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ABSTRACT Autonomous driving in urban environments requires intelligent systems that are able to deal
with complex and unpredictable scenarios. Traditional modular approaches focus on dividing the driving
task into standard modules, and then use rule-based methods to connect those different modules. As such,
these approaches require a significant effort to design architectures that combine all system components,
and are often prone to error propagation throughout the pipeline. Recently, end-to-end autonomous driving
systems have formulated the autonomous driving problem as an end-to-end learning process, with the goal
of developing a policy that transforms sensory data into vehicle control commands. Despite promising
results, the majority of end-to-end works in autonomous driving focus on simple driving tasks, such as lane-
following, which do not fully capture the intricacies of driving in urban environments. The main contribution
of this paper is to provide a detailed comparison between end-to-end autonomous driving systems that tackle
urban environments. This analysis comprises two stages: a) a description of the main characteristics of
the successful end-to-end approaches in urban environments; b) a quantitative comparison based on two
CARLA simulator benchmarks (CoRL2017 and NoCrash). Beyond providing a detailed overview of the
existent approaches, we conclude this work with the most promising aspects of end-to-end autonomous
driving approaches suitable for urban environments.

INDEX TERMS Autonomous driving, end-to-end, imitation learning, reinforcement learning, urban envi-
ronments.

I. INTRODUCTION
In the last decades, the field of autonomous driving (AD)
has received a massive amount of interest, both in
academia [1]–[6] and in industry [7]–[10]. The principal fac-
tor that triggered this interest concerns safety issues [11].
National Highway Traffic Safety Administration (NHTSA)
reported that 94% of accidents are caused by drivers [12].
Another key factor is related to the traffic flow. Replacing
humans by AD systems result in an optimized traffic flow,
offering both financial and environmental benefits [13]. The
benefits of fully AD appear to be considerable, which is
why the research on autonomous driving remains an active
area [14]. One of the most difficult challenges in this field
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concerns AD in urban environments [15]. Compared with
highway driving or lane following, urban environments pose
additional obstacles due to the unpredictability and variety of
agents present in the scene, as well as complex and uncertain
situations, such as pedestrians crossing lanes, traffic-lights,
intersections, among others. In 2007, during the DARPA
Urban Challenge [16], several researchers around the world
tested their AD systems in a controllable urban environment
and only six teams were able to complete the event [17]. The
environment used in DARPA still lacked certain aspects of
the real word, such as pedestrians and cyclists. Nevertheless,
the fact that six teams were able to complete the event was
extraordinary, especially at that time. Despite all the impres-
sive research in this area, fully AD systems capable of driving
in complex and unknown urban environments are still years
away and the main reason for this is the arduous task of
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generalization to unpredictable situations in a short period of
time [18].

AD systems are complex systems that integrate many tech-
nologies, from sensors, processing units, software, among
others. Therefore, AD systems need to deal with a wide
range of problems: sensor inaccuracies, hardware reliability,
object detection, localization, etc. The conventional approach
to tackle this diversity of problems consists of dividing the
driving task into standard modules such as object detection,
localization, path planning, etc. and then build rule-based
methods to connect the different modules [19]–[21] (see
Figure 1). This approach is commonly called modular, and
is widely used in the industry [7]. The interconnectivity
between different modules in a system is a problem exten-
sively investigated in the robotics field [22]. For example,
this interconnectivity between modules led to the creation of
frameworks, such as Robot Operating System (ROS) [23],
[24]. The modular architecture enables the development of
each module in an independent fashion facilitating the col-
laboration between all elements of the engineering team.
In addition, the development of individual and specific mod-
ules divides the autonomous driving task into a set of narrow
problems widely investigated in the literature, as is the case
of localization, computer vision, motion planning, among
others. Finally, interpretability constitutes one of the great
advantages of these modular approaches: as the entire system
is divided into modules, the source of a malfunction can more
easily be tracked to the responsible module.

The major disadvantage of modular systems is the ardu-
ous task of developing and maintaining the interconnection
between all modules in the system. For example, different
scenarios may require different connections between mod-
ules [25], which compromises the modularity paradigm. The
modular architecture is also prone to error propagation [26],
in which a minor error in one module can produce catas-
trophic results in another, for example, a misclassification
of a traffic-light can influence the decision-making process
to generate a path planning that leads to a collision. Addi-
tionally, as the modules are task-specialized, they may fail to
generalize to unusual conditions and unexpected situations.

More recently, end-to-end approaches emerged as an alter-
native technique to tackle the AD problem. The end-to-end
approach formulates the AD task as an end-to-end learning
process, in which the objective is to learn a policy capable of
transforming sensor data into control commands [14]. In gen-
eral, end-to-end architectures are simpler and have fewer
components thanmodular architectures (see Figure 1). Unlike
the modular paradigm, the end-to-end paradigm also captures
the human driving essence: a simultaneous perception and
action [27]. The downside of end-to-end systems is the lack
of interpretability [24]. It is difficult to track down the source
errors or to explain certain decisions taken by the model [25].
Over the years, the interest in the end-to-end approach for AD
was scarce, especially compared with the amount of research
done in modular approaches. However, due to the rise of
Artificial Intelligence [28]–[30] in the past years, and due

to the recent developments of Deep Reinforcement Learning
(Deep RL) [31]–[33] by Deep Mind [34], [35], end-to-end
approaches have begun to show promising results [36], [37].

In end-to-end approaches, there are two different learn-
ing methodologies: Imitation Learning (IL) and Reinforce-
ment Learning (RL). IL aims to learn a policy by observing
the actions performed by humans. It is a supervised learn-
ing approach, in which the model tries to mimic human
behavior [39]. NVIDIA achieved excellent results using
this methodology by training a convolution neural net-
work (CNN) to predict the steering angle of a vehicle [40].
One advantage of the IL methodology is that it can use solely
Deep Learning (DL) and merely optimize the parameters of
the model to reduce the difference between the model behav-
ior and human behavior. However, the process of scaling
an AD system based on IL is a challenging task due to the
impossibility of covering all possible scenarios in the training
phase [7].

RL methodologies aim to learn a policy that maximizes
the cumulative rewards received by an automatic system, as it
interacts with the environment [41], [42]. One variant of RL is
Deep RL, which combines DL with RL [43]. Although there
are some technical differences between RL and Deep RL, for
the purposes of this review, which is to differentiate IL and
RL, we will use the terms RL and Deep RL interchangeably.
In the case of RL, there is no need to collect data from human
driving, because as the agent interacts with the environment,
it learns how to behave in order to maximize the reward.
As the training of RL models occurs online, it is possible to
explore the environment and train simultaneously, which is a
great advantage compared with the IL models. The downside
is that RL is less data-efficient in the training stage [24].
Liang et al. combined the advantages of IL and RL by cre-
ating an IL model based on labeled data, and then optimizing
the policy using an online RL-based policy tuning [44]. One
crucial element of RL algorithms is the definition of rewards.
As the agent tries tomaximize the reward, the definition of the
reward function directly influences the behavior learned by
the agent. One common example is to reward the movement
towards the goal [7], [44], or to punish whenever a collision
occurs [45]. In 2018, Kendall et al. demonstrated the first
real-life application of RL in AD, in which they were able
to train a driving policy capable of learning how to follow a
lane in less than 30 minutes [7].

The application of end-to-end methodologies in AD is
relatively recent: the first use case was in 2016 [40].
In the three subsequent years, several approaches were pro-
posed focusing on simplified versions of AD, such as lane
following [46]–[51]. As expected, the application of end-to-
end AD in urban environments is even more recent: 65% of
the works found on this topic are from 2020 or 2021. As these
works are recent, the majority of reviews of AD do not
include their findings [20], [52], [53]. The only review solely
focused on end-to-end was proposed by Tampuu et al., where
the authors performed a thorough analysis of the different
architectures and training methods of end-to-end approaches
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FIGURE 1. Architecture of: (a) a modular approach [38], and (b) an end-to-end approach. The modular architecture consists of
several interconnected modules, whereas in the end-to-end architecture those different modules are replaced by a single,
learning-based module.

applied in AD [24]. However, their work was not focused
especially in urban environments, and therefore, some of the
findings should not be generalized to more complex environ-
ments. This paper presents the first review targeting end-to-
end autonomous driving in urban environments, which is
an emerging topic in the literature. The key contributions of
this paper are to provide:

• a description of the main differences between the suc-
cessful end-to-end approaches in urban environments;

• a quantitative analysis based on two CARLA simulator
benchmarks (CoRL2017 [54] and NoCrash [55]).

This paper considers only systems trained and tested
in the CARLA simulator for two reasons: a) CARLA is
considered the state-of-the-art open-source simulator for
self-driving cars [56]; b) to ensure a fair comparison between
all approaches. In [56], the authors performed an extensive
comparative analysis of six simulators based on features like
perception, path planning, 3D virtual environments, traffic-
scenario, scalability, etc. and concluded that CARLA outper-
forms all other simulators.

The remainder of this document is organized as fol-
lows: in Section II, we present a thorough analysis of the
most successful end-end AD systems in urban environments;
Section III evaluates the detailed approaches based on quan-
titative metrics; Section IV presents the conclusions.

II. DISCUSSION
In this section, we perform a thorough comparison of several
end-to-end AD approaches in urban environments. This com-
parison is based on threemain points: architectures, input sen-
sor modalities, and output modalities. As discussed before,
the targeted end-to-endAD approaches discussed in this work
are the ones that used CARLA as the environment to train and
test the models.

A. ARCHITECTURES
Due to the complexity of urban environments, it is common
the usage of low dimensional intermediate representation of
the environment instead of parsing the raw data from the
scene. One of the options for this low dimensional interme-
diate representation is called affordances [57]. Sauer et al.
proposed an AD system based on affordances, especially
designed for urban environments [58]. Examples of these
affordances include: presence of hazard stop, red traffic-light,
speed sign, distance to vehicle, relative angle, and distance
to center line. These affordances are predicted by neural
networks that receive both RGB images and a navigation
command, e.g., ‘‘go straight’’, ‘‘turn left’’, or ‘‘turn right’’.
The affordances are then processed by controllers in order to
produce the control commands. Figure 2 depicts a simplified
version of the system proposed by Sauer et al.
Mehta et al. also used affordances to aid the AD task [59].

The affordances allow to infuse human knowledge into the
system instead of expecting the network to learn all relevant
features for driving from scratch. Unlike Sauer et al., in this
case the affordances are learned by the network simultane-
ously with themain task of driving. The authors demonstrated
that the joint learning of the auxiliary tasks and the usage of
the predicted affordances in the final control commands pre-
diction increases the performance of learning. Furthermore,
the authors also claim that the usage of affordances signif-
icantly increases the level of interpretability of the system,
which is, as explained in Section I, one of the shortcomings
of end-to-end systems.

Chen et al., in [36], instead of using human defined labels,
used an algorithm to provide the true labels. First, a privileged
agent is trained with access to ground-truth data to imitate an
expert autopilot. Then, the authors used the trained privileged
agent to train another agent with only visual input. The results
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FIGURE 2. Simplified version of the system proposed by Sauer et al. [58]. The system receives as input RGB images and a navigation command provided
by CARLA. The features are then extracted from the images using convolutional layers of a VGG16 neural network. Based on the navigational command
received, the features are processed by a different block to produce the affordances. Finally, the predicted affordances are used by a controller to
produce the control commands.

showed that the usage of an agent with privileged information
significantly improves the vision-only driving agent.

In [60], Prakash et al. proposed an architecture that com-
prises two main blocks: a Multi-Modal Fusion Transformer
(TransFuser) and a waypoint prediction network. The Trans-
Fuser receives data from different sensor modalities as input,
and it produces a compact representation of the environ-
ment as output. This process is carried out by using the
self-attention mechanisms of transformers [61] to incorpo-
rate the information between the different modalities. The
compact representation of the environment is then passed into
an encoder neural network to reduce its dimensionality, and
therefore increase computational efficiency. The waypoint
prediction network receives both the encoded version of the
environment and the desired trajectory provided by a global
planner. The network consists of several Gated Recurrent
Units (GRUs) [62], [63], that outputs the predicted trajectory,
under the form of waypoints (more details in Section II-C).
A simplified version of the system proposed by Prakash et al.
is depicted in Figure 3.
One of the major problems in applying RL in the field of

AD consists of the high-dimensional sensor inputs, as is the
case of RGB images. For this reason, most of the applications
of RL in AD have focused on simple driving tasks, such as
lane following [7], [26]. However, in the last two years, some
methods have been proposed that address this problem [14],
[64]–[66]. For example, in [14], Agarwal et al. presented
a framework that creates a low-dimensional state represen-
tation that comprises a stack of bird’s eye-view semantic
segmented images, desired trajectory, kinematics features,
and traffic-light states. Then, the low-dimensional state rep-
resentation is conveyed to the RL algorithm (Proximal Policy
Optimization (PPO) [67], [68]). A simplified version of the
architecture of the solution is illustrated in Figure 4.

Chen et al., in [64], proposed a system that encodes RGB
images and global path trajectories using a CNN [69] and a
LSTM (Long Short-Term Memory) [70] to extract both spa-
tial and temporal features. Then, the policy network receives
the encoded data and outputs control commands after the
defuzzification procedure. The defuzzification procedure is
responsible for transforming the output of the policy network
into control commands.

Chen et al., in [65], proposed the combination of the
modular framework and the RL framework. As input, the
system receives data from two sensors: a RGB camera and
a LiDAR. During training, a semantic mask is obtained using
some components in the modularized framework, such as
object detection, mapping, and localization, and then the
mask enters the system as labeled data. The policy network
receives RGB images and LiDAR data and produces the
control commands together with the semantic mask. The
semantic mask produced by the policy network provides an
interpretable explanation of how the agent understands the
world that surrounds him.

The previous approaches based onRL did not have the abil-
ity to foresee the future, which is a feature that we, humans,
have inherited from years of experience [71]. C. Huang et al.,
in [72], focuses on building a RL agent capable of predicting
new observations. The first layer of the system consists of
a Semantic Encoding Mapping (SEM) [73] that learns a
semantic representation from raw images. This representation
is then sent to a Deep RL algorithm (Deep Deterministic
Policy Gradient (DDPG) [74], [75]). The core element of
this Deep RL is a deductive reasoner that enables policy
to be learned in a model-based manner. This way, it can
predict the next state and reward based on the current
state and reward, which produces a more reliable driving
policy.
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FIGURE 3. Simplified version of the system proposed by Prakash et al. [60]. The system receives a RGB image and a LiDAR bird’s eye view image as
input of the Multi-Modal Fusion Transformer (TransFuser). The fusion process is attained by using several transformer modules to combine the
intermediate feature maps between both modalities. The output of the TransFuser constitutes a compact representation of the environment that
comprises the global context of the scene. This compact representation it then conveyed into a encoder neural network to reduce computational
efforts. The waypoint prediction neural network consists of several GRUs that receive both the output of the encoder neural network (compressed
feature vector) and the desired trajectory, provided by a global planner, and outputs the future waypoints. The authors reported that vehicle
measurements are also used in the TransFuser, but for clarity reasons, that information is omitted.

In [44], Liang et al. proposed a system called CIRL (Con-
trollable Imitative Reinforcement Learning) that aims to com-
bine the advantages of IL and RL. First a supervised network
is pretrained based on human labeled data. Then a Deep RL
model (DDPG) is initialized with the pretrained weights of
the supervised network. The authors claim that the usage of
human driving demonstrations for the initialization of the RL
model can significantly reduce the sample complexity, and
therefore, saving innumerous hours of exploration with the
environment.

More recently, some authors have also used the aforemen-
tioned affordances to tackle the high-dimensional data issue
of RL. Ahmed et al., proposed an end-to-end AD system
comprised of two major components: supervised network
and a Deep RL agent (DDPG) [37]. The supervised network
encodes RGB images into a set of affordances. Subsequently,
the Deep RL transforms the affordances, vehicle measure-
ments and a navigation command into control commands.
A simplified version of the architecture of this solution is
depicted in Figure 5.
Toromanoff et al. also used affordances in a RL

pipeline [77]. The first component of the system is an encoder
trained to predict affordances such as distance to centerline
and traffic-lights. Then, the output features of the encoder
are conveyed into the RL, instead of the affordances. The
authors have named this approach implicit affordances, since
it uses the information that predicted the affordances and not
the affordances itself.

There are mainly two differences between the approaches
described in the last paragraphs: how to encode the raw
data from the sensors? and how to learn a driving policy
based on the encoded data? Whether using feature vectors

from encoder neural networks [14], [60], [64], [65] or affor-
dances [58], [59], [77], the goal is to produce a low dimen-
sional intermediate representation of the environment to
simplify further processing. In this aspect, we believe that
feature vectors are preferable to affordances. Using feature
vectors, the relevant features are learned by the model, whilst
in affordances, the relevant features to be learned are user-
defined, which can introduce human bias into the system.
Furthermore, it is questionable whether an approach based on
affordances should be considered end-to-end or not, because
it presents the same problems of modular approaches: human
definition of affordances; diverse ways to integrate the affor-
dances in a learning method; error propagation due to incor-
rect prediction of the affordances. Regarding the learning of
the driving policy, there are two distinct approaches: IL and
RL. Based on the ratio of IL/RL in recent approaches, it is
inconclusive to assess what is the leading learning method in
urban environments. As will be discussed in Section III, both
approaches achieve satisfactory results and therefore further
research is required to investigate which learning method is
more suitable for AD in urban environments.

B. INPUT SENSOR MODALITIES
The majority of end-to-end systems rely only on vision [39],
[44], [77], using only one camera to predict the control com-
mands. However, in urban environments the single modal-
ity configuration is usually insufficient to produce a robust
and reliable AD system [60]. Furthermore, AD in urban
environments requires navigation from one point to another,
and therefore, additional navigation inputs are often manda-
tory. Xiao et al., in [27], performed a comparison between
single and multimodal end-to-end AD systems. They used

75300 VOLUME 10, 2022



D. Coelho, M. Oliveira: Review of End-to-End Autonomous Driving in Urban Environments

FIGURE 4. Simplified version of the system proposed by Agarwal et al. [14]. The system receives as inputs three bird’s eye view semantic
segmented images, vehicle measurements, navigation commands, desired waypoints and traffic-light information. Each input is provided
directly by CARLA. The images are processed by an autoencoder (AE) [76] that produces a compressed version of the images (AE Compressed
Data). The compressed data is combined with the remaining inputs to form the RL state representation. The RL agent it then responsible to
produce the control commands. In addition to the control commands, the system also outputs reconstructed bird’s eye view semantic
segmented images through the decode of the compressed data.

RGB images and depth information as the sensor modalities
and demonstrated that multimodality is beneficial to end-to-
end systems, outperforming single modality configurations.
Regarding the fusion scheme, the authors concluded that the
early fusion, i.e. increasing the number of channels from
three (RGB) to four (RGBD), was the one that achieved the
best results.

Regarding the navigation inputs, Codevilla et al. per-
formed a study about the incorporation of navigation com-
mands into the AD system [39]. Navigation commands are
referred to as an indication about the future action taken by the
agent, such as ‘‘go right’’ or ‘‘turn left on the intersection.’’
These commands can be generated by high-level route plan-
ners [79], [80] or by humans. Codevilla et al. implemented
two different architectures: command input (see Figure 6)
and branched (see Figure 7). In command input, the network
takes the navigation commands as input, together with the
raw images and some vehicle measurements. These three
inputs are processed independently, and then the combina-
tion of the three results are delivered to a control model to

produce the control commands. On the other hand, in the
branched architecture only the image and the measurements
are conveyed into the network as inputs. In this case, the
control module is replaced by a set of branches. The role of
the navigation command is to select which branch should be
active, and therefore the navigation command can be seen as
a switch. Results demonstrated that the branched architec-
ture performed significantly better than the command input
approach and other baseline approaches.

Huang et al., in [66], proposed a multimodal system that
receives RGB images and depth information as input. This
information is encoded by a neural network and is processed
by a conditional driving policy. The conditional driving pol-
icy is a branched fully connected network, and in addition
to receiving the encoded data, also receives a navigation
command. The navigation command, as in [39], activates the
corresponding branch, and each branch is a neural network
that produces the control commands.

In [58], Sauer et al. also used the concept of special-
ized neural networks, but instead of predicting conditional
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FIGURE 5. Simplified version of the system proposed by Ahmed et al. [37]. The system receives as input a stack of RGB images, vehicle
measurements and navigational commands. Firstly, a residual network (ResNet-50 [78]) is used to extract the features of the images, and then
LSTM units are employed to model the dependencies between successive frames. At the end of this processing, the affordances are predicted.
The DDPG RL agent receives a vector that comprises the affordances, vehicle measurements and a navigation command, and produces as
output the control commands.

control commands, the system predicts conditional affor-
dances. Their architecture, Figure 2, receives a navigation
command that selects a specific neural network to predict
the affordances. The authors reported that training specialized
neural networks for each navigation command leads to better
performance than training neural networks that use naviga-
tion commands as inputs.

As an alternative to navigation commands, some authors
have used the desired trajectory, provided by a global planner,
as input [14], [60], [81]. Usually the trajectory is conveyed
into the system under the form of waypoints. For instance,
in [60], Prakash et al. used GPS coordinates provided by
CARLA as input, to predict local waypoints (see Figure 3).
The GPS coordinates provided by CARLA are relatively
sparse and can be spaced hundreds of meters apart. Con-
versely, the waypoints predicted by the neural network refer
to the trajectory that the agent should follow in subsequent
timestamps. Cai et al., in [81], instead of using the global
planner from CARLA, implemented the A∗ [82], [83] algo-
rithm to plan the coarse route from the initial point to the
destination point based on static maps. The waypoints pro-
vided by global planners do not consider dynamic objects
nor information regarding traffic-lights. Its only purpose is
to provide a global trajectory based on static elements of the
environment.

In the last few years, several authors suggested that, for
urban environments, the integration of RGB cameras and

LiDAR is essential [60], [65], [81]. Thesemodalities are often
seen as complementary, where the RGB cameras provide
information about the road and visual aspects of the scene,
such as traffic-lights, and the LiDAR provides accurate spa-
tial information in 360 degrees [65]. Prakash et al., in [60],
as discussed above, proposed the usage of the attention mech-
anism of transformers to integrate RGB images and LiDAR
data. Authors argued that it is a robust and flexible way of
integrate different modalities of sensors in general, and not
only the RGB camera and LiDAR (see Figure 3). Chen et al.
also used RGB images and LiDAR data as inputs. Instead of
using the raw point clouds from the LiDAR as input, they
performed a prepossessing step, where the raw point clouds
are converted into a 2D LiDAR bird’s eye image, which is
then conveyed into the network [65].

Cai et al. in [81] explored even further the combination of
multiple modalities, where they proposed an end-to-end AD
system that receives RGB camera, LiDAR and RADAR data
as input. This multimodal information is processed by uni-
form alignment and projection onto the image plane. In addi-
tion to cameras, LiDARs and RADARs, some authors also
use HD maps as inputs. For example, Zeng et al. proposed a
system that takes LiDAR data and HD maps as inputs of the
network [25].

Multiple authors have also used high-level measurements
about the state of the vehicle, such as current velocity or
acceleration [37], [39], [44]. When the model only considers
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FIGURE 6. Simplified version of the command input architecture proposed by Codevilla et al. [39]. The system takes a RGB image as an input,
alongside with vehicle measurements and navigation commands. These inputs are processed independently by three neural networks: a
convolutional neural network and two fully-connected neural networks, respectively. The outputs of these neural networks are then
concatenated to form the input of the control module, which is a fully-connected neural network. At the end, the control module produces the
control commands.

one frame to make a decision, the usage of the current veloc-
ity can be highly useful [24]. However, in IL approaches,
if the model receives the current speed and predicts the speed
for the next timestamp as one of the outputs, there is high
changes of causing the inertia problem. In most cases, the
current speed and the speed in the next timestamp are highly
correlated, which can induce the model to only consider the
current speed to predict the speed in the next timestamp. This
can seriously hamper the effectiveness of the agent, because
it can lead to agents that are reluctant to change the velocity.

Although most of end-to-end approaches use a RGB cam-
era as the only input modality, several works reported that
multimodality outperforms single modality configurations in
urban environments [39], [60], [65], [81]. Based on latest
end-to-end AD papers, it is evident that researchers are mov-
ing from single modality to multimodal configurations (see
Table 1). From all the available sensors, LiDAR appears to be
the one that can add more valuable information to the RGB
camera. Furthermore, as AD in urban environments deals

with the problem of navigating from one location to another,
navigation commands or desired trajectories, are often used.

C. OUTPUT MODALITIES
Themajority of the end-to-end AD systems produce the steer-
ing angle and the speed for the next timestamp as outputs [27],
[58], [64], [77]. These properties are easily obtained from
a vehicle and, therefore, can be used as labeled data for
IL approaches. Usually, traditional PID controllers [84] are
required to convert the steering angle and speed outputted by
the network into acceleration/brake and steering torque of the
vehicle [14], [64], [66]. The downside of these approaches
is that it is very difficult to comprehend the decisions taken
by the model. In other words, when the model produces an
incorrect driving decision, it is not possible to understand the
reason for that decision.

In recent years, some authors have explored the usage
of trajectories (waypoints) as the output modality of the
system [25], [60]. For instance, Prakash et al. proposed
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FIGURE 7. Simplified version of the branched architecture proposed by Codevilla et al. [39]. The system receives as inputs a RGB image, vehicle
measurements and a navigation command. The RGB image and the vehicle measurements are processed independently by a convolutional neural
network and a fully-connected neural network, respectively. The outputs of these neural networks are concatenated to form the input of the next stage.
The navigation command is used as a switch that selects which fully-connected neural network should process the concatenated data and therefore
produce the control commands.

a system that predicts waypoints for the future 4 times-
tamps [60] (see Figure 3). Zeng et al., in [25], proposed a
system that produces 3D detections as well as their future
trajectories, and then uses a planner to choose from the set
of possible trajectories the one that minimizes a predefined
cost. In this output modality, it is also necessary to implement
a controller (usually a PID) that generates low-level steering
and acceleration/braking commands to reach the desired tra-
jectory [60], [72]. As an alternative to PID controllers, Gutiér-
rez et al. proposed a modular and scalable waypoint tracking
controller, fully integrated in ROS [85]. One advantage of out-
putting waypoints, instead of the steering angle and velocity
commands, is that the model is required to plan the action for
the future timestamps, and not only for the next one. This
long-term planning increases the robustness of the driving
policy because it converts a reactive agent into a planning
agent. Another advantage concerns interpretability: it is much
easier to interpret and analyze waypoints rather than momen-
tary steering and velocity commands. Using waypoints, it is
possible to convey the intentions of the system.

In order to further increase the interpretability of the sys-
tems, some authors have also used additional outputs. For
example, in [65], as discussed above, the system predicts a
semantic mask of the scene, and in [66] the system recon-
structs semantic images using a scene understanding decoder.
Usually, these additional outputs are computed by a separate
branch of the network based on an intermediate layer of the

network [24]. These outputs are not directly related to the
main output of the network, but they provide information
about the internal representation of the network, which is
immensely useful to comprehend the driving decisions and
to explain the failures. The authors, in [59], reported that the
joint learning of themain and additional outputs leads tomore
robust and effective driving policies.

Although the majority of end-to-end AD produces steer-
ing angle, throttle, and braking as final output of the net-
work, the most promising output modality is waypoints. The
long-term planning and interpretability makewaypoints more
suitable for AD, especially for urban environments. To further
increase the level of interpretability, the usage of additional
outputs, learned in a joint learning mechanism, is highly
recommended.

III. EVALUATION
This section focuses on quantitatively evaluating the
results from the approaches described throughout the doc-
ument. However, to additionally provide a comparison
between end-to-end approaches and modular approaches,
we have also included a modular approach, proposed by
Dosovitskiy et al. [54], in this section. This approach divides
the driving task into three modules: perception, planning, and
continuous control. The perception module uses semantic
segmentation to estimate lanes, dynamic objects, and other
hazards. The planning module consists of a rule-based state
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machine that implements a driving policy specially designed
for urban environments. Finally, the continuous control mod-
ule is a PID controller that produces the steering, throttle, and
brake commands.

Table 1 depicts the summary of the aforementioned
approaches divided by the three points of discussion: archi-
tecture, inputs and outputs. This table follows a chrono-
logical order to facilitate the extraction of possible trends.
Regarding the architectures, there is not a clear trend. Thus,
it is not possible to claim which approach, IL or RL,
is the most suitable for urban environments. Concerning the
inputs, in 2018, none of the approaches used LiDAR as data
source, while in 2021, four out of seven used LiDAR, which
clearly shows the applicability and usefulness of LiDAR in
urban environments. Finally, regarding the outputs, in 2018,
the only output modality was steering angle, throttle and
braking, while in 2021, some authors have used future
waypoints as the output of the models. As stated before,
around 65% of the approaches studied are from 2020 or
2021, which indicates that, more than ever, researchers
are focused on applying end-to-end AD system in urban
environments.

Given that this paper focuses on evaluating end-to-end
AD systems tested on CARLA, we used two benchmarks
(CoRL2017 and NoCrash) of the simulator to accurately
compare the performance of the approaches. An additional
advantage of comparing all approaches within the same
benchmarks is that all approaches use the same sensors,
and therefore share the technical specifications. For exam-
ple, for all approaches, the camera sensor provides images
with 800 × 600 pixels and has a horizontal field of view
of 90 degrees. The LiDAR sensor is a Velodyne 64, with
a range of 10 meters, and covers a horizontal field of view
of 360 degrees. Lastly, the RaDAR sensor has a range of
100 meters and a horizontal field of view of 30 degrees.

Our goal was to compare all algorithms listed in Table 1;
however, some works were evaluated in different bench-
marks, reason why they are not considered in the evaluations.
Notwithstanding, the majority of the approaches were evalu-
ated in the aforementioned benchmarks. In both benchmarks,
there are two towns: Town 01 and Town 02.

Town 01 (see Figure 8) consists of 2.9 Km of road with
11 intersections, and it is used to train the models. We will
refer to this as the training conditions. Town 02 (see Figure 9)
consists of 1.4 Km of road with 8 intersections, and it is
used to test the models under different weather conditions
when comparingwith the ones used in the training conditions.
We will refer to this as the test conditions. It is worth noting
that Town 01 and Town 02 are simplified versions of urban
environments. Their layout consists of several T-junctions
with traffic lights. There are more realistic scenarios in
CARLA, as is the case of Town 3, which contains 5-lane
junctions, a roundabout, and a tunnel. However, only a few
approaches have tested their algorithms under such condi-
tions and therefore it is unsuitable for comparisons, at least
for now.

The CoRL2017 benchmark is the original CARLA bench-
mark, and the goal is to navigate from a starting point to a
destination point using a route planner [54]. There are four
driving tasks, with increasing difficulty levels: Straight, One
Turn, Navigation and Navigation with Dynamic Obstacles
(see Figure 8). In the Straight task, the destination is straight
ahead of the starting point, and there are no dynamic obstacles
in the environment. In the One Turn task, the destination is
one turn away from the starting point and the environment
contains no dynamic obstacles. In the Navigation task there
is no restriction on the location of the destination and starting
point, and once again, there are no dynamic obstacles. Finally,
in the Navigation With Dynamic Obstacles, the scheme is
the same as the previous task, but with dynamic obstacles
(cars and pedestrians) introduced in the scene. For each task,
for an episode to be considered successful the agent must
reach the destination within a time limit, defined as the time
required to reach the destination along the optimal path at a
speed of 10 km/h [54]. Driving infractions, such as collisions
or driving on the sidewalk do not lead to the termination of
the episode, which means that the primary objective of this
benchmark is to evaluate skills such as lane following and
performing 90 degrees turns [55].

Table 2 depicts, for theCoRL2017 benchmark, the percent-
age of successfully completed episodes out of 25, for each
task in training conditions, using 10 approaches. In general,
the results of each approach are worsening with the increase
in difficulty of the task. However, both Chen et al. [36] and
Toromanoff et al. [77] achieved the maximum score in all
tasks. Huang et al. [66] and Agarwal et al. [14] also achieved
excellent results. As expected, the overall results are very
satisfactory, because the agents are being tested under the
same conditions in which they were trained (same town and
same weather).

Table 3 has the same structure as Table 2, but refer to the
testing conditions. Chen et al. [36] kept the maximum score,
while Toromanoff et al. [77] suffered a slightly decreased in
the score. Huang et al. [66] also achieve very satisfactory
results. As expected, the scores in training conditions are
much better than in testing conditions. Nevertheless, the
overall results under testing conditions are surprisingly good,
suggesting that the models were able to generalize the driving
policy to unknown scenarios.

The main difference between the system proposed by Chen
et al. and the others is that the system uses a teacher that has
access to privileged information to train a vision-based agent.
Based on the results described above, there are strong indi-
cations to conclude that this learning method is immensely
effective considering the evaluation metrics of the CoRL2017
benchmark.

Based on Table 2 and Table 3, it is also possible to unmask
some of the limitations of modular approaches, namely poor
generalization, and error propagation. The testing results
were considerably worse than the training conditions because
the perception module fails systematically under complex
and unseen conditions. When the perception module fails,
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TABLE 1. Contributions of AD systems in urban environments, described in terms of: architecture, inputs and outputs. The table follows a chronological
order of the papers.

the planning module is not able to produce a reliable path
and therefore the continuous control module is unable to pro-
duce accurate control commands. However, we want to stress
that these results do not allow us to conclude that current
end-to-end approaches are superior to modular approaches.

The modular approach considered is from 2017, and it is
expected that novel and better ones have been developed in
the meantime. Furthermore, such bold claim would require
an extensive comparison between modular and end-to-end
approaches, which is out of the scope of this paper.
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FIGURE 8. Illustration of the four driving tasks of CoRL2017 benchmark in Town 01. (a), (b), (c), and (d) represents the Straight task, One Turn task,
Navigation task, and Navigation with Dynamic Obstacles task, respectively.

TABLE 2. Results of CoRL2017 benchmark. Each value corresponds to the percentage of successfully completed episodes, for each task in training
conditions. Each column corresponds to an approach. Best scores are highlighted in bold.

TABLE 3. Results of CoRL2017 benchmark. Each value corresponds to the percentage of successfully completed episodes for each task in testing
conditions. Each column corresponds to an approach. Best scores are highlighted in bold.

TABLE 4. Results of NoCrash benchmark. Each value corresponds to the percentage of successfully completed episodes for each task in training
conditions. Each column corresponds to an approach. Best scores are highlighted in bold.

The NoCrash benchmark comprises three tasks with dis-
tinct levels of difficulties: Empty, Regular, and Dense (see
Figure 9) [55]. The Empty task corresponds to an uninhibited
town with no dynamic obstacles. The Regular task consists of
a town with a moderate number of vehicles and pedestrians.
Finally, the Dense task corresponds to a town with many
vehicles and pedestrians. This benchmark is more recent than
CoRL2017, so only a few approaches have assessed their
algorithms in these tasks. The core idea of this benchmark
is to introduce a new aspect in the evaluation of the agent:
the response to dynamic objects. Measuring an agent solely
based on whether it navigates to the destination point without
considering what happened in the meantime is a limited
judgement of its driving capabilities. As such, in theNoCrash
benchmark, for an episode to be considered successful, the
agent must reach the destination under the time limit with
the additional constraint of not colliding with any object.
This benchmark is a more complete assessment of the driving
performance, although there are several other aspects of urban
driving which are yet to be considered. Some examples are
respecting traffic lights and abiding to speed limits.

Table 4 contains the percentage of successfully completed
episodes out of 25, for each task in training conditions, for
5 approaches. The overall scores, in this table, clearly indicate

that this benchmark is more difficult than the CoRL2017
benchmark. Once again, Chen et al. [36] achieved the best
results in all tasks. Without considering Chen et al. [36], all
other approaches presented relatively low scores in the Dense
task, even though the conditions were exactly the same as in
training.

Table 5 contains the results for the testing conditions,
and here, Ahmed et al. [37] achieved the best results, sur-
passing Chen et al. [36] in two tasks. Agarwal et al. [14]
also achieved excellent scores in these conditions, achiev-
ing the same score as Ahmed et al. [37] in the Regular and
Dense tasks. In the Empty and Regular tasks, all approaches
have achieved good results, always above 80%. The poor
results showed in the Dense task in training conditions
were amplified in test conditions. Toromanoff et al. [77] and
Huang et al. [66] achieved a score of less than 50% success-
ful episodes, which clearly proves that current end-to-end AD
systems have a considerable difficulty in dealing with dense
urban environments.

Results from the quantitative evaluation are inconclusive
in what concerns the best architecture for urban environ-
ments. For the CoRL2017 benchmark, the most effective
approach was IL-based architecture (Chen et al. [36]), while
for the NoCrash benchmark the most effective approach
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FIGURE 9. Illustration of the three driving tasks of NoCrash benchmark in Town 02. (a), (b), and (c) represents the
Empty task, Regular task, and Dense task, respectively.

TABLE 5. Results of NoCrash benchmark. Each value corresponds to the percentage of successfully completed episodes for each task in testing
conditions. Each column corresponds to an approach. Best scores are highlighted in bold.

was RL-based architecture (Ahmed et al. [37]). Table 2 and
Table 3 suggest that current end-to-end AD systems are
already very effective at tackling simple driving tasks, such
as Straight and One Turn. These approaches also appear to
be relatively well prepared for Navigation tasks. Conversely,
Table 4 and Table 5 suggest that current end-to-end AD sys-
tems are not yet prepared to cope with dense traffic situations,
characteristic of many real-world cities. The intricate prob-
lem of dealing with multiple agents and their unpredictability
appears to be most challenging problem for end-to-end AD
systems in urban environments. These results clearly indicate
that further research is required in this area to tackle the dense
urban environments.

IV. CONCLUSION
This paper is the first evaluation of end-to-end AD systems
in urban environments. We performed a detailed analysis of
17 approaches, based on three key points: architecture, inputs
and outputs. Two CARLA benchmarks were used to quantita-
tively compare the approaches: CoRL2017 and NoCrash. For
the CoRL2017 benchmark, we compared 10 approaches both
in training and testing conditions, where we show that the
solution proposed by Chen et al. [36] achieved an excellent
score of 100% in all tasks considered. Furthermore, results
also suggest that modular approaches suffer from poor gener-
alization and error propagation. For the NoCrash benchmark,
we compared 5 approaches both in training and testing condi-
tions. In the training conditions Chen et al. [36], once again,
achieved the best results, while in the testing conditions the
approach proposed by Ahmed et al. [37] achieved the best
scores. From the analyses of Table 4 and Table 5, we can
conclude that the current end-to-end AD systems are not
prepared to deal with dense traffic, suggesting that additional
research is required.

The use of simulators, such as CARLA, clearly plays a
key role in the training of AD systems. Learning to drive
in the simulation domain presents innumerous advantages:

avoiding human casualties and expensive crashes, changing
lightning and weather conditions, and reshaping structural
elements of the scenes. It is also possible to reconstruct rare
and dangerous scenarios that foster the learning of a robust
and safer driving policy [86]. Furthermore, in simulators,
we can exploit privileged information, such as the pose of
the vehicle and semantic information, that would otherwise
not be possible to have. However, the carry over from sim-
ulation to reality poses significant problems, mainly due to
the simulation-reality gap [87]. The process of transferring a
model trained in simulation to the real world is referred to as
transfer learning and, in the past years, several approaches
have been proposed to tackle this issue [86]–[89]. Due to
the novelty of end-to-end AD systems, none of the works
addressed in this paper have been validated in real-sized
vehicles in the real world. This is an important area to address
in the near future.

The complexity of driving situations that can be encoun-
tered makes it difficult to ensure that current end-to-end
systems can be safely deployed on public roads. The lack of
interpretability, common to most end-to-end systems, is also
a characteristic that can delay the implementation of these
systems in the real world. For autonomous driving systems to
be considered safe and viable, they must not only have fewer
accidents when compared to humans, but must also convey
the reasoning behind their driving decisions. The feeling of
safety in a self-driving car that is completely opaque in terms
of reasoning can only be achieved once we learn to fully trust
autonomous systems, which is something that comes with
years and years of safe driving behaviour.

The next paragraphs of this section offer a critical analysis
of end-to-end AD, focused on the three points considered in
this paper: architecture, inputs and outputs.

IL is the most dominant strategy for end-to-end AD sys-
tems. However, there are some fundamental limitations that
should be highlighted. First, IL is limited to the average of
the training data, i.e., the model will learn the most repeated
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features in the data, ignoring the rare cases. In driving, a rare
case might be a child running towards a ball in the middle
of the road, and that is not a case that we are willing to
ignore. Second, and from our point of view, the most limiting
factor of IL concerns the limitation of the teachers. Since
the goal of AD is to obtain systems that can drive better
than humans, we cannot be limited by demonstrations from
humans, otherwise, the best we can hope to achieve is the
same driving performance of humans, and as we have noted,
it is not enough. For those reasons, we believe that the most
promising architecture is RL-based. In recent years, agents
trained with RL techniques have already achieved super-
human performance, as in the case of game playing [90] and
robotics [91].

The most dominant strategy for input sensor modalities,
in end-to-end AD, is to use RGB cameras. Most proponents
of those configurations claim that it is the most affordable
way to deploy AD systems. However, based on the works
described above, multimodality appears to be much more
effective than the single modality RGB cameras. Further-
more, as demonstrated by Chen et al. [65], RGB images and
LiDAR information are complementary, providing a more
detailed understanding of the scene. Concerning navigation
information, we believe that momentary indications, such as
‘‘turn right’’, can induce ambiguity in a scene where multiple
roads may lead to the right. Based on that, it seems that
the model should receive the desired trajectory, provided
by a global planner, as input. As it is widely used, vehicle
measurements should also be taken into consideration.

The most common outputs in end-to-end AD systems are
steering angle, throttle and braking. At first glance, this is
the logic approach since we are dealing with end-to-end
systems. However, we believe that it is not themost promising
approach. Momentary control commands are very difficult to
interpret, and to explain the decisions taken by the model.
On the other hand, as used in [25], [60], waypoints are better
to convey the intentions of the system. Furthermore, predict-
ing waypoints forces the model to plan the long-term trajec-
tory instead of reacting to momentary inputs. When using
waypoints, both the lateral and longitudinal movement are
explained: the lateral movement is explicit in the waypoints
and the longitudinal movement can be easily explained by the
distance between successive points. To further increase the
visualization of the intentions of the model, and to increase
the effectiveness of the driving policy, additional outputs,
learned in a joint mechanism, are highly recommended.
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