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ABSTRACT As the core input parameters of various control systems, the real-time and accurate acquisition
of reference speed, mass and road slope is the key factor to improve the performance of intelligent vehicle
dynamics control. Therefore, the parameter estimation method based on multi-dimensional information
fusion is proposed in this paper. A comprehensive evaluation of wheel dynamics state is realized by
information fusion, which is quantified in terms of wheel speed credibility. Then the calculated dynamic
speed and auxiliary speed are weighted coupled to achieve accurate estimation of reference speed, which
avoids the influence of unstable wheels. Similarly, the method to calculate the confidence factor of mass
estimation is established in order to screen the vehicle state suitable for estimation. And the online estimation
of mass is realized based on recursive least square method. Meanwhile, the road slope estimation algorithm
based on interactive multiple model has been designed, which achieves the weighted fusion of Kalman filter
observer based on kinematics and unscented Kalman filter observer based on dynamics. Finally, the road tests
were carried out on representative working conditions. The maximum error between the actual speed and the
reference speed does not exceed 0.68m/s. The relative error of mass estimation is not more than 1.95%, and
the absolute error of slope estimation is less than 1.84%, which proves that the proposed estimation algorithm
has high comprehensive performance. More importantly, it is not limited to specific working conditions,
which means a great significance for the development of intelligent vehicles.

INDEX TERMS Vehicle state estimation, multi-information fusion, reference speed, steady state evaluation.

I. INTRODUCTION

Vehicle driving state estimation not only serves dynamics
control [1], but also provides important help for intelligent
driving decision [2]. Its accuracy and real-time performance
directly affect the actual effect of system functions, and even
determine the stability and safety of the vehicle [3], [4].
However, how to realize the recognition of vehicle dynam-
ics state change in all scenarios is still the core problem
of dynamics control function industrialization. In addition,
the new electric drive [5] or X-by-wire platform has the
characteristics of faster response and more accurate execu-
tion [6], which also puts forward higher requirements for
vehicle state identification algorithm. Estimation based on
traditional single sensor information cannot meet the above
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requirements, so it is necessary to use information fusion
technology [7], [8] to obtain more detailed and accurate con-
clusions from multi-source information of the single vehicle
and even from internet of vehicles [9], [10].

The reference speed is one of the most basic and core
input signals in various control systems [11], [12]. Because
it directly influences the calculation of key parameters such
as wheel slip rate [13], [14], slip angle [15], [16] and road
excitation [17], and then has an impact on dynamics control
[18], [19] and ADAS [20], [21]. Especially, for driverless
vehicles committed to the development of safer and more
intelligent L3 level and above, accurate reference speed esti-
mation can further ensure that the vehicle achieves desired
path tracking in any situation [22]. So some scholars use
in-vehicle camera [23] and develop a variety of image pro-
cessing methods [24] to achieve speed estimation. However,
considering the actual working environment and cost issues,
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special sensors such as optical cameras, are not suitable for
promotion in products [25], [26]. Reference speed estimation
algorithms can be divided into two kinds from the princi-
ple [27]: one is based on wheel speed and basic measurement
signals such as longitudinal acceleration for calculation [28],
e.g., the maximum wheel speed method, the slope method,
the integrated method, etc. [29], but the methods have poor
stability, accuracy and limited adaptability to the ESC system;
The other is based on vehicle dynamics model [30],but the
algorithm is greatly affected by the accuracy of the vehicle
and tire model, which is less adaptive to different road [31].
On this basis, some scholars take the lead in using the
method of information fusion [32], [33] for speed estimation.
In some studies [34], GPS and other sensor information are
introduced. Using kinematics and dynamics methods, GPS
information correction in slope and other working conditions
is realized. There are also scholars [35] who use multi-
sensor information to build high-precision vehicle models,
but the real-performance of these methods and the accuracy
of the model need to be further considered. But these studies
[36]-[39] still haven’t completely gotten rid of the limitations
of specific scenarios, and the actual performance under com-
plex working conditions cannot be known.

In addition, vehicle mass and road slope are also very
important to dynamics control functions [40]. And due to
high coupling relationship [41], their estimation methods
are also closely related. For mass estimation, it is usually
realized based Newton’s second law and with the help of
recursive least square (RLS) method [42], [43], Kalman fil-
ter (KF) [44], [45] and so on [43]. However, in practice,
due to driver inputs and environmental changes, the state of
vehicles may change drastically, which is not conducive to
mass identification. Therefore, the core problem is how to
describe the stable state of the vehicle quantitatively. And the
principle of slope estimation can be divided into two aspects:
kinematics and dynamics. The kinematics method [47], [48]
requires accurate longitudinal velocity and acceleration as
the basis, but it is greatly affected by vehicle state changes.
The dynamics method relies on the vehicle model, but it is
obviously affected by high frequency noise. Therefore, how
to realize the fusion calculation of the two methods to achieve
accurate estimation is the key problem that needs to be solved
urgently. Meanwhile, many studies [49] realized mass and
slope estimation based on the vehicle speed signal by EMS
(Engine Manage System) or other systems, but the update
frequency and property of such signal cannot be guaranteed,
which will also affect the estimation results. It can be seen
from the existing research and the development trend of vehi-
cle control technology, on the basis of ensuring the accuracy
of the estimation results, shortening the update cycle to meet
the needs of the electric drive platform and improving the
adaptability of the algorithm in complex scenarios are the
research directions of vehicle state estimation algorithms in
the future.

In order to meet the performance requirements of intel-
ligent vehicles on related state parameters and solve the
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problem that the existing algorithm has poor adaptability
in realistic comprehensive working conditions, this paper
proposes the estimation method of reference speed, mass
and slope based on the idea of multi-information fusion.
The choice of different algorithms is mainly to consider the
characteristics of the estimated parameters and the require-
ments of the control function. For the reference speed, the
method of calculating the wheel speed credibility based on
multi-dimensional information comprehensive evaluation is
proposed, in which the wheel speed credibility is a quantita-
tive representation of the stable state of wheel dynamics. Then
the corresponding wheel speed signal is weighted according
to each wheel speed credibility, and the reference speed is
obtained by combining the longitudinal acceleration signal.
Similarly, in order to estimate the mass under suitable work-
ing conditions, the calculation method of confidence factor
is proposed, and the RLS is used to get the final estimation
result. Then, the fusion estimation of KF kinematics slope
observer and UKF(Unscented Kalman Filter) [SO] dynamics
slope observer is realized by using IMM(Interactive Multiple
Model) [51]. Finally, the road tests are carried out under
representative working conditions, the maximum estimation
error of reference speed is less than 0.68m/s, the mass esti-
mation error is not more than 1.95%, and the road slope esti-
mation error is less than 1.84%, which has important practical
significance for the development of intelligent vehicle control
functions.

Il. REFERENCE SPEED ESTIMATION BASED ON WHEEL
SPEED CREDIBILITY

A. WHEEL SPEED SIGNAL PROCESSING

Wheel speed signal is as the basic signal of reference speed
estimation, its quality and processing method directly affects
the accuracy of estimation results [52]. Fig.1 shows the anal-
ysis process of the wheel speed signal and the captured wheel
speed pulse signal. In a fixed sample period T, the time
between the last falling (or rising) edge of the previous cycle
and the last falling (or rising) edge of the current cycle is AT}
(AT3), and the corresponding number of edges is Ny (N2).
The wheel speed vy4q is calculated as Eq. (1).

Number of edges N

»
>

‘Wheel speed signal

Wheel speed Pulse signal processing

sensors processing Time interval AT

= — Number of edges and
| |
— | — Wheel angle
A |T—| T A acceleration limit
|
| Wheel speed
conversion

|
\A

v

AT

< AT >

FIGURE 1. Wheel speed signal acquisition and processing.

In reality, the wheel speed sensor as the weak current
system [53], its signal is subject to a lot of interference [54].
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Therefore, the maximum number of edges Npax acquired in
a single period should be limited first, as shown in Eq. (2).

Viad = Ni - 27 - 1o /(Mgeetn - AT}) i=1,2 (nH
Nimax = Vinax * Ts - eeeth /(27 - 1) ()

where Vinax is the maximum vehicle speed, et is the num-
ber of wheel speed sensor teeth and r, denotes the wheel
radius. The maximum limit of the time interval should corre-
spond to the number of pulse edges acquired, the independent
limitation is meaningless. In addition, the outlier or wild point
in the wheel speed signal should be judged and removed by
the angular acceleration. The calibration of the maximum
angular acceleration needs to take it into account that the
physical limits of the actual wheel, and the possible noise part
of the wheel speed signal.

After the necessary limitation, since the reference speed
represents the longitudinal absolute speed of the vehicle, the
lateral motion component and longitudinal slip component in
the wheel speed signal should be removed. In the process of
conventional driving, the wheel slip rate does not exceed 2%
generally. As the slip rate has a linear relationship with the
road adhesion coefficient within the range of small slip rate,
the slope is defined as K;.

Ki="li=1234 3)

sl i
where p; denotes the available adhesion coefficient, s/; is the
wheel slip rate. Taking the rear axle center as the reference
point, the wheel speed along the longitudinal vehicle body

can be expressed as.

/ (Vwi - Kei/ (K¢ + mi) F o - L - sind,y)
VwRi =
COSSy
Fw-B/2 i=1,2 4

Vari = wi - Kei/(Kei + i) Fo-B/2 i=3,4 (5)

where v/, .. represents the rolling longitudinal velocity of the
wheel converted to the reference point, vy; is the wheel speed
after the maximum limit, @ denotes yaw rate, L is the axle
base, B is the wheelbase and Jy, is the wheel steering angle,
i = 1,2,3,4 respectively denotes left front wheel, right front
wheel, left rear wheel and right rear wheel. In order to verify
the effect of correction, the slalom test was carried out in
steady state, as shown in Fig. 2. Four wheel speed signals
converted to the reference point are basically equal, which is
in line with expectations.

B. WHEEL SPEED CREDIBILITY CALCULATION BASED ON
MULTI-DIMENSIONAL INFORMATION

When the vehicle drives stably, corrected wheel speed is
approximately equal to the actual speed. But when the state
of the wheel is unstable, especially when the active control
function is enable, the wheel speed changes dramatically.
It must be accurately identified to reduce the interference
to the reference speed calculation. The comprehensive eval-
uation method of wheel dynamics stable state is realized
by judging multi-dimensional information based on fuzzy
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FIGURE 2. Comparison of wheel speeds before and after correction.

rules with information fusion technology, as shown in Fig. 3.
Multi-dimensional information includes wheel longitudinal
force Fy;, wheel speed v;vRi, reference speed vrer, longitudinal
acceleration a, and the number of wheels under ABS (Anti-
lock Braking System) control Nags, etc. The fuzzy rules are
divided into stable unit and state unit considering that the
wheel state features are different under different driving states
of vehicles. The stable unit is concerned with the change of
force, which is most relevant to the wheel stability. The state
unit main focuses on the relationship between wheel speed
and vehicle speed. As the wheel speed is most prone to drastic
fluctuations in the deceleration state (anti-lock braking, active
booster braking), so it is further divided into three conditions.

1.|V;‘k«‘ is very small;
Stal?le 2. |i;\“Rm\n = Voimin is very small;
unit
Rsi 3. |"\»R« - ax‘ is very small;
4. Fi is small and|";\R- ~Ver| is very small.
I:\,> Acceleration State Coasting state
Reference speed 1. V}\R- ~Ver isless than 0; || 1. Empty.
Longitudinal 2. ["wri ~Ver| is small.
accleration State Deceleration state
Wheel speed . Wheel speed is less than ‘vehjcle speed;

Wheel acceleration unif |l““k,..m *““u.m...‘ is v all, o is v 1l

Rei 1S very small, 1s very small.
Wheel force 2. Wheel speed is greater than vehicle speed;
Function flag |";\m..m "';kann‘ is very small, /bi is big,“’l‘vu,‘ is very big.
3. Wheel speed is close to vehicle speed;

Vo] is very big , NaBs is very small.

FIGURE 3. Fuzzy rules corresponding to high wheel speed credibility.

The above fuzzy rules are made based on the wheel dynam-
ics theory and road test experience. The advantage of the
algorithm is that the robustness and applicability can be
effectively improved in comprehensive scenario. But it needs
alot of test data as support, and the workload is usually large.
After data processing, the domain of each input signal and
parameter range are set in the following table.

Except for the three cases in the deceleration conditions,
the logic relationship between the rules within each unit
should be ‘““and”, that is, taking a small operation, so as to
calculate Ry, and R.;. Finally the wheel speed credibility fac-
tor is output as Eq. (6), ranging from O to 1, where 1 indicates
that the wheel dynamics state is extremely stable.

RWi = min(RSi5 RCi)’ l= 17 25 37 4 (6)
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TABLE 1. Parameters of the fuzzy subsets.

\F“%‘Q‘I‘bse\ts ST S M L LT
Input signa

ViR 0~4 3~9 8~11 10~19 17~
vazmax _vaimin 0~0.2 0.1~0.3 0.25~1.5 1.25~2.5 2~
‘\.}wRimax _‘.}wRimm 0~2 1~5 4~64 6~7.5 T~
Vikim ~Vormin|  0~5 3~15  10~80  75-200 175~

V;,R,’ Vit 0~0.1 0.07~0.2 0.15~0.9 0.8~1 1~

Vuw—a]  0-02 01-045 03165 1522 2~
Foi 0~100 50~200 150~600 500~900 800~

Nass 0 1 2 3 4

C. PRINCIPLE OF REFERENCE SPEED ESTIMATION

On the one hand, the wheel speed credibility represents the
comprehensive evaluation result of multi-dimensional infor-
mation on wheel stable state; On the other hand, it also
represents the proximity between the corresponding wheel
speed and the real vehicle speed. Therefore, the reference
speed estimation principle is designed as shown in Fig. 4.
First, the auxiliary vehicle speed vy is calculated by using the
reference speed of the previous cycle veesc1 and the estimated
longitudinal acceleration a, of the current cycle. Then, each
wheel speed is weighted by the corresponding wheel speed
credibility and averaged to get the dynamic vehicle speed vy».
Finally, reference speed is the dynamic coupling result of vy
and vy as shown in Eq. (13).

Based on wheel rotation ‘ Multi-source information ‘ ‘ Corrected wheel speed ‘
dynamics Eq. (7) and the
equation of longitudinal

force balance Eq. (8),

Based on the fuzzy rules, R Based on v'wri and the

the each wheel speed "' corresponding Rwi, the i
anm is calculated. credibility factor dynamic vehicle speed

(Vao-Vn)/t | dm Ruiis calculated. va is calculated Eq. (10).

Va: *R\w *v\z
Based on the
previous cycle vrer and
— the current cycle ax, the =y,
auxiliary vehicle speed
va is updated Eq. (11).
A

The weighting coefficient & of the
dynamic vehicle speed is calculated Eq. (12).
Combined with vu ,vx2 and e, the final
reference speed wrer is calculated Eq. (13).

W
Vret

FIGURE 4. Architecture of the reference speed estimation algorithm.

Additionally, Eq. (9) is used to correct the estimated value
of vehicle longitudinal acceleration to compensate for the
impact of road slope. The slope estimation results are not
directly used in order to avoid the system instability caused
by the mutual iteration of the two estimation algorithms. The
weight coefficient o of vy; and v, is calculated by each
wheel speed credibility, as shown in Eq. (10). Because when
only a single wheel is stable, the algorithm can still output
an accurate result, the range of f is [0.5,1]. It should be
noted that the method of v,; and v, dynamic coupling is
adopted to ensure that the reference speed can still be esti-
mated accurately by the auxiliary vehicle speed (acceleration
iteration) when the force on all wheels change dramatically.
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At the same time, the problem of using acceleration iteration
for a long time is avoided, because in practice, continuous
iteration will produce cumulative errors which are difficult
to be eliminated. The following are the relevant equations
involved in the above.

Foi = [Jw - Vwri/Tw — Toi+Teil/rw, i=1,2,3,4 (7)

am = (Y. (Fu) = Ful/my ®)

ax = am+(vx2 — vx1)/t ©))

Vxl = Vrefkl + dx - (10)

2 = 0.25 Zj_l (RyiV'wRi) (11)
4

o = firmax(Ry) + (1=)-0.25) " (Ry)  (12)

Vref = -(Vx2 — Vx1) + Vx1 13)

where Jy, is the wheel moment of inertia, 7p; denotes wheel
drive moment, Tg; denotes wheel brake moment, a,,, indicates
the theoretical longitudinal acceleration, Fy, is air resistance,
t denotes the running period. Tp; and Tg; are respectively
from the drive and brake system, which need to be filtered
based on the actual signal characteristics to ensure the stabil-
ity of the estimated acceleration value.

It should be added that when the active function does not
fail, it is not usual for all wheels to over slip or lock. However,
if all wheel speed fail, the wheel speed credibility will be
very low. In this case, the proposed algorithm will estimate
based on slope method to ensure the minimal estimation error.
The fuzzy rules of the proposed multi-information fusion
reference speed estimation algorithm are based on a large
number of test data. Compared with the traditional estimation
algorithm, the concept of wheel speed credibility is proposed
as the intermediate value to reduce the difficulty of making
fuzzy rules. By weighting dynamic speed and auxiliary speed,
the proposed algorithm is not limited to specific working con-
ditions, and can accurately estimate vehicle speed in actual
comprehensive scenarios.

|
| . L
. L |
Vet | Vehicle mass estimation Vehicle mass estimation |
ax | confidence factor | T
a1 . based on RLS
{ calculation |
it | |
i | |
|
—> L !
| | Road slope estimation Y |
I'| based on dynamics(UKF) : is |
| Road slope fusion |
: Road slope estimation estimation based on IMM :
:_ based on kinematics(KF) |

FIGURE 5. Estimation algorithm architecture.

IIl. VEHICLE MASS AND ROAD SLOPE ESTIMATION
BASED ON MULTI-INFORMATION FUSION

The architecture of estimation algorithm is shown in
Figure 5. Information fusion technology can make use of
multi-source information to obtain more accurate judgment
of vehicle real state, which helps to avoid the influence of
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vehicle unstable state on relevant estimation results. Hence
the vehicle mass estimation confidence factor based on multi-
information fusion is proposed and mass estimation is real-
ized based on RLS. Because of the coupling relationship
between vehicle mass estimation and road slope estimation,
the result of mass estimation is input to the slope estimation
algorithm. The slope estimation based on dynamics needs
mass as input, and its stability is poor. The slope estimation
algorithm based on kinematics needs acceleration as input,
but the estimation accuracy is poor because the vehicle atti-
tude is not considered. Therefore, IMM algorithm is designed
to realize the weighting of the two methods, which effectively
solves the above problems.

A. VEHICLE MASS ESTIMATION CONFIDENCE FACTOR
CALCULATION
In transient scenarios with drastic changes, the actual state
estimation results will be distorted due to signal fluctua-
tions. Therefore, it is necessary to evaluate the stable state
of the vehicle comprehensively and effectively. Fuzzy rules
are adopted, and reference speed v, longitudinal accelera-
tion a,, relative driving and braking torque coefficient itp,
iTg are selected as input signals. The relative torque coeffi-
cient is the ratio of the actual output torque to the maximum
torque, which can expand the applicable scope of fuzzy rules
and reduce the calibration workload. The specific fuzzy rules
are set as follows.

R1: If veer is M and |ay| is S and itp is not L and itg is
not L, then L.

R2: If ver is not L and |ay| is not L and itp is S and it
is S, then L.

R3: If ver is not L and |ay | is not L and itp is not L and itg
is M, then M.

R4: If vier is not L and |a, | is M and itp is not L and iTg is
not L, then M.

RS5: If ver is S or |ay| is L or itp is L or iTp is L, then S.

Fuzzy subsets are shown in the table below. The output is
the mass estimation confidence factor &y, its domain is [0,1].
Sis [0, 0.6], M is [0.5, 0.75], L is [0.7, 1].

TABLE 2. Parameters of the fuzzy subsets.

W S M L
Input signal

Vier 0~6 5~25 20~
|ax| 0~3 2~5 4~
iTD 0~0.3 0.2~0.6 0.5~
it 0~0.2 0.15~04 035~

The fuzzy rules mentioned are based on the dynamics
theory. Besides, gear shifting and active function intervention
need to be considered. In these two cases, the wheel force
changes dramatically and cannot be accurately calculated,
so the confidence factor &y, should be directly set as 0.
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B. VEHICLE MASS ESTIMATION BASED ON RLS
The complete longitudinal force balance equation of the vehi-
cle is shown in Eq. (14).

Fd=Fw+Ff+Fs+Fj (14)

where Fy is vehicle driving force, Ft is rolling resistance,
F; denotes slope resistance, Fj indicates acceleration resis-
tance. The above equation is sorted according to whether the
variable includes mass or not, as shown in Eq. (15). Fyes repre-
sents the driving force minus the resistance unrelated to mass,
which is called the equivalent driving force.

Fres:Fd_Fw:Ff+Fs+Fj=m(gf+as) (15)

where f denotes the coefficient of rolling resistance, ag is
acceleration sensor signal, which includes slope resistance
and acceleration resistance. Thus, the above equation can be
further expressed as Eq. (16), where aes is the equivalent
acceleration.

Fres = m - res (16)

As mass is a slow-changing parameter, the requirement of
real-time performance is not high. Therefore, cyclic iteration
can be adopted to reduce the estimation error, and considering
that the least square method will significantly increase the
amount of calculation over time, RLS is finally adopted in
this paper. Although RLS has the disadvantage of not being
able to fit nonlinear data, it can be seen from Eq. (16) that it
is suitable for solving this problem. So the mass estimation
model is established. ays is the input @, Fies is the system
output z, and m is the model parameter 6 to be identified. The
recursion process is as follows.

0(k) = Ok — 1) + y()[z(k) — T ()Ak — D]~ (17)

y(k) = Pk — Dp(®)lg" (OPKk — Dg(k) + (k)] (18)
P(k) = [I = y (k)" ()1P(k — 1)/1(k) 19)

where y (k) is the gain at time k, P(k) denotes the covariance
matrix, A(k) represents the time-varying forgetting factor.
In order to output a accurate and stable result, the mass
estimation based on RLS is performed only when the calcu-
lated mass estimation confidence factor ky, is greater than the
threshold Tk. And considering that mass is a slowly changing
state parameter, it does not need to be updated continuously.
The estimation flow chart is designed as shown in Fig. 6.
fe denotes the convergence flag. When the covariance P is
less than the set threshold Tp, fc is enabled, and the result
of mass estimation is updated; Otherwise, the last estimation
result is output. After the estimate converges, the mass esti-
mation is restarted only when the parking time 7, exceeds the
threshold 7; and the door or boot is opened (fg =1).

C. ROAD SLOPE ESTIMATION BASED ON IMM

In order to realize the coupling estimation of slope based on
kinematics and dynamics principles using IMM, two estima-
tion methods should be established respectively first. Con-
sidering that the road slope is usually continuous, the state of
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( Multi-source information )

y
The vehicle mass my is
estimated based on RLS

S

yes A
| Update mvand fe=1 | | mv=mwi and fe=0 |

FIGURE 6. Flow chart of the vehicle mass estimation algorithm.

the previous moment will have an impact on the results of the
next moment. So RLS is not suitable for solving this problem.
It is well known that KF is a special case of least square
method, and it has good smoothness to meet the requirements
of the estimated parameters. However, because KF has the
same limitation that it can only accurately estimate the lin-
ear model, so UKF is also needed for dynamics estimation
method.

1) ROAD SLOPE ESTIMATION BASED ON KINEMATICS
Vehicle acceleration sensor signal contains information of
speed change and slope. Considering road slope changes
slowly relative to vehicle dynamic state, it can be assumed
that it derivative is approximately O.

(20)

Vref(t) = dgen = ax — g-ls
it)=0

where i denotes slope. By discretizing the above equation,
the state space equation at time ¢ can be shown.

{XIZA'xt_l‘i‘B‘Mt‘i‘n[ (21)

=H x+m

T
|1 —g-At | At |1
where A = [0 | },B = [0},H = |:0],

Vref . .
X = i | W = @,z = Vet n is process noise,

m; denotes measurement noise, where n; and m; are mutually
independent Gaussian white noise, and corresponding covari-
ance matrix is Q, R. KF algorithm is used to estimate slope i,
as shown below.

)/(\f; = A)’(\f[_l + Bu,

Py =AP,1AT 4+ Q

K, =P HYHP HT +R)' (22)

X =X +Ki(z —HX)

P, = —-KH)P,

where X, and x,_; represent the prior and posterior state
estimates at different times respectively, P, and P,_ indicate
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the prior and posterior estimates of the covariance matrix
respectively, K; is the Kalman gain.

2) ROAD SLOPE ESTIMATION BASED ON DYNAMICS
Vehicle is a complex nonlinear system. Based on Eq. (14), the
longitudinal dynamic equation can be expressed as.

my = Fy — Fy — Fy — Ff — F; (23)
Fy = mg-i (24)

It can be seen that the slope estimation algorithm based on
dynamics is affected by vehicle mass, so the mass estimates is
taken as the input. The nonlinear state equation of the system
is established as follows.

{xt = f(xr—1, 1)

(25)
=H x; +my

Therefore the linear Kalman filter algorithm is no longer
applicable. And the UKF uses Unscented Transforma-
tion(UT) to sample state values, and its core is to find a
Gaussian distribution that is approximate to the real distri-
bution, so the calculation accuracy of the UKF is higher. The
basic steps are as follows:

(1) 2 n+1 sigma points are constructed through UT, where
n = 2, and corresponding weights w are obtained at the same
time. The method is as follows.

XD =% e=0
O S TP e=1~n @6)
X(O)zi_(m)e’ezn—kl—b’l

o

a)g()) - n4o
o) = ——(—a’+p) @7)
0@ =0®=—"2 ¢c=1-2
@a 2m+0)’
cad’(n+k)—n (28)

where x is the average of the state vector, P denotes the
covariance of the state vector, @ and ¢ represent mean and
covariance respectively, o indicates the scale parameter, and
smaller it is, the closer the sigma point is to the mean of the
states. «, B, k are optional parameters.

(2) According to Eq. (26), (27), a set of sampling points
and corresponding weights w are obtained to calculate the
prediction estimates x, and covariance matrix P; .

=Y @O
Py = Ze 0 (6)[)61 (6)1][xt - x(e)]] +Q

(3) Based on the one-step prediction results, the set of
sigma points is mapped to the new set of sigma points fc,(e).

(4) The new set of sigma points fc,(e) is weighted to predict
the predicted mean z; and covariance matrices Py, , .

_ 2n

4= Ze (@) 30)
n _ _.T

PZtZt = Z 0 '(Je)[z(f) ZZ][ZEE) _ Z[] + R

(29)
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(5) The cross-covariance and the Kalman gain of UKF can
be expressed as.

2n _ _ T
Zezo oy 5 = 2% — 7]

{&m: 31
_ —1
K, =Py, -P

Zt3t

(6) The system state estimates X; and covariance P; are
calculated as Eq. (32).

{521 =% +Ki(zx —HX) 32)

Pr =P, _KthmKtT

3) ROAD SLOPE FUSION ESTIMATION BASED ON IMM

As mentioned in the introduction, there are some problems
in slope estimation independently based on kinematics or
dynamics. Therefore, in order to achieve accurate estima-
tion in all working conditions, the interactive multi-model
method is used to fuse the two models established above.
The basic principle is to adjust the weight of different models
to adapt to current state of the vehicle, automatically reduce
the error interference in different environment, so as to keep
the minimal tracking error of the output results. First, the
prediction probability ¢; of model j and mixed probability
Ppij from model i to j are as follows. j represents model
number, where 1 is based on the kinematics model and 2 is
based on the dynamics model.

2
¢j = Zi:l P;iPi(r — 1) (33)
Pryjj(t = 1|t = 1) = PyPi(t — 1)/c; (34)
where Pj; is the transition probability from model i to j,
P;(z-1) denotes the probability of model i at time ¢-1. The

mixed state estimation and mixed covariance estimation of
model j are shown in Eq. (35), (36).

A~ 2 ~
Xoi(t — 1|t = 1) = Zi:l Pyxi(t — 1|t — 1) (35)

2
Poi(t — 1]t — 1) = Zi:l Pi{Pt — 1]t — 1)
[%;(t — 1|t — 1) — Xo;(t — 1]t = )] -
[8i(r = 1t = 1) = Foj(t — 1]t = DI}
(36)
where x;(t — 1]t — 1) and P;(z — 1|r — 1) indicate the target state
estimation and covariance matrix at time ¢-1. Then, KF and
UKEF are carried out for the two models respectively in order
to realize parameter updating. The likelihood function is used

to update the model probability, and the likelihood function
of model j is expressed as.

exp[—vasjf‘ (t);/2]

Ai(t) = 7
vi(t) = Z(t) — H()X;(t]t — 1) (38)
Si(t) = H(t)P;(t|t — DH(®" + R() (39)
The probability of model j is shown in Eq. (40).
Pj(t) = Aj() - ¢j/n (40)
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1=y A (41)

Finally, the estimation results of the two models are weighted
coupled based on the model probability to obtain the road
slope estimation results.

NADES Z;:I Pi(OX;(t]1) (42)

IV. REFERENCE SPEED ROAD TESTS VALIDATION

The reference speed estimation algorithm based on multi-
dimensional information fusion proposed in this paper can
achieve accurate vehicle speed estimation under realistic
comprehensive conditions. In order to verify its actual perfor-
mance, the low adhesion test condition is selected. Because in
this case, the wheel dynamics state is relatively more unstable
and more difficult to estimate. Meanwhile, in order to verify
the real-time performance of the algorithm and quantify the
estimation accuracy, VBOX III data acquisition system of the
Racelogic company is used. The GPS magnetic antenna is
attached to the roof of the test vehicle to measure the actual
vehicle speed in road tests. And the measurement accuracy of
the GPS is about 0.1km/h.

FIGURE 7. Winter test site.

A. STRAIGHT-LINE DRIVING LIMIT CONDITION TEST

In order to fully verify the applicability of the algorithm to
different working conditions, especially poor and complex
working conditions, emergency braking on the ice road and
full throttle accelerations on the ice-asphalt split road are
firstly carried out. In the two selected working conditions, the
wheel force changes extremely dramatically and the wheel
speed fluctuates greatly. Meanwhile, the wheel speed always
deviates from the actual vehicle speed, so it is difficult to
estimate the reference speed accurately and the change of
wheel speed credibility has certain characteristics.

Under emergency braking conditions, the wheels tend to
lock up due to the low adhesion coefficient on the ice surface.
The ABS function intervenes to regulate the pressure of
each wheel cylinder, and the wheel speed alternately fluc-
tuates, as shown in Fig.8. Comparing the reference speed
with the actual vehicle speed in Fig. 9, the maximum error
is about 0.676m/s, the average error is —0.049m/s, and the
estimated value varies relatively smoothly. It should be noted
that ABS function requires accurate reference speed as input
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to calculate the actual wheel slip rate as control parameter.
The accuracy and stability of the reference speed estimation
will affect the control effect of ABS function, and then affect
the change of wheel speed, which in turn will affect the vehi-
cle speed estimation. Therefore, the accuracy, stability and
real-time performance of reference speed estimation results
are very important. Figure 10 shows the change in wheel
speed credibility, which shows the wheel speed credibility of
rear axle is higher than that of front axle. Because the ABS
function requires the rear axle to have a lower slip rate than
the front axle, and due to axle load transfer, the change of rear
axle wheel braking force is relatively small, so the rear axle
wheels are more ‘stable’, which also proves that the wheel
speed credibility based on multi-dimensional information
comprehensive evaluation can accurately represent the actual
stable state of wheels.
“ — Left front wheel speed N
el o it |

Right rear wheel speed | |
—ABS flag

w

Wheel speed(m/s)
Flag of the ABS function

14 16 18 20 22 24 26 28 30 32
Time(s)

FIGURE 8. Change of wheel speed during emergency braking on ice.

20

- -Reference speed
—GPS measurement speed

=

Vehicle speed(m/s)
:.n 3>

14 16 18 20 22 24 26 28 30 32
Time(s)

FIGURE 9. Comparison of reference speed and actual vehicle speed by
GPS during emergency braking on ice.

Fig. 11-13 show the curves of wheel speed, vehicle speed
and wheel speed credibility under full-throttle acceleration
on the ice-asphalt split road. As the right wheels are on
the ice and the adhesion coefficient is low, the wheels slip
in the case of rapidly accelerate. The ASR (Acceleration
Slip Regulation) function can control wheel speed on the
low adhesion road by adjusting the engine torque and wheel
braking force, so that the right wheels slip rate fluctuates
within a certain range. Therefore, due to the relatively high
slip rate and the continuous large variation in wheel force,
the wheel speed credibility on the right side is significantly
low. Correspondingly, as the maximum longitudinal force
provided by the road with high adhesion coefficient is large,
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FIGURE 10. Change of wheel speed credibility during emergency braking
on ice.

wheels don’t slip significantly, so the wheel speed credibility
of the two wheels on the left side is high. Meanwhile, the
driving torque of the rear axle is larger, the wheel speed
credibility of the left rear wheel is slightly lower than left
front wheel. The trend of wheel speed credibility and the
fluctuation state of the actual wheel speed are generally con-
sistent with the expectation, which proves once again that the
fuzzy rules designed for evaluating wheel stable state through
multi-information fusion are correct. Due to the existence of
higher wheel speed credibility, the final calculated reference
speed is highly consistent with the actual speed measured by
GPS. The maximum estimation error is about 0.190m/s and
the average error is 0.042m/s.

70 7
—Left front wheel speed s
g0 - ~Right front wheel speed
- Left rear wheel speed
Right rear wheel speed
@50 —ASR flag

Wheel speed(m,
W &
o o
w =S o
Flag of the ASR function

)
=]
)

Time(s)

FIGURE 11. Change of wheel speed on the ice-asphalt split road.

)
a

- -Reference speed
—GPS measurement speed

Vehicle speed(m/s)
2 & 5

3]

Time(s)

FIGURE 12. Comparison of reference speed and actual vehicle speed by
GPS for rapid acceleration on the ice-asphalt split road.

B. STEERING DRIVING LIMIT CONDITION TEST
The VDC (Vehicle Dynamics Control) function intervenes
when the vehicle is under extreme steering conditions by
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FIGURE 13. Change of wheel speed credibility for rapid acceleration on
the ice-asphalt split road.

actively booster braking certain wheels to ensure that the
vehicle can follow the driver’s desired trajectory and maintain
the attitude of the vehicle. Fig. 14 shows the changes of each
wheel speed under the intervention of VDC function when
the vehicle continuously steers on the compacted snow road.
It can be seen that due to the complex working conditions
of steering, wheel slip and active pressurization, each wheel
speed changes dramatically. Fig. 15 shows the change of
wheel speed credibility for each wheel. When the wheel speed
fluctuates greatly, the corresponding wheel speed credibility
decreases significantly. Vehicle tend to understeer due to low
adhesion coefficient. At this time, the VDC function mainly
adjusts the vehicle dynamics state by braking the inner rear
wheel, so the force of rear axle wheels changes more greatly
and credibility is relatively low, which is consistent with the
actual situation.

— Left front wheel speed

- = Right front wheel speed

e Left rear wheel speed

Right rear wheel speed
L

3 & &

Wheel speed (m/s)

@

20 30 40 50 80 70 80
Time (s)

FIGURE 14. Change of wheel speed during VDC function intervention.

Comparing estimated the reference speed with the actual
vehicle speed by GPS, as shown in Fig. 16, the maximum
error is about 0.482m/s and the average error is 0.051m/s.
It can be seen that the reference speed can still accurately
and stably describe the actual vehicle speed when the VDC
function is enabled and the vehicle is under the extreme
sideslip and roll condition.

Fig. 17 shows the change of longitudinal acceleration.
Since the estimated reference speed curve is relatively
smooth, the acceleration obtained by its differential has a
small fluctuation. But the estimated longitudinal acceleration
and the acceleration sensor signals have a relatively large
fluctuation, the overall trend of the three is basically the
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FIGURE 15. Wheel speed credibility during VDC function intervention.
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FIGURE 16. Comparison of reference speed and actual speed by GPS.
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FIGURE 17. Change of longitudinal acceleration.

same. There are some deviations between the acceleration
sensor signal and the estimated longitudinal acceleration sig-
nal. On the one hand, the measured value of the acceleration
contains the lateral acceleration component due to the sideslip
angle in the steering process. On the other hand, it may be
that the road is not strictly horizontal or the vehicle body has
pitch changes, making the measurement value contains other
influencing factors.

The Table 3 reflects the deviation between the estimated
reference speed and the actual measured value in the road
test. Both the maximum and average value of the estimated
error are small under the three representative test conditions,
with the maximum error less than 0.68m/s, which proves that
the algorithm has a high estimation accuracy and adaptability.

VOLUME 10, 2022



D. Tian et al.: Vehicle State Estimation Based on Multidimensional Information Fusion

IEEE Access

Meanwhile, the standard error does not exceed 0.207m/s,
which indirectly reflects the high stability real-time perfor-
mance of the estimated value.

TABLE 3. Estimated errors from vehicle road tests.

Maximum Average Standard

Test conditions deviation deviation deviation
(m/s) (m/s) (m/s)
Emergency braking 0.676 -0.049 0.207

on ice road
Rapid acceleration

on the split road 0.190 0.042 0.114
Rapid steering on 0.480 0.051 0.122

compacted snow

V. VEHICLE MASS AND SLOPE TESTS VALIDATION
Conventional urban roads and standard slope of the test site
are selected to verify the vehicle mass and road slope esti-
mates respectively. The relevant parameters of the test vehicle
are shown in Table 4.

TABLE 4. Table of vehicle parameters.

Name Values Name Values
. Distance from rear axle
Unladen weight /kg 2308 to center of mass /m 1.496
Actual mass /kg 2617 Axlebase /m 2.930
Wheel radius /m 0.371 Wheelbase /m 1.664
Height of mass /m 0.652 Mechanical efficiency 0.9

As for the mass estimation algorithm, considering that the
relevant input signals are accurate and stable after the multi-
dimensional information is adopted to screen the vehicle state
and the vehicle mass is a slow changing value. Therefore,
the forgetting factor is set as 1.01, in order to enhance the
influence of historical data and ensure the stability of the
estimation system. Similarly, for slope estimation, the process
noise covariance matrix Q and measurement noise covariance
matrix R can be set to smaller values. Because the relevant
input signals, including reference speed and sensor signals,
can maintain high accuracy and stability in the dynamic
environment.

A. CONVENTIONAL URBAN ROADS VALIDATION

In order to obtain the convergence mass several times during
a period of driving, the threshold of parking time for restart
estimation is adjusted to 5s. And the threshold of covariance
of mass estimation convergence is set as 0.0015.

A section of conventional urban road is selected for the
tests, and the driver controls the vehicle according to the
actual road conditions. Fig. 18 shows the comparison between
the reference speed and the speed measured by GPS. Under
ordinary urban road conditions, the vehicle is basically in a
steady state with no active function involved. In this case,
it is relatively easy to estimate the reference speed. When the
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vehicle is parked, the timer starts, in order to reset the mass
estimation algorithm after the estimation results converges.
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FIGURE 18. Change of vehicle speed under steady state condition.

For the proposed vehicle mass estimation confidence factor
based on multi-dimensional information, its change is shown
in Fig. 19. When the confidence factor is lower than 0.6,
it indicates that the state of the vehicle is unstable, and the
estimation algorithm is suspended to avoid the influence of
the unreal signal on the estimation result. The blue line repre-
sents the absolute value of the longitudinal acceleration of the
vehicle. Since it is conventional driving, the peak acceleration
is basically maintained within 0.4g.

N
N
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®

o
o

Estimation confidence factor
Longitudinal acceleration (g)

Pl L

0 100 200 300 400 500 600

Time (s)

FIGURE 19. Change of mass estimation confidence factor.

The final estimation result is shown in Figure 20, where
the blue line is the mass estimate result with the help of
RLS. And the green line is the convergence flag, which is
determined by using the covariance and the set threshold.
Red line is the rough estimation result of the direct division
of equivalent driving force and equivalent acceleration, and
it fluctuates violently. But the actual result with the highest
probability can be effectively extracted by the least square
method, so as to obtain the stable output value. The final
estimated results are shown in Tab. 5. The maximum relative
error between the estimated value and the measured value
is less than 1.76%, and the estimation results are close to
each other, which verifies the high accuracy and stability of
the proposed estimation algorithm. Meanwhile, except for the
first time, the convergence time is short. The first estimation is
mainly due to the low speed and the confidence factor is lower
than the threshold, which led to the suspension of estimation
for a long time.
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FIGURE 20. Results of mass estimation under steady state condition.

TABLE 5. Mass estimation test results.

Convergence time/s __ Estimation results’kg  Relative error/%
1 53.89 2663 1.76
2 4.50 2599 -0.688
3 10.74 2601 -0.611
4 32 2610 -0.267
5 4.78 2594 -0.879

B. STANDARD SLOPE VALIDATION

The road slope tests are carried out on the standard slope in
the test site in order to ensure the estimated results can be
verified. In the first test, the vehicle speed is maintained at
20-25km/h, and the vehicle pass 10% uphill ramp and 30%
downhill ramp respectively. The change of mass estimation
is shown in Figure 21, and the initial value is no-load mass.
Between 0 and 13.67s, the vehicle is in the process of acceler-
ation and the speed is low, and the confidence factor is lower
than the threshold, so the mass estimation is suspended. The
final estimation result is 2668kg, the relative error is 1.95%,
and the convergence time is 7.13s.
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FIGURE 21. Results of mass estimation in the test 1.

Figure 22 shows the change of slope estimation, in which
KF estimation result is relatively stable, but there is a certain
delay and the absolute error is less than 2.71%. The estimated
value of UKF method has better real-time performance, but
there is some fluctuation. The final results based on IMM
method consider both stability and real-time performance,
and the maximum absolute error is less than 1.84%, which
has higher accuracy.

In the test 2, the vehicle pass 20% uphill ramp and 10%
downhill ramp, and the speed remain between 20 and 25km/h.
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FIGURE 22. Change of road slope estimation in the test 1.

Similar to the results of the test 1, the estimated result based
on the KF method changes steadily, but it is small in the uphill
phase. And the UKF based estimation has a faster response,
but there is a tendency of distortion at some time. Only
the estimated value obtained by the interactive multi-model
method can be kept near the real slope stably, with the max-
imum absolute error no more than 1.25%, and the real-time
performance can also be guaranteed.
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FIGURE 23. Change of road slope estimation in the test 2.

Through the above tests, it is verified that the stable state
of the vehicle can be accurately evaluated based on the fusion
of the estimated reference speed and other multi-dimensional
information. The proposed vehicle mass and road slope esti-
mation algorithm can also achieve accurate and stable estima-
tion under realistic working conditions, which can meet the
needs of intelligent vehicles.

VI. CONCLUSION
1) A quantitative representation method of the wheel dynam-
ics stable state based on multi-dimensional information com-
prehensive evaluation is proposed. On this basis, an algorithm
for estimation of reference speed is designed by using wheel
speed credibility, which is not limited by working conditions
and can achieve accurate estimation in any scenario. Through
the typical road tests with difficult estimation, the maximum
error between the estimation result and the actual measured
value by GPS is less than 0.68m/s, which verifies that the
proposed algorithm has high accuracy, stability and real-time
performance.

2) Based on high precision reference speed and multi-
dimensional information, a calculation method of the vehicle
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mass estimation confidence factor based on fuzzy rules is
designed, in order to ensure the accuracy of the input state
information during the estimation. And then, the mass esti-
mation method based on RLS is proposed. By designing the
strategy and fusing the information, the whole algorithm is
more suitable for practical application. The maximum relative
error is less than 1.95% in relevant road tests.

3) A slope estimation method based on interactive multi-
model algorithm is designed to solve the problems caused by
kinematics or dynamics estimation alone. Through the tests of
standard slope, the IMM based estimation algorithm can give
consideration to both stability and real-time performance, and
the maximum absolute error is less than 1.84%.
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