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ABSTRACT This study proposes a novel spray drift analysis method, based on 3D deep learning, managing
and reducing spray drift using a mobile LiDAR method. LiDAR point clouds were trained to classify and
segment spraying forms from orchards using the PointNet++model, which is a 3D deep learning structure.
The trained deep learning model represented an accuracy of 96.23%. The spray drift analysis system was
demonstrated through its application in intelligent spraying systems. Three control field experiments were
performed in a pear orchard to verify the effectiveness of the system. The obtained results confirm the
satisfactory performance of 3D deep learning-based spray drift analysis method. It is expected that the
proposed system can measure and manage spray drift.

INDEX TERMS Drift, deep leraning, moblie LiDAR, intelligent spraying system.

I. INTRODUCTION
In agriculture, spraying is essential task to improve the quality
and productivity of crops. Here, it should be noted that the
spray will always be accompanied by a drift. Spray drift
is defined as the movement of sprayed pesticide droplets
beyond the target area and may be caused by several factors,
including the influence of wind. Pesticide droplets from spray
drift can volatilize from plant and soil surfaces for several
days after application, thereby posing a danger to non-target
areas. Hence, non-target areas can be acutely exposed and
suffer from adverse effects immediately after spraying, result-
ing in residues in crop commodities, water pollution, and
adverse human exposure. Because of these life-threatening
problems make reducing spray drift has been a complex and
important problem in the agriculture industry [1]–[4].

However, traditional agricultural ground sprayers focuses
on performance, such as pesticide residue using air-blast
sprayer [5]. It is particularly difficult to reduce drift and
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achieve the performance while using these sprayers. Spray
drift has always been a complex, challenging, and urgent
issue for farmers when using agricultural ground sprayers.
Therefore, to reduce spray drift, farmers have begun using
other mobile platforms and intelligent control systems.
Recently, unmanned aerial vehicles (UAVs) that are less
affected by topography and have low labor costs have been
widely used for spraying. However, because UAVs scatter
pesticides in the air, wind-induced spray drift occurs more
commonly, particularly because of the wind generated by the
rotation of UAV wings [6].

Therefore, intelligent spraying systems that spray only on
target areas have been developed as a means of reducing
spray drift [7]–[12]. Spraying accurately on the target ensures
that only the required amount of pesticides is used, which is
effective in reducing spray drift. As the amount of pesticide
decreases, the mount of pesticide that is affected by wind
is reduced compared with conventional spraying. Therefore,
intelligent systems that focus on the perception and control
of precision spraying systems have been developed. In this
aspect, while many intelligent spraying systems have been
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studied, a system that measures how effectively a control
method reduces spray drift has not been thoroughly exam-
ined. Hence, to reduce spray drift, it is essential to study not
only the control methods of sprayers for using less pesticides,
but also the systems for measuring pesticides. Thus, in the
agricultural industry, it is important to accurately measure as
well as manage drift in order to effectively reduce drift.

Many methods have been studied for measuring spray
drift [13]–[16]. Spray drift measurements through field
tests are important for determining practical drift amounts;
however, existing methods are time-consuming and heavily
dependent on external factors. Wind tunnel experiments have
been used to determine the relative drift amounts under vari-
ous conditions. Spray quality characteristics, such as the total
spray volume below a certain droplet size, have also been
used to estimate the drift using predictive drift models or
potentials. However, existing methods for spray drift man-
agement have spatial and temporal limitations. In summary,
to compensate for the previous limitations, ground, aerial and
intelligent sprayers require a system that canmeasure, control
and manage spatial and temporal spray drift.

Therefore, the objectives of this study were: (a) to detect
spray drift based on mobile 3D LiDAR in real-time for pear
orchards, (b) to analyze spray drift measurement for spatial
and temporal data, and (c) to conduct field tests for evaluat-
ing the system and determine whether it achieves objectives
(a) and (b). The research hypothesis was that such a system
can detect spatial and temporal spray drift for spray drift
management if deep learning-based model with 3D LiDAR
point cloud data is applied. To prove this hypothesis, this
study developed a measurement system to analyze the spray
drift. Spray performance was evaluated using an intelligent
spraying system in our previous research [12]. In other words,
this research proposes a methodology for reducing the spray
drift of pesticides by proposing a system for measuring spray
drift, along with control methods for nozzle control. The
contributions and novelty of this study are as follows:

1) This study proposed a novel spray drift measure-
ment method using mobile LiDAR based on 3D deep-
learning.

2) The proposed spray drift measurements system is capa-
ble of analyzing both spatial and temporal data regard-
ing spray drift.

3) This study conducted rigorous and practical field
experiments with three nozzle control methods, and
measured spray drift using the proposed method in
actual pear orchards.

A. STRUCTURE OF PAPER
The remainder of this paper is organized as follows. In the
section II, an existing the spray drift measurements methods
by reviewing other papers. In the section III, present a 3D
deep learning-based spray drift analysis method using LiDAR
point clouds. In the section IV, present and discuss experi-
mental setup and results regarding the verification and evalu-

ation of the proposed intelligent spraying system performed
in a pear orchard. In the section V, experimental results and
challenges for future work are discussed. Finally, summarize
the conclusions and provide directions for future research.

II. AN EXISTING SPRAY DRIFT MEASUREMENTS
METHODS
Spray drift measurement methods aimed at reducing and
managing spray drifts have been a popular research topic.
Spray drift measurement methods can be classified into three
types: water-sensitive paper analysis, spraying form visual-
ization, and stationary LiDAR-basedmethods. In this section,
review existing spray drift measurement methods.

A. WATER-SENSITIVE PAPER ANALYSIS METHOD
Water-sensitive paper has a specially coated yellow surface
that turns blue by the influence of aqueous droplets. It can
be used to measure spray drift according to the droplet den-
sity and sizing. In [17], water-sensitive paper sheets were
used for spray drift measurements. As shown in Fig. 1(a),
16 water-sensitive paper sheets (26 × 76 mm) were attached
to a nylon string with pegs. In [13], proposed a method for
reducing spray drift by increasing the size of the droplets
produced especially near cropping zones. They placed sev-
eral water-sensitive papers 2.5 m away from the target area
and analyzed them to confirm that their proposed model
reduces spray drift. In [19] proposed a method for analyzing
spray drift by placing 12 water-sensitive papers at a height
of 0.30 m. The sliding covers were actuated to cover the
water-sensitive papers during spraying, thus protecting them
from unintended spray droplets. They were simultaneously
uncovered when the spray boom had passed by actuating the
actuator.

B. SPRAYING FORMS VISUALIZATION METHOD
Spray drift can also be indirectly evaluated and measured
using spraying forms with visualization. Techniques for the
visualization of spraying forms include Mie-Scattering Scat-
tering [20], Shadograph [21], and Laser sheet methods [15].
In [22], a spray droplet size determination scheme was intro-
duced using phase Doppler particle analyzers and laser light
diffraction techniques under laboratory conditions (Fig. 1(b)).
Existing spray drift visualization methods are not applicable
in the field and can only be used to predict spray drift poten-
tial by identifying the droplet characteristics of the nozzle.
Spray drift potential can also be indirectly evaluated from
the droplet size distribution through visualization. It is widely
known that smaller droplets exhibit a greater tendency to drift.
At this time, spray droplet size is usually determined in a labo-
ratory under controlled conditions using laser light diffraction
techniques or phase Doppler particle analyzers [15]; however,
only the nozzle is evaluated using these techniques.

C. STATIONARY LiDAR-BASED METHOD
The stationary LiDAR-based method measures and moni-
tors the spray drift that occurs during driving and spraying
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FIGURE 1. The existing spray drift measurement methods: (a) Spraying form visualization methods, (b) Water-sensitive paper
analysis method [17], (c) Stationary LiDAR-based methods [18].

FIGURE 2. Data from LiDAR point clouds.

operations, with the lidar fixed at a specific location at a
specific distance from the sprayer [16], [23]–[27]. In [18],
a LiDAR system was introduced to evaluate the potential
drift risk according to different spray nozzles (Fig. 1(c)).
In field tests, their LiDAR system for measuring the spray
drift was able to differentiate between standard and drift
reduction nozzles under real application conditions. In [27],
a stationary LiDAR-based method was introduced to measure
the spray drifts for different nozzle types. They used a LiDAR
system with a spatial resolution of 2.4 m, which allowed
for elevation and azimuth scanning. The LiDAR system was
placed parallel to the trees at 3.3 m and the spray drift was
measured.

D. LIMITATIONS OF CONVENTIONAL SPRAY DRIFT
MEASUREMENTS METHODS
Existing spray drift measurement methods cannot analyze
spray drift in real time and only have a limited range for moni-
toring spray drift. Moreover, existing spray drift visualization

methods are not applicable in the field and can only be used to
predict spray drift potential by identifying the nozzle droplet
characteristics. It is difficult to accurately predict the potential
of spray drift because it depends not only on the nozzle spray
characteristics but also the external environment, such as the
growth status of trees in orchards and the interval between
trees.

To address this problem, this study proposes a novel spray
drift measurement method that monitors and analyzes spray
drift in real time using LiDAR point clouds. Existing station-
ary LiDAR based spray drift measurement method can be
used in a specific area, there it has scalability when expanded
to Moblie LiDAR. It can obtain spatial and temporal data on
spray drift from point clouds and identify based on 3D deep
learning.

III. SPRAY DRIFT MEASUREMENTS METHODS USING
LiDAR POINT CLOUDS
This study proposes a pesticide spray drift measurement
method using LiDAR point clouds for the real-time measure-
ment and visualization of spraying forms that occur during
spraying.

A. LiDAR POINT CLOUDS
A point cloud is a set of data points in 3D space. The points
represent a 3D shape, and each point position has a set of
Cartesian coordinates (X ,Y ,Z ). Point clouds are generally
produced by 3D scanners, 3D LiDAR, RGB-D cameras,
or photogrammetry software, which measures many points
on the external surfaces of objects around them. Point clouds
are used as the output of 3D scanning processes for many
purposes, including creating 3D CAD models for manufac-
tured parts, metrology, and quality inspection, as well as a
multitude of visualization, rendering, andmass customization
applications.
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In this system, point clouds are acquired using a LiDAR
sensor. The point cloud positions X = R · cosω · sinα,Y =
R · cosω · cosα, and Z = R · sinω are obtained. R is the
linear distance from the obstacle measured by LiDAR and the
vertical angleω can be obtained as shown in Fig. 2. The angle
ω corresponding to each laser beam was fixed. As shown in
Fig. 2, α is the rotation angle measured at the first point.

B. SEGMENTATION OF SPRAYING FORM FROM ORCHARD
POINT CLOUDS BASED ON 3D DEEP-LEARNING
1) NETWORK ARCHITECTURE FOR POINT CLOUD
SEGMENTATION
This research proposes the segmentation of the spraying
form method from orchard point cloud data based on
PointNet++ [28]. PointNet++ is a deep neural network
algorithm for point cloud classification and segmentation,
which is an extension of PointNet [29] with an added hier-
archical structure. The input data of PointNet is represented
by an n× 3 matrix. n is the number of points and 3 describes
the position (X ,Y ,Z ) of a point in the Cartesian coordinate
system. The PointNet architecture that shares a multi-layer
perceptron is a 1× 1 convolution mathematically. Therefore,
PointNet can be recognized using fully connected layers with
branches. The transformation structures are organized by an
n × M input matrix, where M = 3 in the case of the
input transformation and M = 64 in the case of feature
transformation.

The network architecture for point cloud classification and
segmentation is shown in Fig. 3. PointNet++ creates a hier-
archical grouping of points and progressively abstracts larger
local regions along the hierarchy in comparison with Point-
Net, which uses a single max-pooling to aggregate the entire
point set. The set of points was abstracted to create a new
set with fewer components in each layer. The set abstraction
layer consists of sampling, grouping, and PointNet layers.
First, the sampling layer determines the set of points that
determines the centroids of the local region. Second, the
grouping layer creates local region sets by obtaining neigh-
boring points around the centroids of the local region. Finally,
the PointNet layer encodes local region patterns into feature
vectors using mini-PointNet.

To extract the local features of a set of points with uneven
density in different regions, PointNet++ uses density adap-
tive PointNet layers (Fig.3). PointNet++ proposes two types
of density adaptive layers: multi-scale grouping (MSG) and
multi-resolution grouping (MRG). Applying grouping lay-
ers with different scales followed by PointNets to extract
each scale feature is not only simple but also an effective
way to obtain multiscale patterns. PointNet++ learns an
optimized approach for merging multi-scale features using a
random input dropout with a randomized probability for each
instance.

The MSG method operates local PointNet in large-scale
neighborhoods for all centroid points; therefore it is com-
putationally expensive. PointNet++ proposes an alternative

method that avoids expensive computations based on the
distributional features of points. The feature of a region is a
combination of two vectors. One vector is obtained by select-
ing the features at each sub-region from the lower level using
the set abstraction level. The other vector is a feature that uses
a single PointNet and is obtained by directly processing all
the raw points in the local region. The MRG method is more
efficient in terms of computation because it avoids feature
extraction in large-scale neighborhoods at the lowest levels.

The original point set was subsampled in the abstraction
layer. For segmentation tasks, the point features for all the
original points should be obtained. PointNet++ adopts a
hierarchical propagationmethodwith distance-based interpo-
lation and cross-level skipped links. In feature propagation,
PointNet++ propagates point features from Nl × (d +C) to
Nl points, where Nl and Nl are the point set sizes of the input
and output of the set abstraction level l, respectively. Feature
propagation was achieved by interpolating the feature values
f ofNl points at the coordinates of theNl points. PointNet++
uses the inverse distance weighted average based on k nearest
neighbors for interpolation. The interpolated features on Nl
points are then concatenated with skip-linked point features,
and the concatenated features are passed through a convo-
lution called a unit PointNet. To update the point’s feature
vector, shared fully connected and ReLU layers were applied.
This process is repeated until the features of the original set
of points are propagated.

2) POINT CLOUD SEGMENTATION EVALUATION METRICS
Three measurement metrics were used to evaluate the point
cloud segmentation. The point cloud segmentation evaluation
metrics mainly focused on accuracy, precision, and recall.
Definition 1: Accuracy is the number of correctly pre-

dicted data points among all the data points, which is defined
by

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(1)

where TP (true positive) is an outcome where the model
correctly predicts the positive class, TN (true negative) is an
outcome in which the model correctly predicts the negative
class, FP (false positive) is an outcome in which the model
incorrectly predicts the positive class, andFN (false negative)
is an outcome in which the model incorrectly predicts the
negative class.
Definition 2: Precision is a measure of how often some-

thing labeled as positive is actually positive, which is defined
by

Precision =
TP

TP+ FP
(2)

Definition 3: Recall is the measure of the percentage of
positives labeled correctly, which is defined by

Recall =
TP

TP+ FN
(3)
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FIGURE 3. Network architecture for point cloud classification and segmentation.

FIGURE 4. Overview of drift measure system. (a) Field experiments using an intelligent spraying system in an orchard for obtaining LiDAR data of spray.
(b) Original LiDAR data before the processing. (c) System measures and visualizes spraying forms for a pesticide spray drift measurement from original
data.

3) SPRAY DRIFT MEASUREMENT METRICS
Two measurement metrics were used to analyze spray drift.
The spray drift measurement metrics mainly focused on the
spraying distance and spraying size as the volume. By mea-
suring these metrics, it becomes possible to confirm how
many pesticides are sprayed in what form.
Definition 4: Spraying distance is the

dhmax =
√
(ax − bx)2 + (az − bz)2 (4)

where ax is the point cloud of the minimum x-coordinate
belonging to a class spraying form, bx is the point cloud of the
maximum x-coordinate belonging to a class spraying form,
az is the point cloud of the minimum z-coordinate
belonging to a class spraying form, and bz is the point
cloud of the minimum z-coordinates belonging to a class
spraying form.
Definition 5: Spraying volume refers to the volume being

sprayed using the number of spraying points as defined by

vs =
∑

pspraying form (5)

where pspraying form is a point cloud p belonging to the class
sprayingform. The set of points in 3D space can represent the
volume.

IV. APPLICATIONS
This study evaluated the proposed spray drift analysis system
by applying it the to an intelligent spraying system developed
in [12].

A. AN INTELLIGENT SPRAYING SYSTEMS
In [12], an intelligent spraying system was proposed to min-
imize the use of pesticides while maintaining a desirable
spraying performance. The proposed drift measure of the
intelligent spraying system is shown in Fig. 4. Spraying
system was tightened and lifted through a three-point hitch
link on a mobile platform. The mobile platform can freely
be driven on unstructured roads, such as agricultural fields.
Spraying systems and computing platforms receive power
from 24 V batteries. The spraying systems were equipped
with a 300 L capacity pesticide tank, computing platform,
and spray boom with a total of eight nozzles. Two RGB-D
cameras were attached to the frame, with one on each side
of the platform, and the data were transmitted between the
computing platform and cameras.

B. EXPERIMENTAL DESIGN
The dataset was acquired from pear orchards using experi-
ments described in [12]. Field experiments using the vari-
able spraying system were conducted in a pear orchard in
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FIGURE 5. LiDAR point clouds acquisition in the pear orchard and
example images of dataset. There are three classes in the dataset:
spraying form, tree, and sprayer.

Bonghwang, Naju, South Korea. The variable spraying sys-
tem was attached to a mobile platform as an intelligent spray-
ing system, and the environment was configured as shown in
Fig. 5. There were three target (T) and three no-target (NT)
zones in the orchard. T refers to an area where there is a fruit
tree that must be sprayed, and NT refers to an area with no
fruit trees that does not need to be sprayed.

C. EXPERIMENTAL CONTROL METHOD
In this paper, drift is defined as the movement of sprayed
pesticide droplets beyond of the target area owing to inac-
curate control methods. In other words, the drift is defined
as the reachability of an area that should not be sprayed.
Drift reachability refers to the possibility of reaching another
area (NT) from the area to be controlled. Drift reachability
is significantly affected by external forces such as wind.
Therefore, to reduce drift reachability, a control should be
constructed by minimizing the influence of external forces.
Therefore the experiment was conducted using three controls.
At this time, LiDAR data were acquired at intervals of 10 Hz
from the start to the end of the spraying of each control. The
each control as follows:

• Control1: Spraying without applying an intelligent
spraying system (all nozzles open).

• Control2: Spraying with applying an intelligent spray-
ing system (on/off control).

• Control3: Spraying with applying a variable spraying
system (variable flow rate control).

Control1 (all nozzles open) represents the performance of
the conventional spraying method, which means that con-
trol is not performed according to the environment. Hence,
Control1 represents the representative performance of an
intelligent spraying system and can be compared to other
controls. Please refer to [12] for a detailed description of each
control method.

1) DATASET PRE-PROCESSING
The point cloud was acquired using Velodyne LiDAR
VLP-16 which was attached to the sprayer while the sprayer

was driven and sprayed in the pear orchard at an acquisition
speed of 10 Hz (Fig. 4). The point cloud was acquired as a
PCAP, a Velodyne LiDAR data form, and was then trans-
formed into point clouds for deep learning. There were three
classes in the dataset, as acquired from the training: spraying
form, orchard, and sprayer. Pre-processing was performed
on the point clouds to label the data by class. Of the total
1100 pre-processed data, 980 were used for training and
120 were used for testing.

D. EXPERIMENTAL RESULT
1) POINT CLOUD SEGMENTATION RESULTS
The point cloud is segmented and classified into three classes.
The overall accuracy, precision, and recall of the trained
deep learning model were 96.23%, 93.11%, and 98.37%,
respectively. Fig. 6 (a) shows a snapshot of the intelligent
spraying system for pesticides spraying. At this time, LiDAR
sensors acquire data at 10 Hz, therefore, spray form data can
bemonitored in 0.1 s intervals. The 0.1 s period is sufficient to
confirm that the spraying form changes over time, as shown
in Fig. 6 (a).

2) SPRAY DRIFT MEASUREMENT RESULTS
Figures 6 (b) and (c) show the results of the spray drift mea-
surements using the spray drift analysis systems. In Fig. 6 (a),
dhmax is the lowest in Control3 and the highest in Control1,
indicating the extent of pesticide spray drift. The experiment
demonstrated that the method applied to Control3 had the
lowest pesticide usage [12], with the lowest spray drift as
well. This result indicates that an area should be sprayed
according to the distance from the tree to the sprayer because
undesired drift is caused by the wind according to the spray-
ing volume.

Similarly, in Fig. 6 (b), vs is the lowest in Control3 and
the highest in Control1, indicating the amount of pesticide.
Although the approximate amount of pesticides used was
determined using the water-sensitive paper method estab-
lished in previous studies, the proposed drift analysis method
can be used to determine the pesticide usage and the degree
of scattering more accurately. These results demonstrate
that proposed system is capable of measuring spray drift
in actual field environments. Furthermore, it is possible to
acquire and verify the spray drift data at any point in time
when pesticides are sprayed at 0.1 s intervals, as shown
in Fig. 6 (a).

V. DISCUSSIONS
This study demonstrated that by applying proposed system
to intelligent spraying systems, it is possible to effectively
perform a spray drift analysis. In addition, the degree of spray
drift was analyzed using the spraying distance and volume.
However, the topic of this study remains an interesting one
for future research, as there are issues that need to be fur-
ther discussed and addressed. A discussion regarding future
research is provided below.
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FIGURE 6. Experiment results; (a) Snapshot of spray drift segmentation results. Point cloud of spray form can be monitored in
0.1 s intervals. (b) Experimental results of spraying distance according to the control method. (c) Experimental results of spraying
volume according to the control method.

A. ANALYSIS
The experimental results showed that both metrics were
low in Control3, which used the least amount of pesti-
cide. These results suggest that spray drift affected by wind
and can be minimized with low reachability by adopting
appropriate controls with respect to the orchard environment.
Although, the reachability was not quantitatively measured
in this research, it can be used to measure the spray drift with
the proposed system and identify the dispensing character-
istics. In particular, the proposed drift analysis system can
obtain both spatial and temporal data for drift in real time.
In addition, the amount of spray drift that changes in real time
because of external factors such as wind is also determined.
This means that the spray drift can be measured at any point
during spraying.

Specifically, a method capable of quantitatively measuring
scattering can be developed as follows. It is possible to inves-

tigate the spray properties in an area that is not affected by
wind. If spraying occurs in a place according to the spray
characteristics, it can be regarded as a drift and quantita-
tively evaluated. When the spray properties are considered,
the spray drift analysis system will be without limitations
in terms of practical applications and drift measurements.
In addition, the system can be applied by acquiring LiDAR
point cloud data for the candidate environment and training
the resulting point cloud with deep learning, which makes the
analysis more consistent.

Moreover, the proposed spray drift analysis system has no
limitations in term of appropriate applications. It is possible
to apply the system by acquiring LiDAR point cloud data for
candidate environments and training the resulting point cloud
with deep learning. A 16-channel LiDAR was used in this
study; however, if a high-channel (32 or 64 channels) LiDAR
is used, a more accurate spray drift analysis is possible.
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B. LIMITATIONS
In this study, we used a 16 channel LiDAR sensor with a
wavelength of 905 nm. However, the drift measurement sys-
tem depends on the characteristics of the LiDAR sensor. The
905 nmLiDAR failed to scanwatermoleculeswith very small
particles. Therefore, there is a limit to the precise measure-
ment of the drift involving tiny particles. These limitations
can be overcome by changing the wavelength of the LiDAR.
If a high-channel LiDAR, such as 32 or 64 channels is used,
a more accurate spray drift analysis is possible. For example,
if a 1550 nm LiDAR is used, more detailed point clouds
for pesticides will be detected, and more accurate spray drift
measurements are expected.

Furthermore, to reduce drift, a drift measurement sys-
tem can be applied to UAV pesticide application systems.
This is more important and the limits become clearer as
the wind generated by UAV flight causes significant spray
drift. In addition, aerial spraying may require a higher FPS
because the drone moves faster than a ground sprayer. For
this, a system is required that analyzes it precisely and
quickly; however, it is expected that the currently developed
model will be sufficient. If the FPS is insufficient, it can be
solved by applying a lighter deep learning model. Therefore,
an advanced drift analysis system is expected to solve this
more pressing issue by applying a spray drift analysis system
to UAV pesticide spraying system.

VI. CONCLUSION
This study proposes novel methods for spray drift measure-
ment using LiDAR point cloud data. LiDAR point clouds
were trained to classify and segment the spraying forms from
orchards using the PointNet++ model, which is a 3D deep
learning structure. The trained deep learning model achieved
an accuracy of 96.23%. A spray drift analysis system was
demonstrated through its application in intelligent spraying
systems. Three controls of field experiments were performed
in a pear orchard to verify the effectiveness of the proposed
system. Experimental results confirmed the satisfactory per-
formance of 3D deep learning-based spray drift analysis
method which can acquire both spatial and temporal data of
spray drift. It is expected that the introduction of this system
to spray drift measurements can accurately manage the spray
drift.
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