I is a Shannon-Nyquist sampled discrete image with
BW (I ) = Fmax > 0, and the desired output J should also be a
discrete image with a bandwidth allowance BW (J ) = uFmax,
u > 0, where BW (I ) and BW (J ) denote the bandwidths of
the images I and J respectively, then an explicitly defined
square root function cannot avoid the problem of aliasing,
while an implicitly defined square root function can only be
approximate, promising to output the best possible approx-
imant image J within the bandwidth allowance. Usually,
the bandwidth allowance uFmax should be wider than the
input bandwidth Fmax, with u > 1 being an input-output
USF. An aliasing-free function is implicitly defined by J =
argmin {‖J2−I‖ : BW (J ) ≤ uFmax}, namely, for each image
array I as an input, finding and outputting an image array J ,
among all of the possible choices subject to the bandwidth
allowance uFmax, which minimizes ‖J2 − I‖.
For another exemplary embodiment, consider a Wiener-

Padé function WP(I ) = p(I )/q(I ) such as the example of
equation (1), with both p(I ) and q(I ) being Wiener polyno-
mial functions of the input image I , each Wiener polynomial
(or called a Wiener model) involves linear operations that
convolve the input image I with a number of so-calledWiener
kernels, and polynomial operations that cross-multiply the
convolution results in a pointwise manner [22]. Both the
p(·) and the q(·) functions are polynomial and amenable
to aliasing-free implementations, while the WP(·) function
involves division whose explicit implementation induces
aliasing. By contrast, once a bandwidth allowance uBW (I ),
u > 0 is chosen, the optimization problem

J = argmin { ‖q(I )J − p(I )‖22 : BW (J ) ≤ uBW (I ) } , (2)

with ‖·‖2 being the L2 norm of images implicitly defines
a function J (·) that best approximates the desired WP(·)
function subject to the bandwidth allowance. Since ‖q(I )J −
p(I )‖22 is a perfect-square polynomial, thus a convex function,
with the individual pixels of the spatial image array J as
variables, the conjugate gradient method is perfectly suited
to solve the optimization problem through iterative multipli-
cations implemented in an aliasing-free manner, since each
iteration of the conjugate gradient algorithm involves only
multiplications and scaling of images, namely, each iteration
applies a polynomial operation to images [33], [34]. Specifi-
cally, in the beginning of an n-th conjugate gradient iteration,
n ∈ N, the bandwidth of Jn−1 as a result from a previous iter-
ation is guaranteed to satisfy BW (Jn−1) ≤ uBW (I ), then both
q(I ) and Jn−1 are upsampled to have both FDom[q(Jn−1)] and
FDom(I ) at least as wide as 2BW [q(I )]+ u BW (I ), so that the
pointwise product q2(I )Jn−1 is computed without aliasing,
which is then spectrally clipped or limited to the bandwidth
allowance BW (J ), and possibly downsampled if necessary,
to become an increment δJn, that is finally added to Jn−1 to

obtain an n-th implicit approximant Jn = Jn−1 + δJn, which
is guaranteed to be aliasing-free.

Alternatively, the famous iterative algorithm of Newton-
Raphson division can be employed to compute the reciprocal
J (I ) of a polynomial denominator q(I ), namely, J (I ) =
1/q(I ), via iterative multiplications. Then a Wiener-Padé
function WP(I ) = p(I )/q(I ) can be evaluated by one
more step of multiplication WP(I ) = p(I )J (I ). Specifically,
the ingenuity of Newton-Raphson division is to rewrite the
explicit operation of division J = 1/q into an implic-
itly defined function through an algebraic equation f (J ) =
J−1−q = 0, which involves a polynomial of I and J−1

as variables. The J solution for J−1 − q(I ) = 0 can
be approximated using Newton’s method through iterations
Jn+1 = Jn − f (Jn)/f ′(Jn) = Jn + Jn[1 − q(I )Jn],
n ≥ 0, which involve only multiplications. The entire pro-
cedure of Newton-Raphson iterations can be made com-
pletely aliasing-free by properly upsampling images before
multiplications and spectrum-limiting product images after
multiplications. It turns out that such a Newton-Raphson
implementation not only is cheaper per iteration than a
conjugate-gradient counterpart, but also converges faster and
requires a fewer number of iterations. Both contribute to
improving the numerical efficiency. One drawback of the
Newton-Raphson division algorithm is that it is only condi-
tionally stable, and a bad initial condition could lead to an
exponential blowup.

The Newton-Raphson method can be adapted for
aliasing-free implementations of radical finding, or root find-
ing for a general algebraic function, with an archetypical
example of inverse square rooting, J = 1/

√
q. One starts

with rewriting the explicit operation J = 1/
√
q into an

implicitly defined function through an algebraic equation
f (J ) = J−2−q = 0, then applies Newton’s method of
root-finding to derive an iterative formula Jn+1 = Jn +
f (Jn)/f ′(Jn) = Jn+ 1

2Jn(1−qJ
2
n ), n ≥ 0, which involves only

iterative multiplications and can be made entirely aliasing-
free. Once an aliasing-free 1/

√
q is obtained, an aliasing-free

√
q = (1/

√
q) × q is easily computed with just one more

step of aliasing-free multiplication. These Newton’s method-
inspired implementations are just a couple of examples
among a myriad of efficient algorithms for computing power
roots or inverse power roots, some of which involve only iter-
ative multiplications, while others may involve divisions as
well. Regardless, when combined with the Newton-Raphson
division algorithm, it is obvious that such efficient algo-
rithms for power rooting or inverse power rooting can all
be implemented through iterative multiplications and made
aliasing-free as desired.

For a specific example, the Wiener-Padé function of equa-
tion (1) is approximately implemented using the method of
Newton-Raphson division, with J (I ) = p(I )K (I ), K (I ) =
1/q(I ), and

[p(I )](x, y) = (1+ a) { [I ∗ h](x, y) }2 , (3)

[q(I )](x, y) = I2m + a { [I ∗ h](x, y) }
2 , (4)
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for any (x, y) ∈ Z2, where h(x, y) = (2πσ 2)−1 exp[−(x2 +
y2)/2σ 2] is a two-dimensional Gaussian kernel. Then a con-
crete numerical experiment is carried out using the test
image of Fig. 1 for an input I , the bandwidth allowance
for the output image being set to BW (J ) = 2BW (I ), other
parameters being σ = 7.5 nm, a = 2.52, Im = 1.0,
and the Newton-Raphson division being terminated at the
6th iteration, such that the 6th implicit approximant K6 is
obtained and output, which approximates the reciprocal of
q(I ) very well, with ‖1− q(I )K6‖∞ < 5× 10−3. The output
image and its log-scaled power spectral density are shown in
Fig. 9 (a) and (b) respectively. Remarkably, under any shift
vector (δx, δy), the shift variance detector always reports an
RSV < 5× 10−15, on a par with numerical rounding errors,
indicating an absence of aliasing-induced shift variance. Also
importantly, preliminary experiments having a number of
such implicitly defined Wiener-Padé functions in cascade
indicate no compounding of aliasing-induced errors, apart
from a slow accumulation of numerical rounding errors as an
image going through more and more numerical operations.

FIGURE 9. The output image in real space and its power spectral density
from the implicitly defined Wiener-Padé function.

For a more comprehensive test and comparison, the
above-described explicit Wiener-Padé (eWP) and implicit

Wiener-Padé (iWP) functions have been run repeatedly under
a combinatorial set of spatial shift conditions, with δx =
0.3, 0.5, 0.7 and δy = 0.3, 0.4 in unit of image grid.
The eWP and the iWP functions have the same bandwidth
allowance BW (J ) = 2BW (I ) for their output images. Two
variants of the explicit Wiener-Padé, labeled as eWP1 and
eWP2 respectively, are tested, with eWP1 having the allowed
2BW (I ) bandwidth fully populated without any margin, and
eWP2 removing about 15% of the output spectrum near
the Nyquist frequencies, which is done by the iWP imple-
mentation as well. Octave functions and test scripts have
been executed on a Windows 11-operated Dell Precision
7540 computer equipped with an Intel(R) Core(TM) i7-9850
CPU @2.60GHz and 23.4 GB worth of available physical
memory. Table 1 records the RSV values and CPU times asso-
ciated with the eWP1, eWP2, and iWP functions under the
combinations of (δx, δy) spatial shifts, where the eWP1 and
eWP2 times refer to the CPU time spent by a shift variance
detector testing the explicit Wiener-Padé functions, and the
iWP time is the CPU time spent by the same shift variance
detector testing the implicitWiener-Padé function. It has been
observed that eWP1 consumes the least CPU time but suffers
from significant RSVs that average 3.82× 10−3. With just a
little bit of spectrum removed around the Nyquist frequency,
eWP2 manages to reduce the RSVs to an almost halved
average of 2.07×10−3 but spends about 2.69 folds of the CPU
time. Under any of the tested (δx, δy) spatial shifts, the iWP
function always converges within 6 Newton-Raphson itera-
tions to produce a satisfying approximant with an L∞ error
less than 5× 10−3. Because of the 6 Newton-Raphson itera-
tions, each of which involves spectrum control by upsampling
and downsampling images, the iWP function costs a longer
runtime that is about 8.05× and 2.99× of the eWP1 and
eWP2 CPU times respectively. What this runtime overhead
buys back is the complete removal of aliasing-induced shift
variance, manifested by iWP RSV values being always <
5 × 10−15, still on the order of numerical rounding errors.
By contrast, even the eWP2 RSV values mostly hover above
the level of 1 × 10−3, averaging into 2.07 × 10−3, which is
a colossal number in comparison, and beyond tolerance for
many applications.

V. PERSPECTIVES OF ALIASING-FREE NONLINEAR
SIGNAL PROCESSING FOR CONVOLUTIONAL
NEURAL NETWORKS
Having understood the general theory and seen the
aliasing-free operation of Wiener-Padé functions, one could
apply the same principle and method to implement other
non-polynomial operations as an implicitly defined function
solved by an iterative algorithm involving polynomial opera-
tions. Important and frequently used functions include ratio-
nal functions, sigmoid, hyperbolic tangent, ReLU, Swish,
max pooling, Softmax, and SoftPool, etc. [7]–[12], all
of which are non-polynomial and induce signal aliasing.
Notwithstanding specifically designed implicit functions and
iterative algorithms that are particularly suitable for specific
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TABLE 1. RSV values and runtime costs of the eWP1, eWP2, and iWP functions under combinations of spatial shifts (δx, δy ) in unit of image grid.

non-polynomial functions, there exists a unified and sys-
tematic strategy to realize a general nonlinear system of
signal processing, and any convolutional neural network in
particular, as an iCNN free of signal aliasing. Such strategy
combines the present method for aliasing-free implementa-
tions of Wiener-Padé functions with the recent developments
of convolutional neural networks using Padé or rational
activation units [9], [10].

Theoretically, it has been established that convolutional
neural networks, particularly ReLU networks, can efficiently
approximate and be approximated efficiently by rational
functions, especially rational networks [7]. Practically, Padé
or rational approximants as activation units have recently
been introduced and tested in deep convolutional neural net-
works, showing rather competitive performances [9], [10].
It is straightforward to combine the construct of neural net-
works using Padé or rational activation units with the present
invention of aliasing-free nonlinear signal processing and
come up with a novel method that provides a complete solu-
tion for the aliasing-induced problems in convolutional neural
networks. Specifically, a convolutional neural network can be
made aliasing-free when all of the activation functions therein
are replaced by Padé or rational approximants, which can
be implemented aliasing-free as implicitly defined functions
through iterations of polynomial operations.

Such a combinedmethod provides a solution to the dreaded
problem of aliasing and shift variance, or any other loss of
signal symmetry due to aliasing [13]–[18], although it may
incur an increased computational complexity in comparison
to a traditional convolutional neural network using conven-
tional non-polynomial functions that are explicitly defined
and directly computed. A rule of thumb estimate is that the
combined method might have to bear an Niter × N d

usf factor
in computational complexity, where Niter ∈ N is due to
an average number of iterations in the iterative algorithms
solving for the implicitly defined functions, Nusf is an aver-
age USF to avoid spectral overlap and aliasing during the
polynomial operations, while d ∈ N is the dimensional-
ity of the concerned signals or images, e.g., d = 1 for
sound signals in audio applications, and d = 2 for opti-
cal images in video or vision applications. It is interesting
to note that the conventional and explicit non-polynomial
functions are also expensive to compute, which are usually

implemented through iterations involving multiplications as
well, and embodied in hardware circuitry that costs space
of computer chips instead of computational time [35]–[38].
Indeed, it was exactly those iterative algorithms for conven-
tional and explicit non-polynomial functions that had inspired
the present invention of implementing implicitly defined
functions via iterations of polynomial operations. Although,
it may be reminded that those iterative multiplications imple-
menting conventional and explicit non-polynomial functions
do not solve the aliasing problems because they are performed
locally per each point or pixel in spacetime and lack the
capability of global spectrum control.

It is conceivable that similar hardware acceleration tech-
niques can be implemented in graphics processing units
(GPUs), DSP chips, or the so-called tensor processing units
(TPUs), which can be employed to compute implicitly
defined non-polynomial functions for aliasing-free opera-
tions, to absorb the cost of Niter iterative multiplications into
hardware circuitry. To minimize the factor N d

usf, the smallest
possible USFNusf = 2 can be used, with all polynomial oper-
ations in the iterative algorithms being implemented through
multi-stage pairwise multiplications using the well-known
Horner’s method, where the multiplication between each pair
of signals or images is realized by firstly 2× upsampling each
of the two multiplying signals or images, then computing the
pointwise pixel-to-pixel products to produce a product signal
or image at the 2× sampling rate, finally spectrum-limiting
the product signal or image back to the 1× bandwidth and
downsampling it if desired. If one really wishes to get rid
of the N d

usf computational overhead, then he/she could elect
to halve the spectral contents before multiplying each pair of
signals or images, provided that the reduced spectra could still
represent the concerned signals or images reasonably well.

For an exemplary embodiment, consider the exponential
function e−z, z ∈ R, whose Padé approximants are well
known [7], [29], with the [4/4]-th approximant reading

e−z ≈
P4(z)
Q4(z)

def
=

1680− 840 z+ 180 z2 − 20z3 + z4

1680+ 840 z+ 180 z2 + 20z3 + z4
, (5)

which guarantees a small relative error below 5.66×10−6 for
all x ∈ [−2, 2]. It is obvious that Q4(z)

def
= 1680 + 840 z +

180 z2 + 20z3 + z4, and P4(z) ≡ Q4(−z). When a wider
dynamic range of the input values is desired, an exponential
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function e−z with |z| ≤ 2m, m ≥ 1 can be realized by
cascading a Newton-Raphson implementation of the [4/4]
Padé approximant in equation (5) for the exponential function
E0(z)

def
= exp(−z/2m−1) with |z| ≤ 2m, and m stages of

repeated squaring operations to obtain Ei(z) = Ei−1(z)2 in
sequence, ∀i ∈ [1,m]. This scheme inspires a repeated
squaring method for another iterative-multiplication-only
implementation of the exponential function e−z, |z| ≤ 2m,
m ∈ Z, without using the Padé approximation and the
Newton-Raphson algorithm. Said repeated squaring method
is based on an identity limn→∞(1 − z/2n)2

n
= e−z well

known in calculus, and does repeated squaring for an n >
max(m, 0) times iteratively to compute a finite sequence
E0(z)

def
= 1 − z/2n, Ei(z) = Ei−1(z)2, ∀i ∈ [1, n], obtaining

the n-th repeated squaring approximant En(z) = (1− z/2n)2
n

at the end, which yields an excellent approximant to the
exponential function e−z, |z| ≤ 2m, when the value of n− m
is sufficiently large.
Similarly, another repeated squaring method can be

employed, in conjunction with the Goldschmidt iteration [35]
and the binomial theorem, for an alternative and efficient
implementation of division via iterative multiplications. Let
z ∈ R be suitably biased and scaled such that z ∈ [ε, 2 − ε]
for a fixed constant ε > 0. To compute the reciprocal z−1 =
(1− ζ )−1, ζ def

= 1−z ∈ [ε − 1, 1− ε], one uses the identity

1
1− ζ

=
1+ ζ
1− ζ 2

=
(1+ ζ )(1+ ζ 2)

1− ζ 4
= · · ·

=

∏n−1
k = 0 (1+ ζ 2

k )
1− ζ 2n

, ∀n ∈ N , (6)

to approximate (1−ζ )−1 as
∏n−1

k = 0 (1+ζ 2
k ) by neglecting ζ 2n

in the denominator, which diminishes rapidly once n becomes
larger than | log2 ε|. Now the multiplication-only approxima-
tion (1−ζ )−1 ≈

∏n−1
k = 0 (1+ζ 2

k ) can be efficiently computed
in a prescribed logarithmic number n ∈ N of computational
steps: allocate computer memory for two variables ξ and Z
and initialize them as Z ← 1 and ξ ← ζ , then repeat for n
times the computations and refreshments of data in memory
as Z ← Z (1 + ξ ) followed by ξ ← ξ2, finally output the
result in Z as an approximant for (1− ζ )−1.
Such iterative-multiplication-only algorithms lend them-

selves straightforwardly to aliasing-free implementations for
the exponential function exp[−I (x)] and the multiplica-
tive inverse function 1/I (x) on images I (x), x ∈ Rd ,
d ≥ 1, with suitable upsampling, spectrum-limiting, and
downsampling before and after multiplications to avoid alias-
ing. Consequently, an (a, b) two-parameter sigmoid function
(also known as a logistic function)

sigm[I (x)] def
=

a ebI (x)

1+ a ebI (x)
=

a
a+ e−bI (x)

, (7)

with a > 0, b > 0, can be realized in general by cascading
an aliasing-free exponential operation and an aliasing-free
rational function using either Newton-Raphson division or

the Goldschmidt method with repeated squaring. The param-
eter a is called a numerical conditioner, which is chosen to
ensure that ‖ exp[−bI (x)]‖∞/a is never excessively large,
so that the numerical iterations of Newton-Raphson or Gold-
schmidt repeated squaring are always properly conditioned
to converge quickly. Once an aliasing-free sigmoid transfor-
mation is implemented to produce a sigmoid output sigm(I ),
an approximate ReLU function, called Swish [8], can be
implemented by multiplying the input I with the sigmoid
output sigm(I ) to obtain Swish(I ) = I × sigm(I ), for any
input signal or image I = I (x), x ∈ Rd , d ≥ 1. Similarly,
aliasing-free versions of the Softmax and SoftPool, as well
as many other non-polynomial functions, can be realized as
compositions of aliasing-free exponential, polynomial, and
rational functions.

In the special case of exp[−bI (x)], ‖bI (x)‖∞ ≤ 2 being
realized via the [4/4] Padé approximant exp(−bI ) ≈
P4(bI )/Q4(bI ) as in equation (5) with no repeated
squaring subsequently to enlarge the range of signal ampli-
tudes, an aliasing-free implementation of an (a, b) two-
parameter sigmoid function with a bandwidth allowance
BW [sigm(I )] = uBW (I ), u ≥ 1 can start with polynomial
operations to generate intermediate imagesP4(bI ) andQ4(bI )
with a bandwidth allowancemin(4, u)×BW (I ), then compute
an intermediate image J (x) ≈ [P4(bI ) + aQ4(bI )]−1, with
a bandwidth allowance BW (J ) = uBW (I ), using one of
the numerical iterations of Newton-Raphson or Goldschmidt
repeated squaring, finally multiply J and aQ4(bI ) to obtain
sigm[I (x)] ≈ J (x)× aQ4[bI (x)] with a bandwidth allowance
BW [sigm(I )] = uBW (I ). Said multiplications or polynomial
operations involve pointwise multiplications or additions in
the x-coordinate space, x ∈ Rd , which are always imple-
mented in an aliasing-free manner, by suitably upsampling
the operands and creating sufficient spectral margins before
multiplying them and possibly spectrum-limiting and down-
sampling the product images afterward.

Alternatively, there is a so-called (matrix) sign function
sign(·) [39] applicable to matrices as linear operators, or to
signals and images in a point-wise manner, which is closely
related to the sigmoid function through sigm = (1+ sign)/2.
Many iterative algorithms exist to compute sign(·) as an
implicit function satisfying a characteristic equation (1 −
sign) (1+ sign) = 0 [39]. In particular, the Newton iteration
M0 = A,Mk+1 = (Mk+M

−1
k )/2, k > 0 for the sign function

can be combined with the Newton-Raphson division (also
called the Newton-Schulz iteration for matrices) and turned
into a division-free algorithm [39], [40],

M0
def
= A , Mk+1

def
=

1
2Mk

(
31−M2

k

)
, k ≥ 0 , (8)

which converges to limk→∞Mk = sign(A) so long as
‖1 − A2‖ < 1, where A is a given matrix or signal or
image, ‖ · ‖ denotes the operator norm when A is a matrix
or the L∞ norm when A is a signal or image. A great
advantage of the Newton-Schulz iteration is the avoidance of
matrix inversion or signal division, which is rightly suitable
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for aliasing-free implementations of the sign(·) and sigm(·)
functions in CNNs. Specifically, the Newton-Schulz itera-
tion of equation (8) can be adapted to approximate the sign
function of a signal or image A by executing each iteration
step with k > 0 in a spectrum-controlled and aliasing-
free fashion, which has Mk 3× upsampled with respect to
the original bandwidth BW , then computes the spacetime
point-wise cubic power of the upsampled signal or image,
finally spectrum-limits or downsamples the cubic-powered
signal or image to produce an Mk+1, whose frequency com-
ponents are non-vanishing only within the original bandwidth
BW . The upsampling, spectrum-limiting, and downsampling
operations may or may not use FFTs. As already specified
in the above, once an aliasing-free approximation of sign(A)
has been obtained for a given signal or image A, then sigmoid
and ReLU transformed results can be obtained in turn as
sigm(A) = (1 + sign(A))/2 and ReLU(A) = A × sigm(A),
both being completely aliasing-free approximations.

Continuing research is needed to implement these math-
ematical algorithms into computer codes, test and quan-
tify their performances, and incorporate such aliasing-free
nonlinear signal processing units into a large-scale neu-
ral network as activation functions. While guaranteeing an
aliasing-free operation, an implicitly defined and iteratively
implemented function is not an exact realization of the cor-
responding explicit non-polynomial function as prescribed
originally. Rather, it produces an approximant within a
specific accuracy to the prescribed non-polynomial activa-
tion. Therefore, it is important to investigate the impact of
approximated activation functions on the performances of
a large-scale network. In particular, for machine learning
applications employing an iCNN, much work is needed to
investigate if and how aliasing-free activations impact the net-
work trainability, inference accuracy, and computer runtime.

VI. SUMMARY AND OPEN QUESTIONS
In summary, a new method is proposed and demonstrated,
which implements or approximates non-polynomial oper-
ations using implicitly defined functions, that are real-
ized through iterative algorithms involving only polynomial
operations, so to achieve completely aliasing-free signal
processing. An iCNN, which is a convolutional nonlinear
network incorporating no non-polynomials other than such
implicitly defined functions should remain aliasing-free as
a whole, and provide the first example of an aliasing-free
network that incorporates non-polynomial functions. Such
an iCNN is expected to find applications where it is
important to avoid aliasing-induced errors such as shift
variance.

This research has opened more questions than it has man-
aged to answer. Some interesting directions for further inves-
tigations include:
1) In traditional, aliasing-prone networks having a num-

ber of nonlinear stages in cascade, how and to what
extent does accumulated aliasing lead to numerical
instability?

2) Using an implicitly defined function, how close is
an n-th implicit approximant to the desired response?
How does an approximation improve as its bandwidth
allowance increases?

3) When applied to real convolutional neural networks,
how and to what extent does the method of iCNN impact
the learning and classification performances?

ACKNOWLEDGMENT
The author thanks Prof. G. Wang of the Rensselaer Poly-
technic Institute for mentoring and guiding her learning and
research in image processing and convolutional neural net-
works and G. Redillas of the Evergreen Valley High School
for teachingNewton’s method. The author also acknowledges
the help and supports from Prof. Wang and her parents on
technical writing and LaTeX typesetting.

REFERENCES
[1] A. V. Oppenheim and A. S. Willsky, Signals Systems, 2nd ed.

Upper Saddle River, NJ, USA: Prentice-Hall, 1997.
[2] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.

Hoboken, NJ, USA: Wiley, 1980.
[3] M. Schetzen, ‘‘Nonlinear system modeling based on the Wiener theory,’’

Proc. IEEE, vol. 69, no. 12, pp. 1557–1573, Dec. 1981.
[4] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach.

Baltimore, MD, USA: Johns Hopkins University Press, 1981.
[5] Y. LeCun and Y. Bengio, ‘‘Convolutional networks for images, speech,

and time series,’’ in The Handbook of Brain Theory and Neural Networks,
2nd ed., M. A. Arbib, Ed. Cambridge, MA, USA: MIT Press, 1995.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[7] M. Telgarsky, ‘‘Neural networks and rational functions,’’ in Proc. 34th Int.
Conf. Mach. Learn. Sydney, NSW, Australia, 2017, pp. 3387–3393.

[8] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for activation func-
tions,’’ 2017, arXiv:1710.05941.

[9] A. Molina, P. Schramowski, and K. Kersting, ‘‘Padé activation units: End-
to-end learning of flexible activation functions in deep networks,’’ 2019,
arXiv:1907.06732.

[10] Q. Delfosse, P. Schramowski, M. Mundt, A. Molina, and K. Kersting,
‘‘Adaptive rational activations to boost deep reinforcement learning,’’
2021, arXiv:2102.09407.

[11] A. Stergiou, R. Poppe, and G. Kalliatakis, ‘‘Refining activation downsam-
pling with SoftPool,’’ 2021, arXiv:2101.00440.

[12] M. Gustineli, ‘‘A survey on recently proposed activation functions for deep
learning,’’ 2022, arXiv:2204.02921.

[13] A. Fawzi and P. Frossard, ‘‘Manitest: Are classifiers really invariant?’’
2015, arXiv:1507.06535.

[14] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, ‘‘Exploring
the landscape of spatial robustness,’’ 2017, arXiv:1712.02779.

[15] A. Azulay and Y. Weiss, ‘‘Why do deep convolutional networks generalize
so poorly to small image transformations?’’ J. Mach. Learn. Res., vol. 20,
no. 184, pp. 1–25, 2019.

[16] Y. Gong and C. Poellabauer, ‘‘Impact of aliasing on deep CNN-based end-
to-end acoustic models,’’ in Proc. Interspeech, Sep. 2018, pp. 2698–2702.

[17] R. Zhang, ‘‘Making convolutional networks shift-invariant again,’’ 2019,
arXiv:1904.11486.

[18] J. Singh, A. Tripathy, P. Garg, and A. Kumar, ‘‘Lung tuberculosis detection
using anti-aliased convolutional networks,’’ Proc. Comput. Sci., vol. 173,
pp. 281–290, Jan. 2020.

[19] P. Gutierrez and A. Cordier. (Jun. 10, 2020). Robustness and Repeatability
of Modern Deep Neural Networks: A Review. [Blog Post]. [Online].
Available: https://scortex.io/robustness-and-repeatability-of-modern-
deep-neural-networks-a-review

[20] Y. Granik, N. Cobb, and D. Medvedev, ‘‘Application of CM0 resist
model to OPC and verification,’’ Proc. SPIE, vol. 6154, Mar. 2006,
Art. no. 61543E.

76294 VOLUME 10, 2022



E. S. Wei: Aliasing-Free Nonlinear Signal Processing Using Implicitly Defined Functions

[21] Y. Granik, D. Medvedev, and N. Cobb, ‘‘Towards standard process models
for OPC,’’ Proc. SPIE, vol. 6520, Mar. 2007, Art. no. 652043.

[22] H. Wei, ‘‘Computer simulation of photolithographic processing,’’
U.S. Patent 8 532 964 B2, Sep. 10, 2013.

[23] F. Zack, ‘‘Neural network based approach to resist modeling and OPC,’’
Proc. SPIE, vol. 5377, pp. 670–679, May 2004.

[24] Y. Watanabe, T. Kimura, T. Matsunawa, and S. Nojima, ‘‘Accurate lithog-
raphy simulation model based on convolutional neural networks,’’ Proc.
SPIE, vol. 10147, Mar. 2017, Art. no. 101470K.

[25] J. Shiley, ‘‘Machine learning for compact lithographic process models,’’
in Machine Learning in VLSI Computer-Aided Design, I. M. Elfadel,
D. S. Boning, and X. Li, Eds. Cham, Switzerland: Springer, 2019.

[26] S. Shim, S. Choi, and Y. Shin, ‘‘Machine learning for mask
synthesis,’’ in Machine Learning in VLSI Computer-Aided Design,
I. M. Elfadel, D. S. Boning, and X. Li, Eds. Cham, Switzerland: Springer,
2019.

[27] C. Kim, S. Lee, S. Park, N. Y. Chung, J. Kim, N. Bang, S. Lee, S. Lee,
S. Boone, P. Li, and J. Chang, ‘‘Machine learning techniques for OPC
improvement at the sub-5 nm node,’’ Proc. SPIE, vol. 11323, Mar. 2020,
Art. no. 1132317.

[28] Y. Shin, ‘‘Computational lithography using machine learning models,’’
IPSJ Trans. Syst. LSI Des. Methodol., vol. 14, pp. 2–10, Jan. 2021.

[29] G. A. Baker, Essentials of Padé Approximants. New York, NY, USA:
Academic, 1975.

[30] F. Fan, W. Cong, and G. Wang, ‘‘A new type of neurons for machine
learning,’’ Int. J. Numer. Methods Biomed. Eng., vol. 34, no. 2, Feb. 2018,
Art. no. e2920.

[31] F. Fan, W. Cong, and G. Wang, ‘‘Generalized backpropagation algo-
rithm for training second-order neural networks,’’ Int. J. Numer. Methods
Biomed. Eng., vol. 34, no. 5, May 2018, Art. no. e2956.

[32] F. Fan, J. Xiong, and G. Wang, ‘‘Universal approximation with quadratic
deep networks,’’ Neural Netw., vol. 124, pp. 383–392, Apr. 2020.

[33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes, 3rd ed. Cambridge, U.K.: Cambridge Univ.
Press, 2007.

[34] M. R. Hestenes and E. Stiefel, ‘‘Methods of conjugate gradients for solving
linear systems,’’ J. Res. Nat. Bureau Standards, vol. 49, no. 6, pp. 409–436,
Dec. 1952.

[35] R. E. Goldschmidt, ‘‘Applications of division by convergence,’’ M.S. the-
sis, Dept. Elect. Eng., MIT, Cambridge, MA, USA, 1964.

[36] S. Oberman and M. J. Flynn, ‘‘Implementing division and other floating-
point operations: A system perspective,’’ inProc. Scientific Computing and
Validated Numerics (SCAN), G. Alefeld, A. Frommer, and B. Lang, Eds.
Berlin, Germany: Akademie Verlag, 1996, pp. 18–24.

[37] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed. London, U.K.: Oxford Univ. Press, 2010.

[38] Z. Hajduk, ‘‘Hardware implementation of hyperbolic tangent and sigmoid
activation functions,’’ Bull. Polish Acad. Sci., Tech. Sci., vol. 66, no. no. 5,
pp. 563–577, 2018.

[39] N. J. Higham, Functions of Matrices: Theory and Computation. Philadel-
phia, PA, USA: SIAM, 2008.

[40] J. Chen and E. Chow, A Stable Scaling of Newton-Schulz for
Improving the Sign Function Computation of a Hermitian Matrix,
document Preprint ANL/MCS-P5059-0114, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5059-0114.pdf

EMMY S. WEI is currently a student with the
Evergreen Valley High School, San Jose. Her
research interest includes STEM studies.

VOLUME 10, 2022 76295


