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ABSTRACT According to the World Health Organization, several factors have affected the accurate
reporting of SARS-CoV-2 outbreak status, such as limited data collection resources, cultural and educational
diversity, and inconsistent outbreak reporting from different sectors. Driven by this challenging situation, this
study investigates the potential expediency of using social network data to develop reliable early information
surveillance and warning system for pandemic outbreaks. As such, an enhanced framework of three
inherently interlinked subsystems is proposed. The first subsystem includes data collection and integration
mechanisms, data preprocessing, and hybrid sentiment analysis tools to identify tweet sentiment taxonomies
and quantitatively estimate public awareness. The second subsystem comprises the feature extraction unit
that identifies, selects, embeds, and balances feature vectors and the classifier fitting and training unit.
This subsystem is designed to capture the most effective linguistic feature combinations with more spatial
evidence by using a variety of approaches, including linear classifiers, MLPs, RNNs, and CNNs, as well
as pre-trained word embedding algorithms. The last is the modeling and situational awareness evaluation
subsystem, which measures temporal associations between pandemic-relevant social network activities and
officially announced infection counts in the most hazardous geolocations. The proposed framework was
developed and tested using a combination of static datasets and real-time scraped Twitter data. The results
of these experiments showed the remarkable performance of the framework in assessing the temporal
associations between public awareness and outbreak status. It also showed that the Decision Tree Classifier
with Unigram+TF-IDF feature vectors outperformed other conventional models for sentiment classification
and geolocation classification with an accuracy of 94.3% and 80.8, respectively. As indicated, conventional
machine learning algorithms didn’t achieve a precision of more than 80%, while, for instance, MLP with
self-embedding layer, Word2Vec, and GloVe pre-trained word embedding resulted in very poor accuracy of
10%, 36%, and 32%, respectively. However, adding the PoS tag one-hot encoding embedding increased the
validation accuracy from 36% to approximately 89%, while the best performance for the second subsystem
was achieved by Bi-LSTM with RoBERTa word embedding, with an accuracy of 96%. The achieved
results reveal that the proposed framework can proactively capture the potential hazards associated with
the prevalence of infectious diseases as an effective early detection and info-surveillance awareness system.

INDEX TERMS Social network analysis, sentiment analysis, pandemic outbreak, geolocation prediction,
data correlation, spatiotemporal analysis, outbreak awareness, pandemic data classification.

I. INTRODUCTION
According to the World Health Organization, Coronavirus
disease (COVID-19) is an infection caused by the
SARS-CoV-2 virus. In the first phases of the pandemic,
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numerous research studies focused on studying the coro-
navirus social network to better understand the outbreak’s
effects on society and mitigate the spread of the outbreak’s
infodemics [1]–[9]. Many of these studies explore the impor-
tance of employing social network analysis-based models
and frameworks in a variety of applications. Social net-
works such as Twitter and Facebook have evolved into a
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valuable method for analyzing user sentiment for a variety
of purposes [9]–[16]. In addition, locating social media
users is essential for a variety of reasons, including pro-
viding area-specific services and recommendations, detect-
ing earthquakes, managing natural disasters, investigating
crimes, assessing demographic data, and healthcare man-
agement [9]–[17]. This is especially important when dealing
with disease epidemics such as COVID-19. So, surveillance
and early recognition are crucial for mitigating infectious
disease outbreaks. Recent research has revealed that the
spread of an infectious disease is directly associated with
population geolocations and mobility [1]–[8]. Meanwhile,
it was reported that using social networks for actionable
disease surveillance and outbreak control has proven to have
a high potential for success, as identified in exploratory
studies [9]–[11]. The problem is that social network data
is dynamic, vast, and unstructured, requiring sophisticated
algorithms and computational linguistics [12]. However,
compared to traditional assessments and clinical reports,
which require a lot of time and finance to gather data,
social media data can be scraped from many social network
platforms immediately and at a lower cost [13]. Yet, social
media will never replace conventional surveillance [16],
but it may provide supplementary data when inadequate or
can be used in conjunction with traditional data [17]. The
spatial and temporal data may also be used to investigate
the spatiotemporal dynamics of disease transmission. As epi-
demics such as COVID-19 become widely reported on social
network platforms, these sources experience and express
a variety of perspectives, opinions, and emotions during
various outbreak-related events. Analysis of these sentiments,
along with some demographic features, will thus provide
interesting findings regarding understanding the outbreak
spread track. Additionally, several theories, speculations, and
disinformation circulated on social media. In addition to the
tweet text and metadata, Twitter allows users to broadcast
their geo-location through the Global Positioning System
function. Only a small percentage of users decide to reveal
their location, while all other Twitter users decide to con-
ceal their geolocation information to protect their privacy
or to avoid harassment, trailing, or trolling [7]. Identifying
the geolocation of social media users is critical instead of
providing area-specific functions and suggestions, especially
for healthcare management [18]–[19], and particularly dur-
ing an epidemic outbreak [20]. Accordingly, this research
investigates how social network data may be used to develop
reliable, early information surveillance and warning system
for pandemic outbreaks. This paper proposes deep social
network data analysis concerning time to enhance pandemic
outbreak awareness from two perspectives: a) chronological
sentiment analysis and b) chronological spatial analysis and
prediction. As part of this study, we use linguistic charac-
teristics to capture sentimental and spatial variances from
tweets. This research conducts a social network data analysis
that considers more than 577 thousand geotagged, COVID-

19-related tweets to evaluate the viability. The framework
proposed in this study addresses three aspects using its
proposed three subsystems. The first subsystem includes
data collection and integration mechanisms, data prepro-
cessing, and hybrid sentiment analysis tools. The second
subsystem comprises the feature extraction unit that identi-
fies, selects, embeds, and balances feature vectors and the
classifier fitting and training unit. The last subsystem is the
situational awareness evaluation subsystem that measures
temporal associations between pandemic-relevant social net-
work activities and officially announced infection counts in
the most hazardous geolocations. Hence the first aspect is
proposed as a quantitative analysis methodology for estimat-
ing public awareness of COVID-19 using the identification
of sentiment taxonomies of tweets through hybrid sentiment
analysis tools. The second aspect proposes a methodology for
geographical location prediction using only Twitter textual
data and predicted sentiments. Once the scraped tweets’
locations are reliably predicted, the third aspect is incor-
porated into the proposed system. This subsystem is also
implemented as a crowd situational awareness evaluation
methodology that is devised to quantify the temporal associ-
ation between the formation of a certain public sentiment and
the corresponding COVID-19 active case count in the most
hazardous geolocations by computing the casual synchrony
between the tweet activities associated with sentiment scores
of COVID-19 related tweets and the infected cases count. The
entire framework architecture, methodologies, procedures,
and algorithms are explained in more detail in the method-
ologies section. Because the suggested system is designed to
rely on simple text inputs, it may be more easily adapted to
address new areas and languages, like Arabic-tongued areas,
by imposing the appropriate algorithms. Consequently, we
employ various strategies for improving the text representa-
tion components and the overall model design to overcome
many Natural Language Processing (NLP) related problems,
including textual classification and sentiment analysis, using
deep learning techniques. To improve the location prediction
accuracy, we evaluated alternative models, including linear
classifiers, Convolutional Neural Networks (CNN), Multi-
Layer Perceptron (MLP), and Recurrent Neural Networks
(RNN), empowered with word embedding algorithms such as
self-embedding, word2vec, GloVe, and FastText, in addition
to transformer-based word embedding such as BERT and
RoBERTa. From many perspectives, this study examines the
significance of employing social network data and machine
learning/deep learning classification algorithms to improve
the awareness prospect of infectious disease as a proac-
tive info surveillance framework. The detailed abbreviations
and definitions used in the paper are listed in Table 1.
The remaining of this paper is organized such that related
studies and a literature survey are presented in section II.
A detailed description of the proposed framework, implemen-
tation procedures, and methods are described in section III.
While section IV included our main findings, results, and
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TABLE 1. List of abbreviations and acronyms used in the paper.

discussions, limitations, strengths, and complexities are pre-
sented in section V. Moreover, conclusions and future studies
are presented in Section VI.

II. RELATED STUDIES
When COVID-19 initially emerged, the most pressing con-
cern was how to mitigate the infection and protect billions
of citizens globally while not compromising the international
economy, which could be badly disrupted if governments
imposed absolute lockdown and quarantine policies. Many
countries worldwide endured and continue to suffer eco-
nomic disruptions due to national/regional lockdown periods
ranging from a few days to hundreds of days [21]–[22].
For the economy to recover, people should be allowed to
move freely. This necessitates that authorities be able to
swiftly track the potential contacts of any discovered infected
cases [16]. In response to the development of coronavirus
disease, numerous governments, healthcare national orga-
nizations, and institutions have initiated a contact tracing
network analysis over billions of Global Positioning System
‘‘GPS’’ human mobility data points to monitor the evolution
of the disease contact network. To effectively combat epi-
demics, governments may be justified in restricting some fun-
damental rights and liberties. However, such restrictions must
adhere to applicable fundamental rights standards and privacy

regulations [23]. Numerous individuals and social organiza-
tions voiced privacy rights concerns in conjunction with the
use of contact tracking programs, although a portion of the
population accepted a limited breach of privacy for the sake
of health protection. Since the infectiousness period begins
before the start of symptoms, despite the reluctance with
which such apps were accepted, they were of little assistance
in preventing the spread of disease [16], [24]. In other words,
the latency period is shorter than the incubation period, and
infection occurs prior to the onset of symptoms. Moreover,
on average, the patient is at its most contagious stage, i.e.,
the peak of infectiousness, two days before the onset of
symptoms, according to a study conducted at the outbreak’s
onset [25]. These facts are essential for understanding the
widespread of COVID-19. They imply that by the time a
patient develops symptoms, he or she has now transmitted
the infection to the greater part of infected individuals during
the preceding two days. Even if the patient isolates them-
selves after developing symptoms, most infection transmis-
sions have already emerged [24]. So, diverse studies have
employed social network-based geo-positioning for tracing
social contacts in order to examine the likely progression of
the infection as a safer and more widely accepted alternative
to sensor-based geo-positioning tracking applications. Social
media data broadcasting via social networks can help with
situational awareness, information dissemination, and moni-
toring of different activities [10]–[16] [21]. Recent research
investigates the importance of using social network analysis-
based methodologies and frameworks for numerous appli-
cations. Sentiment analysis on social media platforms like
Twitter and Facebook has emerged as a powerful and effec-
tive approach to studying user sentiments in a variety of
contexts [9]–[16].

Furthermore, identifying the location of social media
users is crucial to providing area-specific facilities and
recommendations, earthquake surveillance, natural disaster
governance, crimes, demography analysis, and health care
management [9]–[17], especially when assessing, interpret-
ing, and reacting to an epidemic outbreak, such as COVID-19.
Therefore, has integrated NLP and machine learning with
social network data to improve textual data analysis. Mul-
tiple approaches use textual content, information diffusion,
or emotion patterns to detect emerging events [25]–[29]. Such
studies considered COVID-19’s social impact and explored
how social media may help the government evolve control
policy [30]. Also, in the field of tracking and monitoring
any human-threatening disaster, a typical application tracks
sentiment fluctuations depending on the population’s geolo-
cation, attempting to improve natural disaster early warning
systems [31]–[32]. A survey of related studies in the fields of
sentiment analysis and location prediction is presented in the
following sub-sections.

A. SOCIAL MEDIA FOR SENTIMENT ANALYSIS
Sentiment analysis has been extensively studied in the scope
of online content reviews to obtain concise user views on
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a variety of attributes. Recognizing such sentiments from
social networking websites such as Facebook and Twitter
can aid emergency responders in comprehending the net-
work’s dynamics, such as the primary users’ concerns, panics,
and the emotional impact of member interactions. Generally,
three layers of feature extraction are used in sentiment classi-
fication: word, phrase, and document [33]. At the moment,
sentiment analysis can be performed using three methods:
lexicon-based, machine-learning-based, or hybrid [34]. The
earliest approaches to sentiment analysis relied on lexicons.
Their approach categorizes them as either dictionary-based
or corpus-based [35]–[36]. The former version uses a word
dictionary, such as SentiWordNet or WordNet. However,
sentiment analysis tasks based on corpus do not use a
pre-defined lexicon but rather statistically analyze a collec-
tion of documents using machine learning techniques such
as K-Nearest Neighbors (K-NN) [37], Conditional Random
Fields (CRF) [38], and Hidden Markov Model (HMM) [39],
which direct this field to machine learning-based sentiment
analysis models. According to machine learning [40], there
are two types of sentiment analysis: conventional and deep
learning approaches. The Naïve Bayes (NB) classifier [41],
the Maximum Entropy classifier [42]–[43], and Support Vec-
tor Machines (SVM) are all examples of conventional mod-
els. Sentiment analysis can also be performed using deep
learning models such as Convolutional Neural Networks
(CNN), Deep Neural Networks (DNN), and Recurrent Neu-
ral Networks (RNN), where deep learning models have the
potential to outperform conventional models [44]. Accord-
ing to a review of studies based on traditional statistical
approaches on social networks and COVID-19 presented
by [35], public sentiments were the most prevalent theme
amongmany identified themes, accounting for themajority of
articles. As reported in [35], SinaWeibo was themost popular
social media network following Twitter. The use of machine
learning by epidemiologists to sift through huge amounts
of digital data is described in [45]. They explored how to
employ natural language processing and machine learning to
analyze massive datasets for population-level mental health
research. The results obtained by [46] indicate that the major-
ity of people viewed the epidemic positively and supported
the government’s or local authorities’ actions. While the
counts of infected and deceased individuals continued to
grow, the population’s mental power remained unaffected.
They reached their conclusions by developing a machine
learning-based sentiment analysis (NTLK, TEXTBLOB, and
Naïve-Bayes Classifier) considering people’s responses to the
government or local authority decisions made during the out-
break. Their proposal recommended a way of automatically
categorizing tweets as positive, negative, or neutral. Using
the same technologies, researchers in [47] analyzed tweet
sentiments concerning both polarity and subjectivity. They
concluded that, for polarity, over 36% of people tweeted pos-
itive messages, while only 14% tweeted negative messages.
Nevertheless, neutral polarity for both ‘‘coronavirus’’ and
‘‘covid-19’’ terms was high, at around 50%. Additionally,

concerning subjectivity, overall, around 64% of the entries for
both keywords (‘‘COVID-19, coronavirus’’), were objective.
Meanwhile, 22% were subjective in expressing their views
and opinions. Finally, 14% of tweets are neither subjective
nor objective.

Regarding the classification of tweets into two classes,
such as in [48], the authors discovered that the k-NN clas-
sifier outperformed many other machine learning classi-
fiers, including Naïve-Bayes Multinomial (NBM) Modal,
NB, and SVM. Furthermore, the authors in [49] used Twit-
ter data to forecast the weekly status of the influenza-like-
infectious (ILI) infected population in the United States using
a multi-layer perceptron with a backpropagation technique
for independent test sets. The deep granulator methodol-
ogy was also used to improve precision using supervised
machine learning methods for recognizing personal health
experiences [50].

A similar study [51] examines the possibility of leveraging
Twitter data to alert the public about the US COVID-19
pandemic. By ‘‘crowdsourcing’’ public opinions, this strat-
egy allows the public and private sectors to timely uncover
hazards and prepare for pandemics. Random Forest, Logis-
tic Regression, Support Vector Machines (SVM), and Naïve
Bayes (NB) are used to classify tweets. Unlike super-
vised algorithms, unsupervised algorithms do not require
labeled data sets [52]. Unsupervised classification algo-
rithms seem more tempting, yet they may be more chal-
lenging to obtain equal accuracy. In [53], the authors used
a set of tools (Tweepy Python module, Twitter’s search
API, and PostgreSQL database) and specified search phrases
(‘‘corona,’’ ‘‘2019-nCov,’’ and ‘‘COVID-19’’). They studied
public English-language tweets in the period from February
2nd, 2020, to March 15th, 2020, for word frequencies of
unigrams and bigrams. They used Latent Dirichlet Alloca-
tion (LDA) to model the topics discussed in tweets. They
also conducted sentiment analysis and estimated the count
of likes, retweets, and follows for each subject. In another
study [54], the authors analyzed COVID-19-related tweets
submitted by individuals to understand what common sub-
jects and topics emerged, as well as how sentiments of
individuals evolved over time from before to after the
announcement of COVID-19. To find patterns and use
ValenceAwareDictionary and sEntiment Reasoner (VADER)
to get sentiment scores and to look at weekly trends over
a period of 17 weeks were utilized. Initial Twitter reactions
were negative when it came to the influence of COVID-19 on
the healthcare sector, including hospitals, clinics, and front-
line employees. However, over the weeks, these reactions
changed to positive sentiment. Similarly, [55] focused on
the information flow on Twitter during the Corona Virus
outbreak. For sentiment and topic modeling, LDA is used
in post-processing to analyze coronavirus tweets. The study
revealed that information flow was accurate and credible
during the coronavirus outbreak. It revealed the prevalence
of negative sentiments like fear and positive ones like
trust.
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Many researchers have tackled employing Deep Neural
Networks and Recurrent Neural Networks Algorithms with
text representation, tokenization, and word embedding. For
example, in the methodology presented by [56], the authors
obtained an accuracy of 84.5% when using Long-Short Term
Memory (LSTM) as a supervised Deep Learning Algorithm
to evaluate the sentiment of a tweet. Such that, textual input
features such as tweet text, country name, and date were
used to predict the tweet text polarity. Initial polarity was
calculated using the VADERmodule. The authors in [57] also
proposed a method to examine citizens’ reactions to the new
coronavirus and their views on subsequent national actions.
LSTM, Bi-LSTM, and GRU are used with different word
embedding like GloVe and BERT to estimate sentiment polar-
ity and emotions from retrieved tweets. The highest accuracy
was obtained when using LSTM+Glove: Training accuracy
was 93%, validation accuracy was 83%, and testing accuracy
varied from 69% to 84% when applied to different datasets.
Based on the outcomes of this survey, we can conclude that
using deep learning models instead of traditional machine
learning algorithms to solve sentiment classification prob-
lems does not result in significant precision improvements.
It also consumes a lot of computing power. As a result,
our proposed approach relies solely on traditional machine
learning algorithms to compute sentiment scores for tweets.

B. SOCIAL MEDIA FOR SPATIAL ANALYSIS AND
PREDICTION
Identifying the user’s current location and the location of
a tweet are two distinct concerns that can be tackled using
geolocation prediction on Twitter data. The problem of
determining a user’s geolocation can be divided into two
sub-problems: a user’s home location and a user’s current
location. Additionally, the tweet geolocation prediction prob-
lem may be broken down into two sub-problems: predicting
where a tweet came from (i.e., where it was sent from) and
extracting the locations mentioned in a tweet. Location-based
social networks are likewise becoming increasingly popu-
lar [58]–[60]. Earlier work on tweet geolocation prediction
employed machine learning [61]. These methods resulted in
poor performance because of the massive amount of data
available on Twitter that needed to be analyzed and trained.
Current research has changed the attention from ML to DL
for Twitter user location forecast. Various approaches and
strategies have been employed during the last few years to
improve the accuracy of location prediction methodologies
and algorithms. Various research studies have used metadata,
such as temporal information, to conclude the location of
users, as presented by the research in [62]. Some have just
used the tweets’ content as in [63]–[65]. Others have studied
users’ social networks [66]. User account data has also been
effective [67]–[68], while others have used a hybrid approach
[69]. However, most research studies continue to use the text
of the post or tweet as a major input for their study. Over
the years, diverse features and indicator types have been
employed to predict Twitter users or tweet locations. These

may include message text or context, the user’s followers
and friends network, the user’s profile metadata, and the
user’s and tweets’ geotags, amongmany other indicators. As a
result, natural language processing (NLP) via machine learn-
ing, deep learning, and probabilistic approaches to locating
databases [67] has been widely used. To match the actual
location to keywords, [60] employs cosine similarity. While
performing content analysis, evaluating all possible occur-
rences of the geographical entities expressed in the message
is important. The user’s location or even the tweet loca-
tion cannot be automatically deduced from messages [70].
Employing feature extraction using N-Gram and Bidirec-
tional Encoder Representations from Transformers (BERT)
Embedding, the authors in [71] have tested ensemble mod-
els based on meta-learners and deep neural networks, such
as XG-Boost, LSTM, and Character-Level-CNN, respec-
tively, with the highest, obtained an accuracy of 53.88% for
the localization of Swiss German Tweets. Certain methods
have been suggested to exploit URL linkages within the
text to infer the users’ location. A free online query tool
that correlates geographical location with IP addresses and
domain names is used in [72] to predict the country-level
location, featuring location-indicative words, hashtags, user
mentions, and metadata in the tweet text. In another study,
the authors used Naive Bayes and Logistic Regression to
locate tweets using geo-location-specific phrases and hash-
tags. Then, a year later, they presented a stacking-based tech-
nique [73]–[74]. That combined tweet content and metadata.
They also considered the influence of using tweets with no
location tagging, users’ language, and user-declaredmetadata
on the geolocation forecasting task and how user behavior
varies by region. A user’s social network, which consists of
his followers or friends, has been demonstrated to be a reli-
able indicator of their home address. Some research [75]–[76]
has demonstrated that if two users live in the same city,
they are more likely to contact each other regularly and vice
versa. Using a graphical representation of tweeting users’ net-
works and with the help of Graph Neural Networks (GNN),
specifically the ready-implemented Simple Graph Convolu-
tion (SGC), and MLP (Multi-Layer Perceptron), the authors
in [77], were able to predict the geolocation of a tweeting
user. Additionally, they explored many differences between
SGC and MLP in order to analyze the results. SGC, for
example, is a ‘‘GNN-based’’ model that includes tweets’ text
and node location as features, whereas MLP embeds tweet
text and locations independently. For SGC, the authors of [77]
achieved a maximum accuracy of 62.5 percent. Their results
also implied that suchmodels are prone to adversarial attacks,
which is challenging for all GNN-based models. According
to [78], the more influential a user is, the more diverse their
followers and friends are from all over the world, which
might negatively affect the prediction accuracy. The authors
have obtained a similar result in [66] as they made it evident
that an ordinary user’s network is optimum for inferring
position up to the third depth. The authors in [79] proposed an
approach to forecasting the city-level geolocation of tweets
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collected over a period of 30 days using a combined model
of CNN and Bi-LSTM. This is accomplished by mining
features contained within the tweets and the tweet metadata,
for instance, the tweet text, user screen name, and user pro-
file location. By merging two neural networks, CNN and
Bi-LSTM, and leveraging Deep Learning methods with word
embedding, the authors suggested a method to handle the
task of Tweet geolocation prediction. Word embedding was
employed using word2vec (a Google-trained algorithm). The
proposed method had a classification accuracy of 92.6 per-
cent. Most smartphones now come with GPS built-in, allow-
ing geo-satellites to determine the user’s exact location using
latitude and longitude coordinates. Due to privacy concerns,
users frequently disable this function, making geotagging a
challenging feature. In the discipline of geography and land
surveying, Vincenty’s geometric median is used to estimate
a Twitter user’s location based on their last certain count
of geotagged tweets within an area of 15 km radius as pre-
sented by [76] and [80]. A similar study was proposed by
the authors in [81], presenting a method for calculating the
distance between tweets from the same user by predicting
the user’s home location using tweet-relevant information.
The first tweet of each user is considered the individual’s
baseline home location. Classic machine learning algorithms
such as Support Vector Machine (SVM), Linear Regression,
Linear Model Theil Sen Regressor, Decision Trees, Linear
Model SGDRegressor, Neural Networks, K-nearest neighbor
(KNN), RandomForest, Gradient Boosting Regressor were
applied. The highest accuracywas obtained usingDT, at 85%.
Using Deep Learning with word embedding, sentiment anal-
ysis, and featuring tweet content and tweet geolocation
(longitude and latitude), the authors in [82] proposed Deep-
Geoloc with a max accuracy of 58.4%. Long-Short Term
Memory (LSTM) was tested with different word embed-
ding methods, such as Word2vec, FastText, and Char2vec.
The authors of [83] have combined tweets’ content and
user-profile metadata into one model using CNN. Their sug-
gested approach was more accurate, although the results
showed some bias that affected the resultant prediction accu-
racy. Furthermore, their study [84] proposed a hierarchical
location prediction neural network (HLPNN).

C. SOCIAL MEDIA FOR TEMPORAL PUBLIC AWARENESS
Not so many studies have been conducted on using Twitter
data to computationally quantify the public awareness mea-
sures regarding the recent COVID-19 outbreak. Some studies
have employed manual surveying tools to collect observa-
tions that might correlate public awareness with the outbreak
variations during a certain period. The authors in [51] have
employed NLP and conventional machine learning models
to classify tweets contents into ‘‘signal’’ or ‘‘not signal’’,
while the first-class indicates that the Twitter user recog-
nizes the COVID-19 outbreak risk in USA. The ‘‘signal’’
tweets volumes were compared to the counts of COVID-19
active cases. The authors indicated that the emergence of
a ‘‘signal’’ classified tweets volume had a leading time of

16 days. Another study [109] collected tweets about the
2020 COVID-19 pandemic in the United States expressing
the most typical symptoms of COVID-19, such as cough
and fever. Through simple exploratory data analysis and
visualizations, the authors have indicated a 5 to 19-day lag
between increases in the number of symptom-reporting posts
on Twitter and officially reported confirmed cases by ana-
lyzing the fluctuation in Twitter activities at the state level.
Similarly, the authors in [110] have employed the Named
Entity Recognition (NER)method tomeasure the lead time of
the COVID-19 public awareness. This study has stated a time
lead of 6-27 days. Even though these studies used not consid-
erably suitable computationalmethods, these presented social
data analysis which reflected the importance of such type of
data in the field of pandemic outbreak awareness. The most
relevant literature in comparison to the proposed framework
is summarized in Table 2 below. This summary describes
the literature dataset, features, methods, evaluation metrics,
added values, and limitations. As disclosed in the previous
survey, using social media data to track trends and gauge pub-
lic opinion about pandemic-response strategies can be a cost-
effective, timely, and informative strategy. So, we found that
developing a general, reliable, proactive awareness system for
pandemic outbreaks that employs more suitable methods is of
great importance, mainly through predicting the outbreak’s
most affected geolocations. Accordingly, the predicted and
known user and tweet locations will help in preventing an epi-
demic of hazardous diseases, as the disease can be contained
in its earlier emergence, enabling health and governmental
organizations to plan the best infection control measures and
policies. As such, weweremotivated to propose our enhanced
framework of the three inherently interlinked subsystems for
identifying sentiment taxonomies, inferring the most haz-
ardous geolocation, and evaluating the temporal associations
between public awareness and outbreak status as described
earlier, such that, based on our review of the literature, very
few related research evidently presented a methodology to
measure the potential expediency of using social network
data to develop reliable early information surveillance and
warning system for pandemic outbreaks, especially in the
way we designed and developed our framework.

III. METHODS AND PROPOSED METHODOLOGY
A. RESEARCH GOALS AND QUESTIONS
When conventional surveys and clinical report data are insuf-
ficient, social media data may source additional data easily
and effectively. Such that, our research suggested a method-
ology to evaluate how social network data such as tweets,
the user or tweet geolocations, and public sentiments, among
other features, may be utilized to construct an accurate pan-
demic information surveillance system. Disease transmis-
sion’s spatial and temporal dynamics may be explored using
social media data. From many perspectives, this study exam-
ines the significance of employing social network data and
machine learning/deep learning classification algorithms to

VOLUME 10, 2022 76439



N. Gamal et al.: Sentiment-Based Spatiotemporal Prediction Framework for Pandemic Outbreaks Awareness

TABLE 2. Literature survey summary.
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TABLE 2. (Continued.) Literature survey summary.

TABLE 3. Dataset description.

improve the awareness prospect of infectious disease as a
proactive info-surveillance framework. One of the objectives
of this research is to investigate how population sentiments
can be correlated with the emergence of an infectious out-
break and how this can be referenced to certain geolocations
worldwide. So, in accordance with this primary goal, this
research aims to answer the following questions:

Research Question (1): What is the potential expediency
of employing social network data and spatiotemporal social

network analysis to proactively control any infectious disease
outbreak spread?

Research Question (2):How could the employment of
spatiotemporal social network analysis in studying the pro-
gression of an epidemic outbreak overcome the challenges
that healthcare authorities encounter, such as governments’
limited data collection resources, diversity in cultural and
educational backgrounds, and inconsistencies in reporting
from various sectors?

Research Question (3): To what extent does the extracted
linguistic features vector associated with social network data
affect the performance measures of classification algorithms
employed either in predicting the sentiment associated with
a text or in predicting the geolocation from which the text is
originated?

Research Question (4): What are the expected improve-
ments upon applying modern text vectorization algorithms
such as pre-trained neural networks and transformer-based
word embedding vectorization compared to classical vec-
torization techniques when used with social network textual
data?

Research Question (5): Does the employment of neural
network-based classificationmodels affect the resulting accu-
racy compared to the employment of state-of-the-art machine
learning-based models using the same data corpus?
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Research Question (6): How would classical corre-
lation and time-lagged cross-correlation algorithms quan-
tify the synchrony between time-series data, and how can
these algorithms be employed in developing an early warn-
ing and surveillance framework for any infectious disease
outbreak?

B. PROPOSED FRAMEWORK
This study utilizes social media data obtained from Twitter
and investigates the potential of capturing public sentiment
to promote spatiotemporal early warning systems. This study
retroactively investigates the early stages of the COVID-19
disease outbreak worldwide to detect the most hazardous
geolocation. Numerous technologies and algorithms have
been employed for the research problem under considera-
tion to achieve the highest accuracy and best performance.
As such, a proposed framework that consists of three major
inherently interlinked and cooperative subsystems is pro-
posed. The first subsystem consists of data collection and
integration mechanisms and APIs, data preprocessing, and
hybrid sentiment analysis tools that identify tweet sentiment
taxonomies and perform quantitative analysis to estimate
public awareness. The second subsystem comprises the fea-
ture extraction unit that identifies, selects, embeds, and bal-
ances feature vectors and the classifier fitting and training
unit. This subsystem is designed to capture the most effective
linguistic feature combinations with more spatial evidence by
employing various word embedding algorithms with diverse
neural network-based models. The last subsystem is the mod-
eling and situational awareness evaluation subsystem based
on the machine and deep learning techniques and used for
predicting the geolocation of most affected countries using
online social network data. The public situational awareness
evaluation is designed based on various correlation quan-
tifying approaches and developed to measure the temporal
associations (synchrony) between public pandemic relevant
online social network activities and pandemic officially
announced infection counts in the most hazardous geoloca-
tions. So, collectively, the proposed framework includes three
major components that will be employed in the previously
mentioned subsystems, the first is the generic classifier train-
ing and fitting algorithm, the second is the predictor (clas-
sifier), and the third is the correlator. The classifier training
and fitting process is divided into several serial sub-processes,
commencing with collecting social network data, moving
on to data preparation and preprocessing, then reaching the
calculation of sentiments associated with the scraped data.
The preprocessed text along with its predicted sentiment,
are combined for the feature vector extraction. These fea-
tures can be divided into training and validation datasets
used to test numerous machine learning-based and neural
network-based classification models. This process concludes
with the selection of the best classification model based on
the performance evaluation sub-process, as depicted in the
block diagram presented in Fig. 1, which illustrates the main
building blocks of this main functional process in addition to

FIGURE 1. Classifier training and fitting process block diagram.

clarifying the input and output of each block and detailed in
Fig. 2 below, where the internal functions of each sub-process
are declared. At that juncture, the predictor (classifier) pro-
cess is enabled to employ the selected best classifier and
the features vector from the previous process to classify any
new dataset. Finally, the correlator process employs different
cross-correlation algorithms to quantify synchrony between
the predicted sentiment of text data related to a certain epi-
demic outbreak and the official reporting of daily active
infections for themost hazardous geolocations extracted from
the previous classifier process. The predictor (classifier) and
the correlator processes are illustrated as block diagrams in
Fig. 3 and Fig. 4 and detailed in Fig. 5, Fig. 6, and Fig. 7,
below where the internal functions of each sub-process are
dismantled.

A deeper explanation of the mentioned sub-process and
their functions are presented in an upcoming section. More-
over, the main contributions of this research are elaborated as
follows:

1. Generation of a dynamic dataset comprising real-time
scraped and archived data, with reasonable data size and
features.

2. The proposed framework is based on textual data and
metadata that are voluntarily publicly shared via social
network platforms while preserving all of the users’
privacy rights – such that only data permitted by the
user is available to the public community and, in turn,
to the research community. This enables the proposed
framework’s reproducibility. Furthermore, the project’s
GitHub repository contains all implementation files,
codes, libraries, environment setup and requirements,
dataset, and results are accessible via:
https://github.com/nohagamal001/Sentiment-Based-
Spatiotemporal-Awareness-Framework-for-Pandemics

3. For real-time and archived data collection of English geo-
tagged tweets, the proposed framework provides its data
scraping and hydrating APIs, which are designed to use
a set of corona-virus-related keywords. It was necessary
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FIGURE 2. Proposed framework, training/validation phase.

to collect tweets from all over the world so that our
framework could detect the most hazardous geolocations
according to the implemented processes and also allow
us to evaluate the performance of our model in distin-
guishing between different variants of a single language.
As a result, we tested the framework’s reliability in five
different regions (USA/Canada/UK/Australia/India).

4. This framework incorporates a tweet sentiment prediction
as an additional feature to the tweet text, user screen name,
and profile description in order to predict the tweet’s
geolocation (place). Although this new feature hasn’t been
used in similar research, our literature and knowledge have
been shown to improve tweet classification-based loca-
tion prediction with both classical machine learning and
neural network algorithms. Additionally, the new feature
provided a deeper level of insight into the collected data,
allowing researchers to pinpoint the most vulnerable and
infection-prone areas.

5. In our proposed framework, depending on textual inputs,
it is very important to recognize the word sense or mean-
ing as used in a text originating from a specific loca-
tion for the same language, as a different geographical
region may give a different meaning to a word (regional
context). So, in addition to employing and testing con-
ventional machine learning-based classification models,
we have tailored and evaluated many neural network-
based algorithms, such as Feed-Forward Multi-Layer Per-
ceptron, Recurrent Neural Network (LSTM, Bi-LSTM),
and Convolutional Neural Network, empowered by self-
embedding, pre-trained static and dynamic word embed-
ding such as ‘‘Word2vec, FastText, Glove’’ and ‘‘BERT
and RoBERTa’’ respectively. These tailored models were

successful by nature in capturing the regional context of a
word.

6. To broaden the scope of our evaluation and identify
the best algorithms for social network data, we selected
pre-trained word embedding algorithms that allow
our proposed framework to evaluate various classi-
cal and up-to-date embedding algorithms developed
from 2010 to 2020.

7. Using Bi-directional Neural Networks allowed us to pre-
dict the geolocation of a tweet based on the spatial
indications of words in relation to their context and
position (index) in the text. This capability was recog-
nized when the Bi-directional Recurrent Neural Network
empowered by Bi-directional pre-trainedword embedding
outperformed other implemented Neural Network models
like MLP and CNN. When compared to state-of-the-art
approaches presented in the literature, the proposed frame-
work with the effective selection of different algorithms,
hyper-parameters, and configurations resulted in notice-
ably better geolocation prediction accuracy.

8. As our implementation deals with linguistic features rather
than relying on lexicons, the same high standard per-
formance is guaranteed when our framework is used to
process different corpora written in English. Furthermore,
it can be extended to process non-English corpora by using
appropriate word embedding algorithms capable of deal-
ing with new language linguistic features, such as using
Ara-BERT to process Arabic corpora within our proposed
implementation.

9. The proposed framework presents an evaluation for the
implementation of time-lagged cross-correlation (TLCC)
and windowed-time-lagged cross-correlation (WTLCC)
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FIGURE 3. The predictor (Classifier) process block diagram.

FIGURE 4. The correlator process block diagram.

FIGURE 5. Proposed framework, evaluation phase, (the processes
indicated in the dash-dot block is out of this study’s scope, as these will
be included in our future work studies).

algorithms to quantify the synchrony between the pub-
lic interaction volumes and sentiments, and the official
reports of the COVID-19 infection active cases in geoloca-
tions under investigation. The WTLCC was decided to be
employed because of its capability to deal with the nature
of the outbreak in waves. To the best of our knowledge,
no prior studies have employedWTLCC to solve this type
of research problem.

10. As our implementation deals with linguistic features rather
than relying on lexicons, the same high standard per-
formance is guaranteed when our framework is used to
process different corpora written in English. Furthermore,
it can be extended to process non-English corpora by using
appropriate word embedding algorithms capable of deal-
ing with new language linguistic features, such as using

FIGURE 6. Illustration for the proposed machine learning classification
model.

Ara-BERT to process Arabic corpora within our proposed
implementation.

11. The proposed framework employed a multi-staged pro-
cess to measure the potential expediency of using social
network data along with official reports about an infec-
tious disease outbreak. By implementing and employ-
ing many efficient algorithms and methods within the
proposed framework, starting from real-time topic-related
data scraping, passing by evaluating the public sentiment
in regards to the topic during different phases and time
periods of its emergence, which was employed amongst
other features to predict the most hazardous geoloca-
tions, then finally reaching to quantifying the synchrony
between the public interaction volumes and sentiments,
and the official reports about the topic under investigation
(COVID-19 outbreak) in certain geolocations that can be
marked as the most jeopardized.

12. The proposed framework evaluates the performance of
numerous algorithm combinations and integrations from
the perspectives of accuracy and required computational
resources in order to present a comprehensive analysis
to the research community that will assist researchers in
deciding which experiments to rebuild or improve based
on their research problem.

13. To the best of our knowledge, no prior studies have imple-
mented such a multi-staged framework that measures the
spatiotemporal social network potentials to aid in the
mitigation of infectious disease spread in its early stages
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FIGURE 7. Illustration for the proposed deep learning classification
model.

when insufficient data is available in the manner we have
proposed.

C. MATERIALS AND METHODS
1) DATA COLLECTION
Twitter data could be extracted either by using live (real-
time) scraping or by hydrating older tweets using their tweet
IDs. In either case, a developer Twitter account should be
created, and an application should be signed up. Both ways
(real-time and hydrating) were used to be able to collect the
most suitable dataset for our proposed framework as per the
following pseudocode illustrated in Fig. 8. For 18 months,
from March 2020 to September 2021, the Twitter stream-
ing API was used to gather real-time geo-tagged tweets
from around the world. For early COVID-19-related tweets,
we have hydrated the GeoCOV19 Tweets Dataset [85]. Dur-
ing the mentioned period of time, the dataset should include
427,447 English tweets, with global coverage as announced
on [86]. This dataset includes the IDs and sentiment scores
for these geotagged tweets about the COVID-19 epidemic.
Only the tweet IDs are available on the cited website, per
Twitter’s content redistribution policy. By hydrating these
IDs, we reconstructed a dataset of around 349,760 unique

FIGURE 8. Pseudocode of process 1, process 1(a): Scraping real-time
tweets by keywords and process 1(b): hydrating archived tweets by
tweet_id.

tweets. In addition, around 227,500 other tweets were directly
scraped from Twitter’s real-time streaming.

2) TWEETS DATA CLEANING AND PREPROCESSING
Preprocessing text is used to remove noisy or inconsistent
data, these include eliminating punctuation, special char-
acters, numerals, and words that have no significance in
the context of the text. The accurate data preparation and
preprocessing will definitely lead to better feature space
selection and so much accurate classifications and predic-
tions. Main cleaning and preprocessing steps were tackled
using NLTK2, and TextBlob libraries are listed as shown in
the pseudocode illustrated in Fig. 9. Many other functions
were employed to finalize the text cleaning and preprocessing
of tweets, such as; Replacing all emoticons with their polarity
of meaning, using the dictionary of emoticons, replacing
all acronyms with their translations, using the acronym dic-
tionary, using the negation dictionary to substitute negation
terms with ‘‘non.’’, and Stemming, that is is a rule-based pro-
cess of stripping the suffixes (‘‘ly,’’ ‘‘ing,’’ ‘‘es,’’ ‘‘s,’’ ‘‘ed,’’
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FIGURE 9. Pseudocode of Process 2, tweets dataset cleaning and
preprocessing.

etc.) from aword. The Porter Stemmer from theNLTK library
was used to resolve this issue. Finally, unigram tokenization
is applied to all tweets. Tokenization is the process of splitting
a string of text into tokens, where tokens are individual terms
or words.

3) DATA BALANCING AND AUGMENTATION
The used dataset showed some distribution imbalance which
might cause over-fitting or under-fitting of certain classes,
so, an additional step was added after data cleaning is to
use Data Augmentation. To increase the amount of data by
adding newly generated synthetic data from current data,
these act as a regularizer and helps reduce overfitting when
training a machine or deep learning model. Additionally,
a hybrid strategy of combined over-sampling and under-
sampling techniques was used to adjust the class distribution
of our dataset.

4) DATASET DESCRIPTION
After applying the basic data cleaning process, the dataset
enclosed more than 577K unique geotagged tweets, with
many collected features. There is a lot of information asso-
ciated with tweets, including the user screen name, userID,
following date and time, count of followers, tweet’s text,
user’s device type, such as Android or iOS, in addition to,
geolocation, user biography, count of user mentions, and the
count of re-tweets. So, amongst these features, the user profile
description, user screen name, user profile location, tweet
text, and calculated tweet sentiment have been selected to
predict the geolocation ‘‘place’’ affected by the pandemic.

5) DATA VECTORIZATION, TRANSFORMATION, AND
FEATURES EXTRACTION
Most text-based classification techniques use machine learn-
ing and deep learning models. The input used is mostly

unigram or n-gram tokens, or what can be said as a ‘‘bag
of words’’ (BoW) [87]. However, BoW tokenization is not
sufficient in complex classification problems such as loca-
tion prediction. Hence, more specific features are needed
to be extracted for a more accurate classification process.
Word embedding [88]–[93] is now one of the most success-
ful applications of unsupervised learning since it does not
require expensive annotation. Word embeddings are repre-
sented in such a way that comparable words are encoded in
the same way. Word embedding helps with feature extrac-
tion and natural language processing applications such as
text classification, topic clustering, and sentiment classi-
fication. Traditional or frequency word embedding, static
word embedding, and contextualized dynamic word embed-
ding are the three types of word embedding techniques.
The count vector, Term Frequency – Inverse Document Fre-
quency (TF-IDF) [88], and co-occurrence are the three types
of frequency-based embedding. Word2Vec [89], GloVe [90],
and FastText [91] are the three types of static word embed-
ding. BERT [92] and RoBERTa [93] are two types of contex-
tualized word embedding. For the purpose of our study in the
proposed framework, many feature selection techniques have
been tackled, as shown below, in order to improve themodel’s
performance accuracy and reliability. The CountVectorizer is
used to convert a given text into a vector of numeric values
based on the frequency (count) of each word in the text [94].

This is advantageous if we have a collection of such texts
and wish to transform each word in each text into a vec-
tor. Thus, if a train set has ten tweets, those ten tweets are
tokenized to produce the bag. TF-IDF is an additional tech-
nique based on the frequency method, but it differs from the
CountVectorizer approach in that it considers the recurrence
of a word across the entire corpus rather than just in a single
document (or tweet). The TF-IDF algorithm penalizes popu-
lar terms by assigning them lower weights while emphasizing
words uncommon throughout the dataset but appearing in
large numbers in a few documents [95].

The BoW and TF/IDF vectorization implementation are
shown in the pseudocode illustrated in Fig. 10. The second
model is a time series approach based on word embedding.
In which each word is represented by its vector in this
instance. Word embedding can be implemented by building
a problem-customized self-embedding or using pre-trained
embedding matrices. For self-embedding, each text sample
will be passed through an embedding layer that calculates the
proximity between features to be able to assign a location to
the word in the n-dimensional embedding space.

Or, we may use pre-trained word embeddings, such as
Google’s word2vec [89], Stanford’s GloVe Text [90], and
FastText [91]. These are trained using massive corpora,
including billions of instances and words. When a model is
trained on a large text corpus with the assistance of a high-
performance cluster. Later, it may be fine-tuned for a given
purpose in considerably less time. Additional layers might be
added to the model during the fine-tuning stage for particular
tasks distinct from those it was first trained. These word
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FIGURE 10. Pseudocode of process 3, tweets vectorization (BoW) vs.
(TF/IDF).

embedding algorithms will be discussed in further detail in
a subsequent subsection.

D. SENTIMENT ANALYSIS
Because we are trying to anticipate where a particular event
is emerging, like the COVID-19 epidemic, will have the
most impact, understanding public sentiment is critical to the
success of our research. The proposed location prediction
approach takes into account sentiment classifications as well
as other textual inputs. Calculating sentiment scores for all
tweets included in our dataset may thus be seen as a cru-
cial job that can lead to precise location predictions being
performed. Since public sentiment classification emerged,
several new approaches have developed, such as machine
and deep learning techniques for automated, rapid, and accu-
rate classification of sentiments. Natural Language Process-
ing (NLP) addresses this issue by combining linguistics and
computer science to convert text to a format that comput-
ers can comprehend [96]. While certain natural language
processing models are more sophisticated than others, most
sentiment classification systems use one of three algorithms:
Rule-Based Sentiment Classification (or Lexicon-Based),
Automated Sentiment Classification (or Machine Learning-
Based), and Hybrid Sentiment Classification [33], [34]. For
sentiment classification tasks, rule-based systems depend on
a lexicon (dictionary or corpus-based), which is a collection
of positive and negative words. When given a piece of text,
themodel counts positive and negativewords and assigns sen-
timent to each. A sentence is labeled ‘‘positive’’ if it includes
more positive than negative terms. This strategy, however,
has a few drawbacks. It is unable to detect words that do
not occur in the lexicon and disassociates words from their
context units, making it difficult to distinguish sarcasm or
irony [97]. Finally, rule-based systems might be challenging
to scale and improve since new terms added to the lexicon
may alter prior findings. Automated systems make use of
machine learning techniques to anticipate sentiment based on
prior observations. A training dataset and its associated tags
or sentiment classes are essential to using this AI method.
During the training phase, the model converts text input
to vectors and determines a pattern to connect each vector
with one of the pre-defined tags (‘‘Positive,’’ ‘‘Negative,’’
or ‘‘Neutral’’). As a sufficient quantity of relevant data is
supplied into the system, automated systems may begin to

form their predictions to classify previously unknown data.
It is worth mentioning that the larger the training dataset,
the more accurate the machine learning models are. Hybrid
systems combine techniques based on rules and machine
learning. To commence, the model trains on a sequence of
tagged instances to identify sentiment. The findings are then
compared against a lexicon to ensure they are accurate. The
objective is to get the optimal result while avoiding the draw-
backs inherent in each particular strategy. In our proposed
scheme, we have implemented a hybrid sentiment classifier to
tag the tweets dataset with the appropriate sentiment, as illus-
trated in the pseudocode presented in Fig. 11.

E. ARTIFICIAL INTELLIGENCE-BASED SOCIAL NETWORK
ANALYSIS AND CLASSIFICATION METHODS
1) MACHINE LEARNING-BASED CLASSIFICATION METHODS
It is important to evaluate many models regardless of their
theoretical performance when using machine learning since
the accuracy is based on the training dataset. For differ-
ent reasons, such as linear separation or the burden of
dimensionality, a few methods (SVM, Naïve Bayes, multino-
mial regressions) are commonly used for text classification
tasks [98]. However, we have decided to implement many
other algorithms such as MultinomialNB, DecisionTreeClas-
sifier, as examples of single classifier algorithms, and
ExtraTreesClassifier, RandomForestClassifier, AdaBoost-
Classifier, and GradientBoostingClassifier, as examples of
ensemble learning classifier algorithms, to examine their
performance in either sentiment classification or location
prediction such as illustrated pseudocode of process 4,
shown in Fig. 11, by using different input features and
output labels in either case. In the following subsec-
tion, we describe the employed customization on conven-
tional machine learning models and their main parameter
specifications.

a: MULTINOMIAL NAÏVE BAYES
Naïve Bayes statistical methods are some of the most often
employed in text classification and analysis. Experiments
may achieve excellent results even if the dataset is small and
computing resources are limited by using Multinomial Naïve
Bayes (MNB), one of that family members. It is possible
to determine the conditional probability of two occurrences
based on the probabilities of each event using Bayes’s Theo-
rem. Ourmethod calculates each class’s likelihood for a given
text, then outputs the class with the greatest probability [99].
As a result, each vector represents a piece of must-have text
information on the probability of certain words appearing in
texts of a particular category for the algorithm to calculate
the likelihood that the text belongs to the category. In our
experiment, we have implemented the MNB classifier with
Laplace smoothing and prior probabilities fitting set to True.

b: DECISION TREE CLASSIFIER
A decision Tree (DT) is a strategy for classifying decisions
based on the use of branches to represent each potential
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FIGURE 11. Pseudocode of process 4, classification model using machine
learning.

outcome. There are three types of nodes in DT: the ‘‘root
node,’’ the ‘‘internal node,’’ and the ‘‘leaf node.’’ An initial
attribute or the uppermost decision node in a tree, the root
node, is the best predictor for a tree. On the other hand,
internal nodes have at least one incoming and outgoing edge.
A decision or categorization is indicated by a leaf node that
has no outgoing edges. Decision Trees (DT) learn from data to
approximate the sine curve using an IF-THEN rule set [100].
As the tree becomes more complicated, so does the model’s
ability to accurately predict future outcomes. When DT is
used to classify decision-making data, it’s easier to access and
analyze and requires less computing power while also being
able to show the link between dependent and independent
variables while also being computationally low-end. DT may
be used as a basic framework that sets a group of rules, which
is used for decision-making to categorize a document based
on its content into a certain class. In our experiment, we are
using a standard Skicit-Learn Decision Tree.

c: ENSEMBLE LEARNING
Ensemble learning – approaches that incorporate numerous
classifiers and integrate their findings – has sparked a lot
of interest in machine learning research. Given the same
amount of training information, it is generally anticipated
that the performance of a group of numerous weak classifiers
outperforms that of a single classifier. Boosting, bagging,
and, more recently, Random Forests are well-known ensem-
ble approaches. By successively reweighing the examples in
the training set, the boosting strategy generates various base
learners. At the onset, all instances are given equal weights.
In the following round, each case misclassified by the pre-

vious base learner will be given a higher weight to attempt
more accurate classification. The bagging approach (boot-
strap aggregation) draws various training subsets at random
from the total training set. Each training subset is delivered to
basic learners as input. A majority vote is used to aggregate
all retrieved learners. While bagging may produce classifiers
in parallel, boosting produces them sequentially. One famous
example of boosting ensemble is gradient boosting-based
classifiers that combine weak learning models to create a
powerful prediction model. Gradient boosting methods can
successfully handle complicated unstructured social media
data. Gradient Boosting Machines (GBM) have shown state-
of-the-art performance on a variety of conventional clas-
sification benchmarks [101]. Gradient Boosting machines’
main goal is to minimize the loss function, which is analo-
gous to gradient descent methods in neural networks. New
weak learners are added to the model iteratively, and the
weights of previous learners are locked in place, leaving
unmodified samples for the new layers. Multi-class classi-
fication and regression issues may be solved with GBM.
A GradientBoostingClassifier was implemented considering
100 estimators and an error-minimizing criterion as ‘‘fried-
man_mse’’. Another example of a boosting ensemble is
Adaboost. In Adaboost, the greater the number of misclas-
sifications, the greater the number of weights allocated to the
misclassified to improve or enhance the algorithm’s perfor-
mance to provide a more accurate forecast. AdaBoostClas-
sifier is implemented using 100 estimators. Random Forest,
as a different ensemble approach, constructs many decision
trees that are used to classify a new entity by majority vote.
As a result, each node in the decision tree uses a randomly
selected subset of the original collection’s features. Further-
more, each tree, similar to bagging, uses a different bootstrap
sample data. Bagging is often more accurate than a single
classifier, yet in some circumstances, it may perform signifi-
cantly less accurately than boosting. Boosting, on the other
hand, may produce ensembles with lower accuracy when
compared to a single classifier’s accuracy [102]. Moreover,
boosting may overfit noisy datasets, resulting in poor accu-
racy. Random Forests, contrarywise, are more resistant to
noise than boosting and perform as well as, if not better than,
boosting, in addition to its resilience to overfitting. In gen-
eral, the user determines the number of trees constructed
in the forest by trial and error. When the number of trees
increases, more computing power is needed, with no notice-
able performance advantage. A RandomForestClassifier was
implemented considering 200 estimators (the number of trees
in the forest), and an error-minimizing criterion as ‘‘Gini’’
impurity. We are constructing numerous decision trees as an
illustration of ensemble classification techniques. Random-
Forest determines the best split for converting the parent node
into the two most homogenous child nodes. As the name
implies (Extremely Randomized Trees), an ExtraTreesClassi-
fier chooses a random split to divide the parent node into two
random child nodes. An ExtraTree Classifier was built using
100 estimators (forest tree count) and an error minimization
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TABLE 4. Neural network hyper parameters.

criteria known as ‘‘entropy.’’ Random forest models mitigate
overfitting by incorporating randomness via the construction
of numerous trees (n-estimators), the use of bootstrapped
samples, and the splitting of nodes based on the optimal
split among a casual subset of the features picked at each
node. ExtraTrees is like Random Forest in that it generates
numerous trees and divides nodes using random subsets of
features, but with two significant differences: it does not
require bootstrap observations, and nodes are divided using
random splits rather than optimal splits. Thus, randomization
in Extra Trees is not derived from bootstrapping the data but
rather from random splits of all observations.

2) DEEP LEARNING-BASED CLASSIFICATION METHODS
Natural Language Processing is a critical technology in this
age of information and data. With the immense presence
of word embedding, neural network models have attained
very high-performance metrics across a wide range of NLP
applications. The essential features and characteristics used
in implementing these models are explained in the upcoming
subsections. In addition to presenting the detailed layers
architecture for CNN, LSTM, and Bi-LSTM with Self-
Embedding Layer, as shown in Fig. 12, we demonstrate
the complete process for implementing such networks as
depicted in the pseudocode presented in Fig. 13. The fol-
lowing subsection discusses the customization employed on
neural network learning models and the main parameter
specifications. The deployed parameters were selected with
reference to the literature and experimentally optimized for
the best performance. Additionally, Adam optimizer was
employed for further performance enhancements. Part of the
deployed parameters is presented in Table 4 below, while the
remaining parameters are mentioned within each algorithm
described in the following subsections.

a: MULTI-LAYER PERCEPTRON NEURAL NETWORK
A multi-layer perceptron (MLP) is a kind of forward-feed
artificial neural network (ANN) [49]. MLP is a word that is
sometimes used generically to refer to any feedforward ANN
and other times solely to networks built of many layers of
perceptrons (with threshold activation). AnMLP is composed
of at least three layers of nodes: an input layer, a hidden

FIGURE 12. Proposed models architectures for CNN, Bi-LSTM, and LSTM
with embedding layer.

layer, and an output layer, in which each node is a neuron
with a nonlinear activation function except the input nodes
[77]. The output of the embedded layers will be flattened to
one dimension, and a dense hidden layer of 256 units with a
rectifier activation functionwill be used.MLP is trained using
a supervised learning approach known as backpropagation.
A multi-layer perceptron (MLP) with two hidden layers is
employed in our proposed method, as indicated in the pseu-
docode of process 5, shown in Fig. 13, which is presented
as an example of the common process we have employed to
build any of the proposed neural networks with any of the
suggested word embedding models.

b: CONVOLUTIONAL NEURAL NETWORKS
Recent developments in Natural Language Processing (NLP)
heavily rely on neural network models. Convolutional Neural
Network (CNN) solutions are used to solve NLP problems,
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FIGURE 13. Pseudocode of process 5, tweets location prediction (using
NN and word embedding).

and the great majority of suggested models are based on
character-level CNNs applied to one-hot text vectors or 1D
CNNs. These networks performwell when the dictionary size
is modest. However, input sequences’ one-hot encoding vec-
tor sizemight be rather large for certain languages. To address
the aforementioned issues, we use a system in which CNN is
configured to analyze the full text in the form of a scanned

image. Where we transform our text documents to image
scans and train our classifier using the raw pixel values
[42] and [79]. This enables us to apply 2-D convolutional
layers to text in a rational manner, using advancements in
neural network models specifically intended for and targeted
at computer vision challenges. This enables us to circumvent
the concerns raised before about the usage of 1-D character-
level CNNs since document processing now depends on the
concurrent extraction of visual characteristics from several
lines (depending on the filter size) of text. This technique
views text categorization as a problem of learning context-
dependent semantic rules with the idea that further semantic
information may be recovered from features produced by
visual text processing than from strings of abstract discrete
symbols. The proposed CNN consists of three convolutional
layers, three max-pooling layers, a fully connected layer, and
an output layer containing five units/classes. 64-filters have
been used in the three convolutional layers of sizes (3, 4,
and 5) with stride 2, respectively.

c: RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNN) can process words
sequentially, as the purpose of RNN training is to predict
the next token in a string of words, achieving state-of-the-art
performance on a variety of problems, including time series-
related problems [42]. The phenomena of bursting and disap-
pearing gradients, which may be generated by increasing the
input sequence length, are major problems in normal RNNs.
This is the RNN’s short-term memory difficulty. To address
the short-term memory issue, a new architecture was pre-
sented as Long Short Term Memory (LSTM) unit has a more
complicated structure that includes a memory cell to retain
input dependencies and three gates that operate as regulators:
input, output, and in more modern versions, forget gates,
which allow the cell to reset its state. The forget gates control
how data is delivered into the cell. While this is a significant
improvement, input sequence processing is still confined to
one direction. A Bidirectional LSTM (Bi-LSTM) [79] may
be utilized to get around this issue, as it can process the input
sequence both forth and back. However, since both passes
must be performed individually, the input sequence cannot
be collected concurrently in a bidirectional way. 2 Layers,
256-LSTM, and 256-Bi-LSTM, were implemented based on
pre-trained word embedding as explained below.

For all Deep Neural Networks proposed above, MLP and
CNN, RNN, the neural network are given word embedding’s
as input, resulting in the utilization of a 300-dimension vec-
tor to represent each word, with longer inputs being trun-
cated and shorter inputs being padded with zero values to
ensure that all inputs have the same length for modeling.
The experiment uses the top 40,000 most common terms in
the dataset to define the vocabulary. This first layer’s output
would be a 300×40000matrix. To train deep neural networks
using stochastic gradient descent with error backpropagation,
an activation function that appears and behaves like a linear
function while being a nonlinear function is required. This
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allows for the learning of complicated connections in the
data. Additionally, the function must be more sensitive to the
activation sum input and resist saturation. The output layer
consists of a dense layer of five neurons with a Softmax acti-
vation function that generates predicted output values. The
model was trained using ten epochs and a batch size of 64.
Adam algorithm is utilized in training because it provides
the optimal answer by regulating the learning rate. Various
word embedding was experienced with MLP, CNN, LSTM,
and Bi-LSTM networks to investigate which approach pro-
duces the highest prediction accuracy, including Word2Vec,
Word2Vec with PoS, GloVe, GloVe with PoS, FastText, and
FastText with PoS. Additionally, Bi-LSTM networks are uti-
lizedwith transformer-basedword embeddings such as BERT
and RoBERTa. This is discussed in depth in the section
that follows. Evidently, better accuracy may be attained by
training this network with bigger embedding dimensions and
adding additional hidden layers, but this increases the neces-
sary training time.

d: NEURAL NETWORK-BASED (STATIC) WORD EMBEDDING
Word embedding is an n-dimensional vector space rep-
resentation of words that uses training data to determine
which words are semantically similar or related in vector
space. Individual words are represented in a vector space
as real-valued vectors. Each word is assigned to a vector,
and the vector values are learned using a similar process
to that of a neural network. This process employs densely
distributed word representations. Each word is a tens-or-
hundreds-dimensional vector. In comparison, sparse word
representations like one-hot encoding require thousands or
millions of dimensions. This lets words with similar mean-
ings have comparable representations.

This contrasts with the crisp but fragile representation in
a bag of words approach, where words have multiple rep-
resentations unless explicitly specified. Word2vec, GloVe,
and FastText are unsupervised learning-based word embed-
ding algorithms. Word2vec is a two-layer simple neural net-
work that takes as input a corpus of texts and produces a
vector for each word in the corpus. Words that frequently
occur in similar contextual locations throughout the corpus
and also occur frequently in similar word2vec spaces [89].
Word2vec effectively preserves semantic linkages, as words
with similar neighbors are likely to be semantically related.
There are two types of word2vec embedding. The contin-
uous bag of words (CBOW) technique includes n-words
preceding the target word and m words after it. The Skip-
Gram model forecasts adjacent words based on the current
word [103]. The gloVe is another well-known unsupervised
word embedding technique that is also based on the distribu-
tional hypothesis: ‘‘words that appear in comparable settings
are likely to have similar meanings.’’ The gloVe is distinct
fromWord2vec in that it generates vectors of words based on
their co-occurrence data [90]. Word2Vec is more predictive
than GloVe; for example, in the Skip-gram setting, it attempts
to ‘‘guess’’ the correct target word based on its context words.

GloVe, on the other hand, is a count-based algorithm. It starts
by generating a matrix X with rows representing words and
columns representing contexts, and the element value Xij
equals the number of times a word i appears in a context,
including a word j. By minimizing reconstruction loss, this
matrix is factorized into a lower-dimensional representation,
with each row representing the vector of a specific word.
Thus, Word2Vec learns word vector representations based on
their local context, whereas GloVe learns word vector repre-
sentations based on global statistics on word co-occurrence.
A group of researchers working at Facebook have introduced
FastText to improve the Word2Vec paradigm [91].

In contrast to the Word2Vec framework, which is trained
to generate vectors for individual words, the FastText frame-
work is trained to generate numerical representations of char-
acter n-grams. Thus, words are a collection of character
n-grams. For example, if we consider the word ‘‘virus’’ and
utilize n= 3 or tri-grams, we get the following n-grams: ‘‘vi’’,
‘‘vir’’, ‘‘iru’’, ‘‘us>’’, as ‘‘<’’ and ‘‘>’’ are special characters
that appear at the beginning and end of each word.

FastText’s character embedding enables it to construct
embedding vectors for words that are not even included
in the training texts. However, FastText has one significant
drawback: the high memory needs to be associated with
the process of building word embedding vectors from its
letters. Meanwhile, it features high-speed processing, which
minimizes the total required training time. For Part-of-Speech
(PoS) consideration in our implementation with the pre-
trained word embedding, we have generated a one-hot vector
for the PoS tag. Then, for each word embedding, a represen-
tation consisting of its word embedding is concatenated with
its PoS tag. Most of the development in the NLP domain may
be credited to general deep learning research improvements.
In recent years, word embeddings that consider context have
received great attention for various natural language pro-
cessing tasks. In particular, Google has developed a unique
neural network design known as a transformer, which offers
numerous advantages over typical sequential models (LSTM,
RNN, GRU, etc.) [104]. The benefits include, but were not
limited to, more effectivemodeling of long-term relationships
among tokens in a temporal sequence and more efficient
model training in general by reducing the sequential depen-
dence on prior tokens. A transformer, in a nutshell, is an
encoder-decoder architectural model that employs attention
methods to convey a full representation of the whole sequence
to the decoder at once rather than sequentially [105]. In this
research, we considered implementing two transformer mod-
els, BERT and RoBERTa. Both will be explained in detail in
an upcoming section.

e: TRANSFORMERS-BASED (DYNAMIC) WORD EMBEDDING
A transformer is a deep learningmodel that employs a distinct
method of weighing the significance of each component of
the input data [105]. On the other hand, recurrent neural net-
works (RNNs) are designed to handle sequential input data,
such as natural language, for tasks such as translation and
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text summarization. Transformers, do not require to process
data in the same order as RNNs. As a result, the attention
method can be used to contextualize any point (index) in the
input sequence. Such that, the transformer does not pursue
to process the beginning of the input sequence before its
end; instead, it detects the context in which each element in
the sequence receives its meaning [105]. This feature allows
for more parallel computation than RNNs, reducing training
time. Transformers have now become the preferred approach
for natural language processing tasks since their introduction
in 2017, replacing RNN models such as long short-term
memory (LSTM). Because of the adoption of training paral-
lelization, training on larger datasets is now possible. As a
result, pre-trained methods such as BERT (Bidirectional
Encoder Representations from Transformers) and RoBERTA
(Robustly Optimized BERT Pretraining Approach) were
developed, which were trained and fitted using massive lan-
guage datasets and may be fine-tuned for specific applica-
tions. Our experiments employ transformer models, which
may be found in Hugging Face’s transformer library. For
the classification job, the embedding would be input into a
recurrent neural network that has two layers of bidirectional
long-short-term memory (Bi-LSTM-256). Finally, the final
hidden state from the Bi-LSTM layer would be sent into a
max-pooling layer to remove unnecessary information. Sub-
sequently, the feature maps will be concatenated and input
into a linear fully connected layer, which will then output
the classification result. The recurrent neural network has a
dropout rate of 0.1. Due to the fact that we employ fixed-
size input to the models, we either add padding at the end
or eliminate unnecessary tokens if the total number of tokens
exceeds the specified sequence length. Tokens for padding
are disguised throughout training to ensure their absence.
These tokens are used as input for the transformer models,
which pass them via many layers to create the final hidden
embedding for each input token. While performing the clas-
sification job, we examine just the first token corresponding
to the sequence token’s beginning.

BERT
BERT is a bi-directional transformer used for pre-training
over large amounts of unlabeled text data in order to
learn a language representation that may be fine-tuned
for specific machine learning applications and tasks
[92]. While BERT surpassed the NLP state-of-the-art
on multiple tough tasks, the bidirectional transformer,
unique pre-training tasks of Masked Language Model and
Next Structure Prediction, a large amount of data, and
Google’s compute capacity all contributed to its improved
performance.

Language models typically scan input sequences from
left to right or right to left. This type of one-way training
works well for predicting/generating the next word. However,
BERT employs Transformer’s bidirectional training to gain a
deeper awareness of language context. It’s also called ‘‘non-
directional’’.

So, it considers both previous and subsequent tokens.
Generally, Transformer Network includes both encoder and
decoder; the encoder reads and processes text, while the
decoder is in charge of predicting the task. In their paper [92],
Google’s researchers introduced two models, BERT-base and
BERT-large, such that BERT was trained using 3.3 billion
words fromWikipedia and BooksCorpus. It employs Masked
Language Modelling (MLM) and NSP (Next Sentence Pre-
diction). Many words in the MLM sequence are randomly
masked with the token [MASK]. So, it can guess masked
words from the remaining words’ context. As for NSP, BERT
employs NSP training to grasp sentence relationships. The
model is fed pairs of sentences and trained to predict whether
the second sentence follows the first or not.

RoBERTa
Introduced by Facebook, RoBERTa [93], which stands for
Robustly Optimized BERT Pretraining Approach, is one
of the most innovative architectures to originate from the
BERT revolution. While BERT provided a substantial perfor-
mance improvement across several tasks, RoBERTa proposed
retraining of BERT with an improved training methodology.
The authors in [93] proposed several improvements to the
original BERT design in order to achieve better performance.
Among other things, RoBERTa eliminates the Next Sentence
Prediction (NSP) task from BERT’s pre-training and incor-
porates dynamic masking, which causes the masked token
to alter during the training epochs. It was also discovered
that larger batch-training sizes were more beneficial in the
training operation. It is important to note that RoBERTa
utilizes 160 GB of text for its first training. Additionally,
RoBERTa uses a different tokenizer than BERT, Byte-Pair
Encoding (BPE) (same as GPT-2), and has a bigger vocab-
ulary (50k vs 30k). The authors acknowledge that having
a larger vocabulary that enables the model to represent any
word results in a greater number of parameters (+15 million
for base RoBERTA). However, the authors argue that perfor-
mance advantages justify the increased complexity.

3) TIME SERIES DATA SYNCHRONY ESTIMATION METHODS
It is a common methodology to use cross-correlation in two-
time series to examine the temporal association between
event observations in two different contexts. A vector of
sequential events is selected from each time series so the num-
ber of events in each vector is equal. The Pearson product-
moment correlation for these two vectors is then computed.
One-time series may be lagging or leading, depending on the
start time of the vectors. Lag or offset is the time between two
vectors’ events start [106].

A window is a vector of sequential observations sampled
from a time series. In order to quantify the cross-correlation
of two-time series, each of which contains (O) observations,
with equal intervals of time between observations (p). Cross-
correlation between M and N at a lag (d) can be expressed
as a function C (M, N ), which can be defined in its simplest
form if we assume both time-series stationarity and choose
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to consider positive lags of observations [106] as presented
in (1).

C (M ,N ) =
1

O− d

O−d∑
i=1

(Mi −M ).(Ni+d − N )
StdDev (M) .StdDev (N )

(1)

In which,
M ,N are: the time series means, and
StdDev (M) , StdDev(N ) are the standard deviations of

time seriesM and N , respectively.
This can be described as a simple Pearson correlation

between the two-time series, with their events observed to
be lagged by d time instances. Outliers can skew the find-
ings of the correlation estimation, also, Pearson correlation
implies that the data are homoscedastic, meaning that the
variance of the data is uniform across the data range. Gen-
erally, Pearson correlation is often a brief assessment of
global synchrony. Therefore, it provides no directionality
information between the two-time series, such as which time
series precedes the other. Nevertheless, the Pearson corre-
lation provides a method that may be used to examine the
locally available moment-to-moment synchrony. This can be
computed in several ways, one of which involves measuring
the Pearson correlation in a limited-size window of the time
series and then continuing the procedure along with a rolling
window until the entire time series has been analyzed. This
requires an arbitrary definition of the window size at which
you would like the method to be repeated, which can be
negatively subjective [107]. A leader-follower relationship,
in which the leader initiates an event that a relevant event by
follower follows, is an example of a situation in which time-
lagged cross-correlation (TLCC) can be used to determine the
directionality of the link between two-time series. Moreover,
It is possible to compute the windowed time-lagged cross-
correlations in order to evaluate the dynamics on a more gran-
ular scale (WTLCC). During this process, the time-lagged
cross-correlation is repeated in several different time series
windows. Then, we can analyze each window, or we can use
the total of all of the windows to arrive at a score that com-
pares and contrasts the differences in the leader-follower rela-
tionship between two different series [107]. In our proposed
framework, we have depicted the fine-grained dynamic inter-
action between two-time series, such as the leader-follower
association and how it shifts over time, by employing time-
lagged cross-correlations and overlapping-windowed time-
lagged cross-correlations. The window size, overlap window,
and window position along the two-time series were decided
concerning the emergence and development of COVID-19
outbreak in the most hazardous geolocations as per the num-
ber of infected cases and tweets volumes and sentiments
as extracted from the framework’sprecedingg stages. Such
that, we have decided to study the synchrony between the
time series representing the development of daily active
cases of infection and the volumes of negative sentiment
tweets volumes in Australia, Canada, India, the UK, and
Uthe SA, taking into consideration the time series window

TABLE 5. Corona virus pandemic (Covid-19) statistics of selected
countries till dec21 [108].

that is most relevant to the peak of active cases counts in
two different disease progression waves as shown in the
Table 5.

Assume we have two time series in the form of a one-
dimensional vector, each with O observations and equal time
spans of length p between observations. Assume a window of
wmax span, a lag period of d on the span dmax ≤ d ≤ +dmax ,
and an elapsed interval index i from the onset of the data
vector. For each i a couple of windows WM and WN can be
chosen from the two data vectors M and Y , [106], such as
presented in (2) and (3):

WM =

{
{Mi,Mi+1, · · · · · ·Mi+wmax }, d ≤ 0
{Mi−d ,Mi−d+1, · · · · · ·Mi−d+wmax }, d > 0

(2)

and,

WN =

{
{Ni+d ,Ni+d+1, · · · · · ·Ni+d+wmax }, d ≤ 0
{Ni,Ni+1, · · · · · ·Ni+wmax }, d > 0

(3)

Cross-correlation between WM and WN can be expressed as
a function C(WM ,WN ), which can be defined as presented
in (4):

C (WM ,WN ) =
1

wmax

∑
i=1

wmax
(WMi −WM ).(WNi −WN )
StdDev (WM ) .StdDev (WN )

(4)

In which,
WM ,WN are the window observation means, and
StdDev (WM ) , StdDev(WN ) are the standard deviations of

time seriesWM , WN , respectively.
We guarantee a mirror symmetry by picking the windows

in accordance with Equations 2 and 3, which ensures that
the resultant cross-correlations coefficients set, expressed as
it ranges from -dmax to + dmax , would contain matching
values in the opposite direction even when the instances
in WM and WN are exchanged. Hereafter, the Pseudocode
of Process 6, Quantifying Synchrony (Cross-correlation) of
two-time series is presented as shown in Fig. 14.
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FIGURE 14. Pseudocode of process 6, quantifying synchrony (Cross
correlation) of two-time series.

F. EVALUATION METRICS
AverageWeighted Accuracy, Precision, Recall, F1-score, and
Confusion Matrix were used to assess the classification per-
formance since these metrics could better reflect the perfor-
mance of unbalanced classes. Accuracy, Precision, Recall,
F1-score formulas, and the way of calculating the weighted
metrics are presented in (5)-(9), respectively.

Accuracy: is often used as the base evaluation metric for
classification models.

Precision: is a measure of how many positive predictions
are correct.

Recall (Sensitivity): is a measure of how many of the
actual positive cases the classifier correctly predicted.

F1-score: is the harmonic mean of both precision and
recall. Higher F1 score denotes higher testing accuracy.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 = 2×
Precision+ Recall
Precision× Recall

(8)

Weighted_Metric =
(M c1 × |c1|)+ (M c2 × |c2|)

|c1| + |c2|
(9)

In which, TP,TN ,FP,FN ,Mc1, c1,Mc2, and c2 are True
Positive, True Negative, False Positive, False Negative
instances, evaluation metric for first-class, count of first-class
instances, evaluation metric for second class, and count of
second class instances, respectively.

These metrics were employed to evaluate the performance
of the first and second subsystems in the proposed framework.
Additionally, a confusion matrix is used to illustrate classifier
performance based on the aforementioned four values (TP,
FP, TN, FN). The weighted F1 considers the metrics for each
class and averages them by the count of true instances for
each label). This modifies the F1 score to account for class
imbalance. For the third subsystem, we have measured the
cross-correlation coefficient. When investigating time, cross-
correlation is the degree of Synchrony between two-time
series, or how well one series predicts the other, whereas
temporal lag or lead can be considered.

IV. RESULTS AND DISCUSSION
As previously stated, the purpose of this study is to assess
social media data’s potential to function as an outbreak pre-
diction and identification tool in the context of the emerging
COVID-19 pandemic, particularly at the phase of its initial
evolution prior to government intervention.Wewanted to find
out if the total tweets’ volume associated with one partic-
ular Twitter API query would be employed as a surrogate
measure to model the progression of COVID-19 active case
counts during the early stages of an increasingly globalized
catastrophe. Also, the capacity to gauge public opinion and
link trends with reported cases during the first epidemic is
studied by analyzing the linguistic features of tweet content
to see whether there is any correlation. With the help of
data scraped from the Twitter social network related to the
COVID-19 pandemic, we were able to determine the most
affected geolocations, which were then used as inputs to
a variety of classic and up-to-date classification techniques
to aid in the reduction of the virus’s spread through the
implementation of a proactive pandemic awareness system.
The source data for all of the analysis conducted in this study
contains open-source, publicly available tweet data that was
precisely scraped for the purposes of this research. Using
sentiment analysis, tweets were first categorized, and then the
development of positive, negative, and neutral sentiment pro-
gression was investigated. This exploratory analysis revealed
a substantial daily increase in the count of tweets (of all
sentiments) in the time periods preceding the emergence of
the new COVID-19 infectious waves, which ran from March
2020 to September 2021. In this study, we offer a textual
analysis of Twitter data in order to determine the public
community sentiment, which has been linked to the fast
progression of COVID-19. In particular, the research makes a
significant addition by conducting a comparison analysis for
the prediction of tweet geolocation using variousmachine and
deep learning models. Consequently, we conducted several
tests to verify our proposed model and extract location infor-
mation from COVID-19-related tweets to acquire reliable
findings.

We employed 10-fold cross-validation to reduce the pos-
sibility of bias. The average of the findings from each of
the folds is used to assess the overall system performance.
The results are summarized such that a) an exploratory data
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analysis is presented and, a sentiment prediction of all tweets
is computed in the next subsection, b) The results for geolo-
cation prediction using classical machine learning methods
and deep learning methods are depicted in the following
subsection. These were obtained by employing the meth-
ods and processes implemented in our proposed first and
second subsystems, using different feature vectors per each
sub-problem’s requirements. Finally, the crowd situational
awareness computations and visualizations are proposed in
the last subsection.

A. EXPLORATORY DATA ANALYSIS AND CHRONOLOGICAL
SENTIMENT PREDICTION
This section explores many insights extracted from the
cleaned and analyzed tweets. As it was declared earlier,
we have collected around 577,000 unique tweets distributed
amongst 124 countries. Fig. 15 shows the distribution of
collected tweet volumes and the histogram of the top 10 coun-
tries with the highest count of collected tweets, indicating that
the United States is the highest, followed by the United King-
dom, Canada, India, and Australia. These five countries were
considered the most likely to be affected by the COVID-19
outbreak, and their data will be used for further examina-
tions. It was observed that late-year 2019 and year 2020 wit-
nessed an obvious increase in the number of created Twitter
accounts compared to previous years’ counts, as shown
in Fig. 16.

Additionally, Fig. 17 and Fig. 18 show the tweet length
distribution and the top 10 hashtags as mentioned in the
scraped dataset, respectively. Our study found that the
percentage of tweets with negative, neutral, or positive senti-
ment about a given issue fluctuated over time when inves-
tigated using a hybrid sentiment analysis model, relying
on both rule-based and ML-based methods. The rule-based
layer relies on the Valence Aware Dictionary for Sentiment
Reasoning (VADER) paradigm. This text sentiment analy-
sis model is sensitive to both polarity (positive or negative)
and the degree of emotion. VADER computes a normalized
score (or ‘‘compound score’’) by adding the valence score
of each word in the input text. Followed by an ML-based
layer, using many conventional machine learning classifiers
alternatives, such as Random Forest Classifier, Ada-Boost
Classifier, MultinomialNB, Decision Tree Classifier, Extra
Trees Classifier, and Gradient Boosting Classifier, to assess
the sentiment in tweets.

These classifiers’ performance was tested in relation to the
accuracy of the sentiment prediction compared to the VADER
sentiment output. Different feature selection methods have
been tested, such as count vectorizer, n-grams, and TF-IDF,
as presented in Table 6. For both the count vectorizer and
the TF-IDF, the Decision Tree Classifier outperformed other
models on the validation dataset with an accuracy of 92.4%
and 94.3%, respectively. For the bi-gram feature extraction
model, Extra Trees Classifier outperformed other models
with an accuracy of 88.3%. The proposed framework outper-

FIGURE 15. Top 10 countries according to the count of tweets in the
scraped dataset.

FIGURE 16. Count of twitter users created since 2006 to 2020.

FIGURE 17. Tweets length distribution according to the scraped dataset.

formed comparable research as per our literature, as indicated
in Table 7.

Hence, in our implementation, ML-Based sentiment clas-
sification was built on top of a lexicon-based sentiment clas-
sifier which scores each word in the input text; we have
observed that using unigram features has resulted in higher
precision than n-gram. Furthermore, TF-IDF features vec-
torization outperformed count vectorization because it gives
more weight to features that appear in a single tweet or
document rather than commonly repeated features across the
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FIGURE 18. Top 20 hashtags according to the scraped dataset.

TABLE 6. Machine based sentiment classifiers, performance comparison.

entire set of tweets or documents. This appears to have aided
in improving feature representation and resolving remaining
data preprocessing issues. The sentiment analysis of the col-
lected tweets revealed that 44% of the tweeting users are
positive about the COVID-19 outbreak, 40% are neutral, and
16% are negative, according to the DecisionTreeClassifier+
TF-IDF results.

B. CHRONOLOGICAL SPATIAL ANALYSIS AND
PREDICTION
Despite the importance of geo-location data in social media
event detection, only a few social media datasets include
information about users’ location. Geographic coordinates
(i.e.., longitude and latitude) can be used to pinpoint exact
locations in social media posts, although the information can
also be described in a more general way, such as ‘‘anywhere
around here’’ (i.e., city name). So, in addition to our textual
analysis of Twitter data to ascertain public sentiment, which
has been associated with the rapid spread of COVID-19 infec-
tions in recent months, the study contributes significantly
by doing a comparative analysis of tweet location recog-
nition using a number of machine and deep learning mod-
els. Accordingly, we ran a series of experiments to validate

TABLE 7. Proposed framework vs. literature results comparison.

TABLE 8. Classical machine learning-based geolocation classifiers,
models’ performance comparison.

our proposed model and extract location information from
COVID-19-related tweets to get trustworthy results.

1) CLASSICAL MACHINE LEARNING ALGORITHMS
Following the sentiment classification using hybrid methods,
we have implemented a location prediction approach using
the same textual data scraped from Twitter with the help of
conventional machine learning-based classifiers such as Ran-
dom Forest Classifier, Ada-Boost Classifier,MultinomialNB,
Decision Tree Classifier, Extra Trees Classifier, and Gradient
Boosting Classifier. Count vectorizer, n-grams, and TF-IDF
are some of the feature selection approaches that have been
evaluated. ExtraTreesClassifier outperformed other models
on the validation dataset for all feature extraction approaches
with an accuracy ranging from 76.6% to 80.8%. Even though
the same datasets were used, location prediction or classi-
fication is a totally distinct challenge from sentiment clas-
sification. In order to get adequate performance for this
problem, certain features and methods must be implemented.
As a result, we were unable to achieve a precision of more
than 80% using typical machine learning algorithms, despite
applying a variety of feature selection and vectorizationmeth-
ods, as shown in the accompanying Table 8.

Consequently, more complex algorithms and approaches
such as MLP, RNN, and CNN, empowered with pre-trained
word embedding, were investigated in order to produce
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considerably more accurate and trustworthy location predic-
tions presented in the upcoming section.

2) DEEP LEARNING ALGORITHMS
In addition to the classical machine learning approaches,
we have proposed many deep learning models such as
Simple Multi-Layer Perceptron Neural Network (MLP),
Convolutional Neural Network (CNN), Long Short-term
Memory (LSTM), and Bidirectional Long Short-term
Memory (Bi-LSTM) to tackle the problem of predicting
tweets’ geolocation by extracting features within the tweets
such as tweet text and tweet sentiment and the features
associated with the tweets such as the user name, and user
description, user location. The task of predicting a tweet’s
location can be approached as a classification problem, with
the goal of predicting country labels for a single tweet.
In implementing and evaluating the classification models, we
only included tweets relevant to the five main countries under
investigation. Many word embedding algorithms, including
Word2Vec, FastText2018, and GloVe, were used to generate
feature vectors in the form of word embedding, both individu-
ally and in conjunction with PoS tagging. Two additional tests
were carried out by implementing a transformer-based word
embedding using BERT and RoBERTa. In order to identify
semantic similarity and conduct classification tasks, this
text embedding transforms tweet texts into high-dimensional
vectors. After obtaining the word embedding for each tweet,
a method was used to balance the five classes. To achieve
this balance, we selected the class with the least amount of
samples, then reduced the size of the remaining classes to a
comparable size (downsampling). This ascertained that the
training was not skewed toward a particular class. The data
were randomly shuffled and divided into training and valida-
tion sets, with 90% serving as the training dataset. Multiple
classifiers were used to achieve the best performance, which
was evaluated using accuracy metrics.

Considering that all presented experiments and implemen-
tation test runtime are compiled and evaluated using Google
Colab Pro-environment with up to 25 Gbytes RAM and K80,
P100, and T4GPUs. Performancemetrics in the form of accu-
racy, precision, recall, F1 score, and computation time per
10 epochs are presented in the following Table. 4 to compare
the implemented combinations of deep neural network mod-
els with different word embedding models used for location
classification. Some of our results and graphical illustrations
are presented below, including a comparison between train-
ing and validation accuracy, a comparison between training
and validation loss, and the confusion matrix associating the
actual and predicted geolocations.

From Table 9, Figs. 19 to 21, it can be realized that, the
Multi-Layer Perceptron (MLP) deep neural network with
self-embedding layer, word2vec, and Glove pre-trained word
embeddings resulted in very poor accuracy of 10%, 36%, and
32%, respectively, while adding the PoS tag one-hot encoding
embedding assisted in elevating the validation accuracy of
the same model using word2vec and Glove to about 89%.

TABLE 9. Deep learning-based geolocation classifiers, models’
performance comparison.

Meanwhile, MLP with a self-embedding layer resulted in
the worst accuracy and the highest computation time and
resource requirements among all experiments. Using Fast-
Text and FastText+PoS tagging with MLP resulted in
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FIGURE 19. MLP with Word2Vec (or GLOVE) classifier accuracy.

FIGURE 20. MLP with Word2Vec (or GLOVE) classifier conf. matrix.

FIGURE 21. MLP with Word2Vec+PoS (or GLOVE+PoS) classifier conf.
matrix.

an accuracy of 89% and 90%, respectively, as shown in
Fig. 22 and Fig. 23.

From Table 9, Figs. 24 to 27, it can be comprehended that
Convolutional Neural Network (CNN) with self-embedding
layer, word2vec, Glove, and FastText pre-trained word

FIGURE 22. MLP with FastText and FastText+PoS classifier accuracy.

FIGURE 23. MLP with FastText+PoS classifier conf. matrix.

FIGURE 24. CNN with Word2Vec and Word2Vec+PoS classifier accuracy.

embeddings resulted in an accuracy of 90% to 92%. Using the
self-embedding layer with the CNN implementation resulted
in the highest accuracy among the previously mentioned
embeddings, but it required three times the computation time
and resources of the pre-trained embeddings. Furthermore,
it is recognized that employing PoS in conjunction with word
embeddings helped in reducing the computation require-
ments of CNN.
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FIGURE 25. CNN with glove and Glove+PoS classifier accuracy.

FIGURE 26. CNN with FastText and FastText+PoS classifier accuracy.

The same results can be recognized for LSTM and
Bi-LSTM with self-embedding layer and pre-trained
embeddings, as presented in Table 9. Nevertheless, as pre-
viously stated, despite their satisfactory performance, some
of our proposed algorithms have high computational com-
plexity in terms of required processing resources and
training time, such as LSTM with embedding layer, and
Bi-LSTM with RoBERTa transformer-based models, which
have the highest average computation time per step of
792 ms/step, 724 ms/step, and 522 ms/step, respectively
(as per our implementation parameters and data size,
each epoch =∼3100 step) as displayed in the following
Fig. 28 and Fig. 29. Evidently, employing pre-trained word
embedding significantly reduced the total computation time
necessary to achieve elevated accuracy when compared to
that attained by implementing DNN models with the assis-
tance of a self-embedding layer. This method performs par-
ticularly well on our domain-dependent data when Parts of
Speech is used to identify the Nouns and Adverbs in the data.
The incorporation of additional aspect terms in addition to
the basic data vectorization improved the performance of the
pre-trained models. Amongst all experiments, models with
FastText+PoS word embedding outperformed or were equiv-
alent to other pre-trained word embedding’s when measured
in terms of accuracy as it scored 90-91% in all cases as
presented in Table. 4.

FIGURE 27. CNN with FastText+PoS classifier conf. matrix.

FIGURE 28. Sum of computation time (Minutes) /10epochs, by word
embedding algorithm.

Also, the higher accuracy obtained by models with Fast-
Text and FastText+PoS could be referenced to the fact that it
supports n-gram vectorization rather than word vectorization.
This can be explained that the vectorization approach used
in FasText was able to recognize and understand the various
ways of writing location-specific terms provided by users
with varying educational, cultural, and social backgrounds.
At the same time, it outperformed all other models when
evaluated in terms of necessary computing resources (pro-
cessing and time requirements). Such that models with pre-
trained word embedding’s needed less than one-third of the
needed computing time elapsed using the self-embedding
layer. Furthermore, models using FastText+PoS were able
to minimize the validation loss faster than other proposed
experiments, allowing it to be employed for fewer epochs to
achieve the same accuracy while saving significant amounts
of computation resources, as presented in Fig. 30, Fig. 31,
Fig. 32 and Fig. 33. Likewise, Bi-LSTM with RoBERTa
embedding resulted in rapid minimization of validation loss
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FIGURE 29. Sum of computation time (Minutes) /10epochs, by deep
neural network model.

FIGURE 30. MLP with self-embedding vs. MLP with FastText+PoS training
and validation accuracy and loss changes during 10 epochs.

FIGURE 31. CNN with Self-Embedding vs. CNN with FastText+PoS training
and validation accuracy and loss changes during 10 epochs.

than the result from BERT embedding, as shown in Fig. 34.
The implementation of transformer-based word embeddings
with the Bi-LSTM deep neural network model has yielded
the best performance for our classification problem, result-
ing in significantly improved accuracy of 93% and 96% for
BERT+Bi-LSTM and RoBERTa+Bi-LSTM, respectively as
shown in Fig. 35 to 37.

However, in order to achieve such higher accuracy, sup-
plementary computation resources are needed to carry out
the training processes for a longer period of time (240 and
275 minutes, respectively). After a thorough assessment of

FIGURE 32. Bi-LSTM with Self-Embedding vs. Bi-LSTM with FastText+PoS
training and validation accuracy and Loss changes during 10 epochs.

FIGURE 33. LSTM with Self-Embedding vs. LSTM with FastText+PoS
training and validation accuracy and loss changes during 10 epochs.

FIGURE 34. Bi-LSTM with BERT-Embedding vs. Bi-LSTM with
roberta-embedding accuracy and loss changes during 10 epochs.

the relevant model literature; this study demonstrates that
adopting Transformer-based pre-trained algorithms such as
BERT and RoBERTa for NLP tasks achieves benchmark
results and significantly improves the overall performance.
According to our literature survey, the proposed implementa-
tion for both sentiment classification and geo-location predic-
tion tasks demonstrates that our framework is competitive or
outperforms state-of-the-art algorithms in several measures,
as presented in Tables 8 and 10.

C. CROWD SITUATIONAL AWARENESS COMPUTATIONS
AND VISUALIZATIONS
Hereby, we have employed the third proposed subsystem,
the correlator, that was able to identify the crowd situ-
ational awareness by means of the computation of tem-
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FIGURE 35. Bi-LSTM with bert and roberta classifier accuracy.

FIGURE 36. Bi-LSTM with BERT embedding classifier conf. matrix.

FIGURE 37. Bi-LSTM with roberta embedding classifier conf. matrix.

poral cross-correlation and time difference (lag or lead
duration) between the emergence of negative sentiment
tweets related to COVID-19 and COVID-19 daily confirmed
active infections for the highly affected five countries as
indicated in the previous section. Hereafter, some visualiza-
tions for Daily Tweets sentiment distribution according to
the scraped dataset along with ‘‘WHO’’ reported COVID-19
daily active cases are presented for the countries under

TABLE 10. Proposed framework vs. literature results comparison.

FIGURE 38. Tweets sentiment distribution along with ‘‘WHO’’ reported
Covid-19 daily active cases for canada.

FIGURE 39. Cross-correlation coefficients with the corresponding time
difference between negative tweets emerging and active cases reported
counts in canada.

investigation, Canada, USA, India, Australia, and the UK,
as shown in Fig. 38, Fig. 41, Fig. 44, Fig. 47 and Fig. 50,
respectively. It shows the daily sentiment distribution accord-
ing to the scraped dataset as the (yellow (negative), orange
(positive), grey (neutral)) histogram while focusing on the
negative sentiment tweets (yellow histogram), along with
‘‘WHO’’ reported Covid-19 daily active cases as the dark blue
line representation. The sentiment analysis of the collected
tweets revealed that from 40% to 50% of the tweeting users
are classified as positive about the COVID-19 outbreak, 35%
to 45% are neutral, and the remaining percentage is negative.
This is aligned with our review of the literature for similar
studies, which indicates that the majority of people viewed
the epidemic positively and supported the government’s or
local authorities’ actions.

Although the correlation between the two-time series is
noticeable by the vision and can be expressed in non-numeric
exact descriptions, we thought that exact numeric compar-
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FIGURE 40. The heat map of the overlapping window time-lagged
cross-correlation with the time-lag corresponds to the maximum
coefficient.

FIGURE 41. Tweets sentiment distribution according to the scraped
dataset along with ‘‘WHO’’ reported Covid-19 daily active cases for USA.

isons could be of greater interest, especially in our case of
tracking the progression of an infectious disease. So, we have
developed a methodology for computing the correlation fac-
tors and the time difference between the two-time series
(negative sentiment tweets and reported Covid-19 daily active
cases) to be able to report how long the social media data was
able to precede the actual reporting of the increase in active
infectious cases. Our goal was to find the time difference that
maximized the correlation coefficient between the two-time
series.

The correlation factors and their corresponding time dif-
ferences are shown in Fig. 39, Fig. 42, Fig. 45, Fig. 48,
and Fig. 51, for Canada, the USA, India, Australia, and the
UK, respectively. The highest cross-correlation and corre-
sponding time difference for all countries under examination
are given in Table 11, indicating that public awareness of
the emerging infectious outbreak had a lead time difference
ranging from 13 days to 26 days for all countries under
investigation as illustrated in Fig. 40, Fig. 43, Fig. 46, Fig. 49,
Fig. 52 presenting, the heat map of the overlapping window
time-lagged cross-correlation with the time-lag (difference)

TABLE 11. Computed cross-correlation and time differences between
negative tweets emergence and their corresponding COVID-19 active
cases counts official reporting.

FIGURE 42. Cross-correlation with the corresponding between negative
tweets emerging and active cases reported counts in USA.

corresponds to the maximum coefficient for Canada, USA,
India, Australia, and the UK respectively, such that, if the
computed cross-correlation was indicating that first time-
series (volume/sentiment of tweets) leads the interaction with
the second time-series (counts of daily active infections),
it will be presented by red shades, higher cross-correlation
coefficients, is presented by darker red shades. Time-lagged
cross-correlations, or more specifically, overlapping (rolling)
windowed time-lagged cross-correlations, are a great way to
visualize the fine-grained dynamic interaction between two-
time series, such as the leader-follower relationship and how
it shifts over time, according to the presented visualizations of
the cross-correlation between the two-time series under inves-
tigation. From these indicators, it is obvious that, on average,
the designed social network analysis can provide a reliable
early warning of an epidemic.

For validation purposes of twitter’s lead time in response to
the emerging COVID-19, a literature review was conducted
to find that comparable values for time differences have been
recognized in both theUnited States and theUnitedKingdom,
according to the authors in [109] and [110] as presented in
Table 12. These results show that crowd awareness in all
countries predated the formal outbreak count reporting by
governmental organizations. This component might be vital
and invaluable in the early phases of outbreak monitoring.
Many countries had difficulty identifying instances of the
coronavirus in a timely manner since the disease was asymp-
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FIGURE 43. The heat map of the overlapping window time-lagged
cross-correlation with the time-lag corresponds to the maximum
coefficient.

FIGURE 44. Tweets sentiment distribution according to the scraped
dataset along with ‘‘WHO’’ reported Covid-19 daily active cases for India.

FIGURE 45. Cross-Correlation with the corresponding time difference
between negative tweets and active cases reported counts in India.

tomatic and/or its symptoms were difficult to differentiate
from those of other diseases.

V. LIMITATIONS, STRENGTHS, AND COMPLEXITIES
A. LIMITATIONS
When used for research purposes, real-time posting on social
media can be viewed as both a limitation and a strength.
This is due to the rapidity with which social media content

FIGURE 46. The heat map of the overlapping window time-lagged
cross-correlation with the time-lag corresponds to the maximum
coefficient.

FIGURE 47. Tweets sentiment distribution according to the scraped
dataset along with ‘‘WHO’’ reported Covid-19 daily active cases for
Australia.

FIGURE 48. Cross-correlation with the corresponding time difference
between negative tweets and active cases reported counts in Australia.

can evolve the potential existence of many outliers or fake-
news spreaders. Authorities do not use social media platforms
to disseminate formal news or control any trending topic
or situation, increasing the likelihood of fake news spread-
ing. Furthermore, social network platform owners imposed
numerous restrictions on scraping and using publicly avail-
able data. Twitter, for example, only allows the scraping of
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FIGURE 49. The heat map of the overlapping window time-lagged
cross-correlation with the time-lag corresponds to the maximum
coefficient.

FIGURE 50. Tweets sentiment distribution according to the scraped
dataset along with ‘‘WHO’’ reported Covid-19 daily active cases for the UK.

FIGURE 51. Cross-correlation with the corresponding time difference
between negative tweets and active cases reported counts in the UK.

tweets no older than oneweek or the retrieval of a very limited
number of tweets per minute, which may complicate the
research process and cause unnecessary delays. In addition,
current social network platforms only provide access to very
limited demographic and geographic meta-data associations
with user social interactions, which may limit the diversity of
features required for many research problems.

FIGURE 52. The heat map of the overlapping window time-lagged
cross-correlation with the time-lag corresponds to the maximum
coefficient.

TABLE 12. Proposed framework vs. literature results comparison.

B. STRENGTH
Despite the limitations mentioned, social network data is,
by definition, broadly accessible, real-time, and vast, with
the potential to offer a variety of features related to human
interactions on social network platforms. Furthermore, given
the multilingual nature of social media data, the proposed
methods in this study employ only textual data features and
numerous text-dense representation algorithms to analyze
the spread of an epidemic outbreak, which could be very
advantageous to the scalability of the proposed framework
to be applied to many other incidents or situations which
might require analyzing non-English textual data. Despite
the time complexity associated with modern artificial intel-
ligence algorithms, they can be very useful in analyzing,
assessing, and managing any unplanned situation, especially
when empowered by vast amounts of data collected from
social networks.

C. COMPLEXITY
Evaluating the complexity of a machine learning algo-
rithm is not a simple task, given that it may be
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implementation-dependent, the properties of the data may
lead to other algorithms, and the training time is frequently
dependent on certain parameters passed to the algorithm.
When dealing with neural network-based learning algo-
rithms, where multiple layers of processing in addition to
large volumes of data inputs are required for the model
training/fitting process, the same implication may be more
apparent. For instance, the time complexity (Big-Omeasures)
of O(n2f ), O(n2fntrees), and O(nfntrees) for Decision Trees,
Random Forest, and Gradient Boosting, respectively, indi-
cates that gradient boosting is less complex than the other
two algorithms, where n; is the number of input instances,
f ; is the number of features, and ntrees; is the number of
employed trees (if applicable). Regarding algorithms based
on neural networks, the computational complexity for each
layer is used as a metric to compare various structures’
computational complexity. As per our proposed framework,
the attention-based algorithms BERT and RoBERTa intro-
duced in the Methods section are employed to build the
embedding layer. The computational complexity per atten-
tion layer can be calculated as O(l2.dembed ), where l is the
input length, and dembed is the embedding dimension. The
computational complexity for a recurrent layer is computed
as O(l.d2embed ), whereas the computational complexity per
convolutional layer isO(k.l.d2embed ), where k is the kernel size
of convolutions. For the majority of cutting-edge language
models, the embedding size dmodel ranges between 150 and
500, which must be greater than l, the average input length.
As a result, we shall have l2·dembed �l·d2embed �k·l·d

2
embed .

This relationship explains why the attention model operates
significantly faster as an embedding layer encoder and why
the recurrent network operates significantly faster than the
convolutional neural network for the same process [111].
Hence, to determine the total time complexity per model for a
neural network-based classifier, the complexity of each layer
type must be calculated and added together. For example,
the authors in [111] has computed the complexity of 3-layers
MLP as;CMLP = nsnin1+n1n2+n2n3+n3no, where n1,n2,n3
are dense layer neurons, ns = input sequence size, ni, no =
input vector, output vector dimensions. Consequently, if this
network is used with an embedding layer, the computed com-
plexity must be increased to account for the added embedding
layer complexity, etc. Since we employ pre-trained word
embedding, which has the potential to reduce the time and
space complexity required for the classification problem
under study, it can be considered an extremely powerful
feature. This is because pre-trained networks have learned
the fundamental representations of data structures and can be
trained on a small domain-specific dataset to provide accurate
classification.

VI. CONCLUSION AND FUTURE STUDIES
Recently, the world health organization (WHO) announced
that SARS-CoV-2 had infected over 10.5 million people and
inflicted 5.5 million fatalities within six months from its
first emergence. By the end of June 2022, the outbreak had

affected 500 million people and inflicted 6.5 million people.
The obvious discrepancy between the infected cases counts
announced by all countries in June 2020, and June 2022 is
aligned with WHO’s declaration that the announced counts
at the first emergence of the severely infectious COVID-19
don’t accurately reflect the outbreak status due to many
social, technical and financial factors. When COVID-19
emerged, the most pressing concern was how to mitigate
the infection and protect billions of citizens globally with-
out compromising the international economy. This was so
challenging to all governments especially with the lack of
accurate infection reporting. As a result, Many countries
around the world have suffered economic disruptions due to
national/regional lockdowns and quarantine that lasted days
to months. Also, in response to the emergence of coron-
avirus disease, numerous governments, national healthcare
organizations, and institutions have initiated a contact trac-
ing network analysis over billions of GPS human mobility
data points to monitor the evolution of the disease con-
tact network. Alternatively, diverse studies have employed
social network-based geo-positioning for tracing social con-
tacts in order to examine the likely progression of the
infection as a safer and more widely accepted alternative
to sensor-based geo-positioning tracking applications. Our
study investigates the importance of using social network
data analysis and machine/deep learning-based algorithms
to improve infectious disease awareness as a proactive info-
surveillance and warning system for pandemic outbreaks.
The proposed framework comprises three subsystems. The
first subsystem includes data collection, integration, prepro-
cessing, and hybrid sentiment analysis tools. The second sub-
system comprised the feature extraction unit that identifies,
selects, embeds, and balances feature vectors and the clas-
sifier fitting and training unit. The last subsystem measures
temporal associations between pandemic-relevant social net-
work activities and official infection reported counts in the
most hazardous geolocations.

Given the multilingual nature of social media data, the
proposed methods in this study analyze the spread of an
epidemic outbreak using only textual data features and
numerous text-dense representation algorithms. This could
greatly improve the scalability of the proposed framework,
allowing it to be applied to a wide range of other incidents
or situations requiring the analysis of non-English textual
data. We have employed deep learning methods to overcome
many natural language processing (NLP) problems, including
textual classification and sentiment analysis, by improv-
ing the text representation component and overall model
design.We have assessed linear classifiers,MLPs, RNNs, and
CNNs with word embedding algorithms like self-embedding,
word2vec, GloVe, and FastText to improve location
prediction accuracy. The proposed framework was devel-
oped and tested using static and real-time Twitter data from
577k geotagged COVID-19-related tweets. The experimental
results of the first subsystem showed that the Decision Tree
Classifier with Unigram+TF-IDF feature vectors outper-
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formed other conventional models for sentiment classifica-
tion with an accuracy of 94.3%. Additionally, this accuracy
outperformed other systems discussed in the literature even
with their employment with more advanced methods such
as neural network-based classifiers. While for the second
subsystem, we couldn’t achieve a satisfactory performance by
employing only conventional machine learning algorithms,
such that we were able to achieve the best accuracy of 80%
for Decision Tree Classifier with Unigram+TF-IDF. This
drove us to the development of neural network-based classi-
fiers such as Convolutional Neural Networks (CNN), Multi-
Layer Perceptron (MLP), and Recurrent Neural Networks
(RNN), empowered with word embedding algorithms such as
self-embedding, word2vec, GloVe, and FastText, in addition
to transformer-based word embedding such as BERT and
RoBERTa. As per the evaluation of our customization of the
mentioned methods, we found that the overall performance
is highly improved when diverse linguistic features being
considered. For instance, using MLP with a self-embedding
layer, Word2Vec, and GloVe pre-trained word embedding
resulted in an accuracy of 10%, 36%, and 32%, respectively.
As well as, adding PoS tag one-hot encoding embedding
increased validation accuracy from 36% to 89%. Bi-LSTM
with RoBERTa word embedding has resulted in the best
performance for the subsystem, as it was able to predict
the top 5 hazardous countries with 96% accuracy, which
outperformed relevant implementations as discussed in our
literature. Additionally, The results of the third and last
subsystem showed the framework’s remarkable overall per-
formance in assessing temporal associations between public
awareness and outbreak status, while the outbreak’s Twitter
activities arise 13 to 26 days before the official nation-level
reporting of confirmed infection counts for the geoloca-
tions under investigation. This result is aligned with several
research studies discussed in our proposed literature for better
performance and more automation for capturing the public
awareness about an emerging situation while depending on
computational methods instead of manual or trivial tools.
Furthermore, it is evident that despite the time complexity of
the modern AI algorithms, these can be useful for accurately
analyzing, assessing, and managing unplanned situations,
especially when empowered with massive amounts of data
gathered from social networks. So, in our proposed frame-
work, we considered the employment of pre-trained word
embedding to be an extremely powerful feature because
it has the potential effect of reducing the time and space
complexity required for the classification problem under
study. Accordingly, and as per our extensive study for various
social network data analyses, and despite its limitations,
social network data is widely available, real-time, and vast,
and can provide a variety of features related to human
interactions on social network platforms. So, we conclude
that acquired information from tweets would be extremely
useful if identified in a timely manner, and even more so if
the location is known or precisely predicted. Thus, inferred
Twitter user locations could assist in preventing the spread

of a catastrophic epidemic outbreak, thereby saving lives.
Such an approach is considered economically efficient to
administer and treat infected patients if the disease is con-
tained in its early stages of emergence. Ongoing and future
work will assess other potentials of social network data,
especially the users’ connection networks, and demographics,
to model the progression of an ongoing infectious outbreak
using advanced techniques.
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