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ABSTRACT Acommon belief in designing deep autoencoders (AEs), a type of unsupervised neural network,
is that a bottleneck is required to prevent learning the identity function. Learning the identity function
renders the AEs useless for anomaly detection. In this work, we challenge this limiting belief and investigate
the value of non-bottlenecked AEs. The bottleneck can be removed in two ways: (1) overparameterising
the latent layer, and (2) introducing skip connections. However, limited works have reported on the use
of one of the ways. For the first time, we carry out extensive experiments covering various combinations
of bottleneck removal schemes and datasets using variants of Bayesian AEs. In addition, we propose the
infinitely-wide AEs as an extreme example of non-bottlenecked AEs. Their improvement over the baseline
implies learning the identity function is not trivial as previously assumed. Moreover, we find that non-
bottlenecked architectures (highest AUROC=0.905) can outperform their bottlenecked counterparts (highest
AUROC=0.714) on a recent benchmark of CIFAR (inliers) vs SVHN (anomalies), among other tasks,
shedding light on the potential of developing non-bottlenecked AEs for improving anomaly detection.

INDEX TERMS Anomaly detection, autoencoders, bottleneck, unsupervised neural network.

I. INTRODUCTION
Numerous works have demonstrated the successful use of
autoencoders (AEs), a type of unsupervised neural network
(NN), for anomaly detection [1]. AEs are optimised to recon-
struct a set of training data with minimal error. When given
anomalous data which have high dissimilarity from the train-
ing data, the AEs reconstruct themwith high error. Therefore,
the reconstruction error is a measure of data anomalousness;
by placing a threshold, we can effectively classify data points
as inliers or anomalies.

Extant works claim that AEs will trivially learn the identity
function when no constraints are placed [2], [3]. If this were
to occur, AEs will perfectly reconstruct any inputs (regardless
whether it is anomalous or not), and hence the reconstruction
loss will be low for all inputs, leading to unreliable anomaly
detection. To prevent this, it is common to impose a bottle-
neck in the architecture, resulting in an undercomplete archi-
tecture: the output of the encoder has much lower dimensions
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than the input. However, most works describe the need for a
bottleneck analogically and report only the empirical perfor-
mance of bottlenecked AEs, without comparing them against
non-bottlenecked AEs [2], [4]–[7].

Recently, a study by Nalisnick et al. [8] has shed light on
a surprising failure of AEs on a seemingly trivial bench-
mark: distinguishing common images of vehicles or animals
in CIFAR dataset (as inliers) from house numbers in the
SVHN dataset (as anomalies), which differences are obvi-
ous to humans. Since then, several works have followed
up by proposing ad-hoc fixes such as likelihood ratio [9],
Watanabe-Akaike Information Criterion (WAIC) [10], and
density of states estimation (DOSE) [11]. The failure of AEs
on the benchmark task is surprising and profoundly questions
our understanding of AEs, especially since they have been
applied to many industrial applications [1].

A. WHY SHOULD WE CARE ABOUT NON-BOTTLENECKED
AES?
By limiting to bottlenecked architectures, we miss the poten-
tial of achieving better performance with non-bottlenecked
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FIGURE 1. (a-c) Negative reconstruction errors (i.e. log-likelihood) from BAEs with five layers of infinitely many parameters on 1D toy datasets,
resembling reasonable density estimation. Orange dots represent the training data points. (d) The reconstructed outputs (last panel) clearly
differ from the identity function. All layers use GELU [20] as activation functions, except the last, which uses the sigmoid function; the min-max
scaler [21] is used for pre-processing.

AEs. Therefore, in this work, we study the use of non-
bottleneckedAEs for anomaly detection.We investigate com-
binations of ways for removing the bottleneck, including (1)
expanding the latent dimensions, also known as an overcom-
plete architecture, and (2) introducing skip connections. Fur-
thermore, we propose the infinitely-wide AEs as an extreme
example; this work is the first to provide empirical results
on their effectiveness as anomaly detectors. Extensive experi-
ments demonstrate the empirical success of non-bottlenecked
AEs in detecting anomalies over the baseline and the bottle-
necked AEs, indicating the non-bottlenecked AEs have failed
to learn the identity function, contrary to conventional belief.

Several works have considered the use of over-
complete architectures or skip connection with addi-
tional modifications such as rough neurons proposed by
Khodayar et al. [12], dictionary learning [13], dropout and
denoising mechanisms [14] to prevent learning the identity
function by encouraging sparsity. Sparsity refers to having
neuron activations or weights with zeros which is equiv-
alent to turning off unused neurons, and is often imple-
mented in a form of L1 regularisation that prevents the AE
from overfitting to the training data [3]. While introducing
sparsity can improve the robustness of the AE, a work by
Baur et al. [15] has briefly reported an observation that ran-
dom weight initialisation alone in the classic deterministic
AE is sufficient to prevent learning the identity function.
It is worth noting that a recent theoretical study [16]
has shown that overparameterised supervised NNs do not
tend to overfit and can generalise well with a conven-
tional L2 regularisation, in agreement with our findings on
unsupervised AEs.

We suggest that rethinking about AEs is needed. In this
effort, we adopt the probabilistic formulation of Bayesian
autoencoders (BAEs), viewing them as regularised den-
sity estimators that benefit from having higher expressivity
allowed by non-bottlenecked architectures (see Fig. 1 for an
example). The Bayesian framework also provides a sound
foundation for theoretical analysis of these architectures in
future work, while drawing clear connection to the classic
deterministic AE.

In particular, our contributions toward understanding the
use of AEs for anomaly detection are as follows:

1) Development of non-bottlenecked AEs. Inspired by
our observation that AEs do not learn the identity
function on low-dimensional datasets despite being
overparameterised, this study investigates deeper into
the use of non-bottlenecked architectures. Combi-
nations of overcomplete structure and skip connec-
tions are applied to various layer types including
fully-connected dense layers, convolutional 1D and
2D layers, and variants of AEs including variational
autoencoder (VAE) [17] and BAEs [18]. An ablation
study reveals that removing the bottleneck of the deter-
ministic AE demonstrates significant improvements on
various datasets including the recent benchmark of
CIFAR vs SVHN, which bottlenecked AEs have shown
to fail [8].

2) Development of infinitely-wide BAE. For the first
time, we present a study on the applications of
infinitely-wide BAEs for anomaly detection. The
Bayesian framework permits us to view AEs as
probability density estimators instead of conventional
reconstruction models, and draws connection to the
well-studied Gaussian Process (GP) at the infinite-
width limit. In addition to achieving higher modelling
capability from the infinitely-wide layers, these BAEs
demonstrate improved robustness due to Bayesian
model averaging [19].

3) Applications of non-bottlenecked AEs to industrial
sensor datasets. A wide range of non-bottlenecked
AEs is applied to real sensor data for condition mon-
itoring of a hydraulic system and quality inspection of
a radial forging process, demonstrating that improve-
ments on benchmark datasets can be generalised and
are impactful to industrial applications. The industrial
testbeds also shed light on the additional computational
time incurred by the non-bottlenecked AEs.

This paper is organised as follows: Section III formulates
AEs from a Bayesian perspective and describes ways to
remove the bottleneck. Our experimental setup is described
in Section IV followed by results and discussion in Section V.
We relate to previous works in Section II and state our lim-
itations in Section VI. We close with a summary and future
directions in Section VII.
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II. RELATED WORK
Several works have investigated the use of skip connections
in AEs for tasks such as image denoising [22], [23] and
audio separation [24]. Our work differs from current works on
overcomplete and skip-AEs for anomaly detection [12]–[15],
[25]: we have investigated a wider range of non-bottlenecked
AEs, in which overcomplete or skip-AEs are only one type,
and experimented with more datasets.

Snoek et al. [26] has proposed the autoencoder with an
infinitely-wide decoder while keeping its encoder finite, and
demonstrates its effectiveness for supervised classification
and learning latent representations. Nguyen et al. [27] has
theoretically studied infinitely-wide and shallow (2 layers)
AEs, providing insights into their behaviours. To the best of
our knowledge, we are the first to propose a deep BAE (up to
13 layers) with all layers being infinitely-wide, and provide
empirical results on anomaly detection.

Radhakrishnan et al. [28] and Zhang et al. [29] have
observed that overcomplete AEs exhibitmemorisation, a phe-
nomenon where the AEs reconstruct the closest training
examples instead of the inputs. We suggest that a possi-
ble link exists between memorisation and the success of
detecting anomalies using overcomplete AEs: when given
an anomalous input, the AEs reconstruct the closest training
example of inliers. This leads to a more discriminating, larger
reconstruction error with the anomalous input than if the input
were to be an inlier.

III. METHODS
This section introduces the AEs from a generalised
Bayesian perspective, followed by methods for removing the
bottleneck.

A. BAYESIAN AUTOENCODERS
Suppose we have a set of data X train = {x1, x2, x3, . . . xN },
xi ∈ IRD. An AE is an NN parameterised by θ , and consists
of two parts: an encoder for mapping input data x to a latent
embedding, z = fencoder(x), and a decoder fdecoder formapping
the latent embedding to a reconstructed signal of the input x̂
(i.e. x̂ = fθ (x) = fdecoder(fencoder(x))) [30].

Bayes’ rule can be applied to the parameters of the AE to
create a BAE,

p(θ |X train) =
p(X train|θ ) p(θ)

p(X train)
, (1)

where p(X train|θ ) is the likelihood and p(θ ) is the prior dis-
tribution of the AE parameters. The negative log-likelihood
(NLL) for an isotropic Gaussian distribution with variance=1
is

− log p(x|θ ) =
1
D

D∑
i=1

(xi − x̂i)2 (2)

Note that the NLL is proportional to the mean-squared
error (MSE) function, also known as the reconstruction loss
in classic AE parlance.

For the prior, an isotropic Gaussian prior distribution is
employed, effectively leading to L2 regularisation of weights.
When a Laplace distribution is used instead, this leads to
L1 regularisation used in sparse AEs [3], [13]; regularisation
penalises the large-valuedweights and encourage smaller val-
ued weights to prevent overfitting. L1 regularisation typically
has higher robustness in selecting features due to its ability to
encourage sparsity [31].

Since Equation 1 is analytically intractable for a deep
NN, various approximate methods have been developed
such as Stochastic Gradient Markov Chain Monte Carlo
(SGHMC) [32], Monte Carlo Dropout (MCD) [33], Bayes
by Backprop (BBB) [34], and anchored ensembling [35] to
sample from the posterior distribution (see Fig. 2 for an
overview).

In anchored ensembling [35], posteriors are approximated
by Bayesian inference under the family of methods called
randomised maximum a posteriori (MAP) sampling, where
model parameters are regularised by values drawn from a
so-called anchored prior distribution. Assume our ensemble
consists ofM independent AEs θm where m ∈ {1, 2, . . . ,M}.
The anchored weights θancm are the randomly initialised NN
parameters for which the Kaiming [36] or Xavier initialisa-
tion schemes [37] are used as default in deep learning libraries
such as Pytorch [38] and Tensorflow [39]; the values of θancm
remain fixed throughout the training procedure. For each
member of the ensemble, the loss to be optimised is

L(θm,X ) = − log p(X |θm)︸ ︷︷ ︸
likelihood loss

+ λ||θm − θ
anc
m ||

2︸ ︷︷ ︸
prior loss

(3)

where λ is a hyperparameter for scaling the regulariser term
arising from the prior, also known as weight decay. In con-
trast, a classic deterministic AE is a single maximum likeli-
hood estimate (MLE) or MAP estimate (i.e. M = 1) when
regularisation is introduced; the training loss for such AE is

L(θMAP,X ) = − log p(X |θMAP)︸ ︷︷ ︸
likelihood loss

+ λ||θMAP
||
2︸ ︷︷ ︸

prior loss

(4)

In short, the training phase of BAE entails using one of
the sampling methods to obtain a set of approximate pos-
terior samples of AE parameters {θ̂m}Mm=1 (i.e. an ensemble
of AEs) essential for the prediction phase (Algorithm 1).
On the other hand, the deterministic AE is a single MAP esti-
mate of the posterior distribution and does not benefit from
Bayesian model averaging [19]. The variational autoencoder
(VAE) [17] and BAE are AEs formulated differently within a
probabilistic framework: in the VAE, only the latent embed-
ding is stochastic while the fencoder and fdecoder are determin-
istic and the model is trained using variational inference;
on the other hand, the BAE, as an unsupervised Bayesian
neural network (BNN), has distributions over all parameters
of fencoder and fdecoder.

Then, during the prediction phase, we use the posterior
samples to computeM estimates of theNLL. The negative log
predictive density of a new data point x∗ can be approximated
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FIGURE 2. Overview of training a BAE with anchored ensembling; the training loss
comprises the likelihood and prior losses arising from M samples of BAE parameters. The
example is shown for a sensor data input (K sensors × D measurements).

as the mean of the posterior NLL estimates,

− log p(x∗|X train) = E θ [− log p(x∗|θ ) p(θ |X train)]

≈ −
1
M

M∑
m=1

log p(x∗|θ̂m) (5)

For convenience, we denote − log p(x∗|X train) as Eθ [NLL].
The Bayesian formulation allows us to view AEs as regu-
larised probability density estimators: they model the training
data distribution, assigning lower density scores to data which
have higher dissimilarity from the training data.

Algorithm 1 BAE: Training and Predictions
1: for number of training epochs do F Train BAE
2: Minimise loss on X train (Eq. 3)
3: end for
4: NLLM ← {} F Prediction
5: for each ensemble member, m=1 toM do
6: x̂m← f

θ̂m
(x∗) F Reconstruct signal

7: NLLM append ||x∗ − x̂m||2 F Store NLL
8: end for
9: Eθ [NLL]← mean(NLLM ) F Anomaly score

10: return Eθ [NLL]

B. HOW TO REMOVE THE BOTTLENECK?
The identity function is successfully learnt when fθ (x) = x
holds true for all x and therefore the reconstruction loss
or NLL is always 0, rendering it useless for distinguishing
anomalies from inliers. In an effort to mitigate this, a bot-
tleneck is implemented at the latent layer (encoder’s final
layer) by having the latent dimensions smaller than the input
dimensions, dim(z) < dim(x), and there is no way for any
output of the intermediate layers to bypass the bottleneck
layer. It is straightforward to eliminate the bottleneck by
doing the opposite: (1) simply expand the size of the latent
dimensions to dim(z) ≥ dim(x), also known as an over-
complete architecture, and/or (2) introduce long-range skip
connections from the encoder to the decoder akin to a U-Net

TABLE 1. Categorising architectures into with or without a bottleneck
depends on the latent dimensions and the presence of skip connections.

FIGURE 3. Overview of architectures of (a) bottlenecked and
(b-d) non-bottlenecked AEs. Blue blocks represent NN layers; green
blocks depict input or reconstructed vectors. The bottleneck is removed
by expanding the latent layer (center layer) to be wider than the input
dimension and/or introducing skip connections.

architecture [40], thereby allowing each layer’s data flow to
bypass the bottleneck; for clarity, see Table 1 and Fig. 3.

1) WHY SKIP CONNECTIONS?
Skip connections allow a better flow of information in
NNs with many layers, leading to a smoother loss land-
scape [41] and easier optimisation, without additional com-
putational complexity [42]. Recent works [14], [15], [25]
have reported that AEs with skip connections outperform
those without on image anomaly detection. In preventing
the skip-AEs from learning the identity function, Collin and
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FIGURE 4. Eθ [NLL] using deterministic AE and BAEs with bottlenecked and non-bottlenecked architectures on a toy dataset. Brighter
region has lower Eθ [NLL] values and log-scale of contour is used to increase visibility. The darker contours away from the training points
show that the deterministic AE and BAE do not learn the identity function despite being overparameterised and having skip connections.
The encoder architecture has fully-connected layers with nodes of 2-50-50-50-dim(z) where dim(z)=1 for undercomplete and dim(z)=100
for overcomplete architectures. We use SELU activation [43] for every layer and sigmoid activation for the final layer. The BAE-∞ has a
similar number of layers, each with infinite parameters.

Vleeschouwer [14] and Baur et al. [15] have implemented a
denoising scheme and a dropout mechanism, respectively.
Notably, Baur et al. [15] have reported that random weight
initialisation alone is sufficient to prevent learning the iden-
tity function, rendering the dropout redundant.

2) INFINITELY-WIDE BAE
In the infinite-width limit, a fully-connected BNN is equiv-
alent to a neural network Gaussian process (NNGP) [44].
The results have been extended to modern architec-
tures such as convolutional NNs, recurrent NNs, and
transformers [45]–[47] in recent years. We propose extend-
ing the NNGP to the AE to create an infinitely-wide
BAE (BAE-∞ ), which opposes the conventional bottleneck
design. Viewing the BAE as a density estimator motivates
this; it is not unconventional for density estimators to have
infinite parameters as they benefit from higher expressivity
to model an arbitrary distribution well [48], [49].

There are two primary advantages of the NNGP: having
a closed-form solution and modelling a BNN with infinitely
many parameters. The first facilitates a theoretical under-
standing by linking to the well-studied GP model, and the
second potentially improves performance since deep NNs
succeed over traditional ML models via increasing model
parameters [1]. Nonetheless, empirically, infinite NNs do not
always outperform finite NNs; reasons for their underperfor-
mance remain an active research topic [50], [51]. Another
drawback is their computational complexity ofO(N 3), where
N is the number of training examples, reducing scalability to
large datasets.

Surprisingly, when we examine the behaviours of AEs on
2D toy data sets (Fig. 4), we find that the identity function
is not learnt despite using various types of non-bottlenecked
AEs. Consequently, this observation on low-dimensional data
implies it is more unlikely to learn the identity function on
high-dimensional data due to higher degrees of freedom.

We suggest several reasons hinderingAEs from the identity
mapping: high degree of non-linearity in the AE and regulari-
sation induced by mini-batching, the deep learning optimiser
(e.g. Adam [52]) and the prior over parameters. Since these
are usually implicit in training the AE, no additional, explicit
efforts are necessary (e.g. denoising or dropout mechanisms).

IV. EXPERIMENTAL SETUP
This section describes the datasets, preprocessing steps, and
models used in our experiments. All datasets and code used in
this work are publicly available1; the dimensions of training
and test sets after preprocessing are tabulated in Table 2.

A. BENCHMARK DATASETS
Recent studies on anomaly detection with deep learningmod-
els have often benchmarked on pairs of high-dimensional
image datasets; one dataset is labelled as inliers and the other
as anomalies. These datasets have larger number of features
than the traditional datasets in the ODDS collection, posing
higher difficulty in achieving performant models. Two pairs

1Download links Image datasets: pytorch.org/vision/stable/datasets
ODDS: odds.cs.stonybrook.edu ZeMA: doi.org/10.5281/zenodo.1323611
STRATH: doi.org/10.5281/zenodo.3405265 Code: github.com/bangxiang
yong/bottleneck_ae
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TABLE 2. Number of examples in train and test sets, and number of
features for each image dataset pair, and for each task in ODDS, ZeMA
and STRATH datasets.

FIGURE 5. Image samples from benchmarks of (a) CIFAR vs SVHN and
(b) FashionMNIST vs MNIST. Top row is the inlier distribution and bottom
row is the anomalous distribution.

of image datasets are of importance due to the surprising
finding of Nalisnick et al. [8] that deep learning models such
as AEs have failed to perform well, despite their visual
differences (Fig. 5) which are obvious to the human eye:
(1) FashionMNIST [53] vs MNIST [54], and (2) CIFAR [55]
vs SVHN [56].

The MNIST [54] dataset consists of 28 × 28 grayscale
images of handwritten digits ranging from 0 to 9. The images
in FashionMNIST [53] are of similar format with a difference
that the images depict ten classes of fashion products: T-shirt,
trouser, pullover, dress, coat, sandals, shirt, sneaker, bag, and
ankle boots. TheCIFAR [55] dataset comprises 32×32 colour
images with 10 classes: automobile, bird, cat, deer, dog,
frog, horse, ship, truck. The SVHN [56] images share similar
format with those of CIFAR (32 × 32 and colored) and
depicts actual house numbers captured from Google Street
View. In comparison to FashionMNIST vs MNIST, the task
of CIFAR vs SVHN is a more difficult problem since these
datasets contain natural scene images which are less regu-
lar and cover more colour channels (red, blue, green) than
grayscale images.

The ODDS [57] collection consists of smaller datasets with
fewer features than FashionMNIST, MNIST, CIFAR, and
SVHN. These datasets have been used extensively in extant
studies to benchmark anomaly detection methods [58]–[60].
The Cardio [61] dataset consists of fetal heart rate and
uterine contraction measurements classified by expert obste-
tricians as healthy or malignant. Similarly, Lympho [62],
Thyroid [63], and Pima [64] datasets consists of medical
measurements relevant to lymph nodes, thyroid, and diabetes

diseases, respectively. For these datasets, the healthy condi-
tion forms the inliers, while the pathologic class is treated as
anomalies. Optdigits [65] and Pendigits [66] consist of hand-
written digits (0-9) with the class ‘‘0’’ treated as anomaly,
while the others are categorised as inliers; unlike MNIST,
however, these datasets are of much smaller dimensions. The
Ionosphere [67] dataset comprises radar data collected from
16 high-frequency antennas; inliers are good signals that
indicate structure in the ionosphere, while the anomalies are
bad signals that pass through the ionosphere. The Vowels [68]
dataset consists of time series features of utterances from 9
Japanese speakers; the anomaly class consists of features
from speaker 1, while inliers comprise speakers 6,7, and 8; the
other speakers have been discarded in the provided dataset.

1) DATA PREPROCESSING
For FashionMNIST vs MNIST and CIFAR vs SVHN
datasets, we use the default split of train-test sets available
in Pytorch [38] which have pixel values scaled to [0,1]. For
ODDS, we split the inliers into train-test sets with a ratio
of 70:30 and with random shuffling. Subsequently, min-max
scaling [21] is fitted to the training set and transforms each
feature in train-test sets to range in [0,1].

B. INDUSTRIAL DATASETS
To demonstrate the applicability of non-bottlenecked AEs
to real datasets, sensor data gathered from two industrial
testbeds are used: (1) condition monitoring of a hydraulic test
rig [69] and (2) quality inspection of a radial forging pro-
cess [70]. The datasets gathered from these testbeds have the
dimensions of (N ×K ×D), whereN is the number of cycles
(i.e. data examples), D is the sequence of measurements in
each cycle, and K is the number of sensors.

1) CONDITION MONITORING OF A HYDRAULIC SYSTEM
Hydraulic systems transmit power using pressurised liquids
such as oils [71]; these systems are often found in heavy
machinery such as elevators, cranes, aircraft, ships, construc-
tion vehicles, and are essential in many industries including
petroleum, railway, construction, and manufacturing. In prac-
tice, hydraulic systems can suffer from malfunctions and
degradation of vital components, reducing their efficiency
in transmitting power and increasing risk of occupational
hazard.

Due to their relevance to industrial applications, condition
monitoring of hydraulic systems has gained increasing impor-
tance to anticipatemachine failure, reducemachine downtime
and maintenance costs [72]. Adopting a data-driven approach
to condition monitoring is promising due to the advances in
deep AEs. In addition to boosting predictive accuracy, deep
AEs reduce the need of feature engineering, in contrast to
conventional modelling which involve detailed physical and
mathematical analysis of a complex system [1], [73].

To this end, we investigate the application of unsuper-
vised AEs on a hydraulic test rig [72], [74] developed in
the Center for Mechatronics and Automation Technology
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FIGURE 6. Hydraulic system test rig for condition monitoring at ZeMA,
Germany.

TABLE 3. Conditions of components in the ZeMA hydraulic system and
descriptions.

GmbH (ZeMA) in Saarland, Germany (Fig. 6). The test rig
permits safe and non-destructive changes to the states of
vital components to emulate faults and degradation. There
are 4 detection tasks in the ZeMA dataset; each task entails
using sensor measurements as inputs to detect anomalies
in key components, namely, (i) the cooler, (ii) the valve,
(iii) the pump, and (iv) the accumulator. The functions of
these components are described as follows: the cooler pre-
vents the liquid from overheating and maintain its viscocity;
the pressure relief valve limits maximum pressure by provid-
ing an alternative flow path; the pump converts mechanical
power into fluid power and controls the flow rate from a tank;
the accumulator acts as an energy storage that can collect
and feed the fluid into the system when needed. The fault
severity levels are configurable by setting the duty cycle
of the cooler, controlling the set-point current of the valve,
switching bypass orifices to the pump, and switching flow
to accumulators with different pre-charge pressures. A total
of 2000 fixed working cycles have been recorded under a
combination of varied component states; each cycle lasts for
60 seconds. The optimal operating state of each component

TABLE 4. Description of sensors in the ZeMA hydraulic system.

FIGURE 7. Sequence of sensor measurements during a working cycle of
the ZeMA hydraulic system.

is regarded as inlier, while the degraded states are labelled
as anomalies. The states of each component are tabulated in
Table 3.

The system has 17 sensors installed to monitor the pres-
sure, flow, temperature, power, vibration, volume flow, and
efficiency (Table 4), each with a different sampling frequency
from 1Hz to 100Hz. Samples of the process data during a
working cycle are depicted in Fig. 7. The process data were
buffered using programmable logic controller (PLC) before
transferring to a main computer via EtherCAT. The Pearson
correlation coefficients (PCC) between sensors are computed
and sensor pairs with greater than 0.95 PCC are considered
highly redundant; a sensor in each of these pairs is randomly
dropped from subsequent analysis.

2) QUALITY INSPECTION OF RADIAL FORGING PROCESS
Quality inspection is an important task in manufacturing and
refers to the classification of a manufactured product into
within-tolerance or out-of-tolerance based on a measured
quality of the product [75]. Ideally, manufacturers would
want to inspect the quality of every product and subsequently
reject products which are of unacceptable quality. However,
the costs are overly prohibitive which means that only a
small number of arbitrarily chosen products in a batch are
inspected. For instance, it may consume much time to mea-
sure the quality of each forged product with a Coordinate
Measuring Machine (CMM) and hence it is impractical to
inspect all products. Furthermore, some procedures may be
intrusive or destructive to the product. One route to improv-
ing the quality inspection is by leveraging the sensor data
gathered during the forging process, feeding them as inputs
to an anomaly detector which classifies a forged part as either
within-tolerance or out-of-tolerance. Essentially, the anomaly
detector would serve as a virtual sensor, enabling quality
inspection of every forged part in a batch of production.

Radial forging, also known as swaging, reduces the diam-
eter of a metal workpiece by applying radial forces towards
its center [76]. Situated at the Advanced Forming Research
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FIGURE 8. Radial forging machine (GFM SKK10/R) at the AFRC of
University of Strathclyde, UK.

FIGURE 9. Preform and forged part with a Factory Acceptance Trial (FAT)
geometry, which is used to test and demonstrate radial forging capability.

Centre (AFRC) of the University of Strathclyde (STRATH)
in Glasgow, UK, a GFM SKK10/R radial forging machine is
used as a testbed for data-driven quality inspection (Fig. 8).
Equipped with four hammers, it is capable of providing a
maximum forging force of 1,500kN and hammer speed of
1,200 strokes/min. In practice, the radial forging machine
is used to forge shafts and rods from metals such as steel,
titanium, and inconel for industrial sectors such as medical,
railway, and aerospace manufacturing.

In a test case at the AFRC, the radial forging machine is
used to forge 81 parts into a Factory Acceptance Trial (FAT)
geometry (Fig. 9) during which process data from 99 sensors
are recorded; 8 sensors are found to be relevant to the forging
phase after elicitation from domain experts and analysis from
a previous work [77], tabulated in (Table 5). The process
of forging each part lasts for 202 seconds with a sampling
interval of 10ms (100Hz), and can be segmented into heating,
transfer, and forging phases (Fig. 10). During the heating
phase, the workpiece is heated to a temperature of 800◦C
using induction coils. Next, it is transferred to the chuck head
using a robotic arm. The forging process involves moving the
heated part into the forging box, and the part is hammered in
oscillations as the chuck head grips and rotates it.

Each forged part is sent to a CMM to measure its geometri-
cal dimensions as quality indicators.We focus our analysis on
the diameter of the forged part (labelled as 38 diameter@200
in the provided dataset), an important quality for radial forg-
ing process emphasised by the domain experts at the AFRC.
To flag out-of-tolerance parts as anomalies, the Tukey’s
fences method [78] is applied on the absolute error between

TABLE 5. Description of sensors relevant to the forging phase in the AFRC
radial forging facility. All sensors have a sampling frequency of 100Hz.

FIGURE 10. Sensor measurements of a single cycle of the radial forging
process comprising heating (red) and forging phases (blue).

the measured and nominal dimensions; the remaining within-
tolerance parts are labelled as inliers.
Data preprocessing of ZeMA and STRATH Datasets: The

inliers are split into train-test sets of 70:30 ratio with random
shuffling, and all anomalous examples are included in the
test set. Min-max scaling is applied by obtaining the min-
max values from the train set for each sensor independently,
instead of each feature, to retain the shape of signal. Fol-
lowing Jiang et al. [79], train-test bias is prevented by fitting
the scaler to the train set only instead of the entire dataset.
Measurements of the forging phase are segmented from each
cycle in the STRATH dataset, while the full sequence is
used in the ZeMA dataset. In order to reduce the data size
to fit into memory, the sequence of process measurements
is downsampled via decimation with a low-pass Chebyshev
type I filter of eighth-order which mitigates the distortion
caused by aliasing [80], implemented as default in the scipy
package [81]; the resulting sequence lengths of each cycle
are reduced toD = 60 andD = 112 for ZeMA and STRATH
datasets, respectively.

To optimise and reduce the number of sensors in the
datasets, a sensor selection scheme is employed by evaluating
a bottlenecked deterministic AE on each sensor indepen-
dently, and the sensors are ranked by their AUROC scores
(Fig. 11); the optimal combinations of sensors are selected
by maximising the AUROC, tabulated in Table 6.

C. MODELS
Multiple variants of AEs are trained: deterministic AE, VAE,
BAE-MCD, BAE-BBB, and BAE-Ensemble. The posterior
samples for VAE, BAE-MCD, and BAE-BBB are set toM =
50, whileM = 10 samples are drawn for the BAE-Ensemble,
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FIGURE 11. Normalised ranks with 95% confidence interval for sensor
selection in (a) ZeMA and (b) STRATH datasets.

TABLE 6. Optimal sensor selection based on sensor ranks for ZeMA and
STRATH datasets.

TABLE 7. Encoder architecture of finite-width AEs with two encoding
layers Lencoder = 2. The decoder is a reflection of the encoder, in which
the Conv1D and Conv2D layers are replaced by Conv1D- and
Conv2D-Transpose layers.

which aremarginally higher than the recommendedminimum
samples for these methods [33], [35]. The BAE-∞ is imple-
mented as NNGPs with infinitely-wide dense layers using
the Neural Tangent Kernel library [82] and with weight stan-
dard deviation optimised across levels of {0.5,0.75,. . . ,1.5}.
Isotropic Gaussian prior is used for all models.

The model architectures are tabulated in Table 7; the num-
ber of convolutional filters and nodes in dense layers are set

FIGURE 12. General evaluation setup of AE for anomaly detection.

appropriately with sufficient capacity to ensure the training
loss converges. Considering the range of preprocessed data is
[0,1], the Sigmoid activation function [83] is applied at the
final decoder layer, while all intermediate layers apply Leaky
Rectified Linear Unit (LeakyReLU) [84]. In addition, the bias
term is turned off for all layers following the recommendation
byRuff et al. [2] to prevent the output collapsing to a constant
mean function and to improve training convergence. The
option of layer normalisation [85] is applied only when it
increases the performance.

A factorial experiment is conducted to investigate the
effect of removing the bottleneck on architectures of vari-
ous depths; the number of convolutional layers (image and
sensor datasets) or dense layers (ODDS dataset) in the
encoder are varied Lencoder ∈ {2, 4, 6}, where each addi-
tional layer has the same output channels, kernels, and strides
as the one before; skip connections are turned on or off
{+,−}; the latent dimensions are varied over factors of
{×

1
10 ,×

1
2 ,×1,×2,×10} with regards to the input dimen-

sions. The experiment is repeated using variants of finite AEs.
The BAE-∞ does not have skip connections and finite latent
dimensions; we vary the Lencoder at similar levels, resulting in
architectures with a total of 5, 9, and 13 infinitely-wide layers
(including the latent layer and decoder), respectively.

D. TRAINING AND EVALUATION SETUP
The general experimental setup is depicted in Fig. 12. The
setup of anomaly detection involves training the AE on a set
of data labelled as inliers. Then, during prediction phase, the
AE is required to output anomaly scores to distinguish inliers
and anomalies in the test set, and the performance is evaluated
with AUROC.

Since each experiment run initialises the AE weights with
different values, and the train-test split of inliers is subject to
random shuffling, the experimental uncertainty is accounted
for by repeating the experiments: 10 runs on ODDS, ZeMA,
and STRATH datasets, and 5 runs on CIFAR and FashionM-
NIST datasets. From the repeated experiments, the mean and
statistical spread of performance scores are reported.

A learning rate finder [86] is employed to search for
the optimal learning rate (Fig. 13), which is capped at
0.001 for stability. The models are trained using the Adam
optimiser [52] with early-stopping for a maximum of 20,
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FIGURE 13. Example of a learning rate finder diagram [86]; the learning
rate is then set as the optimal maximum learning rate for improved
convergence.

20, 300, 200, and 200 epochs for FashionMNIST, CIFAR,
ODDS, ZeMA, and STRATH datasets, respectively. The
weight decay controls the strength of the prior and is set as
λ = 1 × 10−10 which is low enough to prevent the training
loss from stalling.

To evaluate the diagnostic performance of anomaly detec-
tors, the area under the receiver-operating characteristic curve
(AUROC) [87] is often used by extant studies [2], [73].
The AUROC yields intuitive interpretations suggested by
Hosmer et al. [88]: a score of 0.5 suggests no discriminatory
ability which corresponds to randomly tossing a coin, 0.7 to
0.8 is acceptable, and outstanding performance is attained
when the AUROC exceeds 0.9.
Sensitivity Analysis: Following the study by

Kalapanidas et al. [89] and Atla et al. [90], the noise
sensitivity curve is employed to evaluate the drop in
detection performance after injecting additive noise at
different levels. From the curve, the average reduction in
AUROC scores is used as a summary statistic of noise
sensitivity,

E σ+[1AUROC] =
1
N

N∑
n=1

(AUROCσ+n − AUROC0) (6)

where AUROCσ+n denotes the AUROC score obtained at the
σ+n level of injected noise, and N is the number of noise lev-
els. A lower E σ+ [1AUROC] value indicates a greater drop
in accuracy and hence higher sensitivity to noise. Thereafter,
a robustness metric can be defined by taking the exponent,

Robustness = exp(E σ+ [1AUROC]) (7)

such that a higher value indicates higher robustness and
a value of 1 indicates a perfect score (i.e. zero reduction
in accuracy due to additive noise). Additive noise levels
similar to extant studies [89], [90] are applied; the prepro-
cessed test inputs (inliers and anomalies) which range in
[0,1] are injected with random samples drawn from Gaussian
N (0, σ+Gauss) or Uniform distributions U(−σ+Uni, σ+Uni)
where σ+Gauss ∈ {0.1, 0.2, . . . , 0.5} and σ+Uni ∈

{0.1, 0.2, . . . , 0.5}. The sensitivity analysis is repeated for
5 times on CIFAR and FashionMNIST, and 10 times on
remaining datasets to account for experimental uncertainty
due to random sampling.

FIGURE 14. Hyperparameter selection of deterministic AE: mean AUROC
scores of bottlenecked and non-bottlenecked architectures with varied
number of encoder layers. Scores for ODDS and ZeMA are averaged over
the tasks in those datasets for space compactness. Bright yellow boxes
indicate the best performances.

V. RESULTS AND DISCUSSION
In this section, we discuss and analyse the results of experi-
ments described in Section IV.

A. HYPERPARAMETER SELECTION
For each class of bottlenecked and non-bottlenecked architec-
tures, the best combination of number of layers and latent fac-
tor is selected. When there are ties in AUROC performance,
an architecture with fewer layers or smaller latent factor
is preferred to reduce the computational cost. In Fig. 14,
it is observed that the best performing architectures are
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FIGURE 15. (a) Uniform and (b) Gaussian noise sensitivity curves of
bottlenecked and non-bottlenecked deterministic AEs and the BAE-∞ on
various anomaly detection tasks and datasets. A lower and steeper curve
indicates a higher sensitivity to noise.

often found to be non-bottlenecked. Furthermore, the non-
bottlenecked architectures of various depths perform well
and are capable of achieving ≥ 0.9 despite using a clas-
sic deterministic AE without sparsity or Bayesian sampling,
implying the identity function has not been learnt. This holds
true even on the real sensor data for condition monitoring
of hydraulic system (ZeMA) and quality inspection of radial
forging process (STRATH), demonstrating their potential
value to industrial applications.

For CIFAR vs SVHN, applying skip connections have a
strong effect as we find the performance is improved from
AUROC≥ 0.6 to AUROC≥ 0.8 for all layer depth and latent
factors. Therefore, this stands as a solution to the reported
poor performance of AEs by Nalisnick et al. [8]. However,
the effect is reversed on FashionMNIST vs MNIST, harming
the accuracy instead. Hence, in alignment with the study by
Kim et al. [25], this could indicate that skip connections have
strong effect on image data types. The effect of applying skip
connections is not as obvious on sensor data (ZeMA and
STRATH) or tabular data in ODDS.

Another observation is that having too many layers can
harm the performance on most datasets, and fewer layers are
sufficient to performwell. On the contrary, we find increasing
layers are helpful for CIFAR vs SVHN. One possible reason
is the higher complexity of the CIFAR dataset which compose
of 10 classes of natural images with different views, and
hence adding the number of layers help in better extract-
ing hierarchical features. Importantly, this improvement is

realised only when skip connections are applied; without
skip connections, vanishing gradients [91] are more likely to
occur in deep architectures, preventing the gradient flow and
hampering the training process.

B. SENSITIVITY ANALYSIS
The noise sensitivity curves [89], [90] depict the decrease
in AUROC scores as the level of injected noise increases
in Fig. 15. From these sensitivity curves, the average drop
is summarised as a robustness measure, depicted in Fig. 16
for the deterministic AE and BAE. Although we find that
removing the bottleneck of the classic deterministic AE often
improves anomaly detection accuracy, the sensitivity analysis
reveals that it is possible that this increases the sensitivity
towards noise as observed on Thyroid, Vowels, and Opt-
digits tasks. Therefore, when higher robustness is required,
various modifications can be applied such as including spar-
sity with deep temporal dictionary learning (DTDL) proposed
by Khodayar et al. [13], rough neurons [12], or the Bayesian
sampling methods used extensively in our study.

Several works have shed light on the relationship between
accuracy and robustness [92]; whether it is strictly a trade-
off remains debatable as attempts to achieve both criteria
are an active area of research [93], [94]. The BAE-∞ offers
higher modelling capability with its infinite parameters to
boost accuracy; this flexibility is balanced with Bayesian
inference that accounts for model uncertainty [19]. The BAE
offers greater robustness than the deterministic AE on most
datasets including FashionMNIST vsMNIST, ODDS, ZeMA
and STRATH (Fig. 16), evaluated using significance tests: the
null hypothesis of the Friedman test (p-value=3.97 × 10−5)
is rejected at a 95% confidence level, indicating a significant
difference in robustness between the deterministic AE and
BAE; post-hoc Nemenyi tests are then applied which indicate
a significantly higher robustness of the infinitely-wide BAE
compared to the bottlenecked and non-bottlenecked deter-
ministic AEs with p-values of 0.001. However, on a few
datasets, we do find the BAE-∞ to be lower in robust-
ness, suggesting a need to improve the robustness of non-
bottlenecked AEs without lowering the accuracy.

It is observed in Fig. 17 that increasing the strength of the
prior regularisation through the weight decay increases the
robustness at the expense of accuracy; this trade-off pattern
exists whether the L2 regularisation or the L1 regularisation
is used. Another observation is that the L1 regularisation
has generally higher robustness, which is due to the sparsity
induced that discards irrelevant features [3]. The findings
hold for both additive Gaussian and Uniform noise.

An important note is that non-bottlenecked AEs can per-
form well without sparsity and denoising mechanisms in
spite of claims [13], [14] that these are strictly necessary
for non-bottlenecked AEs. In Fig. 17, despite turning off the
prior regularisation (λ = 0), the deterministic AE’s accuracy
remains high and has not decreased to below 0.5 AUROC,
indicating the identity function has not been learnt. This is
aligned with the observation of Baur et al. [15] that random
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FIGURE 16. Robustness (exp(E
σ+

[1AUROC])) of deterministic AE and BAE towards Uniform and Gaussian noise on various anomaly detection tasks and
datasets.

FIGURE 17. Trade-off between accuracy (AUROC) and robustness (exp(E
σ+

[1AUROC])) towards (a) Uniform and (b) Gaussian
noise as weight decay λ is varied for a non-bottlenecked deterministic AE with L1 (dashed) or L2 regularisation (solid).

weight initialisation is sufficient in preventing the identity
function. In short, we posit that additional regularisation
is beneficial when higher robustness is required, but not
mandatory for a non-bottlenecked AE to detect anomalies
accurately.

C. PERFORMANCE EVALUATION
In Table 8, the best non-bottlenecked models (type B,
C and D) beat the baseline with mean AUROC ≥ 0.8 on all
datasets. This observation indicates the identity function has
not been learnt by any variant of AE despite being overparam-
eterised and having skip connections. In addition, the best
mean AUROC scores on most datasets have been achieved
by the non-bottlenecked models.

Focusing on CIFAR vs SVHN, our results provide new
insights into previous works which reported poor per-
formances [8], [10]. Notably, the best non-bottlenecked
model (BAE-Ensemble, type C, AUROC=0.905) and the
BAE-∞ (AUROC=0.756) outperform the best bottlenecked

model (BAE-Ensemble, type A, AUROC=0.714). These
results imply the poor performance could be fixed
if previous works were to consider non-bottlenecked
architectures.

In an ablation study (Fig. 18), we note that switching
to an overcomplete architecture yields consistent improve-
ments over the baseline of bottlenecked deterministic AE.
On the other hand, adding skip connections can either greatly
increase or decrease the AUROC score. This indicates the
unreliability of having skip connections which performance
gain is highly data dependent. However, modellers should
not leave this option since it has potential for strong gains
as demonstrated on CIFAR vs SVHN which could not be
improved much by having only an overcomplete latent layer.
Switching from a deterministic AE to a BAE improves per-
formance as the best performing BAEs achieve the highest
AUROC scores on all datasets. The performance gain is
attributed to Bayesian model averaging [95], which accounts
for uncertainty in model parameters. The best BAEs also
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FIGURE 18. Ablation study: difference in AUROC scores of non-bottlenecked AEs compared to the conventional bottlenecked deterministic AE as a
baseline (1 AUROC=0). For clearer comparisons, vertical dotted lines are drawn for the deterministic AEs and the negative axis is truncated when it is too
long. The best non-bottlenecked AEs can outperform the baseline bottlenecked AEs, although not always, demonstrating their effectiveness for anomaly
detection.

outperform theVAEs, evidencing the advantage of addressing
the uncertainty over parameters of the entire model instead
of considering only the latent layer. However, from Fig. 18,
it can be seen that the BAE-BBB, BAE-MCD, and VAE
perform worse than the deterministic AE on several datasets
(CIFAR vs SVHN, Optdigits, Pendigits, Vowels, and ZeMA),
while the BAE-Ensemble consistently perform better than the
deterministic AE (both bottlenecked and non-bottlenecked),
in alignment with the finding of extant studies [35], [96] that
ensembling yields better posterior sampling quality.

Although the BAE-∞ does not score the highest AUROC
for all datasets, on a positive note, there are specific tasks
on which the BAE-∞ outperforms other models with the
highest AUROC. It outperforms all AEs on the ZeMA tasks,
demonstrating its effectiveness for condition monitoring.
Furthermore, these achievements in accuracy are accompa-
nied with higher robustness than the deterministic AE as indi-
cated before in Section V-B. However, the performance gain
is not demonstrated on some tasks in ODDS and STRATH
datasets.
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TABLE 8. Mean± standard error AUROC scores for deterministic AEs,
VAEs and BAEs with bottlenecked and non-bottlenecked architectures.
Model architecture with highest AUROC is bolded for each dataset.

FIGURE 19. Critical difference diagrams for comparing (a) bottlenecked
and non-bottlenecked AEs, and (b) effects of adding skip connections and
overcomplete latent layer on multiple datasets. The models on the right
have higher ranks than those on the left. The highest ranked models or
treatments which do not show significant differences using post-hoc
Nemenyi tests at a 95% confidence level are grouped with a thick green
line. In (a), a plus (+) symbol indicates a bottlenecked architecture is
used, while (-) indicates otherwise.

The best bottlenecked and non-bottlenecked AEs are com-
pared on each dataset with critical difference diagrams
[97], which are commonly used to visualise comparisons
of machine learning classifiers. The null hypothesis of the
non-parametric Friedman test [98] is rejected with a p-value
of 0.00018, indicating a statistical difference exists between
one of the AE variants at a 95% confidence level. Then,
post-hoc Nemenyi tests [97], [99] are applied, and the high-
est ranked models which do not show significant differ-
ences at a 95% confidence level are grouped with a thick
green line in Fig. 19a. It is found that non-bottlenecked
AEs have generally higher ranks than their bottlenecked

FIGURE 20. Time taken for training 200 epochs and prediction (per
example) with a single deterministic AE on sensor datasets: (a) ZeMA and
(b) STRATH using a consumer-grade i9-9900K CPU with a Nvidia
GeForce 2080 GPU.

counterparts, indicating the positive effect of removing the
bottleneck; the non-bottlenecked BAE-Ensemble holds the
highest rank and significantly improves over the bottlenecked
deterministic AE.

In Fig. 19b, similar tests are applied to the architecture
classes (type A, B, C or D) which treatments are conditioned
on every AE and dataset. It is found that removing the bot-
tleneck with an overcomplete architecture (type B) improves
significantly from a bottlenecked architecture (type A), while
adding skip connections (type C and D) yields less consistent
improvement.

One practical drawback of non-bottlenecked AEs is the
increase in computational cost as we increase the latent
dimensions. The number of weights in the latent layer con-
necting the encoder and decoder increase, and hence more
time are required for training and prediction, shown in
Fig. 20. On a positive note, the increase in computational
time is not linear, for instance, increasing the latent fac-
tor from × 1

2 to ×1 does not double the training time as
the computations are parallelised by default in conventional
deep learning libraries. While adding skip connections do
not affect the training time, the prediction time is visibly
increased. In addition, the prediction time using the non-
bottlenecked AEs remains much under the working cycles of
60s and 202s in the ZeMA and STRATH testbeds, respec-
tively, demonstrating the predictions can be made in near
real-time for every working cycle. Although converting the
deterministic AE to a BAE-Ensemble yields 10 times more
computational time, the prediction time still remains within
the working cycles for these industrial use cases.

VI. LIMITATIONS
Our study has focused on unsupervised anomaly detection
and implies nothing about other use cases (e.g. clustering
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and dimensionality reduction), for which a bottleneck is nec-
essary. Our experiments have covered various data types,
however, there may exist datasets where learning the identity
function is trivial for the AE. While we lack theoretical proof
that non-bottlenecked AEs never learn the identity function,
the contrary is true; there is no proof, to the best of our
knowledge, that they always learn the identity function.

VII. CONCLUSION
With visualisations on low-dimensional toy data and exten-
sive experiments covering high-dimensional datasets for
anomaly detection, we find that non-bottlenecked AEs
(including the BAE-∞ ) can perform reasonably well over
the baseline. This result holds even on a conventional deter-
ministic AE which does not have sparsity or Bayesian sam-
pling. The major implications of our work are (1) learning
the identity function is not as trivial as previously assumed
and (2) modellers should not restrict to only bottlenecked
architectures since non-bottlenecked architectures can per-
form better. The applications on real sensor datasets demon-
strate the effectiveness of non-bottlenecked AEs on industrial
applications of condition monitoring and quality inspection.

In light of the potential of non-bottlenecked AEs, future
work should develop more variants. The tractable solutions
of BAE-∞ can facilitate further theoretical work on under-
standing and proving the conditions for not learning the
identity function. Possible directions include understanding
the connection between BAEs as predictive density models
and kernel density estimation [100], [101]. Future works
should also develop methods to improve the robustness of
non-bottlenecked AEs without lowering the accuracy, and
promising directions are incorporating the rough neurons [12]
and informative prior through dictionary learning [13].
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