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ABSTRACT This paper proposes a practical modelling solution to the problem of sharing distributed
renewable electricity generation in the context of renewable energy communities. According to this approach,
the economic benefits of community members, derived from their participation in the community, are
shared by means of repartition keys, which represent the proportion of total local electricity to be allocated,
ex-post , to each community member. These keys are computed through a centralised optimisation framework
that optimally allocates the electricity generated within the community (i.e., local electricity) among the
community members so as to minimise the sum of the electricity bills of all community members. The
electricity bill sent to each community member can be directly extracted from this solution. Building on
this concept, we also introduce two additions to the basic algorithm, aiming to enhance the stability of the
community, which a global bill minimisation may fail to ensure (e.g., very asymmetrical solutions between
members may lead to some of them opting out). The first addition is the computation of the self-sufficiency
rates of the community members, defined as the proportion of the electricity demand covered by local
electricity, which can be exploited as a revenue sharing mechanism. The second addition is the use of initial
repartition keys based onwhich the optimised ones are computed, so as to ensure aminimum contractual level
of revenue for each of them. We have tested our methodology with a broad range of scenarios illustrating
its ability to reduce the sum of the electricity bills of the community members and to share the revenues
ensuring the stability of the renewable energy community. Our results show that creating a community using
this methodology can potentially reduce the electricity costs for all community members, and that self-
sufficiency rates and initial keys can be used to stabilise the community by performing revenue sharing
among them.

INDEX TERMS Distributed generation, energy communities, local electricity market, repartition keys,
revenue sharing.

NOTATION
Sets

T Set of market periods {1, . . . ,T }.
I Set of REC members {1, . . . , I }.
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Indices

t ∈ T t th market period.
i ∈ I ith member of the REC.

Parameters

At,i Initial allocation of electricity generation.
Ct,i Consumption.
Cn
t,i Netted (after-the-meter) consumption.
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Kt,i Initial repartition keys.
Pt,i Electricity generation.
Pnt,i Netted (after-the-meter) electricity generation.
SSRmini Minimum self-sufficiency rate.
Xt,i Maximum allowed key deviation.
ξbi Retail price of electricity.
ξ si Selling price of electricity to the grid.
ξ l−i Purchasing price of electricity from the REC.
ξ l+i Selling price of electricity to the REC.
ξdi Price of deviations from At,i.

Decision variables

at,i Optimised allocated production.
a+t Positive deviation of allocated generation from At,i.
a−t Negative deviation of allocated generation from At,i.
kt,i Optimised repartition keys.
ssri Self-sufficiency rate.
vt,i Verified allocated electricity generation.
yt,i Locally sold electricity generation.

I. INTRODUCTION
Under the pressure imposed by climate change and global
warming, decarbonising the electricity sector has become one
of the key targets of policies and regulations worldwide—in
Europe, the Clean Energy Package for all Europeans [1] and
the UK Climate Act [2], demonstrate the commitment of
the region toward this target. Decarbonising the electricity
sector requires the widespread investment in renewable elec-
tricity generation resources, and traditionally can be achieved
through a centralised or a decentralised investment endeav-
our [3], [4]. According to the latter, multiple small elec-
tricity generation units, usually owned by final consumers,
are deployed near or directly at the consumption centres
(e.g., rooftop solar panels). In recent years, this decentralised
approach has gained momentum, owing to various tech-
nological advances in generation and storage technologies,
automated energy management systems, or trading bots used
for the financial optimisation of these generation units [5],
[6]. This type of approach, however, demands for regulatory
frameworks that effectively address the new needs of final
consumers, who can now be electricity generation owners
(i.e., prosumers). Indeed, the lack of adequate frameworks for
consumers and prosumers challenges the power system oper-
ation, as shown in [7]–[10], and may hinder the integration
of decentralised generation [11]. A potential solution to this
problem is the creation of local consumer-centric electricity
markets, where consumers and prosumers can trade electric-
ity locally, replacing partial or totally their traditional retailer
contracts [12], [13]. In this regard, one type of local market
that has received considerable attention over the last few years
is the renewable energy community (REC). RECs represent,
according to [14], a cost-efficient way to meet the energy
needs of citizens—they allow their participants (REC mem-
bers) to exchange among them the electricity generated by
their own generation assets. Despite their recent popularity,

the rules controlling the internal electricity exchanges within
RECs are not yet clearly defined, which may prevent their
rollout [15]. This paper aims to fill this gap, proposing a
methodology which is compliant with current European reg-
ulations and can be readily implemented in practice.

According to European regulations, RECs are composed
of final customers (consumers and prosumers) which can
exchange electricity among them through a local market [16].
As per this directive, consumers are entitled to participate
in an REC without losing their rights as final customers
(e.g., they may freely choose their electricity supplier), and
are centrally managed by an energy community manager
(ECM). One of the key roles of the ECM is to facilitate the
emergence and stability of the internal market. To that end,
the ECM must ensure that the local electricity generation is
optimally allocated among the REC members so as to meet
some objective, such as the minimisation of the sum of their
electricity bills. Various methodologies may be applied in this
regard, and the existing literature on optimisation techniques
can provide solutions to this class of problems.

A. LITERATURE REVIEW
The internal electricity exchanges between the members of
a consumer-centric market (e.g., microgrids, smart grids,
virtual power plants, or RECs) may be modelled utilising
various market mechanisms. Parag and Sovacool [5] pro-
pose three types of such mechanisms: peer-to-peer (P2P),
prosumer-to-grid, and organised groups of prosumers. In the
context of RECs, both P2P and prosumer groups are suit-
able approaches, and thereby models considering these two
options can offer useful insights into the establishing of these
communities.

One of the first papers introducing the idea of P2P decen-
tralised trading dates back to more than 20 years [17], and
models the negotiations between agents depending on their
cost functions. Since then, several studies have focused on
algorithms for P2P exchanges in a decentralised fashion
using different techniques based either on bilateral trading
where pairs of market participants negotiate the electric-
ity transactions independently, or on the idea of coopera-
tive or non-cooperative games between all the players [18],
[19]. A multi-bilateral economic dispatch method where
peers are free to negotiate with any other peer in their net-
work (i.e., disregarding any potential network constraint)
is introduced by Sorin et al. [20], and later compared with
other approaches byMoret et al. [21]. Another market design
based on bilateral contract networks for P2P trading is pre-
sented by Morstyn et al. [22]—this new design stands out
by introducing real-time and forward (e.g., day-ahead) mar-
kets. Some studies have provided solutions based on game
theoretic methodologies. For example, using a Nash equilib-
rium non-cooperative game, Zhang et al. [23] show that P2P
trading within a microgrid leads to increased self-sufficiency
rates and reduced peak loads in the overall microgrid, thereby
fostering the integration of decentralised generation technolo-
gies. Paudel et al. [24] apply a multi-game methodology in
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real-time to model the exchanges between prosumers in a
microgrid—two consecutive games are employed to deter-
mine the prices offered by sellers, and the matching between
buyers and sellers. Wei et al. [25] make use of robust opti-
misation to account for wind power uncertainty and a Nash
bargaining problem to promote P2P trading in a microgrid
context—the problem is then solved with an augmented
Lagrangian multipliers method. Different papers deal with
coalitional game in the context of P2P exchanges, whereby
groups of consumers (coalitions) may form, improving their
overall cost function, and then share the payoff among them.
In [26], Tushar et al. employ motivational psychology to
demonstrate the suitability of coalitional game theory to
model P2P trading in the context of smart grids. This coali-
tional framework is further explored and developed in [27]
by the same authors. Also employing a coalitional game,
Safdarian et al. [28] simulate an REC in an apartment build-
ing where a clustering technique groups the consumers in
different clusters to attain savings in their electricity costs.
Tushar et al. [18] extensively address the topic of P2P energy
management using game theory, comparing several models
for managing P2P networks and highlighting the main cri-
teria to be considered when designing such problems. Other
authors have approach this problem using more recent tech-
nologies such as blockchain [29], which we do not cover
in this review. Finally, very few studies have taken into
account the role of the distribution system operator (DSO)
when determining the exchanges, which may lead to sub-
optimal solutions. In this regard, Chen et al. [30] propose a
P2P approach applied to local groups of prosumers with a
dynamic network structure controlled by the DSO, leading to
significant network losses reductions.

Although all these approaches provide useful methods to
sharing electricity among consumers and prosumers, they
fail to account for their potential coordination through, for
instance, a central planner. This lack of central coordination
may lead to welfare losses due to (i) hidden information
and (ii) possible conflicting objectives among the different
actors. Hidden information may induce overall welfare losses
by restricting the feasible space of solutions to the infor-
mation that is shared. Moreover, conflicting objectives may
result in suboptimal solutions for all prosumers in the case
of a decentralised approach due to differing goals among
the market participants. Whilst differing objectives may also
have an impact using a centralised paradigm, a central planner
will yield a pareto-optimal front of optimal solutions, leading
to trade-offs among participants, which is not the case for a
fully decentralised optimisation problem.

On the other hand, adopting a centralised planning
approach to handle the operation of microgrids or RECs
may solve some of these issues. Several authors have stud-
ied the problem of decentralised trading in the context
of these types of local market structures. Long et al. [31],
Liu et al. [32], and Grzanić et al. [33] focus on the inter-
nal electricity market and how to compute the internal
prices (i.e., prices associated to the internal exchanges),

comparing different price mechanisms [31], [33] and intro-
ducing demand response [32], [33]. From a different stand-
point, Hu et al. [34] analyse the possibility of microgrid
market participation, including balancing as well as ancil-
lary markets. Soriano et al. [35] and Mashlakov et al. [36]
make use of multiobjective optimisation techniques to model
the electricity exchanges between prosumers. Faqiry and
Das [37], propose a double-sided auction mechanism in the
context of islanded microgrids where buyers post bids to
buy electricity and sellers offer their availabilities. The mar-
ket is cleared by an aggregator that, iteratively, converges
to the market clearing price. In [38], Moret et al. present
an REC where the ECM acts as the interface between the
REC members and the market—members do not interact
with their retailers but rather with the ECM, who supplies
their electricity, computes the electricity prices and the inter-
nal exchanges, and charges them. Morstyn et al. [39] and
Sousa et al. [40] discuss different consumer-centric market
mechanisms: P2P trading, community trading (termed virtual
power plant trading in [39]) and a hybrid approach mix-
ing both mechanisms. Both studies conclude that the hybrid
approach may create an overall more valuable and scalable
solution. Another approach based on central planning is pre-
sented by Cornélusse et al. [41], where a benevolent central
planner maximises the welfare of the community and redis-
tributes revenues and costs among the REC members so that
none of them is penalised as a result of being in a community.
This problem is cast as a bi-level optimisationwhere the lower
level solves the clearing problem of the community and the
upper level shares the profits among the entities. In [42],
Manuel de Villena et al. consider a problem where flexibility
from prosumers can be activated by the central planner to
minimise electricity costs. Two approaches based on coop-
erative game theory [8], [43] analyse the value and viability
of RECs from a centralised standpoint. Abada et al. [8] pro-
pose the use of a sharing rule for REC members based on
the gains stemming from local production and consumption,
as opposed to only production as it is usually done. Finally,
Mirtriadi et al. [43] create a cooperative game where the val-
ues (welfare of REC members) obtained through different
allocation mechanisms are compared. The presented studies
consider some central agent to act as the interface between
electricity markets and end consumers and to coordinate the
P2P exchanges—all of them concur that P2P trading through
a central agent may unlock significant savings in energy costs
for the participants of the microgrid or energy community.

B. CONTRIBUTIONS OF THIS WORK
Although some of the analysed studies provide sound frame-
works to assess the economic benefits of internal trading
in the context of microgrids or energy communities, their
potential implementation in real-life applications is lim-
ited. There are two main challenges hindering their imple-
mentation: (i) complexity, as real energy communities may
comprise many different agents which may not always be
adequately clustered, scalability problems quickly emerge
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where the problem becomes NP-hard and thereby a trade
off between number of participants and reasonable solving
time is needed; and (ii) lack of adherence to the regulatory
frameworks in place, which may limit, for instance, the role
of the ECM. A possible option to overcome the first challenge
is to perform an ex-post computation of electricity prices and
exchanges. This would imply the introduction of a compu-
tation, after the physical delivery of electricity, where the
financial exchanges according towhich the RECmembers are
billed can be determined. To apply this approach, a sharing
rule among REC members must be defined, but the actual
exchanges between them do not need to be negotiated, guar-
anteeing the fast convergence of the method and making the
problem relatively simple to solve. In the existing literature,
to the best of our knowledge, only Grzanić et al. [33] make
use of such an approach. In their work, the authors model
a cost-sharing mechanism among the prosumers of an REC
relying on the assumption that the REC is managed by an
ECM, which is also the electricity supplier and organiser of
the internal market. However, this assumption may conflict
with the second challenge (adherence to regulatory frame-
works), and according to the definition of RECs by the
European Commission, the methodology presented in [33]
would violate the right of RECmembers to freely choose their
electricity supplier.

In view of these limitations, our work proposes a practical
and scalable approach, one which is relatively simple to
deploy in real RECs and complies with current regulations.1

We have designed a methodology, based on the concept
of repartition keys, to determine the electricity exchanges
between the REC members of a centrally managed REC. The
repartition keys represent the proportion of locally generated
electricity, measured after-the-meter (i.e., after meeting the
electricity needs of the prosumer who generates it), which
is allocated to each REC member—there is one repartition
key per member. These keys are optimally computed by the
ECM through an optimisation framework aiming to minimise
the sum of electricity bills of the REC members. The use
of repartition keys is foreseen by the French [44] as well as
the Walloon (Belgium) regulations [45] and, moreover, other
European countries are adopting similar legislative deci-
sions [46]. To guarantee the scalability and convergence of
our approach, we solve the optimisation problem ex-post, util-
ising a centralised formulation that finds the optimal solution
for all RECmembers at once, which decreases the complexity
of the problem as REC members do not need to negotiate the
electricity trades among them. According to this optimisation
problem, REC members’ electricity demands are partial or
totally met by the surplus of other REC members, which is
allocated to them through the repartition keys. Since the com-
putation of the repartition keys takes place ex-post, the actual

1In this paper we focus on the current legislative framework laid out by the
European Commission [16], with regards to the role of the ECM. However,
the problem is designed so that it can readily be adapted to other roles, such
as the aggregation or supply of the REC members.

power flows are not affected by it, similar to [33]. However,
whilst in their work the authors propose a market clearing
mechanism organised by the ECM (which is also the only
supplier of the REC) that accounts for different cost-sharing
rules, in our work this is not possible insofar as the RECmem-
bers must have their own suppliers. Indeed, in our approach,
the repartition keys are optimised by a central entity (ECM)
and communicated to the DSO so that the meter readings of
the RECmembers can bemodified accordingly (smart meters
are therefore required). If the electricity provided locally is
insufficient to fully cover their needs, REC members can
resort to traditional retailer contracts and, to comply with
current regulation, they are free to choose their electricity
supplier. Consequently, the electricity demand of each REC
member is split into two flows whose sum amount to the
total electricity consumption of each REC member: (i) the
proportion of the overall local production allocated to them
through repartition keys; and (ii) the electricity supplied by
each member’s electricity supplier. Stability issues in a REC
may emerge from our approach when its members receive
asymmetrical (yet optimal) repartition keys (i.e., asymmetri-
cal fractions of the total locally generated electricity). As a
consequence, some members may leave the REC if they
do not perceive enough benefits from their participation.
To tackle this pitfall, the problem of stability is analysed in
depth in our work by studying the self-sufficiency rates of
the REC members, identifying trade-offs of suboptimal but
more acceptable solutions through our optimisation problem.
In particular, our paper expands the prevailing literature by:

• formulating and solving the problem of sharing the
electricity generated by end consumers in an energy
community context using a single centralised approach
which does not require the community manager to be the
electricity supplier of the community;

• designing this problem in a simple-to-deploy fashion,
effectively bridging academic research with real-life
application;

• ensuring the stability of the solution method by explor-
ing potential trade-offs between the optimality of the
solution (i.e., the most cost-effective one) and the profits
of all REC members (i.e., symmetry of the solutions
among REC members).

In Table 1, a comparison of this article in the context of the
existing literature is shown, highlighting the identified gap in
the literature our work aims to fill.

Following this introduction, the remainder of the paper
is structured as follows: Section II formalises the allocation
problem faced by the ECM to compute repartition keys that
distribute the electricity locally generated within an REC.
Section III discusses the stability and sustainability of the
REC and proposes two alternative formulations that have the
potential to make the RECmore stable. Section IV introduces
four examples that illustrate the proposed algorithms. Finally,
Section V concludes the paper.
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TABLE 1. Comparison of the existing literature. In this table, when the paper does not specify it, we have assumed that prosumers are free to choose
their electricity supplier.

II. ENERGY COMMUNITY WITH REPARTITION KEYS
This section presents the problem of computing the electricity
exchanges between the members of an REC. In particu-
lar, we describe this as an allocation problem whereby the
electricity produced by the REC members which cannot be
absorbed by them, is made available for the rest of the REC
members. The ECMmust, therefore, optimally distribute this
available electricity among the REC members. To carry out
this optimisation, in this paper we put forward an aggregated
cost minimisation of the sum of electricity bills of all REC
members. These bills, charged to them by their electricity
suppliers, consist of four elements: (i) imports from the sup-
plier, (ii) exports to the supplier; (iii) imports from the REC,
and (iv) exports to the REC.

As previously explained, these four flows can be controlled
through repartition keys representing the percentage of total
available local electricity assigned to each REC member.
The repartition keys are optimally computed ex-post (i.e.,
after the physical delivery of electricity) by the ECM, whose
access to the time-series of demand and generation must be
granted—one repartition key per REC member and metering
period (defined as the meter’s resolution e.g., 15 minutes) is
computed. Performing this computation ex-post guarantees
the scalability and convergence of our approach, and facili-
tates the flow of information since the demand and generation
are already known (i.e., no need to rely on forecasts). The
new flows obtained after the computation of the repartition
keys (imports and exports from/to the supplier and the REC)
are then relayed to the DSO managing the meters so that
the meter readings of the REC members can be modified
accordingly. Each REC member’s electricity supplier can
then compute the electricity bill accounting for the optimi-
sation of the keys. In Figure 1, a flowchart of the process of
computing repartition keys is presented.

A. MATHEMATICAL DEFINITION OF THE REC WITH
REPARTITION KEYS
Let T = {1, . . . ,T } denote the set of all metering periods in
the optimisation horizon where T is the last time step of the

simulation’s horizon. The metering period is defined by the
intervals (t, t + 1] contained in T. In addition, a set of REC
members is defined as I = {1, . . . , I }. These members are
characterised by their total production –if any– and consump-
tion profiles, given as time series whose resolution is equal to
the metering period, and span the entire optimisation horizon.
Since REC members may be prosumers, their consumption
per metering period must be netted so that their electricity
generation is first used to cover their own electricity demand.
The consumption and net consumption are denoted by Ct,i
and Cn

t,i, respectively. Similarly, the production must be net-
ted to account for any behind-the-meter consumption. The
production and net production are denoted by Pt,i and Pnt,i,
respectively.

Cn
t,i = max

{
0,Ct,i − Pt,i

}
∀(t, i) ∈ T × I, (1)

Pnt,i = max
{
0,Pt,i − Ct,i

}
∀(t, i) ∈ T × I. (2)

Commonly, producers sell some of their net production to
the community, which may not be able to consume it all. The
local production sold by REC member i at metering period
(t, t + 1] is denoted as yt,i and bounded by Pnt,i, as:

yt,i ≤ Pnt,i ∀(t, i) ∈ T × I. (3)

The set of repartition keys are defined per REC member i
and metering period t . They are computed through the deci-
sion variables ki,t and can be used to determine the allocated
production to each REC member at each metering period,
such that:

at,i = kt,i ·
∑
i∈I

Pnt,i ∀(t, i) ∈ T × I, (4)

where at,i represents the allocated production. This allocated
production, nevertheless, is not necessarily the one accepted
by the DSO to correct the meter readings. For instance, if the
total net production (

∑
i∈I P

n
t,i) is greater than the total net

consumption (
∑

i∈I C
n
t,i), Equation (4) may lead to alloca-

tions that are, in fact, larger than the total net consumption.
To avoid such situations, a second set of constraints com-
putes the verified allocated production vt,i, which takes the
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FIGURE 1. Sequential flowchart of the process of optimising repartition keys to minimise the global electricity bill
of the renewable energy community (REC) members. (1) REC members send the actual electricity consumption to
the energy community manager (ECM). (2) The ECM aggregates the consumption and generation of REC members
and optimises the global electricity bill of the community by computing repartition keys and sending them to the
REC members. (3) The REC members then send the optimal consumption and generation (withdrawals and
injections) from the network to their electricity suppliers. (4) Finally, the suppliers send the electricity bills to the
members, accounting only for the optimised consumption and generation. Note that the aggregated
consumption/generation of the REC remains constant, and so does the actual electricity flows.

smaller value between the allocated production and the net
consumption:

vt,i = min
{
at,i,Cn

t,i
}
∀ (t, i) ∈ T × I. (5)

In addition, the sum of the verified allocated production must
be equal to the sum of local production sold over the set I, for
each metering period:∑

i∈I

vt,i =
∑
i∈I

yt,i ∀t ∈ T. (6)

The computation of the repartition keys aims at minimising
the sum of individual electricity bills of the REC members,
expressed as:

Bt,i = ξbi ·
(
Cn
t,i − vt,i

)
+ ξ l−i · vt,i − ξ

l+
i · yt,i − ξ

s
i

·
(
Pnt,i − yt,i

)
∀(t, i) ∈ T × I, (7)

where ξbi is the overall retail electricity price of member i
(including transmission, distribution, commodity, and taxes),
and ξ si is the electricity selling price to the supplier of member
i. Similarly, ξ l−i is the internal electricity price for imports
including taxes, local distribution (which may also include a
fee for the transmission system operator), and energy, and ξ l+i
is the internal selling price of electricity.

B. COMPUTATION OF THE REPARTITION KEYS
The problem of allocating locally generated production by
means of repartition keys can be expressed as a linear
program.

In this linear program, the vector of decision variables is
z =

(
kt,i, yt,i, at,i, vt,i

)
∈ Z . Note that there is no time-

coupling in this linear program and that the objective function

Linear program 1 Allocation of Local Electricity Through
Repartition Keys

min
z∈Z

∑
i∈I

∑
t∈T

Bt,i, (8)

subject to:

at,i = kt,i ·
∑
i∈I

Pnt,i ∀(t, i) ∈ T × I, (9)∑
i∈I

vt,i =
∑
i∈I

yt,i ∀t ∈ T, (10)

yt,i ≤ Pnt,i ∀(t, i) ∈ T × I, (11)

vt,i ≤ at,i ∀(t, i) ∈ T × I, (12)

vt,i ≤ Cn
t,i ∀(t, i) ∈ T × I, (13)∑

i∈I

kt,i ≤ 1 ∀t ∈ T, (14)

kt,i ∈ [0, 1] , (15)

yt,i, at,i, vt,i ∈ R+. (16)

is aggregated over T for simplicity to reflect the real electric-
ity bills—the linear problem could be solved T times and then
aggregated to obtain the same results.

The objective function (Equation (8)) aims at minimis-
ing the sum of electricity bills of the REC members (see
Equation (7).

Equation (9) computes the optimised allocated production.
Equation (10) sets the total allocated production equal to the
total production sold by the REC members. Equation (11)
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limits the production sold to the total available production.
Equations (12) and (13) limit the verified allocated produc-
tion to the smaller value between allocated production and
demand. Finally, Equation (14) limits the sum of the repar-
tition keys of the REC members to 1 (100%), meaning that
the local production shared among the REC members cannot
exceed the total electricity produced within the REC.

III. SUSTAINABILITY OF THE COMMUNITY
The optimisation of repartition keys through a central man-
ager such as the ECM leads to the minimum overall costs
for the REC. Through this optimisation problem, outlined in
Equations (8) – (14), the ECM distributes the total available
local electricity among the REC members depending on the
associated price signals for each type of electricity exchange.
First, the demand of the REC members is covered with
the local generation available, assuming that REC internal
exchanges are less expensive than that of the suppliers. Then,
if the available local generation is not enough, the REC
members purchase the remaining of their electricity needs
from their electricity suppliers; if, on the other hand, the
available local generation is in excess, the REC members
sell the surplus to their electricity suppliers. As stated in the
introduction, this optimisation problem is solved as a single
centralised computation, decreasing the complexity of the
problem since REC members do not need negotiate the elec-
tricity trades—the resulting problem is computationally inex-
pensive, as demonstrated in Appendix V. Moreover, since the
optimisation problem can be cast as a linear program, the
minimum costs obtained are globally optimal.

This approach though, is not free of challenges. Indeed,
the global optimisation will find a global optimum (min-
imum costs) for the whole REC, however, the individual
costs of each REC member are not necessarily minimised.
For instance, if two REC members have differing retailer
contracts, the centralised algorithm will allocate the local
electricity to the member with the pricier contract first, and
only then, allocate it to the cheaper one. In consequence, some
RECmembers may not perceive enough overall benefits from
the REC, which has the potential to destabilise the REC as
some of the members may leave the energy community.2

This is a known problem, and several authors in the existing
literature have described and tackled it by resorting to cost
and revenue sharing among the REC members through a
market clearing mechanism, ensuring that no REC member
is penalised as a result of their participation in an REC [31],
[33], [38], [41]. However, these approaches demand that the
ECM be not only the market facilitator but also the electricity
supplier of all REC members, which is not foreseen by the
current regulation. To overcome this pitfall, we propose two
alternative solutions to the cost and revenue sharing problem
based on: (i) the computation of self-sufficiency rates; and
(ii) the use of initial repartition keys which are exploited in

2Note that, although in the context of our work we do not analyse the
overhead of becoming part of an REC, it is foreseeable that REC members
incur in some extra costs for participating (e.g., ECM fee).

the optimisation problem to compute the optimal repartition
keys. In the remainder of this section, the two options are
discussed.

A. REVENUE SHARING THROUGH SELF-SUFFICIENCY
RATE
The first of our proposed solutions to formulate a cost and
revenue sharing mechanism where the ECM does not need to
act as the electricity supplier of the REC, is based on the com-
putation and optimisation of the self-sufficiency rate (SSR).
The SSR is defined as the fraction of the REC members’
electricity consumption which is covered by local electricity
generation (i.e., within the REC), and can be computed on an
aggregated and on an individual basis (i.e., for the entire REC
and for each RECmember individually). In the following, the
definition of the SSR for one REC member is presented.

The covered consumption of member i is equal to the
sum of the member i’s self-consumption and the local elec-
tricity generation from other members allocated to mem-
ber i: this is calculated as Pt,i − yt,i + vt,i. However,
since the allocated production may be greater than the
total consumption Ct,i, the covered consumption must be
expressed as min

{
Pt,i − yt,i + vt,i,Ct,i

}
. In this last expres-

sion, if yt,i is positive, then Pt,i − yt,i + vt,i must be greater
or equal than Ct,i by design of the optimisation problem
(see Equations (2) and (3)). Therefore, the previous expres-
sion can be simplified as min

{
Pt,i + vt,i,Ct,i

}
. Formally, the

SSR over the horizon T of member i is denoted by ssri and
computed as:

ssri =

∑
t∈T min

{
Pt,i + vt,i,Ct,i

}∑
t∈T Ct,i

∀i ∈ I. (17)

According to this definition, the SSR depends on the
amount of local electricity each REC member receives from
the REC and on their own consumption. Consequently,
assuming that the internal exchanges within the REC are
less costly than the traditional retailer contract of the REC
members, the SSR strongly relates to the potential cost sav-
ings of the REC members. If this assumption holds true, the
SSR is a direct measure of the level of benefit each REC
member derives from the REC. In that case, the SSR can
be used to ensure that all REC members benefit from their
participation in the REC in terms of energy and cost. To that
end, a minimum SSR, denoted by SSRmini may be defined and
enforced to each member as:

SSRmini ≤ ssri ∀i ∈ I, (18)

therefore enduring a minimum return to each participant
joining the energy community.

The concept of minimum SSR can be integrated in the
minimisation algorithm presented in the previous section,
embedding it in the optimisation problem. Thus, a second
linear program can be written:

In this linear program, the vector of decision variables is
z =

(
kt,i, yt,i, at,i, vt,i

)
∈ Z .
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Linear program 2 Computation of Repartition Keys With
Minimum SSR

min
z∈Z

∑
i∈I

∑
t∈T

Bt,i, (19)

subject to:

Equations (9) – (16),

SSRmini ≤

∑
t∈T min

{
Pt,i,Ct,i

}
+ vt,i∑

t∈T Ct,i
∀i ∈ I. (20)

The newEquation (20) computes the SSR of everymember
(ssri), enforcing minimum values (SSRmini ) for all of them.
Note that the enforced values are encoded as a vector of
minimum SSR of size |I| (one per member), therefore each
member may have a different enforced value. This last equa-
tion may lead to infeasible solutions by enforcing overly
ambitious SSRmini —the SSR depends on the real consumption
and generation within the REC and Equation (20) only redis-
tributes it among the REC members. If the minimum SSR
enforced (i.e., SSRmini ) leads to an unfeasible solution, it needs
to be redefined by the ECM. Observe that the numerator in
Equation (20) is a linearisation of the numerator in Equa-
tion (17). The two versions can be shown to be equivalent,
and the mathematical proof can be found in Appendix B.

B. MINIMUM REVENUE THROUGH INITIAL REPARTITION
KEYS
The second solution we propose to the formulation of a cost
sharing mechanism that helps ensure the sustainability of the
REC, without the need for the ECM to act as the electricity
supplier of all REC members, makes use of a set of initial
repartition keys in addition to the optimised ones. With these
two sets, the optimal keys would be computed based on the
initial ones. Introducing a set of initial repartition keys can
help reduce the uncertainty faced by REC members when
joining an REC—as we will see in this section, the initial
keys can help ensure a minimum revenue per REC member,
increasing the stability of the REC as members are more
certain of the outcome of their participation.

This initial set of keys should be contractual (i.e., agreed
upon between the ECM and the RECmembers) and, similarly
to the optimised set of keys, represent an agreed –initial–
allocation of the local electricity generation to be provided
to each REC member. The set of initial keys can be pre-
computed by the ECM based on historical consumption data
of the prospective members, as well as historical data on
total available electricity allocation. Then, based on the initial
keys, the ECM can recalculate (optimise) the allocation of
local electricity generation, computing the optimal set of
repartition keys. When performing this optimisation, a tol-
erance can be agreed and set around the initial repartition
keys so that the optimised ones do not deviate beyond some
hard limit. As previously explained, the set of initial keys

and a the tolerance reduce the uncertainty faced by REC
members toward the decision to join the REC, as they have
prior knowledge on the minimum revenue the will perceive
(i.e., agreed initial keys minus tolerance), thus increasing the
probability of a successful and sustainable community.

Let Ki denote the set of initial repartition keys, which is
only member dependent (i.e., a vector of keys whose size is
|I|). These keys lead to an initial allocation of local electricity,
denoted by Ai, and expressed as:

Ai = Ki ·
∑
i∈I

Pnt,i ∀(t, i) ∈ T × I. (21)

Moreover, the tolerance around Ki beyond which the optimal
set of keys kt,i cannot deviate, is given by Xt,i:

Xt,i =
∣∣kt,i − Ki∣∣ ∀(t, i) ∈ T × I. (22)

The initial set of keys and tolerance and, by extension,
the initial allocation of local electricity generation can be
integrated into Linear program 1, thus creating a new linear
program.

Linear program 3Computation of Repartition KeysWith an
Initial Set of Keys

min
z∈Z

∑
i∈I

∑
t∈T

Bt,i + ξd ·
(
a+t + a

−
t
)
, (23)

subject to:

Equations (9) – (16),

at,i − Ai ≤ a+t ∀(t, i) ∈ T × I, (24)

Ai − at,i ≤ a−t ∀(t, i) ∈ T × I, (25)

kt,i − Ki ≤ Xt,i ∀(t, i) ∈ T × I, (26)

Ki − kt,i ≤ Xt,i ∀(t, i) ∈ T × I, (27)

a+t , a
−
t ∈ R+. (28)

In this linear program, the vector of decision variables is
z =

(
kt,i, yt,i, at,i, vt,i, a

+
t , a
−
t
)
∈ Z .

The objective function of this linear program
(Equation (23)) has as an additional term compared to
Equation (8). This extra term is introduced to deal with cases
with multiple solutions to the optimisation problem, which
may occur, for instance, if the sum of the net consumption
of the members of the REC is greater than the sum of the
net production, and all members buy and sell energy at the
same price to their electricity suppliers. In such a context,
this extra term favours a solution that distributes the local
production equally among the REC members, something we
believe is desirable. Without this term, the allocation in these
cases would be uneven, favouring some users depending on
the optimisation solver numerical preferences. The price ξd

is, in effect, fictive, andmust be low (a fraction of the smallest
among the rest of the price signals) to avoid interfering with
the computation of the optimal repartition keys based on a
minimisation of the electricity bill.
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TABLE 2. Price signals in EUR/MWh.

TABLE 3. Test case 1 – inputs.

IV. CASE STUDY
This section introduces four different examples to study
the performance of the linear programs presented in
Sections II and III. Additionally, a complexity analysis has
been carried out, and can be found in Appendix A.

The first two examples focus on Linear program 1—these
cases illustrate the proposed methodology in (i) a simple
numerical example to showcase its functioning, and (ii) a
real test case showing a cost analysis derived from the use
of this optimisation problem. The third example analyses
the introduction of revenue sharing through the computation
of the SSR, following Linear program 2. Finally, the fourth
example focuses on Linear program 3, studying the impact
of introducing initial contractual repartition keys on the costs
of the RECmembers. Whilst the first two examples showcase
the general functioning of the proposed optimisation problem
using repartition keys, the last two aim to illustrate the cost
sharing mechanism behind the two alternative algorithms
presented in this work.

To perform the simulations, a set of price signals is needed.
For simplicity, these price signals are the same for all the
examples run in this paper.Moreover, we assume that all REC
members have similar retailer contracts both for imports and
exports from and to the grid. This does not imply that the
ECM is the electricity supplier of the REC and, in fact, REC
members have their own suppliers. Table 2 lists these prices.

A. TEST CASE 1: PERFORMANCE ON A SIMPLIFIED
EXAMPLE
The first example provides a simplified test case to acquaint
the reader with the salient properties of our approach. This
example features an REC with two consumers (User1 and
User2), one producer (User3) and one prosumer (User4). The
optimisation horizon is two metering periods, the first one
with more production than consumption, and the second one
with more consumption than production. Table 3 presents
the inputs used for this simulation: positive and negative
values correspond to consumption and electricity generation
respectively. The units in this example are kWh.

TABLE 4. Test case1 – outputs.

These inputs are used to optimise the repartition keys
and the allocation of local electricity generation to the REC
members. The results of this optimisation are presented in
Table 4 which lists the optimal set of repartition keys, the
allocated generation, and the sold electricity (both within the
REC and to the grid). The set of optimal repartition keys leads
to an optimal allocation of the generation among the REC
members by which any deficit of local electricity generation
is supplied by the retailers, whereas any excess is sold to
them. The optimal allocation of electricity generation is sold
and delivered either as local sales to REC members, or as
global sales to the REC members’ electricity suppliers.

In Table 4 we can see that for the first metering period,
local sales (sub-table C) amount to 0.46, which is the total
demand of the system (see Table 3). The electricity generation
surplus is 0.04, and is sold as global sales (sub-table D). In the
second metering period, local sales (sub-table C) are 0.32,
which correspond to the total available electricity generation
(see Table 3). Since, at metering period two, there is greater
demand than electricity generation, there are no global sales.
The distribution between local and global sales responds to
the different price signals and, in particular, to the different
spreads between ξbi − ξ

s
i and ξ l−i − ξ

l+
i (see Equation (7)

for the definition of the price signals). These spreads rep-
resent the final price per kWh that REC members pay to
consume electricity from their electricity suppliers in the first
case, and from the REC in the second one. In this exam-
ple, the first spread is 0.16 EUR/kWh and the second one
is 0.002 EUR/kWh, consequently, the optimisation problem
allocates as much as the local electricity generation as possi-
ble as local sales first, and then the rest as global ones.

B. TEST CASE 2: PERFORMANCE ON A REALISTIC
EXAMPLE
This second analysis introduces a more realistic set-up where
an REC with 23 consumers and one producer is simu-
lated over one year of operation. Input consumption data
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FIGURE 2. Annual electricity bills of the REC members. A positive value
represents a cost, whilst a negative value represents a revenue. Note that
in this particular example there are 23 consumers and one producer.

TABLE 5. Test case 2 – cost comparison between total and average
electricity bills (accounting for sales) with and without REC. The first
column corresponds to the aggregated bill, the second column
correspond to the average bill for the consumers, and the third column
corresponds to the average nevative cost (or revenue) for the producers.

corresponds to real measurements of small- and medium-
volume electricity consumers in Belgium over one year
(2017). In Appendix V, the consumption and production data
is illustrated in detail.

With these data, we have run the linear program presented
in Section II-B (Linear program 1) to optimise the reparti-
tion keys and, as such, the allocation of total available local
electricity generation to each REC member. With the optimal
allocations of the REC members, we have computed the
annual electricity bills of each of them, as per Equation 7.
In addition, we have also computed the annual electricity bills
of each user without REC, that is, in a situation where all of
their consumption and generation is purchased or sold via
their traditional retailer contracts, without considering any
local electricity market. These two electricity bills can then
be compared and are reported in Figure 2.

In this figure, positive values imply a cost, whilst negative
values imply a revenue for the REC members. We can see
that the deployment of an REC induces cost reductions in
annual electricity bills for all REC members. Furthermore,
the revenue (negative costs) of the only producer (SOLAR)
is increased when the REC is created. In Table 5, a cost
analysis is shown where the total electricity billing costs of
the REC and the average billing costs and revenue of the REC
members are shown.

The results in Table 5 show that creating an REC and
determining the allocation of total available local production
through an ex-post optimisation of the repartition keys, may
lead to significant overall savings for the REC. In particular,

in our test case, overall savings of up to 42% are attained.
These overall savings take into account both the reduced
costs for User1 – User23 (23.8%) as well as the increased
revenue of producer SOLAR (29.7%). The results obtained
through this analysis greatly depend on the price signals
associated to both retailer contracts and internal prices (see
Table 2). How to compute or select these prices, though,
falls out of the scope of our work, which aims to show a
methodology for allocating internal electricity flows based on
a known set of prices. For an analysis of the computation of
these prices, the reader can study the following works [31],
[33], [38], [41]—the set of assumptions needed in all these
studies, and in particular the need for the ECM to act also as
the single electricity supplier of all RECmembers, make them
not compliant with the latest European regulations. Since one
of the main goals of out work is to produce a framework
compliant with these regulations, in this paper we abstract
from any computation of the internal prices and rather fix
them in between the range given by an average retailer price
for consumption (220 EUR/MWh) and a wholesale price for
sales (60 EUR/MWh).

C. TEST CASE 3: MINIMUM SSR
After evaluating the performance of Linear program 1, the
third example, introduced in this section, analyses how the
revenue can be shared among the REC members through
the computation of the SSR, as explained in Section III-A,
following Linear program 2. To that end, we make use of the
same data set as in the previous test case (i.e., 23 consumers
and one producer).

To analyse the revenue sharing mechanism through the
computation of the SSR we have first solved Linear pro-
gram 2, without enforcing the SSR constraint (Equation (20)).
This means that at first this constraint is not tight and the
SSR of the RECmembers is freely optimised to minimise the
overall REC billing costs. Then, we have enforced the bound
by selecting positive values of SSRmini , effectively tightening
Equation (20) for all REC members at the same time. The
values can be then progressively increased until reaching the
maximum possible SSR before inducing infeasibilities. In our
example, this occurs at an SSR of 42%, and any value on the
left hand side of Equation (20) greater than this leads to a non
feasible space of solutions. The findings of this analysis are
presented in Figure 3.

1) NO MINIMUM SSR (Figure 3a)
In this figure we observe that the values of ssri span from
32.6% for User20 to 94.1% for User21. In terms of billing
costs, this means that 32.6% of the electricity consumption
of User20 will be paid at internal price (i.e., ξ l−i ) and
67.4% at retail price (i.e., ξbi ). On the other hand, User21
will pay 94.1% of the electricity consumption at internal
price, and 5.9% at retail price. The final electricity bill of
the REC members will depend on the spread between retail
and internal prices for each REC member. A positive spread
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FIGURE 3. SSR of the REC members before and after enforcing a
minimum SSR for all of them of 42%.

(retail minus internal) may induce bill savings for the REC
members when comparing to the case without REC. In our
example, if no minimum SSR is enforced, the creation of an
REC induces bill savings of 17.8% to User20 and 51.3%
to User21. These savings are computed with respect to the
traditional retailer contracts the members would have without
an REC.

2) MINIMUM SSR OF 42% (Figure 3b)
In this figure, the values of ssri span from 42% (User1 –
User7, User9, User11, User14, User16, and User18
–User20) to 90.1% (User21). Following a similar analysis
as the previous one, and focusing on the same two users
(User20 and User21), we can see that creating an REC
and enforcing a minimum SSR of 42% to all REC members
induces savings of 22.9% to User20 and 49.6% to User21.
This indicates that enforcing a minimum SSR has a redistri-
butional effect of the bill savings among the REC members.
In particular, User20 sees the bill savings increase by 5.1%
compared to the case where no SSR is enforced whereas
User21 sees the bill savings decrease by 1.7%.

FIGURE 4. Difference in the billing costs of REC members, with and
without enforcing any minimum SSR (42%).

An important remark of the redistribution of local electric-
ity generation taking place as a result of enforcing aminimum
SSR is that, since the total available local electricity remains
constant (these optimisations are performed ex-post with real
consumption and generation data which are fixed and not
optimised), enforcing a minimum SSR can be seen as a zero-
sum game where in order to increase the SSR of some REC
members, it must be withdrawn from others. This implies
that enforcing a high minimum SSR for all REC members at
once results in a flattened distribution of the SSR across the
REC members, as can be observed moving from Figure 3a
to Figure 3b. The consequence of this flattening is that, even
though the SSR of the REC is constant (44%) as it depends
solely on the total available local electricity, the average SSR
of the RECmembers is eroded, decreasing from 58% to 56%.
This decrease has no impact on the overall billing costs of
the REC, which depend on the SSR of the REC (constant),
however, it affects how these costs are distributed, creating a
divergence with respect to the case where nominimumSSR is
enforced. This divergence can be quantified, and is illustrated
in Figure 4 which showcases the difference between the
billing costs of all REC members when SSRmini = 0% and
when SSRmini = 42%.

Figure 4 shows that members who are forced to give up part
of their SSR (ssri) when enforcing a minimum SSR (SSRmini ),
incur higher costs than before enforcing it. Conversely, those
members who see their ssr increased after enforcing a min-
imum SSR, incur lower costs than before. In this example,
the REC members’ gains range from 0.25% for User16 to
9.5% for User23, whereas the losses range from−1.5% for
User2 to −6.5% for User20. In this figure, we can also
observe that the difference between total gains and total losses
is asymmetrical, the losses (positive values) outweighing the
gains (negative values),3 which is consistent with the decrease
in average SSR from 58% to 56%.

3These values represent a fictitious cost difference for the same RECwhen
applying different minimum SSR rules and are not comparable with the costs
reported when explaining Figure 3.
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D. TEST CASE 4: IMPACT OF INITIAL REPARTITION KEYS
In this last example we analyse the minimum revenue of REC
members obtained through the use of initial repartition keys
as described in Section III-B, Linear program 3. To that end,
we must define the initial keys Ki and the tolerance Xt,i.

In this example, we test two different types of initial repar-
tition keys (Ki):

• Uniform: evenly distributed among the REC
members—all members with positive net demand
receive the same percentage of the total available local
electricity.

• Proportional: each member obtains a percentage of the
total local available electricity which is proportional to
their average demand over the simulated period—each
member receives a different initial key, constant over
time.

Both sets of initial keys can be pre-computed by the ECM
based on historical data of the REC members.

As for the tolerance (Xt,i), in this section’s anal-
yses, we have run a sensitivity to several values:
[0, 1, 3, 5, 10, 20, 30, 50, 100]. All these values are given in
percentages of the initial repartition keys—they indicate how
much (in percentage) the optimal set of keys can deviate
from the given initial keys (from 0% to 100%). A small
tolerance constraints the space of solutions of the optimal set
of keys whereas a large tolerance provides more freedom to
the optimisation.

With these parameters, we have analysed three effects
on the REC: (i) the level of use of the internal market
(i.e., amount of exchanges within the REC relative to the
total exchanges); (ii) the billing costs for the REC mem-
bers, and (iii) the allocated local electricity among the REC
members. To carry out these analyses, a small REC is
selected, composed of six REC members: five consumers
(User1 – User5) and one producer (User6). The simu-
lation horizon is one month (April 2017). More information
concerning the simulation data can be found in Appendix C.

1) LEVEL OF USE OF THE INTERNAL MARKET
To evaluate the level of use of the internal market, we have
computed the spread between electricity sales in the internal
market, or local sales (yt,i) and electricity sales to the retailer,
or global sales (Pnt,i − yt,i). This spread is strictly positive if
local are greater than global sales. This analysis is presented
in Figure 5
Figure 5 shows that for the two sets of initial repartition

keys tested (uniform and proportional), setting a maximum
tolerance Xt,i = 100% meaning that the optimised keys
are free to change, leads to the same spread between local
and global sales (right hand side of Figure 5). However,
they differ when Xt,i < 100%. When applying proportional
static initial keys, the spread is always positive and increases
with the value of Xt,i. On the other hand, applying uniform
initial keys leads to negative spreads when Xt,i < 5%. This
analysis shows that when no limitation on the tolerance Xt,i

FIGURE 5. Total electricity sold in the internal REC market (local sales)
and to the retailer (global sales) for a range of tolerances Xt,i .

FIGURE 6. Costs of the REC members for a range of tolerances Xt,i ,
relative to the costs when Xt,i = 0.

is imposed, the optimisation problem finds the same solution
regardless of the initial keys. However, when this constraint is
tight (Xt,i < 100%), the selection of initial keys has a notable
impact on the results. From the REC members perspective,
proportional initial repartition keys favour local sales more
than uniform ones—assuming that the local market is eco-
nomically beneficial with respect to the grid, proportional
initial keys are desirable as they lead to lower costs for the
REC members.

2) BILLING COSTS OF THE REC MEMBERS
In this analysis we evaluate the individual costs of the REC
members using the range of tolerances Xt,i and the two types
of initial keys previously exposed. Results of this analysis are
shown in Figure 6.
In this Figure we can see the billing cost evolution of

all REC members for an gradually increasing value of the
tolerance (Xt,i). This evolution is shown in relative increase
(or decrease) compared to the billing cost when the toler-
ance is 0% (i.e., when the initial and the optimised keys
are the same). In Figure 6, positive values correspond to
revenue, while negative values correspond to costs. In this
example we can observe that, as the tolerance constraint is
loosened (increasing the value of Xt,i), the costs decrease
for User1 – User5 decrease and the revenue increases for
User6. Moreover, these trends are similar regardless of the
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FIGURE 7. Allocated local electricity generation of the REC members for a
range of tolerances Xt,i relative to the allocated electricity when Xt,i = 0.

initial repartition keys used, however, the magnitude of costs
and revenue are different, and are significantly larger when
using uniform instead of proportional initial repartition keys.
The savings of User1 – User5 for uniform keys span
from 1% to 8%, whereas for proportional they span from
0.5% to 4%. Likewise, the increase in revenue of User6
is up to 16% with uniform keys and 8% with proportional
keys. The reason for these significant differences lies on the
initial solution provided by the two types of initial repartition
keys—uniform keys provide an initially worse solution (in
terms of costs and revenue) than proportional keys, therefore
when the tolerance is increased (effectively allowing more
freedom to the optimisation program to compute the opti-
mised keys), the improvement in costs and revenue is more
apparent when uniform initial keys are employed. This effect
reinforces our previous conclusion that using proportional
initial keys, that is, keys that are proportional to the demand
of the REC members, seems to be a good practice, which
concurs with current practices as seen in [47]. This remark
holds true as long as the billing costs are based mainly on
volumetric charges which depend on energy consumption, for
other types of charges (capacity, fixed, or time-of-use), more
analyses are needed.

3) ALLOCATION OF LOCAL ELECTRICITY
In this analysis we show the allocation of local electricity
(for the same range of tolerances Xt,i as in the previous
analyses) as its relative increase (or decrease) with respect
to the allocation when the tolerance is 0% (i.e., when initial
and optimised keys are equal). This analysis is presented in
Figure 7.
The trends followed by the REC members’ allocated

production are similar for both uniform and proportional
keys—in both cases this trend is upward when the value of
the tolerance Xt,i is gradually relaxed (i.e., increased from
0% to 100%). However, the magnitudes of these trends and
the members involved are different—whilst with uniform
initial keys the allocated electricity reaches around 100%
for User1 and User4, with proportional ones the allo-
cated electricity only reaches around 70% for User3. The

difference in these results stems from the different consump-
tion profiles of the REC members and the way the initial
keys allocate the initial local electricity generation. Uniform
keys allocate the same local electricity to all REC members,
whereas proportional keys allocate the electricity based on
the average demand of each REC member with respect to
the overall demand of the REC. In this case, the average
demand of User3 is lower than the other members, thereby
the proportional keys provide a low initial electricity allo-
cation. This low initial allocation might not be the most
cost-effective solution of the problem though. For instance,
the consumption of User3, although lower than the rest,
is better synchronised with the generation and, consequently,
relaxing the tolerance (increasing it), provides more room for
the optimisation problem to find a better (more economic)
solution by increasing the allocated local electricity to this
member. On the other hand, when using uniform keys, the
allocated local electricity is not enough to cover the demand
of User1 and User4, and when the constraint is relaxed
more allocation is provided to these two members. Note that
regardless of the initial keys, relaxing the constraint on the
tolerance leads to a better (less costly) allocation of local
electricity for all REC members, matching more efficiently
supply and demand. However, the initial keys play an impor-
tant role ensuring a minimum allocation (and therefore a
minimum revenue), potentially fostering the rollout of RECs.
Moreover, the magnitude of the changes in allocated local
electricity when the tolerance is increased with uniform keys
is larger than with proportional ones, once again suggesting
that the later lead to a better initial solution, as other authors
(see for instance [47]) have already highlighted.

V. CONCLUSION
This paper proposes a flexible and practical modelling solu-
tion to the financial optimisation of renewable energy com-
munities (RECs) that complies with current regulations and
can readily be adopted by REC managers. This solution
relies on the use of repartition keys, representing proportions
of overall local electricity generation available within the
REC. In our methodology, the total surplus of electricity
of the REC is aggregated and optimally allocated to the
REC members through repartition keys obtained by solving
a linear program after the physical delivery of electricity
(using real data of electricity consumption and generation of
the REC members). Then, the billing process of the REC
takes these keys into account to send the correct bills to
each RECmember, thus effectively optimising their financial
flows ex-post , which, for each REC member, are broken into
two: (i) the lump sum owed to the REC, and (ii) the rest of
the bill corresponding to traditional retailing contracts. The
repartition keys, therefore, determine the optimal trade-off
between these two flows for each REC member.

Furthermore, to enhance the economic sustainability of
the REC, this paper proposes two additions to this algo-
rithm to (i) share the revenue among the REC members, and
(ii) ensure a minimum revenue for each of them. The first
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TABLE 6. Running times of the proposed algorithm.

one (revenue sharing) is achieved through the computation
of self-sufficiency rates, which represent the amount of elec-
tricity demand covered by the REC with respect to the total
demand. The second one (ensuring a minimum revenue) is
done through initial repartition keys, which are used as a base
for the computation of the optimised ones. Thanks to these
two approaches, the REC members can better estimate the
economic benefits they will derive from the REC, prior to
their participation, thus enhancing the probability of a stable
community.

We have thoroughly tested this framework, and the results
show that all REC members can economically benefit of its
participation within the REC. They also show that: (i) the
stability of anREC can be improved bymaking use of revenue
sharing or minimum revenue methodologies, which is likely
to enhance the economic benefits some of the REC members
derive from the REC; and (ii) using initial repartition keys
which are proportional to the average historical demand of
REC members are often a good first approximation, espe-
cially when the retail tariffs of the members are similar.
The latter observation concurs with current practices in the
literature.

The methodology presented in this paper has been tested
and is currently being implemented by industrial partners
in different REC managed by them. After discussing the
ex-post optimisation of financial flows, a more comprehen-
sive approach where the control of physical flows within the
REC is also accounted for is a potential way to expand our
work.

APPENDIX A COMPLEXITY ANALYSIS
In the final section of the results, we present an analysis of
the complexity of the methodology proposed. The number
of constraints of the optimisation is Ncons = 9|T||U| +
|T| + |U| and the number of variables Nvar = 17|T||U| +
2|T| + |U|. Table 6 introduces the running times for different
complexities, ranging from 15 days with 10 REC members
to one month with 100 members. The optimisation problem
is implemented with Pyomo in Python 3.8 and solved with
the open source solver CBC. Simulations are performed on
a GNU/Linux machine with an Intelr Core i7-8665U and
16 Gb of RAM.

APPENDIX B LINEARISATION OF THE SSR
Focusing on the numerator in Equations (17) and (20):

If Pt,i > Ct,i, the net consumption is Cn
t,i = 0 and thereby

vt,i = 0 as per Equation (13). In this case, the two numerators
become equal to min

{
Pt,i,Ct,i

}
.

FIGURE 8. Consumption profiles of the REC members (blue), aggregated
consumption of all REC members in a load duration curve (red), and
residual consumption in a load duration curve (green). One year data:
used in test cases IV-B and IV-C.

FIGURE 9. Consumption profiles of the REC members (blue), aggregated
consumption of all REC members in a load duration curve (red), and
residual consumption in a load duration curve (green). One month data:
used in test case IV-D.

If Pt,i ≤ Ct,i, the net consumption is Cn
t,i ≥ 0, and thereby

vt,i ≥ 0. Then, by definition of vt,i:

vt,i ≤ Cn
t,i = Ct,i − Pt,i (29)

Pt,i + vt,i ≤ Pt,i + Cn
t,i = Ct,i. (30)

As Pt,i+vt,i ≤ Ct,i, the numerator in Equation (17) becomes:

min
{
Pt,i + vt,i,Ct,i

}
= Pt,i + vt,i, (31)

which is equal to min
{
Pt,i,Ct,i

}
+ vt,i since Pt,i ≤ Ct,i.

APPENDIX C CONSUMERS DATA
In Figures 8 and 9, the consumption and production data of
the REC members for the one year and one month analyses
respectively, is summarised. In these figures, the raw data of
electricity consumption of the REC members is presented in
blue. In addition, two load duration curves (LDC) are shown:
the LDC of aggregated electricity consumption of the REC
members can be seen in red, and the LDC of aggregated elec-
tricity consumption subtracting aggregated electricity genera-
tion, that is, the residual consumption of the system, is shown
in green.
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Figure 8 presents the data corresponding to test
cases IV-B and IV-C. In this figure we can observe that the
solar generation covers the demand of the REC roughly
60 days of the year. The rest of the time, the presence of solar
generation reduces the residual consumption significantly.
In particular, we can see that the peak consumption (left of the
curves) is significantly reduced with solar generation, up to
40-50%, whereas the baseload is only reduced by 10–20%.

Figure 9 presents the data corresponding to test case IV-D.
In this figure we can observe that the solar generation covers
the demand of the REC roughly three days of the month. The
rest of the time, the presence of solar generation reduces the
residual consumption evenly, slightly more on the baseload
(≈ 0%) than on the peaks (≈ 5%). In this case, the baseload
does not cover the whole period, since the electricity load
of the five consumers is or negligible for about half of the
month (small consumers with little to no consumption during
the night).
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