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ABSTRACT Increasing the power-grid’s flexibility is essential for expanding the integration of renewable
energy sources in modern power grids. This work presents a new rebate auction framework that allows
power grids to use cloud datacenters as managed loads to provide upward/downward grid flexibility. Since
the energy consumption of datacenters is proportional to their computational workload, this paper presents a
rebate auction framework that can induce cloud workload migrations between datacenters to correct energy
imbalances. Unlike existing datacenter-based power grid balancing approaches that have only focused on
providing downward flexibility and only considered owner-operated datacenters, the proposed framework
provides bidirectional flexibility and accommodates both owner-operated and public cloud datacenters.
Thus, providing a general framework for creating workload migrations between datacenters to balance
the power grid. Because workloads on public cloud datacenters are managed by end-users, the proposed
framework uses monetary incentives (auctioned rebates) to encourage large-scale end-users to migrate
their cloud workloads between datacenters to correct energy imbalances. The use of monetary rewards
as an incentive hides the complexity of grid-balancing from auction participants, who only participate
in the auction to lower their cost, while grid-balancing happens as a result of workload migrations. This
paper presents and compares two auction implementations under the proposed framework, a strategy-proof
implementation that guarantees truthful bidding as a dominant strategy, but has NP-hard computational
complexity, and an alternative implementation that does not guarantee truthful bidding, but has polynomial
time complexity. Simulation results show that the proposed framework is effective in incentivizing cloud
workload migrations to achieve the grid balancing goal and provides positive utility to all participants.

INDEX TERMS Datacenters, rebate auction, upward/downward grid balancing, renewable energy, Vickrey
Clarke Groves (VCG) mechanism, VCG rebate auction (VRA), uniform rebate auction (URA).

I. INTRODUCTION
Grid balancing is essential for the proper operation of all
power grids. Since they can not store energy in large quan-
tities, power grids must maintain equal generation and con-
sumption levels at all times to ensure system stability and
reliable power delivery [1], [2]. To that end, power grids
must allocate enough flexibility-resources capacity to per-
form upward/downward adjustments (increasing/decreasing
the energy levels on the generation or consumption sides,
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respectively) as needed to ensure grid balance [3], [4]. How-
ever, the recent trend of greening the power supply by using
more Renewable Energy Sources (RESs) for power gener-
ation has made the balancing task more challenging due to
the inherent variability and unpredictability of such sources
[5], [6]. Unpredicted imbalance events (due to sudden RESs’
generation changes) can lead to high scarcity prices in events
of energy shortage and negative prices in events of energy
surplus, as well as possible system failures [7]–[9]. As such,
the above balancing challenges are currently limiting the
deployment of RESs in modern power grids to the levels
manageable by the existing balancing capacity.
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A. MOTIVATION AND BACKGROUND
1) EXISTING GRID BALANCING APPROACHES
Traditional power grid balancing approaches are generation-
side oriented. They rely on adjusting the output of the
generation-side of the power grid to follow the instan-
taneous demand variations of the load. Such approaches
include Unit Commitment (UC), Economic Dispatch (ED),
and Automatic Generation Control (AGC). UC optimizes
the number of activated generation units over a future
time horizon to minimize the operating cost [10], [11].
ED decides the operational set-points of the activated gen-
eration units selected by UC to minimize their operating
cost and ensure that the balancing constraint is always
met [12], [13]. AGC is a closed-loop feedback protocol that
adjusts the output of the grid’s operating reserves (flexible
generation capacity) to balance against real-time demand
variations [14], [15].

More recently, the advent of power-markets deregulation
and smart-grid technologies has enabled new grid-balancing
approaches that leverage demand-side flexibility. Power-
markets deregulation has opened the energy markets to new
players to foster competition. This has led to the creation of
new energy markets, such as the ancillary services market,
where different system reliability products are sold by gener-
ators and consumers [16]–[18]. On the other hand, smart-grid
technologies have enhanced the power grids’ communication,
control and automation capabilities. The added capabilities
have allowed them to introduce new Demand-Side Manage-
ment (DSM) programs like Demand Response (DR), aiming
to harness the flexibility of end-users’ demand to maintain
grid balance. DR programs were introduced by power-grids’
Independent System Operators (ISOs) and local utilities to
leverage the collective flexibility of commercial end-users for
the purpose of grid balancing [19]–[21]. They encompass a
variety of methods that use monetary incentives to control
end-users’ demands.

2) THE CHALLENGE OF BALANCING RENEWABLE
ENERGY SOURCES
The above grid-balancing approaches are cost-efficient for
conventional generation sources because their output can be
precisely controlled. However, the addition of RESs into
the generation mix introduces generation-side uncertainties
that require a significant increase in provisioned flexibil-
ity resources to ensure reliable power delivery. The addi-
tional cost of balancing the output of RESs renders their
energy more costly than conventional sources. Thus, limit-
ing their integration in power grids to the levels at which
their energy can be balanced reliably in a cost-efficient
manner [22]. Therefore, it is crucial to increase the power-
grid’s flexibility (its ability to adjust generation and demand
levels in response to imbalance events) in a cost-efficient
manner (without having to rely on expensive operating
reserves) to increase the integration of RESs into the power
grid.

3) USING DATACENTERS FOR GRID BALANCING
Cloud datacenters are well suited to participate in DR
programs because they are programmable, consume large
amounts of energy [23], [24], and their energy consumption
is proportional to their computational workload [25]–[27].
Therefore, they are well-suited to act as managed loads under
DR to provide the needed DSM. However, public cloud dat-
acenters (such as the ones operated by Infrastructure as a
Service (IaaS) providers) cannot participate directly in DR
programs because the workloads hosted on them are typically
managed by the cloud end-users. Therefore, it is essential
to elicit the participation of the end-users in adjusting the
scheduling/placement of their computational workloads on
such datacenters to provide the required DSM. The challenge
with getting end-users’ involvement in adjusting the schedul-
ing/placement of their computational workloads on IaaS data-
centers is that they are not direct customers of the power grids,
and their energy consumption is not individually metered,
so they cannot receive DR signals or rewards. Moreover, they
are typically not exposed to the energy consumption aspect
of their workloads on IaaS datacenters. As such, they cannot
determine the amount of workload adjustments needed to
correct an energy imbalance. Therefore, a new collaboration
scheme is needed between the end-users, datacenters, and
the power grid to enable cloud end-users’ participation in
adjusting the computational workloads of IaaS datacenters to
correct energy imbalances.

B. THE PROPOSED APPROACH
This paper introduces a new rebate auction framework that
auctions monetary rebates to cloud end-users to incentivize
them to migrate their workloads between IaaS datacenters
to correct energy imbalances. Rebate auctions are an oppor-
tunity for cloud end-users to reduce their operational costs
by migrating their workloads in the direction required by the
auction. While more simplistic fixed-price incentives could
be offered to cloud end-users to incentivize the desired work-
load migrations, such a strategy would fail to capture current
market conditions (as they may result in no migrations if the
incentives are not enough or over-spending if the incentives
are higher than what they should be). Therefore, auctions are
used in this work to find themarket value of the incentives that
should be given to the end-users to perform the needed cloud
workloadmigrations. Since workloadmigrations are a central
component of the proposed rebate auction framework, final-
izing the transactions cleared by the auction is made condi-
tional on the completion of workload migrations. This paper
further introduces two implementations under the proposed
framework (using different types of auction mechanisms) and
illustrates the properties and advantages of each.

C. CONTRIBUTIONS
The contributions of this paper are the following:
• A rebate auction framework that can incentivize
cloud workload migrations between IaaS datacenters to
achieve bidirectional power grid balancing.
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• A Vickrey-Clarke-Groves (VCG) auction implementa-
tion based on the proposed framework. This imple-
mentation carries the strategy-proofness property of the
VCG auction and guarantees that truthful bidding is a
dominant strategy for all bidders wishing to maximize
their utility. However, it has NP-hard computational
complexity and is used as a benchmark for other imple-
mentations because it maximizes the total utility of all
participants.

• A Uniform auction implementation based on the pro-
posed framework. This implementation is more practical
because its auction engine runs in polynomial time.
However, it does not maximize the total utility, nor is
strategy-proof.

The proposed framework introduces the ideas of selling
monetary rebates as an incentive to perform a certain task,
and making the finalization of the auction transaction con-
ditional on completing the task. To the authors’ best knowl-
edge, this is the first use of both ideas in an auction setting.
While traditional auctions sell items for monetary payments
to generate revenue, the proposed auction framework sells
rebates (money) in an auction as an incentive to perform a
task. The idea of using the proposed auction framework is
that the difference between the rebate received in the auc-
tion transaction and the payment required for it represents
the incentive for performing the task in question, while the
objective of the auction is to find the market value of this
incentive. Since this is an auction sale of incentive, issuing
the incentive is conditional on completing the task. While the
framework in this paper focuses on providing an incentive for
cloud workload migrations, the idea of selling rebates in an
auction as an incentive to perform a task is extendable to cover
other scenarios that require an auction-determined value for
incentives.

D. PAPER ORGANIZATION
The rest of this paper is organized as follows: Section II
reviews the related work in the area of grid balancing using
cloud datacenters. Section III presents the system model and
explains the interactions between its components. Section IV
presents the proposed rebate auction framework and high-
lights the main steps of its operation. Section V illustrates the
monetary effect of the proposed auction framework on all par-
ticipants. Section VI presents two auction implementations
under the proposed framework and explains their operation.
Section VII presents a performance evaluation of the two
provided implementations. Lastly, Section VIII concludes the
paper.

II. RELATED WORK
Many research works (shown in Table 1) have already pro-
posed using datacenters as managed loads by integrating
them into DR programs to provide grid flexibility. Aside
from Abada et al. [28], they have only focused on providing
downward flexibility (to reduce energy demand during times

TABLE 1. Summary of related literature and current work.

of generation shortages) and only considered owner-operated
datacenters where datacenter owners control the scheduling
of computational workloads. This section outlines the pre-
vious work in the area of datacenters integration in DR to
provide grid flexibility, and highlights the features of the
current proposal.

Ghamkhari et al. [29] consider the possibility for datacen-
ters with on-site energy storage to provide voluntary energy
reduction. They develop a profit-maximization model that
considers varying energy prices, datacenters revenue from
providing their existing services, and compensations for pro-
viding the requested energy reductions. Nguyen et al. [30]
design a game theory model for minimizing the maxi-
mum Peak-to-Average (PTA) load of a power grid dur-
ing the day. They consider end-users with on-site batteries
and different energy demand profiles and try to optimize
the price signals during the day to minimize the maxi-
mum PTA energy demand while end-users try to minimize
their cost. Liu et al. [31] consider the feasibility of using
prediction-based-pricingmarket model to optimize the values
of rewards given to datacenters for their participation in DR.
Cao et al. [32] present a game theory model for bargaining
between datacenters and a power grid to decide the datacen-
ters’ rewards for load reduction. Ma et al. [33] develop two
systems that focus on reliable DR while considering end-
users’ performance on load reduction. The methods try to
select the minimum number of users from a possible pool
of participants to guarantee a certain level of reliability and
minimize cost. Wang et al. [34] design a two-stage decision
approach to model the interaction between the power grid
and datacenters. In the first stage, the power grid sets the
electricity price to balance the grid, while the datacenters
decide their workload execution schedule in the second stage
to minimize their cost. Kwon et al. [35] design a two-stage
stochastic programming model to optimize power procure-
ment and server provisioning decisions. Their model takes
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FIGURE 1. System model.

into account on-site renewables and energy storage. All of the
above models target load reduction and assume total control
of the datacenters on workload scheduling.

In [28], Abada et al. introduce the first proposal for using
workload migrations of public cloud datacenters to provide
upward flexibility and consume excess RESs’ energy. The
model there represented the excess RESs’ energy as Energy
Credits (ECs) and sold them to large-scale cloud end-users
(cloud brokers) in an auction to incentivize them to migrate
their workloads to the datacenter location where the ECs can
be used to increase its computational workload and speed up
the consumption of the excess energy.While it was successful
in achieving the desired task of providing upward flexibility,
it relied on restrictive assumptions that limited its practical-
ity in current cloud settings. Mainly, it assumed that cloud
brokers pay for the energy consumption of their workloads,
and that they were provided with the energy consumption
parameters of the different datacenters. This was required
to allow them to compute the energy consumption of their
workloads and its related cost on any datacenter. Lastly, since
the model sold excess energy as ECs in an auction, it only
provided upward flexibility, as it was not possible to sell
‘‘negative energy’’ in the case of energy shortage to provide
downward flexibility.

To address the above limitations, this paper introduces
the idea of using rebate auctions (auctioning of monetary
rebates) instead of auctioning the energy itself. Therefore,
it can handle both cases of upward and downward flexibility.
This new approach makes the system more compatible with
current cloud workflows, as it does not assume that cloud
users pay for the energy consumption cost of their workloads

nor need to have the energy consumption parameters of
the different datacenters. However, it still applies the same
principle of adjusting the energy consumption of datacenters
through cloud workload migrations.

III. SYSTEM MODEL
This paper considers the interconnected power grid model
(called an ‘‘Interconnection’’) of deregulated power mar-
kets [36], [37]. The interconnection model is comprised of
multiple Balancing Areas (BAs) connected together by tie-
lines, as shown in Figure 1. Each BA is managed by a local
utility company (shown as the ‘‘Grid’’) that uses conven-
tional as well as renewable energy sources and is responsible
for maintaining local grid balance. BAs use existing UC,
ED, AGC, and DR balancing approaches (as described in
Section I) to maintain local balance and zero power flow on
the tie-lines [15]. All BAs within the same interconnection
are governed by a central ISO that has a global view of the
system, runs the different energy markets within the inter-
connection, and must approve all system-wide operations to
ensure reliable power delivery [38]. In addition, each BA is
assumed to house one datacenter that operates as an IaaS
cloud provider and agrees to participate in the proposed rebate
auctions administered by the Rebate Auctioneer (RA). While
the interconnection model of deregulated power markets may
include other market players such as independent transmis-
sion and generation providers, this paper limits the scope
of the model to the actors directly relevant to the proposed
framework to simplify the presentation.

In normal operating conditions, BAs facing an unexpected
energy imbalance would need to correct it either by using
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local flexibility resources or buying balancing capacity from
real-time balancing markets administered by the ISO (in the
case of deregulated power markets) [18], [39]. Neighboring
BAs will also face the same choices if the imbalance is not
corrected locally. Therefore, the purpose of the proposed
balancing framework is to use IaaS datacenters’ workload
modulation to proactively correct energy imbalances locally
and avoid having to use expensive balancing alternatives or
disrupt the balance of neighboring BAs.

The model assumes that time is divided into equally sized
intervals and that the proposed auction framework is exe-
cuted at the beginning of each interval if needed. It also
assumes that each cloud broker receives a random number
of end-users’ workloads in each time interval, and selects the
lowest-cost datacnter to host the received workloads. When
a new rebate auction is announced, cloud brokers can submit
bids to migrate portions of their workloads in the direction
required by the auction (always to a higher-cost datacenter) to
take advantage of the rebate auction and further reduce their
costs. The idea of a rebate auction is that it offsets all the
costs associated with migrating workloads to a higher-cost
datacenter and provides additional cost-savings to the win-
ning bidders (determined by the auction). Thus, providing an
incentive for cloud brokers to participate in the auction to
lower their operational costs. The main actors considered in
the systemmodel are introduced in the following subsections.

1) CLOUD BROKERS
Cloud brokers aggregate and manage the cloud workflows
of many end-users. They provide added-value services such
as automated workload monitoring, management, and cus-
tomized support to simplify the cloud deployment process
for end-users. They do not maintain physical computing
infrastructure; Therefore, they contract the physical resources
needed to host their clients’ workloads from IaaS cloud
providers (the datacenters in the model). Brokers can use
any pricing scheme they see fit to attract their customers’
business. The details of their pricing schemes are beyond
the scope of this paper since they do not affect the pro-
posed framework. Brokers are responsible for maintaining
the Quality of Service (QoS) performance guarantees in their
Service Level Agreements (SLAs) offered to their end-users.
As such, they can migrate end-users’ workloads between dat-
acenters to either maintain the SLA agreements or maximize
their return. Cloud workloads received from end-users are
described by the four attribute tuple W = (wc, wm, ws, wd )
that represents the required CPU, memory, storage, and time
duration of each received workload.

2) IaaS DATACENTERS
The model assumes that datacenters have two internal cost
components for the computational resources they offer,
energy cost and operational cost. The energy cost component
is the cost of energy used to run the allocated cloud resources.
On the other hand, the operational cost component covers all
non-energy-related costs such as rent, personnel, and profit

margin. To simplify the cost calculation for their customers,
datacenters announce per-unit cost prices for their computa-
tional resources. The announced prices take into account both
of the above cost components.

The energy consumption of cloud datacenters is assumed
to be linearly proportional to the amount of deployed com-
puting resources. It can be calculated using the parameters
ConvDck , ConvD

m
k and ConvDsk that represent the amount

of energy consumed per unit of deployed computational
resources (CPU, memory, and storage respectively) per unit
time. This is a widely used approximation for estimating the
energy consumption of deployed computational resources in
datacenters [40], [41]. Therefore, the energy consumed by an
IaaS cloud datacenter j for hosting the cloud workloadWij =

(wcij, w
m
ij , w

s
ij, w

d
ij) of broker i is referred to as KwhWDij and

is computed as shown in Eq. 1.

KwhWDij = (wcij ∗ ConvD
c
j + w

m
ij ∗ ConvD

m
j

+wsij ∗ ConvD
s
j ) ∗ w

d
ij (1)

IaaS datacenters announce their computational resources
pricesRateDck ,RateD

m
k andRateDsk that represent the per-unit

costs of their CPU, memory and storage resources respec-
tively per time interval (as shown in table 2). Therefore,
a cloud workload Wij = (wcij, w

m
ij , w

s
ij, w

d
ij) submitted by a

cloud broker i to an IaaS cloud datacenter j costs the broker
a monetary value of CostWDij (payable to the datacenter) as
shown in Eq. 2.

CostWDij = (wcij ∗ RateD
c
j + w

m
ij ∗ RateD

m
j

+wsij ∗ RateD
s
j ) ∗ w

d
ij (2)

Figure 2 shows the energy and cost interactions between
the system components for hosting a workload Wij = (wcij,
wmij , w

s
ij, w

d
ij) of cloud broker i on datacenter j. According to

Eq. 2, datacenter j receives a payment of CostWDij from bro-
ker i for hosting its workload Wij. On the other hand, it con-
sumes an amount of energy equal to KwhWDij as computed
in Eq. 1 and it pays its local grid a moentary value equal to
(KwhWDij *RateDej ) for the consumed energy (whereRateDej
is the local energy price in BA j). Datacenters generate their
profit by setting their computational resources costs RateDcj ,
RateDmj and RateDsj to cover all their energy and operational
costs.

3) REBATE AUCTIONEER (RA)
The RA is a centralized entity that connects to the grid
operators of the BAs, the datacenters, and the cloud brokers
(as shown in Figure 1). It simplifies joining the proposed
framework (a single point of contact). It is also connected
to the ISO to get a global view of the interconnected grid
to ensure that approved workload migrations do not cause
new imbalance events. The job of the RA is to administer
rebate auctions on behalf of BAs that want to correct an
energy imbalance. They announce the availability of new
auctions to the cloud brokers, receive their migration bids,
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TABLE 2. Used variables.

FIGURE 2. Energy and cost interactions.

calculate auction outcomes, verify workload migrations with
destination datacenters and issue rebates to cloud brokers
for completed migrations. The details of their operation are
further illustrated in the following sections.

This paper makes the following assumptions regarding the
system model:

• Time is divided into equal-sized intervals.
• A maximum of one rebate auction (one energy imbal-
ance event) may happen at any given time.

• BAs know the total amount of energy imbalance that
needs to be corrected. Forecast methods can be used
for this purpose where the difference between forecasted
generation and forecasted demand is the imbalance to be
corrected [42], [43]. BAs also know the amount of rebate
they need to offer in the auction. This paper assumes
that imbalance penalties are the maximum rebate bud-
gets that can be offered in an auction. This is because
it would not make financial sense for BAs to spend
more than that to correct an energy imbalance using the
proposed framework if it is cheaper to pay the penalty.
Both values (the amount of energy imbalance and the
offered rebates) are provided to the proposed framework
as input, as shown in the following section.

• It may not always be possible to correct energy imbal-
ances in one auction run (in a single time interval)
because of limited availability of datacenters’ idle
capacity or limited arrival of workload migration bids.
Therefore, the proposed auctions may need to run for
multiple iterations until energy balance is achieved.

• The proposed framework takes into account the work-
loadmigration cost in its formulation. However, its value
is assumed to be zero to simplify the presentation.

IV. THE REBATE AUCTION FRAMEWORK
Since cloud brokers always select the lowest cost IaaS dat-
acenter to host their end-users’ workloads, the idea of the
proposed framework is to use rebate auctions as a monetary
incentive to make it cheaper for cloud brokers to migrate their
workloads in the direction needed to correct energy imbal-
ances. Using rebate auctions, a BA i that needs to balance a
certain amount of energy e (either a surplus esurplus or a short-
age eshortage) would first need to decide the amount of rebate r
that it is going to offer in the auction (this value is assumed to
be known to the BA as per the assumptions in Section III).
The value of r represents the available budget of rebates
that can be used to incentivize cloud brokers to migrate
their workloads. The BA sends this value (r) along with the
amount of energy that needs to be balanced as a new auction
tuple auctioni = (e, r) to the RA to administer the auction.
The RA announces the new auction to all cloud brokers and
invites them to submit their bids for buying the rebates they
need to migrate their workloads in the direction required by
the auction. Auction announcements made by the RA only
include the value r of available rebates (so brokers know the
maximum rebate they can bid for) and the required workloads
migration direction. For the case of energy surplus esurplus, the
migration direction would be towards the datacenter of BA i,
while in the case of energy shortage eshortage, the required
migration direction would be away from the datacenter of
BA i. It is important to note that auction announcements do
not include the amount of energy e that needs to be balanced,
as energy information is only needed internally by the RA
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FIGURE 3. Bid calculation.

to ensure that it only allows the right amount of workload
migrations needed to correct the imbalance. This simplifies
the bidding process for the brokers, so they only participate
in the auction to reduce their cost, while the RA takes care of
the energy-balancing aspect of the auction.

Upon receiving a new auction announcement, interested
cloud brokers prepare their bids for buying the rebates they
need to migrate their workloads in the required direction
and send them to the RA. The two possible scenarios for
workload migrations are either towards a certain IaaS data-
center to increase its energy consumption (to consume excess
energy) or away from a certain IaaS datacenter to reduce
its energy consumption (to balance an energy shortage).
In both cases, the migration always happens from a ‘‘Source
Datacenter’’ j to a ‘‘Destination Datacenter’’ k . The bid of
a broker i to migrate its cloud workload from datacenter
j to datacenter k can be encoded as a bid tuple Bidijk =
(rrijk , vijk , cpuijk ,memijk , stoijk ,wdijk ). It specifies the amount
of rebate requested to perform the migration (rrijk ), the bid
valuation (vijk ), the computational workload to be migrated
(cpuijk ,memijk , stoijk ) and its duration (wdijk ) as shown in
Table 2. Since workloads are always initially assigned to the
datacenter with the lowest value ofCostWDij as per Eq. 2, any
migration would always be towards a higher cost datacenter.
To ensure that a broker i makes a profit when participating
in a rebate auction, the paper assumes that it always requests
a rebate amount rrijk equal to the cost of running its cloud
workload at the destination datacenter k (CostWDik ) plus the
cost of migrating its workload from datacenter j to datacenter
k (Migijk ) as shown in Figure 3 (rrijk = CostWDik +Migijk ).
On the other hand, it offers a bid valuation vijk equal to its cur-
rent cost at its source datacenter j (CostWDij). This guarantees
that it would not lose money by migrating its workload since
the required auction payment pijk on any accepted bidBidijk is

guaranteed not to exceed the bid’s valuation vijk . While other
bidding strategies could be used instead, such as requesting
a larger amount of rebate rrijk for the same offered valuation
vijk , such strategies reduce the bid’s chance of winning (in
the absence of information about competing bids). Therefore,
the paper assumes that bidders always use the above bidding
strategy (as shown in Figure 3) to maximize their chance of
winning.

After bids are received by the RA, an auction mechanism
is used to determine the winning bids and calculate their
payments pijk (details are shown in the next section for two
auction implementations). The RA then notifies the brokers
and the destination datacenters of the auction outcome and
identifies the workloads that should be migrated to com-
plete the transactions of accepted bids. Upon completing the
required workload migrations, destination datacenters con-
firm the completed migrations to the RA that then issues
the remainder of the requested rebates rrijk to the cloud
brokers (after deducting their payments pijk as shown in
Figure 3). Since the auction transaction of a winning bid
involves money exchanged in both directions between the
RA and the winning cloud brokers (rrijk paid by the RA to
the broker and pijk paid by the broker to the RA), the net
rebate payment issued to a cloud broker after completing its
workload migration is the difference between its requested
rebate rrijk and its payment for the rebate pijk . This net rebate
payment (issued rebate) can be thought of as the sum of two
components, the cost of migrating to a higher cost datacenter
and the broker’s profit (cost reduction) for participating in
the auction. The above description explains the steps taken
during rebate auctions and how bids and net rebate payments
are calculated. It applies to workload migrations for both
cases of energy imbalances and can use any auction engine
to find the winning bidders and determine their payments
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(as explained in the next section); As such, it represents the
general framework of rebate auctions and is outlined by the
message sequence diagram in Figure 4.

FIGURE 4. Rebate auction framework.

V. MONETARY EFFECT ON AUCTION PARTICIPANTS
This section explains the monetary transactions involved in
the proposed auction framework and how they affect the
auction participants. The calculations presented here apply
irrespective of the auction algorithm used to implement the
framework; As such, the auction engine used in the imple-
mentation is considered as a black box that selects winning
bids and determines their payments.

A. EFFECT ON CLOUD BROKERS
Recall that when a bid Bidijk is accepted, the bidder must pay
pijk to the RA and get rrijk in return. However, to simplify the
transaction, they keep their pijk (since it is always less than
rrijk ) and they get paid the difference (rrijk − pijk ) instead.
Brokers can then use pijk and (rrijk − pijk ) to finance the
migration of their workload to the destination datacenter.
Cloud brokers always benefit by joining the auction since
their payments pijk are always less than their cost before
migration CostWDij (at the source datacenter) as shown in
Figure 3.

B. EFFECT ON DATACENTERS
Datacenters are always paid at their regular prices RateDc,m,s

k
regardless of whether brokers use rebate auctions or not. They

also always pay the regular energy price for their energy usage
(as shown in the cost model in Section III.2). Therefore, the
only difference rebate auctions make to datacenters is that
they attract workload migrations to datacenters within areas
of energy surplus and decrease the workload of datacenters
within areas of energy shortage.

C. EFFECT ON POWER GRIDS
The monetary effect of auction transactions on BAs depends
on the type of energy imbalance. While BAs always receive
brokers’ payments pijk for accepted bids, in the case of energy
surplus, the BA that auctioned the rebates also receives the
regular energy cost of the consumed excess energy from
the destination datacenter (its local datacenter). However,
no such revenue is received in the case of energy shortage
because no energy consumption happens after workloads are
migrated away from the source datacenter. The following
explains the monetary impact of rebate auction transactions
for each type of energy imbalance.

1) THE CASE OF ENERGY SURPLUS
In the case of an energy surplus in BA k , rebates are auctioned
to attract bids of workload migrations from datacenters in
other BAs to the datacenter of BA k to consume its excess
energy. Figure 5-a shows the energy and cost interactions for
both of the source and destination datacenters when BA k
has an energy imbalance. Under normal workflow conditions
in BA k (no energy imbalance), its grid supplies the local
datacenter with energy KwhWDik and receives a payment
of (KwhWDik ∗ RateDk ). On the other hand, when a rebate
auction is used to incentivize the consumption of KwhWDik
(in the case of excess energy), the BA must still supply the
energyKwhWDik to the datacenter, but instead of only receiv-
ing a payment of (KwhWDik ∗ RateDk ) in return, it receives
pijk from the bidding broker, (KwhWDik ∗ RateDk ) from the
datacenter and it must pay the broker its requested rebate rrijk .
Therefore, if the total revenue received by BA k [payijk +
(KwhWDijk ∗ RateDek )] is greater than its total spending rrijk
(as shown in Figure 5-b), the auction is said to be recovering a
portion of the regular energy cost (KwhWDijk ∗RateDek ). The
Recovered Energy Cost (REC) can be calculated in this case
as shown in Eq. 3.

RECijk = [payijk + (KwhWDijk ∗ RateDek )]− rrijk (3)

It is easy to see that in order for rebate auctions to recover
any portion of the regular energy cost, both of the extra
cost of migrating to a more expensive datacenter and the
broker’s profit must be covered by the energy revenue from
the datacenter; otherwise, the rebate budget would have to
be used to cover these cost components. Therefore, the less
the cost to move to the destination datacenter and the less the
broker’s profit, the larger the portion of regular energy cost
that can be recovered.

On the other hand, if the total revenue received by BA k
[payijk + (KwhWDijk ∗RateDek )] is less than its total spending
rrijk (due to a higher cost difference between source and
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FIGURE 5. Monetary effect on power grids (Surplus).

destination datacenters or a larger broker’s profit, as shown
in Figure 5-c), the auction is said to be spending budget to

consume the excess energy. The amount of budget spent in
this case (BudSur) is calculated as shown in Eq. 4.

BudSurijk = rrijk − [payijk + (KwhWDijk ∗ RateDek )] (4)

Both of the above cases are illustrated in Figure 5, where
zero migration cost (Migijk ) is assumed to simplify the
presentation.

2) THE CASE OF ENERGY SHORTAGE
In this case, the BA that issued the rebates will no longer
receive the energy cost from their local datacenters after
migrating the workloads. Therefore, the BA would always
need to spend from its available rebate budget r to incentivize
brokers to migrate to a higher cost datacenter. The amount
of budget spent in this case of energy shortage (BudShrijk )
is shown in Figure 6-b and can be calculated as shown
in Eq. 5.

BudShrijk = rrijk − pijk (5)

FIGURE 6. Monetary effect on power grids (Shortage).
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VI. THE REBATE AUCTION MECHANISMS
This section introduces two auction implementations based
on the proposed framework, the VCG Rebate Auction (VRA)
and the Uniform Rebate Auction (URA), and outlines the
advantages and limitations of each. Both auctions use the
same idea of selling monetary rebates in an auction (condi-
tional on performing cloud workload migrations) and accept
the same bid format from auction participants. Both auc-
tions must schedule the execution time of accepted workload
migrations within a lookahead time horizon of T intervals,
where |T | > max(wdijk ) ∀ i, j, k . The main tasks performed by
the auction implementations are the following: (1) Find the
energy consumption information of the received bids. This
is used to ensure that only the right amount of workload
migrations needed to correct an imbalance is allowed. Both
implementations get this information by requesting it directly
from the appropriate datacenters, (2) compute the auction
outcome to determine winning bids, (3) Find the schedule
of migrated workloads on destination datacenters, and (4)
compute the payments for winning bids. Regardless of which
auction implementation is used, the interactions between the
bidders and the RA remain the same. The following subsec-
tions introduce the details of both implementations and how
they perform the above tasks.

A. VCG REBATE AUCTION (VRA)
The VRA implementation uses the VCG auction mechanism
to find the winning bids and compute their payments [44].
VCG gets its importance from being a Dominant Strategy
Incentive Compatible (DSIC) mechanism, also called truthful
or strategy-proof. It guarantees truthful bidding as the dom-
inant strategy of auction participants. Therefore, eliminating
the need for a bidding strategy as rational bidders will always
choose to bid their true valuations to maximize their util-
ity. VCG is socially efficient, meaning that it allocates the
auctioned goods to the bidders with the highest valuation.
It achieves social efficiency by maximizing the total utility of
all participants, including the auctioneer. This is equivalent
to selecting the bids that maximize the total valuation of auc-
tioned goods. To illustrate, assume that the RA has accepted
Bidijk of broker i, the utility of broker i can be computed as
UBi = vijk − pijk . On the other hand, the utility of BA j
(the BA that issued the rebates) is UBAj = pijk . The total
utility can then be computed as Utotal = UBi + UBAj =
vijk . Therefore, maximizing the total valuation of accepted
bids maximizes the total utility of all participants. However,
the truthful property of the VCG auction only holds if its
winner determination problem (allocation problem) above
(maximizing the total valuation of accepted bids) is solved
to optimality. Since this is a combinatorial auction problem
where bidders are single-minded (as brokers are not interested
in migrating half of their workload or receiving a portion
of the requested rebate rrijk ), it is NP-hard in computational
complexity. Therefore, this implementation is economically
efficient but not computationally efficient. It is introduced

here because of its theoretical importance and to serve as a
benchmark to compare other implementations against.

The RA achieves the first auction task of finding the
energy consumption information of the received bids (weijk )
by requesting it directly from the datacenters. In the case of an
energy surplus (migration towards a destination datacenter),
this information is requested from the destination datacenter,
while in the case of an energy shortage (migration away
from a source datacenter), it is requested from the source
datacenter.

Since the truthfulness property of the VCG auction
requires solving its allocation problem to optimality, the
second and third auction tasks (computing the auction
outcome and scheduling migrated workloads) are combined
into one optimization problem to ensure that the accepted
workload migrations have a valid schedule on destination
datacenters. This means solving the objective function of the
auction (that maximizes the valuation of accepted bids) under
the capacity constraints of destination datacenters. Therefore,
the RA queries destination datacenters for their available
capacity during the lookahead horizon T to set the capac-
ity constraints (Eqs. 7-9) accordingly. Other constraints are
also added to the allocation problem to ensure that migrated
workloads are allocated a number of time intervals equal to
their duration wdijk , and that they run uninterrupted for that
duration. This combined optimization problem is formulated
as a Mixed Integer Linear Program (MILP), as shown in Eqs.
6-16 and is executed by the RA at the beginning of time
intervals when it has rebate to auction.

Objective function:

Max
∑
i∈I

∑
j∈J

∑
k∈J

∑
h∈T

h<(|T |−wdijk+1)

Sijkh ∗ vijk (6)

Subject to :
Capacity Constraints :∑

i∈I

∑
j∈J

wcijk ∗ Aijkh < Capacityckh (h ∈ T ) (7)∑
i∈I

∑
j∈J

wmijk ∗ Aijkh < Capacitymkh (h ∈ T ) (8)∑
i∈I

∑
j∈J

wsijk ∗ Aijkh < Capacityskh (h ∈ T ) (9)∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

Sijkh ∗ rrijk < rk (10)

Continuity Constraints :∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

(
−wdijk ∗ Sijkh

)

+

∑
i∈I

∑
j∈J

∑
h∈T

Aijkh = 0 (11)

∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

wdijk∑
d=0

Aijk(h+d)

VOLUME 10, 2022 78919



A. Abada et al.: Rebate Auction Mechanisms for Bidirectional Grid Balancing Using Cloud Workload Migrations

−

∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

(
Sijkh ∗ wdijk

)
≥ 0 (12)

Single Allocation Constraint :∑
h∈T

h<(|T |−wdijk+1)

Sijkh ≤ 1,∀i ∈ I , j ∈ J (13)

Total Allocation Constraint :∑
h∈T

Aijkh ≤ wdijk ,∀i ∈ I , j ∈ J (14)

Energy Consumption Constraint :∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

Sijkh ∗ weijk < |e| (15)

Integrality Constraint :

Sijkh,Aijkh ∈ {0, 1},∀i ∈ I , j ∈ J , k ∈ J , h ∈ T

(16)

The decision variables in the above optimization problem
are the four-dimensional boolean arrays Sijkh and Aijkh. They
represent the scheduling information of accepted migration
bids. For both arrays, the indexes i, j, k and h are the broker
identifier, source datacenter identifier, destination datacenter
identifier, and the time interval within the lookahead time
horizon T , respectively. The default value for both arrays
is ‘‘0’’. Sijkh and Aijkh encode the time intervals at which
accepted workload migrations are scheduled to start and their
allocated time intervals, respectively. Therefore, an accepted
Bidijk is going to have Sijkh = 1 at the time interval h when
its workload is scheduled to start executing at the destination
datacenter and Aijkh = 1 at all the time intervals h for
which its workload is scheduled to execute.While either array
is enough to deduce the schedule generated by the above
optimization problem, both arrays are needed in the model
to ensure that the allocated execution time of migrated work-
loads is not fragmented over the lookahead horizon (using the
continuity constraints).

In the above MILP formulation, the objective function of
Eq. 6 maximizes the total valuations vijk of accepted bids as
per the VCG auction requirements. A bid Bijk is accepted
if it is scheduled to start at any interval during the looka-
head horizon (if Sijkh = 1 at any interval h < T ). The
capacity constraints in Eqs. 7-10 ensure the availability of
enough capacity at destination datacenters to accommodate
the migrated workloads and ensure that the sum of allocated
rebates rrijk is less than the available rebates rk . The conti-
nuity constraints (Eqs. 11, 12) ensure that the execution time
intervals allocated to migrated workloads are offered in one
contiguous block within the lookahead horizon T . The single
allocation constraint (Eq. 13) ensures that accepted bids are
scheduled only once during the lookahead horizon. The total
allocation constraint (Eq. 14) ensures that accepted bids are
allocated a number of time intervals equal to their duration
wdijk . The energy consumption constraint (Eq. 15) ensures that
the total energy consumption of migrated workloads does not

exceed the amount of imbalance that needs to be corrected.
Lastly, the integrality constraint (Eq. 16) ensures no partial
allocations on submitted bids.

The final auction task of finding the payments of winning
bids is achieved in this implementation by using the VCG
payment rule. VCG charges each winning bid a payment
equal to its social cost. For a winning bid Bidijk , this value
is equal to the loss in utility experienced by other participants
due to its participation in the auction. It can be computed
according to Eq. 17 as the difference between the total utility
of other participants when Bidijk does not participate (where
v(ijk)−1 indicates all valuations other than vijk ) minus their
total utility when it participates. This requires solving a new
optimization problem under the same original constraints for
each winning bid Bidijk (to find the total utility of other
bidders when it does not participate). On the other hand,
the total utility of other participants when Bidijk participates
can be easily calculated as the optimal value of the objective
function (Eq. 6) minus the vijk valuation of Bidijk as shown in
the second term of Eq. 17.

pijk = max
∑
i∈I

∑
j∈J

Sijkh ∗ v(ijk)−1 ∗ w
d
ijk

−

[(
max

∑
i∈I

∑
j∈J

Sijkh ∗ vijk ∗ wdijk

)
− vijk

]
(17)

The operation sequence of VRA can be illustrated by the
diagrams in Figures 7 and 8 (excluding the parts labeled for
URA) for the cases of energy shortage and surplus imbal-
ances, respectively. The auction always starts when a BA i
sends a new rebate auction tuple auctioni = (e, r) to the RA to
correct an energy imbalance, as shown in Section IV. The RA
announces the new auction to the brokers (announcements
include the maximum rebate they can bid for and the required
migration direction) and invites them to submit their bids
for migrating their cloud workloads. Interested brokers then
compute their bids as shown in Section IV and send them
to the RA. For the energy shortage case (Figure 7), brokers
need to find the lowest cost alternative datacenter to migrate
their workloads to, and they use the cost at that datacenter
to calculate their bids (as shown in Figure 3). In the case
of energy surplus (Figure 8), the destination datacenter can
only be the one within the BA i that issued the rebates (to
consume its energy surplus), so its cost is used in the same
way to calculate the migration bids. The RA achieves the
first auction task of finding the energy consumption infor-
mation of received bids by requesting it directly from the
appropriate datacenter, as described above. To ensure that
migrated workloads do not exceed the destination datacentrs’
capacity, the RA queries destination datacenters for their
available capacity over the lookahead time horizon T to set
the capacity constraints of Eqs. 7-9 accordingly. The RA then
achieves the second and third auction tasks by running the
VCG auction (solving the combined auctioning/scheduling
optimization problem in Eqs. 6 - 16) to determine the winning
bids and their schedule (provided by the decision variables).
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The last auction task is achieved by using Eq. 17 to calculate
the required payments (pijk ) of winning bids. The RA then
notifies the brokers and the destination datacenters of the
auction result. When brokers complete the required workload
migrations, destination datacenters confirm the completed
migrations to the RA, which then issues the remainder of the
rebates to the brokers (as shown in Figure 3).

B. UNIFORM-PRICE REBATE AUCTION (URA)
The URA implementation uses the Uniform price auction
mechanism to find the winning bidders and compute their
payments [45], [46]. It addresses the main limitations of the
VRA implementation (centralized scheduling by the RA and
NP-hard complexity) by breaking the tight coupling between
the auctioning and scheduling tasks performed jointly by the
RA in VRA. This lets the RA to only be responsible for
auctioning the available rebates (using the Uniform price
auction), while workload scheduling is handled locally by the
destination datacenters (using the polynomial-time First-Fit
bin-packing algorithm [47], [48]). To achieve this division of
labor between the RA and the destination datacenters, the RA
first requests each possible destination datacenter to provide a
tentative schedule of the workloads that it can accommodate
within the scheduling horizon T ; it then uses the provided
schedules to determine the winning bids and their payments.
This ensures that all accepted bids have a valid schedule
on their destination datacenters. URA addresses the NP-hard
computational complexity of the VRA implementation by
using sub-optimal polynomial-time algorithms for the auc-
tioning and scheduling tasks. However, it no longer retains
the truthfulness and social welfare maximizing properties
provided by the VCG auction.

The Uniform price auction sorts the received bids accord-
ing to their bid densities (vijk/rrijk ), it then accepts as many
bids as possible (subject to auction constraints) in decreasing
order of their bid densities, and it charges the accepted bids
based on the valuation of the last accepted bid (the critical
bid). Ordering the bids according to their bid density ensures
that higher valued bids are considered first. Since the sorting
step can happen in O(log(n)) time [49], the Uniform price
auction has polynomial time complexity. On the other hand,
the scheduling algorithm used by the destination datacenters
(the First-Fit bin-packing algorithm) assigns each workload
to the earliest time slot where it can be successfully scheduled
within the scheduling horizon T under the computational
resources’ capacity constraints. Since a decision about the
feasibility of scheduling each workload within the scheduling
horizon T can be made in constant time (by checking if the
workload is schedulable at any starting interval within T ),
the First-Fit scheduling algorithm also runs in polynomial
time. Therefore, the whole URA implementation executes in
polynomial time.

The operation sequence of URA can be illustrated by the
diagrams in Figures 7 and 8 (excluding the parts labeled for
VRA) for the cases of energy shortage and surplus imbal-
ances, respectively. URA rebate auctions start and progress

FIGURE 7. Energy shortage message sequences.

in the same way as their VRA counterparts up to the point
when the RA receives the brokers’ bids. For the energy
shortage case shown in Figure 7, the RA achieves the first
auction task of finding the energy consumption information
of the received bids by requesting it directly from the source
datacenter. The RA then groups the received bids in separate
lists based on their sought destination datacenters and sorts
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FIGURE 8. Energy surplus message sequences.

the bids of each list in decreasing order of their bid density
vijk/rrijk . The RA then sends each list of ordered bids to its
destination datacenter and requests each destination datacen-
ter to identify the longest portion of its received list that it
can schedule successfully (without changing the order of the
bids) within the lookahead horizon T , and return the resulting
schedule. After receiving the tentative lists of schedulable
workloads from the destination datacenters, the RA approves
their corresponding bids in decreasing order of their bid
density either until all tentatively scheduled bids are approved

or until the energy imbalance is corrected. The last approved
bid by the RA is the critical bid. The second, third and fourth
auction tasks (finding the winning bids, their schedule and
payments) are all then achieved in one step; The winning bids
are all the ones with bid densities higher than or equal to the
critical bid, their schedule is as provided by their correspond-
ing destination datacenters, and their payments are calculated
according to the valuation given by the critical bid. The
auction result (winning bids, their payments and schedule) is
then sent to the brokers and the destination datacenters.When
workload migrations are completed, destination datacenters
notify the RA that the migrations have already taken place,
so the RA can issue the remaining portion of the rebate to the
winning brokers (after deducting their payments).

Similarly, for the case of energy surplus shown in Figure 8,
the RA achieves its first auction task of finding the energy
consumption information of the received bids by requesting
it directly from the destination datacenter. The received bids
are all grouped in one list (all have the same destination data-
center) and sorted in order of their bid density vijk/rrijk . The
RA then sends the ordered list to the destination datacenter
and requests it to identify the longest portion of the received
list that it can schedule successfully (without changing the
order of the bids) within the lookahead horizon T , and return
the resulting schedule. After receiving the tentative lists of
schedulable workloads from the destination datacenter, the
RA approves their corresponding bids in decreasing order
of their bid density either until all tentatively scheduled bids
are approved or until the energy imbalance is corrected. The
last approved bid by the RA is the critical bid. Similar to the
energy shortage case, the second, third and fourth auction
tasks (finding the winning bids, their schedule, and pay-
ments) are all then achieved in one step; The winning bids are
all those with bid densities higher than or equal to the critical
bid, their schedule is as provided by the destination datacenter
and their payments are according to the valuation given by the
critical bid. The auction result (winning bids, their payments
and schedule) is then sent to the brokers and the destination
datacenters. When brokers complete the required workload
migrations, destination datacenters confirm the completed
migrations to the RA, which then issues the remainder of the
rebates to the brokers (as shown in Figure 3).

VII. PERFORMANCE EVALUATION
This section presents the simulation setup, used parameters,
performance metrics, and discusses the simulation results.
The simulation model was built using the Java programming
language, and the auction optimization problem of the VRA
implementation (Eqs. 6-16) was solved using the IBM ILOG
CPLEX optimization solver V12.5.1 (via its Concert inter-
face library for Java). Since existing datacenter-based grid
balancing approaches use owner-operated datacenters (do not
consider the case of decision-making end-users) and only
provide uni-directional flexibility (as shown in Table 1), they
are not directly comparable to the proposed systems. There-
fore, the results in this section compare the performance of the
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proposed rebate auctions under the following performance
metrics: 1) Grid balancing time, 2) Percentage of imbalance
penalty avoided, 3) Brokers’ savings, and 4) Time complex-
ity. The considered metrics cover the grid-balancing aspect
of the proposed auctions, their monetary effect on the auction
participants, and their time complexity.

A. SIMULATION SETUP
The simulation model consists of 4 cloud datacenters and
6 cloud brokers, where datacenters are assigned randomly
chosen cost parameters at the beginning of each simulation
run. The time dimension is divided into equal-sized intervals
of unit duration. Each cloud broker receives a random number
of workloads (uniformly distributed ∈ U(1, 10)) at the begin-
ning of each interval and automatically sends each received
workload to the least-cost datacenter as per Eq. 2. Each
simulation run starts with 10,000 kWh of energy imbalance at
a randomly selected datacenter, and rebate auctions are used
as described earlier to correct the imbalances. Simulation
experiments were repeated 500 independent runs for each
case of energy imbalance (surplus/shortage) with randomly
generated inputs for each run. The presented results show
the average of the independent runs with 95% confidence
intervals.

Since the proposed rebate auctions require datacenters to
compute the energy consumption of individual cloud work-
loads using the ConvDc,m,s

j parameters (as shown in Eq. 1),
the simulations were conducted using synthetic input data
because such parameters of workloads energy consumption
are not made available by the commercial cloud datacenters.
However, the presented results provide a proof of concept
for the applicability of the proposed approaches, while the
exact benefit for the auction participants would depend on
their energy consumption and cost parameters, as shown
in Section IV-A. The ranges for the parameters used in the
simulation are listed in Table 3.

Since the VCG auction used in the VRA implementation
guarantees truthful bidding as the dominant strategy for bid-
ders wishing to maximize their utility, the simulation experi-
ments assume that bidders always bid their true valuation (as
shown in Figure 3) for both of the VRA and URA imple-
mentations. While bidding strategies are always considered
in the context of Uniform price auctions [50], [51], no bidding
strategies are considered in this performance evaluation since
both auction implementations receive the same truthful bids.
This is done to compare both implementations under the same
conditions and evaluate the performance of the computation-
ally efficient URA auction under truthful bidding.

Since the VCG auction charges each winning bidder its
social cost (how much its presence negatively affects other
bidders), it would not generate any revenue if the total
demand is less than the available supply of auctioned goods.
This is because in such a case, the presence of any bidder has
no effect on the amount of goods allocated to other bidders.
Therefore, it is important to ensure that the amount of rebates
auctioned in each iteration is always less than the total amount

TABLE 3. Simulation parameters.

of requested rebates rrijk to generate payments from winning
bidders. To do that, the conducted simulation experiments
limit the amount of offered rebates in each iteration to a
fraction of the total requested rebates rrijk in the received bids.
The rebates availability fractions of 0.6, 0.7, 0.8, and 0.9 are
used for this purpose, as shown in the results. This means that
if the total amount of requested rebates rrijk in the received
bids is equal to 100, the amount of auctioned rebates would
be 60, 70, 80, and 90, respectively, according to the rebates
availability fraction used.

B. EFFECT OF REBATE AUCTIONS ON
GRID BALANCING TIME
The main goal of rebate auctions is to correct energy imbal-
ances. This performance metric compares the grid balanc-
ing capability of the proposed rebate auctions by showing
the average time (the number of time intervals) needed by
each implementation to correct the same amount of energy
imbalance. Since the VCG auction requires the amount of
auctioned rebates to be less than the total requested rebates
rrijk to generate revenue, different rebate availability frac-
tions are used (0.6, 0.7, 0.8, and 0.9) as discussed above.
Figure 9 shows the results of the two auction implementations
for correcting energy surplus imbalances compared to the
time needed to consume the energy surplus if no auction
is used. The results show that using rebate auctions speeds
up the excess energy consumption as they concentrate the
workloads at the datacenter that has the energy surplus,
allowing it to consume the excess energy faster. It is also
shown that the balancing time is reduced as more rebates are
offered in the auction since more workloads can be migrated.
Figure 9 also shows that the VRA implementation consumes
surplus energy faster than the URA implementation because
it is solved to optimality, thus, migrating more workloads.
Figure 10 shows the results of the two auction implementa-
tions for correcting energy shortage imbalances where similar
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FIGURE 9. Balancing time for energy surplus.

FIGURE 10. Balancing time for energy shortage.

observations can be made in this case. No comparison is
shown with the case of not using rebate auctions since bal-
ancing energy shortages requires a reduction of energy con-
sumption, which can not happen without intervention. This is
unlike the case of energy surplus imbalances, where excess
energy is still consumed at its regular rate if no rebate auction
is used.

C. EFFECT OF REBATE AUCTIONS ON THE PERCENTAGE
OF IMBALANCE PENALTY AVOIDED
Regardless of the imbalance type and the required workloads
migration direction (either towards or away from a certain
datacenter), BAs that issue rebate auctions do so to avoid
paying an imbalance penalty (such as the cost of turning
on a backup generator). Therefore, imbalance penalties are
considered themaximumbudget of rebates that can be offered
in a rebate auction because grid operators would not consider
using rebates auctions to correct imbalances if it is cheaper to
pay the imbalance penalty. This performance metric shows
the savings that BAs can gain (shown as the percentage
of imbalance penalty avoided) by using rebate auctions to
correct energy imbalances instead of paying the penalty. The
BAs’ rationale for using the proposed rebate auction is that it
should be cheaper to correct imbalances by using the auction
than paying the penalty associated with the imbalance.

FIGURE 11. Imbalance penalty avoided (Surplus).

FIGURE 12. Imbalance penalty avoided (Shortage).

Figures 11 and 12 show the percentage of the remain-
ing rebates budget (imbalance penalty avoided) after energy
imbalances are corrected at different fraction levels of rebates
availability (0.6, 0.7, 0.8, and 0.9). For the VRA implementa-
tion, Figures 11 and 12 show that more savings can be gained
when smaller rebate availability fractions are used (fewer
rebates are offered in the auction). This is because VRA
can generate higher auction payments when fewer auctioned
goods are available. On the other hand, the URA implemen-
tation generates the same level of savings at the different
levels of rebate availability fractions because its uniform
price rule charges all bidders using the same valuation (the
valuation offered by the critical bid). The higher savings in
the surplus case are due to the added revenue coming from
the datacenters for consuming the excess energy. In contrast,
no such revenue exists in the shortage case.

D. EFFECT OF REBATE AUCTIONS ON BROKER SAVINGS
This performance metric shows the effect of rebate auctions
on brokers’ savings. Broker savings are calculated as the per-
centage of reduction in brokers’ costs as a result of taking part
in the auctions and migrating their workloads. Figures 13 and
14 show the results of using the rebate auctions for both cases
of energy surplus and shortage, respectively. In both cases,
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FIGURE 13. Brokers savings (Surplus).

FIGURE 14. Brokers savings (Shortage).

brokers always save money by participating in the auction
since their auction payments are always less than their cost
at their ‘‘source datacenter’’ j. This is because their bids
valuations vijk are always less than their requested rebates
rrijk . Figures 13 and 14 show that the VRA implementation
generates more savings for the brokers when more rebates
are offered in the auction. This is because the more goods
available in the auction, the lower the price paid. However,
the URA generates fewer savings for the brokers because the
accepted bids’ valuations were close in value, and they were
all charged the same price of the last accepted bid (the one
that pays as bid, making no profit since no bidding strategy is
used). As a result, they all see little benefit in total in this case.
Therefore, this auction implementation highlights the need
for participants to use a bidding strategy such as including a
minimum amount of profit margin in their bids to maximize
their return.

E. TIME COMPLEXITY
This performance metric shows the relative time complex-
ity of the two rebate auction implementations at different
problem input sizes. The VRA auction implementation was
encoded as a MILP (Eqs. 6-16) and solved to optimality to
maintain its truthfulness property. Such a setting is known

FIGURE 15. Time complexity.

to be NP-hard by a reduction from the Multidimensional
Knapsack Problem (MKP) [52] given the capacity constraints
along the different resource dimensions of the datacenters
where workloads must be scheduled. On the other hand, the
First-Fit algorithm used to schedule workloads in URA is a
polynomial-time approximation algorithm. Figure 15 shows
the running time of both auction implementations for dif-
ferent problem input sizes (the number of cloud brokers
in the system). Results show that the VRA implementation
does not scale well for large problem sizes and suggest the
use of URA as the more viable option for large problem
sizes.

VIII. CONCLUSION
Grid balancing is essential for the reliable operation of
modern utility grids. Datacenters can play a major role in
achieving effective grid balancing by providing demand-side
flexibility using workload scheduling and migration. This
flexibility is greatly needed to allow for increasing the inte-
gration of RESs into the generation mix of modern grids.
This work presented a new rebate auction framework that
uses cloud workload migrations between datacenters to pro-
vide bidirectional grid flexibility. Two alternative auction
implementations were further provided under the proposed
framework (based on the VCG and uniform price auctions),
their properties were analyzed, and their performances were
compared through simulation. Simulation results showed the
effectiveness of the proposed rebate auctions in correcting
energy imbalances and providing positive utility to all system
participants.
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