
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 20 June 2022, accepted 11 July 2022, date of publication 19 July 2022, date of current version 2 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192389

Computer Aided Facial Bone Fracture Diagnosis
(CA-FBFD) System Based on Object
Detection Model
GWISEONG MOON 1,2, SEOLA KIM2, WOOJIN KIM 3, YOON KIM1,2,
YEONJIN JEONG4, AND HYUN-SOO CHOI 1,2, (Member, IEEE)
1Department of Computer Science and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
2Ziovision, Chuncheon 24341, Republic of Korea
3Department of Biomedical Informatics, Kangwon National University, Chuncheon 24341, Republic of Korea
4Department of Plastic and Reconstructive Surgery, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea

Corresponding authors: Yeonjin Jeong (no15blade@naver.com) and Hyun-Soo Choi (choi.hyunsoo@ziovision.co.kr)

This work was supported by the Promotion of Innovative Businesses for Regulation–Free Special Zones funded by the Ministry of Small
and medium-sized enterprises (SMEs) and Startups (MSS, South Korea) under Grant P0020626.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the International Review Board of Kangwon National University Hospital under Application Nos. KNUH-2021-01-004 and
KNUH-2021-11-007.

ABSTRACT Facial bone fractures must be diagnosed and treated as early as possible to avoid complications
and sequelae. CT images need to be analyzed to detect fractures, but the analysis is time-consuming, and
enough specialists are not available to analyze them. Many classification and object detection studies are
being conducted to address these issues. The ability of classification-based studies to pinpoint the exact
location of fractures is limited. Object detection-based research, by contrast, is problematic because the
shape of a fracture is ambiguous. We propose a computer-aided facial bone fracture diagnosis (CA-FBFD)
system to address the aforementioned challenges. This system adopts the object detection model YoloX-S,
which is trained using only IoU Loss for box prediction, along with CT imageMixup data augmentation. For
training, we used only nasal bone fracture data, whereas for testing, we used several other facial fracture data.
During evaluation, the CA-FBFD system achieved an average precision of 69.8% for facial fractures, which
is better than the baseline YoloX-S model by a large margin of 10.2%. In addition, the CA-FBFD system
achieved a sensitivity/person of 100% for facial fractures, which is considerably better than that exhibited
by the baseline YoloX-S model by a margin of 66.7%. Therefore, the CA-FBFD system can effectively
minimize the labor of doctors who need to determine facial bone fractures in facial CT.

INDEX TERMS CT images, fracture detection, facial bone fracture, computer-aided diagnoses, nasal bone
fracture, YoloX, deep learning, image processing.

I. INTRODUCTION
Many patients seen in emergency departments have facial
trauma. Themost common causes of facial injuries are assault
(44–61%), traffic accidents (15.8%), and falls (15%) [1]–[3].
Patients with facial trauma should receive appropriate treat-
ment depending on whether or not they have fractured facial
bones. If fractured facial bones are not treated properly or are
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left untreated for more than two weeks, complications and
sequelae such as nasal canal rupture and eyeball retraction
may occur. For these reasons, it is critical to detect facial
bone fractures early. In the past decade, Computed tomog-
raphy (CT) has become widespread in the United States,
and the advancement of radiographic imaging technology
has greatly improved the capability of finding fractures to
reach an accuracy of 95%. As a result, various methods
[4]–[8] have been proposed to treat facial fractures using CT
images. Despite technological advances, interpreting a CT
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scan and diagnosing a patient takes time because the CT scan
consists of multiple images. Although facial bone fracture is a
common injury that frequently occurs in many places, there is
a marked shortage of specialists in radiology, plastic surgery,
and oral surgery that can diagnose facial bone fractures.

Many studies have been conducted to detect fractures
using engineering techniques to alleviate the aforementioned
difficulty. In some of earlier works of fracture detection,
researchers mainly focused on detecting fractures in specific
bone regions using computer graphics and machine learning
[9], [16]–[20]. In [21], a stacked random forest based on
feature fusion was used to detect fractures in X-ray images.
After extracting edge and shape features from bones, a com-
bined classifier was designed to detect fractures by fusing
several classifiers such as Back Propagation Neural Network,
K-Nearest Neighbor, Support Vector Machine, Max/Min
Rule, and Product Rule [22], [23]. These methods judge the
presence of fractured bone in the entire image but do not
locate the fractured bone region. As a result, for the classifier
to be useful in practice, specialized doctors must detect and
locate fractures in different types of bones.

Fracture detection research is being driven to find and
locate fractures to replace the specialized doctors. A Class
ActivationMap (CAM) can provide the approximate location
in the classification model. However, its localization capa-
bility is limited, and it is difficult to find all fractures in
a single image. In addition to using CAMs, other studies
use an object detection model [24]–[26]. The above studies
were conducted in varying ways because determining the
location of the fracture is difficult. The difficulty comes from
the ambiguous shape of the fracture, unlike general object
detection. When using a classification model, fracture loca-
tions are often missed, and when using an object detection
model, ambiguous bounding box predictions adversely affect
the classification of fractures.

To tackle the remaining challenges, we propose a
Computer-Aided Facial Bone Fracture Diagnosis
(CA-FBFD) system based on an object detection model
called YoloX. The first key point is to use IoU loss for
bounding box regression. A general object detection model
uses L1 loss or L2 loss that directly compares the box’s upper-
left coordinate, width, and height to regress the bounding box.
The upper-left coordinate, width, and height of the box are
unimportant for regression of an ambiguous bounding box,
such as that of fracture, when compared to general bounding
box regression. To properly regress the bounding box, we use
IoU loss rather than L1 (or L2) loss. Using the IoU loss aids
in properly locating the bounding box and has the effect of
reducing the negative impact on the classification task.

The second key point is a data augmentation technique
adopted for the fracture detection task. Objects from nature
images are of various sizes and shapes. As a result, the object
detection model for natural images employs data augmenta-
tion techniques to generate synthetic images in a variety of
ways by utilizing the given training images. Objects from
CT images, by contrast, have less deformation than objects

from natural images. Therefore, we appropriately reduce
the deformation range such as rotation, size, and movement
to suitably reproduce the deformation of the CT images.
Finally, we also use Mixup [34] to maximize the effect of
data augmentation. We build a CA-FBFD system using these
methods that is trained on only nasal fracture data but can
detect other facial fractures as well.

The main contributions of this paper are summarized as
follows:
• By using IoU loss for the object detection model,
we reduce the adverse effect on the classification
performance.

• We apply an appropriate data augmentation technique
to improve the performance of facial bone fracture
detection.

• Our system achieves 69.8%AP on the test set containing
diverse bone types by training the model using only
the nasal bone fracture, which outperforms the baseline
YoloX model by a large margin of 10.2%.

II. RELATED WORKS
A. FRACTURE CLASSIFICATION
A deep learning fracture diagnosis system is being researched
to determine whether or not an image contains a fracture.
Yu Jin Seol et al. [28] proposed automatic diagnosis of nasal
bones based on 3D deep learning. This algorithm has the
advantage of reducing false positives by analyzing multiple
images at once rather than analyzing each image one by one.
However, 3D deep learning algorithm [28] requires much
labor from doctors to find the nasal bone in facial CT. Further-
more, even if these algorithms classify the input as a fracture,
the doctor must still perform the laborious task of pinpointing
the location of the fracture. Because one of the primary ben-
efits of automatic fracture diagnosis is that it saves doctors’
time, it is critical to developing a qualified automatic fracture
diagnosis system for 2D images containing fractures.

For fracture classification in 2D images, Jun Luo et al. [27]
proposed a multi-view deep learning algorithm to classify
elbow fractures. Amulti-view deep learning algorithmmakes
multi-angle analysis possible. To accurately identify an
elbow fracture, this multi-view approach necessitates viewing
the fracture from various angles. Leonardo Tanzi et al. [26]
proposed a femur fracture classification algorithm using
the Vision Transformer model. Tanzi et al. [26] not only
improved the performance of classification models, but also
demonstrated the effectiveness of collaboration between
physicians and CAD systems. These algorithms have great
significance in improving the accuracy of fracture diagnosis.

Hojjat Salehinejad et al. [25] raised the problem of dispro-
portionate fracture data. Compared to the amount of data for
normal persons without fractures, that for patients with frac-
tures is extremely small. Furthermore, even in the CT images
of patients with fractures, most CT images of patients with
fractures do not contain fracture parts because they occupy
only a tiny area on a face. Hojjat Salehinejad et al. [25] pro-
posed a bidirectional long and short-term memory model

79062 VOLUME 10, 2022



G. Moon et al.: CA-FBFD System Based on Object Detection Model

to address these issues. Amelia Jim′enez-S′anchez et al. [24]
investigated the classification of femur fractures into seven
types based on X-ray images, with six types classified based
on fracture location and, type, and the number of fragments
in the fracture, and the remaining type classified as a normal
class without fracture. Amelia Jim′enez-S′anchez et al. [24]
used the curriculum learning method to solve the data imbal-
ance problem. Curriculum learning is a method of scheduling
key training samples to learn more by scoring training sam-
ples. Hojjat Salehinejad et al. [25] can determine an approx-
imate location of the fracture using the Grad-CAM [33], and
Amelia Jim′enez-S′anchez et al. [24] can determine whether
the fracture is anterior or posterior through location classi-
fication. However, both algorithms have limitations in their
ability to express the location of a fracture.

B. FRACTURE REGION DETECTION
The Fracture Classification study has a limitation in that pin-
pointing the exact location of the fracture is difficult. To over-
come this limitation, fracture region detection algorithms
that find the location immediately are being researched.
Yangling Ma et al. [31] proposed the two-stage system for
bone fracture detection. The first step is to find the bone struc-
ture as a bounding box. Then, in the second step, each bone is
checked for fractures with a classification model. Compared
to the 3D deep learning model for classification [28], this
detection algorithm saves the labor of doctors who need to
find bone structures and put them as inputs to a classification
model. However, doctors’ labor is still required to determine
the exact location of a fracture.

Wang et al. [29] suggested a fracture detectionmethod that
uses a weakly supervised learning model to find fracture
candidate regions by creating a fracture probability map.
This method locates a fracture in a manner similar to Grad-
CAM [33], which is known to be limited in its ability to pin-
point the exact location of a fracture. Fırat Hardala et al. [30]
used five models to locate fractures as bounding boxes and
developed an ensemble method to increase the performance
by synthesizing the results of the five models. This ensemble
method outperforms the previous methods. However, this
method also cannot clearly express fractures as bounding
boxes. For further enhancement of fracture location accu-
racy, we propose a method using IoU loss based on an
anchor-free strategy and a decoupled head structure. Also,
we try a multi-positive strategy to overcome the problem of
imbalanced fracture data.

III. METHODS
In this section, we first describe our data configuration on
facial bone CT data, including data collection, labeling by
boundary box, and pre-processing to make the bones more
visible. Then we introduce YoloX as the baseline for our
work, along with five reasons to adopt the YoloX model.
In addition, we present the modified data augmentation tech-
niques to fit the facial bone CT images from those for natural

FIGURE 1. Example of facial bone CT data.

images. Finally, we discuss evaluation metrics and the IoU
threshold applied to the small fracture box.

A. DATA
1) DATASET CONFIGURATION
In this study, we used facial bone CT data of patients pre-
scribed for nasal bone fractures between 2014 and 2020 at
a university hospital. Only axial CT images were used in
this study, and nasal bone fractures were newly labeled with
bounding boxes to indicate which part of the bone was frac-
tured. The nasal bone fracture bounding box was pre-labeled
by the deep learning developer, who had been trained by a
plastic surgeon to detect nasal bone fractures. Then, referring
to the pre-labeling, the plastic surgeon corrected, deleted, and
added the facial bone fracture boundary box to complete the
labeling.

For training purposes, 65,205 facial bone CT images from
690 patients with approximately 5,000 nasal bone fracture
bounding boxes were created. For validation data, 4,681
facial bone CT images from 50 patients with approximately
500 nasal bone fracture bounding boxes were used. For the
test data, we used facial bone CT images of 20 patients
without fractures and facial bone CT images of 20 other
patients with nasal bone fractures. The test dataset includes
about 400 fracture bounding boxes. Although the training
data only contains nasal bone fracture data, the test data
includes a small number of facial bone fractures other than
the nasal bone fracture to see if the detector can detect other
facial bone fractures besides the nasal bone fracture. Figure 1
depicts a sample of facial CT data.

This study was approved by the International Review
Board of Kangwon national university hospital (KNUH-
2021-01-004, KNUH-2021-11-007)

2) DATASET PREPROCESS
Generally medical professional views and analyzes CT
images pre-processed by image filters that are suitable for
diagnostic purposes. When diagnosing lung diseases, for
example, a filter is used to make the lungs visible. As a result,
we use facial CT images pre-processed by filters to make

VOLUME 10, 2022 79063



G. Moon et al.: CA-FBFD System Based on Object Detection Model

FIGURE 2. The range of Hounsfield units.

FIGURE 3. Comparison of pre-processing of CT image and original CT
image.

the bones more distinguishable as a deep learning input for
analyzing nasal bone fractures.

As shown in Figure 2, the range of Hounsfield Units (HU)
in the CT data value is approximately −1024 to 3000. From
experience, we know that HU of bone is over 400, HU of soft
tissue is from 40 to 80, HU of water is 0, HU of fat is from
−100 to−60, HU of the lung is from−600 to−400 and HU
of air is −1000. Considering this experience, we pre-process
the CT image to highlight the bones as

I (p) =


0 if HU(p) < min
HU(p)−min
max−min ∗ 255 if min ≤ HU(p) < max
255 if HU(p) ≥ max

, (1)

where I (p), and HU(p) are the pre-processed CT image value
and HU value at the pixel p, respectively, whereas min and
max values are set to -800 and 1200, respectively. Figure 3
compares the pre-processed CT image (I (p)) to the original
CT image.

B. YOLOX-BASED OBJECT DETECTION
1) DATA AUGMENTATION
YoloX was designed to detect objects in natural images. As a
result, the majority of YoloX data augmentation methods
reflect various object deformations that can occur in natural
images. The data augmentation methods for YoloX include
Mosaic [35], MixUp [34], scale, rotate, translation, and flip.
For convenience, this augmentation method is denoted by
BaseAug, which stands for baseline augmentation. BaseAug
must be modified to fit the CT environment to perform well
in CT image analysis. BaseAug fills the augmented void with
meaningless 114, but a value of 114 on CT means there is

some substance. Therefore, the augmentation method that
transforms BaseAug to fit the CT environment is defined as
CTbase, and CTbase fills the augmented empty space with 0,
which denotes an air layer with nothing in the CT. Because the
natural image is made up of RGB channels,BaseAug employs
hue, saturation, and value (HSV) augmentation to change
the saturation, brightness, and so on. However, because CT
images are black and white, it is not appropriate to use HSV
augmentation; therefore, CTbase does not use it. CTbase
should be improved further because CT images of the facial
bone have far less variation than natural images. Therefore,
we revise the data augmentation method so that the aug-
mented facial bone CT images have small variations. To this
end, we modify CTbase by moderately reducing the defor-
mation range and eliminating Mosaic [35] and Mixup [34],
referred to asCTaug, which means a CT image augmentation.
Specifically, the range of size-changing ratio is reduced from
[0.2, 2] for BaseAug to [0.8, 1.2] for CTaug. As a result,
the object size in CT image is varied from 0.8 to 1.2 times
the reference size depending on the face size of a patient. In
BaseAug, the images are flipped with a probability of 0.5, but
the flip is not applied in CTaug. The degree of angular defor-
mation and position change in natural images is considered to
be a value that can properly reflect small changes in posture
and position of patients taking CT, so the same values are
applied in CTaug.

In addition, to augment images including diverse fractures,
we add Mixup [34] data augmentation to CTaug, which is
referred to as CTmixup. The Mixup [34] data augmentation
method helps to find a little more variety of fractures by
superimposing two images in CT images. The difference
from the existing Mixup [34] is that the size change ratio
during Mixup is reduced from [0.5, 1.5] for BaseAug to
[0.8, 1.2] for CTmixup.

2) YoloX MODEL
In our study, we used YoloX as the baseline model for the five
reasons listed below. First, YoloX’s performance on the coco
benchmark dataset was validated.

Second, YoloX uses an anchor-free strategy, unlike other
Yolo series models. In an anchor-based strategy, the ground
truth bounding boxes need to be statistically analyzed because
the anchor should be set based on statistical analysis. Because
the nasal bone fracture bounding box is inconclusive and
ambiguous, defining a box criterion in the problem of nasal
bone fracture detection is inappropriate. Deep learning mod-
els using anchors usually predict multiple object bounding
boxes per grid, whereas those without anchors predict one
object per grid in many cases. Because nasal bone fracture
bounding boxes rarely overlap, the anchor-free strategyworks
well for our task.

Third, the IoU loss in YoloX for regression is appropriate
for the ambiguous bounding box for nasal bone fracture.
Generally, the object detection loss consists of a combination
of the classification loss and regression loss between ground
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FIGURE 4. YoloX-S model structure used in our study.

truth and prediction as in Equation (2).

Cij = Lclsij + λL
reg
ij . (2)

The regression loss directly compares the upper-left coor-
dinates and the height and width of the ground truth with
the prediction boxes. YoloX uses IoU loss in addition to
the coordinate-based regression loss. Unlike natural images,
we use only IoU loss (LIoU) in (3) for regression because
the corner points of the nasal bone fracture bounding box are
ambiguous.

LIoU = 1− IoU2. (3)

By using only IoU loss without using ambiguous upper-left
coordinates, the deep learning model can learn the fracture
bounding box flexibly.

Fourth, YoloX uses a decoupled head structure, unlike
other Yolo series models, to mitigate the interference of
bounding box regression and class classification with each
other. A single model that simultaneously handles classifi-
cation and bounding box regression, leads to an imperfect
trade-off [13], [14]. Because a classification model learns
salient areas, whereas, a bounding box regression model
learns a region around the boundary, an imperfect trade-off
occurs. In addition, vague fracture bounding boxes affecting
regression will exacerbate the degree of imperfect trade-off.
Therefore, a coupled head structure in which the structure
outputs the result in a bundle causes an imperfect trade-off in
all layers of the model. On the other hand, decoupled heads,
as shown inside the dotted line in Fig. 4, yield classification
results and bounding box regression results independently to
mitigate the degree of imperfect trade-off. As a result, many
object detection models [14]–[16] employ a decoupled head
structure. And other Yolo series models use a coupled head,
but YoloX has adopted the decoupled head structure.

Fifth, YoloX employs a multi-positive strategy to address
the problem of data imbalance, which is common in med-
ical data such as fracture data. Imbalanced datasets cause
serious problems in classification tasks in machine learn-
ing (ML) [32]. As Hojjat Salehinejad et al. [25] points out,

there is a data imbalance problem because there are sig-
nificantly fewer fracture data than non-fracture data. The
multi-positive strategy is a sampling strategy that trains a deep
learning model by considering the predicted bounding box in
a 3 × 3 region centered on the fracture location as positive
samples, which is called ‘‘center sampling’’ in FCOS [15],
which alleviates the problem of data imbalance in fracture
data by compensating for the insufficient number of positive
samples.

YoloX is divided into YoloX-Nano, YoloX-Tiny, YoloX-S,
YoloX-M, YoloX-L, and YoloX-X according to the backbone
structure. Among them, we use the YoloX-S model. The
reason is that YoloX-S model can achieve good performance
with one graphics card. Figure 4 depicts the overall configu-
ration of the YoloX-S model used in our study.

C. PERFORMANCE ASSESSMENT
For performance evaluation, each predicted bounding box is
classified as true positive (TP), false positive (FP), or false
negative (FN). A positive class defines a fracture class,
whereas a negative class defines a non-fracture box. For eval-
uation, we measure average precision (AP) in (6) calculated
by using precision, recall, and AP in (4),(5).

Precision =
TP

TP+ FP
, (4)

Recall =
TP

TP+ FN
, (5)

Average Precision =
∫ 1

0
p(r)dr, (6)

where p(r) is the precision curve depending on the recall
value (r).

In addition, we measure the fracture diagnosis time per
person. Because the size of a natural image’s bounding box
varies greatly, the criterion for judging TP is set to IoU
0.5 or greater. However, the size of the detection box for a
nasal bone fracture is quite small, measuring approximately
19 x 20 pixels on average. In this case, IoU is usually small.
Thus, we assign TP to a box with IoU ≥ 0.1.
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TABLE 1. Ablation study for fracture detection by YoloX-S Model depending on loss functions and data augmentation techniques.

IV. RESULTS
This section explains how the test dataset was built for eval-
uation. Subsequently, we present an ablation study using
quantitative and qualitative analyses to validate the proposed
components using the loss and data augmentation method.
Finally, a discussion is provided.

A. TEST DATASET
The test dataset consists of CT scans of 40 patients. In the
test dataset, 19 patients are normal patients without fractures,
and 2 patients have both nasal bone fractures and other facial
fractures.

One patient has only other facial fractures and no nasal
bone fractures, while the other 18 patients have only
nasal bone fractures. We only use data from patients with
nasal bone fractures as training data.

B. EXPERIMENT SETTING
A single GeForce 3080 graphics card was used in an experi-
ment. For prediction boxes with a confidence level of 0.1 or
higher, the AP was calculated in the range IoU 0.05 to 0.6.
Sensitivity/person and specificity/person were measured as a
result of classifying the presence or absence of fractures for
each person. If each person has at least one fracture box, the
correct answer is considered the person with a fracture. The
deep learning model then analyzes the person’s face CT data
sequentially. If a fracture boundary box was detected in two
consecutive CT images, the person was classified as having
bone fractures.

C. QUANTITATIVE ANALYSIS
Table 1 shows the results of the ablation study for fracture
detection by the YoloX-S Model depending on loss func-
tions and data augmentation techniques.M1 -M5 are models
trained by changing only the regression loss without applying

data augmentation. The AP performances of the M1 and
M2 models learning the coordinates of the bounding box
are better than those of the M3 and M4 models with IoU
loss added. The M5 model using only IoU loss has the low-
est AP performance. The specificity/person performance of
M1 - M5 is 100%, while the sensitivity/person performance
does not exceed 50%. These findings suggest that fractures
are uncommon in all five models. Because data augmentation
is not used, it is most likely due to a lack of training data.
M6 -M10 are variant models trained by applying BaseAug.

Variant models M6 - M8 are obtained by applying BaseAug
data augmentation toM1 -M3 models. The AP performances
of these models are worse than those without BaseAug.
By contrast,M9 andM10 improve AP performance by adding
BaseAug data augmentation to the M4 and M5 models. The
specificity/person performance decreases slightly, but the
sensitivity/person performance improves by more than 80%.
This means that unlike M1 - M8, M9 and M10 are models
that find facial bone fractures well. When comparing before
and after adding BaseAug, the model with IoU Loss shows
less degradation or improves AP performance compared with
the model without IoU Loss. This implies the IoU loss is
beneficial to find fractures in the case that the training data
have plenty of features via data augmentation. In particular,
M10, which uses only IoU Loss for regression, shows the best
AP performance and the best sensitivity/person performance
amongM1 - M10 models.
M11 -M14 models are data augmentation models that have

been modified to fit the CT image. The difference between
M11 and M12 is whether L1 loss is used. The AP perfor-
mance ofM11 with L1 loss is 0.655, and the AP performance
of M12 without L1 loss is improved to 0.688. When using
L1 Loss, comparing the sensitivity/person performance and
specificity/person performance of M11 and M12 reveals that
the model is trained to find only obvious fractures. When
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FIGURE 5. Results of analysis of nasal bone fracture patients depending
on the use of L1 Loss. (a) analysis result of the model using L1 Loss, M11.
(b) analysis result of the model without L1 loss, M12. Green box is ground
true box. Red box is predicted box.

FIGURE 6. Results of analysis of patients with facial bone fractures
different from nasal bone fractures depending on the use of L1 Loss.
(a) analysis result of the model using L1 Loss, M11. (b) analysis result of
the model without L1 loss, M12. Green box is ground true box. Red box is
predicted box.

FIGURE 7. False positives in model analysis results without L1 loss, M12.
Red box is predicted box.

collaborating with doctors and the CA-FBFD system, it is
more important that the CA-FBFD system detects all frac-
tures even if there are a few false positives. So, we decided to
use only IoU Loss. Equation 3 shows the IoU loss equation.

M12 uses only IoU loss as regression loss and applies
CTbase data augmentation technique, named YoloX-S-
CTbase. M13 is a model in which CTaug data augmentation
is applied, named YoloX-S-CTaug. M14 is a model that adds
Mixup [34], with size parameters adjusted to increase the
recall rate of fractures, to YoloX-S-CTaug, named YoloX-S-
CTmixup. As shown in Table 1, the AP performance is
improved to 0.688 for YoloX-S-CTbase and 0.692 for YoloX-
S-CTaug, and the highest value reached 0.698 for YoloX-S-
CTmixup. In addition, the sensitivity/person performance of
YoloX-S-CTmixup means that all patients with fractures are
found.

D. QUALITATIVE ANALYSIS
Figure 5 shows the results of theM11 andM12 models predict-
ing patients with nasal bone fractures, respectively. (a) is the
predicted result of the model with L1 Loss, and (b) is the pre-
dicted result of the model without L1 Loss. The red bounding
box is the fracture bounding box predicted by the model, and
the green bounding box is the ground truth bounding box. The
number above the red box is the confidence score predicted
by the model with a value between 0 and 1. The model with
L1 Loss does not detect the nasal bone fracture, whereas the
model without L1 Loss does. However, the model without L1
Loss detects a false positive.

The prediction results for patients with facial bone
fractures other than nasal bone fractures are shown in
Figure 6. (a) is the result predicted by the model using L1
Loss (M11), and (b) is the predicted result by the model not
using L1 Loss (M12). The model using L1 Loss does not find
any other facial bone fractures. This is because other facial
bone fractures are not precisely learnt from the training data.
However, the model without L1 loss detects other facial bone
fractures.

The model without L1 Loss, by contrast, has the disad-
vantage of detecting more false positives. Figure 7 shows
the results predicted by the model without L1 loss (M12)
for patients without fractures. The detected figure does look
like a fracture but is a false positive. By contrast, the model
with L1 Loss (M11) predicts no fracture in the above cases.
We performed data augmentation to compensate for the case
of toomany false positives in the model without L1 loss(M12).
Figure 8 shows the results of analyzing the same patients

in Figure 5 with three models. (a) is the result of YoloX-
S-CTbase, M12, (b) is the result of YoloX-S-CTmixup, M14,
and (c) is the result of YoloX-S-CTaug, M13. YoloX-S-CTbase
predicts one false positive. But, the proposed YoloX-S-CTaug
and YoloX-S-CTmixup do not yield any false positives.

Figure 9 depicts the detection results from three models for
the same patients tested in Figure 6. As seen in (c), YoloX-
S-CTaug finds only one facial bone fracture different from
a nasal bone fracture. As shown in (b), YoloX-S-CTmixup
does not find as many facial bone fractures different from
nasal bone fractures as YoloX-S-CTbase but finds more of
them than YoloX-S-CTaug. However, as shown in Figure 7,
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FIGURE 8. Results of analysis of patients with nasal bone fractures of
three models depending on data augmentation methods. (a) analysis
result of YoloX-S-CTbase, M12. (b) analysis result of YoloX-S-CTmixup,
M14. (c) analysis result of YoloX-S-CTaug, M13. Green box is ground true
box. Red box is predicted box.

FIGURE 9. Results of analysis of patients with facial bone fractures
different from nasal bone fractures of three models depending on data
augmentation methods. (a) detection result by YoloX-S-CTbase, M12.
(b) detection result by YoloX-S-CTmixup, M14. (c) detection result by
YoloX-S-CTaug, M13. Green box is ground true box. Red box is predicted
box.

YoloX-S-CTbase detects false positives, but the YoloX-S-
CTaug and YoloX-S-CTmixup do not detect false positives.
In the terms of overall performance, YoloX-S-CTmixup,

M14 is the best, which does not explicitly exploit ambiguous
bounding boxes such as its coordinates, and applies the data
augmentation method reproducing the deformation of the
medical image. All of themodels tested above take an average
of 0.1 second to analyze a single CT image. Therefore, the

FIGURE 10. Difficult cases to accurately identify a fracture. Left image is a
CT image with severe noise. Right image is a CT image of past fracture
deformation.

analysis speed is sufficient to be used actually for our nasal
bone fracture analysis in hospitals.

V. DISCUSSION
Automatic fracture detection in facial bone CT images is a
challenging task. This is due to the fact that the facial bone
has a more complex shape than other bones, and a fracture
is difficult to define clearly by a bounding box. In this paper,
we use only IoU Loss for the bounding box regression by
YoloX-S to solve this problem, and propose CTmixup data
augmentation method to improve the performance.

Our CA-FBFD system works with the picture archiving
and communication system (PACS) server already installed
in the hospital so that doctors can use it conveniently. The
patient’s facial bone CT data is imported through the PACS
server, fracture detection is analyzed, and the analyzed results
are stored in the hospital database through the PACS server
again. Therefore, doctors can easily see the results of ana-
lyzing facial bone fractures with the previously used PACS
viewer program. Our CA-FBFD system will be a very use-
ful tool for doctors, allowing them to reduce examination
time and focus on other more important tasks, allowing
them to make faster and more accurate diagnoses. Also,
our CA-FBFD system can be of service to patients who are
difficult to obtain a fracture diagnosis.

Our CA-FBFD system is good at classifying whether a
person has a fracture or not, but the AP performance is
only 69.8%. Although significant advances have been made
in object detection, it is still difficult to detect small objects.
In particular, the deeper the layer in the Feature Pyramid
Network, the more the features of small objects may disap-
pear. Yuqi Gong et al. [36] uses Fusion Factor in the Feature
Pyramid Network to better detect small objects. As we also
use the FPN-based YoloX model, we will continue to study
to better detect facial bone fractures with many small objects.

We will conduct research to detect nasal bone fractures
as well as other types of facial bone fractures. The current
study can detect some facial bone fractures that are distinct
from nasal bone fractures, but in order to detect all facial
bone fractures, the coronal view must also be examined. So,
we will also do 2.5D, 3D, and multi-view research. In addi-
tion, as illustrated in Figure 10, doctors may find it difficult
to distinguish a fracture when only looking at CT images
of physical distortion bones after a previous fracture or CT
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images with severe noise. Since the site that requires imme-
diate treatment is the site of an acute fracture, it is necessary to
differentiate an acute fracture from noise and past fractures.
We will investigate the uncertainty score, which indicates
how certain the results of deep learning analysis are, to iden-
tify cases in which acute fractures cannot be distinguished
solely by CT image analysis.
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