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ABSTRACT Lung cancer is the most prevalent and deadly oncological disease in the world, but a timely
detection of lung nodules can greatly improve the survival rate of this disease. However, due to the tiny
size of lung nodules and inconspicuous edges, lung nodules are not easily distinguished by naked eyes
thus medical image diagnosticians are prone to misdiagnosis simply based on their own experiences and
subjective judgements. In recent years, the machine-learning-based image processing techniques find their
wide applications in the field of medical diagnosis, and have been proved to be an efficient way to aid
diagnosticians to accurately identify subtle lesions in images. To accurately recognize lung nodules in CT
images, in this paper, we propose an approach, called STBi-YOLO. This approach stems from YOLO-v5,
but makes significant improvements from three dimensions—we first use the spatial pyramid pooling
network that is based on stochastic-pooling method to modify the basic network structure of YOLO-v5;
then apply a bidirectional feature pyramid network to perform multi-scale feature fusion; finally improve
the loss function of the YOLO-v5 and adopt the EIoU function to optimize the training model. To evaluate
our approach, we compare STBi-YOLO with YOLO-v3, YOLO-v4, YOLO-v5, and multiple leading object
detection models, such as Faster R-CNN and SSD. The experiments show that STBi-YOLO achieves an
accuracy of 96.1% and a recall rate of 93.3% for the detection of lung nodules, while producing a 4× smaller
model size in memory consumption than YOLO-v5 and exhibiting comparable results in terms of mAP and
time cost against Faster R-CNN and SSD.

INDEX TERMS Lung nodules, object detection, YOLO-v5, bidirectional feature pyramid, stochastic-
pooling.

I. INTRODUCTION
Global cancer statistics for 2020 shows that lung cancer is the
most prevalent and deadly oncological disease in worldwide
for many years [1]. Clinical studies have shown that the
survival rate within five years of the late-stage patients are
only between 10% and 16%, but could be increased to 52% if
early diagnosis and treatment were provided. As an important
sign of early-stage lung cancer, lung nodules mostly appear
as focal, round-like lung shadows of no more than 3cm in
diameter on CT images. However, due to the tiny size of lung
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nodules, their morphology, brightness and other characteris-
tics are similar to those of blood vessels and other tissues in
the lung parenchyma, thus doctors need to carefully consider
and screen them one by one; this process is inefficient and
easily leads to fatigue, increasing the probability of misdi-
agnosis. Therefore, it is important to develop an automatic
detection approach to aid physicians to improve the efficiency
and accuracy for detecting lung nodules.

The approaches for detecting lung nodules can be roughly
classified into two categories: the traditional segmentation-
based detection techniques and the deep-learning-based
detection techniques. The segmentation-based methods
mainly use manually extracted features for training, which
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suffer from the weakness such as cumbersome steps, low
accuracy and poor overall performance. With the rapid devel-
opment of machine learning techniques, the deep learn-
ing techniques are widely used in object detection. One
kind of these work, such as Faster R-CNN [2] and Mask
R-CNN [3], focuses on the two-stage detection algorithm
based on candidate regions; the other is the one-stage detec-
tion algorithm based on regression, such as the YOLO algo-
rithms [4]–[6] and SSD [7]. Among them, YOLO-v5, as the
latest version of the YOLO algorithms, is used success-
fully in engineering applications and brings excellent results.
However, when applying the YOLO-v5 algorithm to lung
CT images, it performs with poor detection accuracy and low
processing speed; this prevents it from being workable in the
detection of lung nodules.

To solve this problem, we propose a novel approach, called
STBi-YOLO, originated from YOLO-v5s, to optimize the
detection performance for small targets. We make three sig-
nificant improvements for YOLO-v5. Firstly, we introduce
a multi-scale convolutional layer based on stochastic-pooling
in the original Spatial Pyramid Pooling (SPP) Network [8] to
improve the recognition accuracy; then apply a Bi-directional
Feature Pyramid Network (BiFPN) for multi-scale feature
fusions to improve the fusion effect and thus promote the
detection capability for small targets; finally we use the EIoU
loss function to optimize the trained model.

Note that, the name ‘‘STBi-YOLO’’ was coined as an
acronym for Stochastic-pooling-based spatial pyramid pool-
ing network and Bidirectional feature pyramid network,
which highlight our improvements for the original YOLO
algorithms.

The main contributions of this paper are as follows:
(1) use stochastic-pooling method to replace max-pooling

of YOLO-v5 in SPP Network;
(2) apply a bidirectional feature pyramid network to per-

form multi-scale feature fusion;
(3) improve the loss function of YOLO-v5 and adopt the

EIoU function to optimize the training model.
This paper is organized as follows. Section 2 intro-

duces related work about lung nodule identification and
object detection. In Section 3, we propose STBi-YOLO,
and introduce its overall structure. We mainly focus on
the three improvements over the YOLO-v5 algorithm: the
stochastic-pooling-based multi-convolutional layer SPP-Net,
the improved FPN network, and the EIoU loss function.
Section 4 presents experimental results and discussions,
in which the model size, real-time performance measured by
Frames Per Second (FPS), recall, and mean Average Preci-
sion (mAP) are given. Moreover, we compare STBi-YOLO
with other state-of-the-art models in this section. Finally, the
conclusion is drawn in Section 5.

II. RELATED WORK
A. THE DETECTION OF LUNG NODULES
The detection of lung nodules usually consists of two parts:
the first is the detection of candidate lung nodules and the

second is to reduce the false-positive lung nodules. In recent
years, many solutions have been proposed, which can be gen-
erally divided into traditional detection methods, machine-
learning-based methods and deep-learning-based methods.

The traditional computer-aided detection methods mainly
use manually extracted features for training to identify
whether a patient has lung nodules. Due to the limited com-
puting power of GPU, these methods require a certain amount
of manual intervention and user’s assistance. The main weak-
ness of the methods is the poor generalization ability, which
makes it difficult to achieve a multi-category, data-intensive,
and real-time accurate recognition in practical situations.

The representative works for the traditional computer-
aided detection methods are Scale-Invariant Feature Trans-
form (SIFT) [9] and Histogram of Oriented Gradients
(HOG) [10]; The problem-solving process of these methods
can be roughly summarized as the following three steps:
(1) region selection, which is mostly based on the sliding

window approach;
(2) feature extraction, which is to design extraction algo-

rithm according to target color and texture;
(3) classification recognition, which mainly applies Sup-

port Vector Machine (SVM) [11] or AdaBoost [12].
In machine-learning-based approaches, researchers com-

bine classification models with advanced features to detect
nodules [13]–[17]. For example, Khordehchi et al. designed
a set of spectral, textural, and shape features to charac-
terize nodules and then used SVM to classify candidate
nodules [18]. Nithila and Kumar developed a Computer-
Aided Detection (CAD) system for detached lung nodule
detections that focused on heuristic search algorithms and
particle clustering algorithms for network optimization [19].

Instead of manually designing the advanced features,
the deep-learning-based methods apply the deep learning
techniques to automatically extract typically features from
large amount of labelled data and accurately recognize
lung nodules in CT images. These methods commonly
used the two-dimensional convolutional neural network
(2D-CNN) and three-dimensional convolutional neural net-
work (3D-CNN) as the training models. For example,
Setio et al. [20] and Lanfredi et al. [21] proposed a multi-
view-based 2D-CNN and applied it to the detection of lung
nodules. They divided this network structure into two parts:
the first part consists of three detectors to detect and identify
suspicious candidate nodules; the second part consists of two
2D-CNNs—the first 2D-CNN contains a convolutional layer
and a maximum pooling layer, and another one contains a full
convolutional layer and a softmax layer.

3D-CNN [22], [23] is an improvement of 2D-CNN,
which can better acquire the spatial data images and
extract much more information-rich features than 2D-CNN.
Hamidian et al. [24] proposed a computer-aided diagnosis
system based on 3D-CNN. The lung nodule detection pro-
cess is divided into 2 steps: screening and identification.
Firstly, a 3D-FCN [25] turns the fully connected layer in the
3D-CNN into a convolutional layer which outputs marked
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FIGURE 1. Network structure of YOLO-v5s.

images instead of vectors. Then, since the 3D-FCN can accept
images of arbitrary size, up-sampling is performed by using
the deconvolution layer to restore the image to its original
size. Finally, a 3D-FCN is used to mark the candidate regions
of lung nodules and apply CNN to classify the suspected
lung nodules in the candidate regions to determine the true
nodules.

B. OBJECT DETECTION
The most typical algorithms for object detection with deep
learning techniques are the two-stage detection algorithms
based on anchor boxes, and the single-stage detection algo-
rithms based on anchor-free boxes. The former includes
R-CNN [26], [27], Fast R-CNN [28], Faster R-CNN [2],
[29], R-FCN [30], [31] and Mask R-CNN [3]. This kind of
algorithms usually has a high accuracy but spends much time
in detection. The latter includes SSD [7], Retina-Net [32] and
YOLO algorithms. The single-stage algorithms use a forward
inference network to obtain the target location and reach the
classification results.

YOLO is a family of algorithm. The original YOLO
algorithm is proposed by Yan and Xu [33], it converts
an object detection problem into a regression problem by
dividing the images into grids that can be used to predict
the targeted objects. After then, Redmon and Farhadi [5]
improved the original one with the YOLO-v2 algorithm,
which used Darknet-19 as the feature extraction network and
introduced the anchor box to promote the recall of algo-
rithm. After that, Redmon and Ali [34] additionally introduce
the YOLO-v3 algorithm based on the YOLO-v2 algo-
rithm. The YOLO-v3 replaced the feature extraction network
in the YOLO-v2 with the Darknet-53; this improvement and
greatly upgraded the detection accuracy and accelerated the
detection speed. The YOLO-v4 algorithm was proposed by

Bocheovskiy et al. [35] on the basis of YOLO-v3 in 2020,
which combines the CSPNet (Cross Stage Partial Network)
with Darknet53 as the backbone named CSPDarknet53.
In addition, the feature extraction network of YOLO-v4 was
enhanced by SPP (Spatial Pyramid Pooling) and PANet (Path
Aggregation Network). The YOLO-v5 object detection algo-
rithm is a lightweight detection model based on the Python
framework released by Ultralytics in 2020, which continues
to use the CSP structure and adds it to the backbone and
Neck to enhance the network feature fusion. YOLO-v5 also
adds the Focus structure to the backbone network to slice
the feature map, which reduces the computation burden and
speeds up the procession. FIGURE 1 shows the network
structure of YOLO-v5.

In what follows, we first present the overall framework of
STBi-YOLO, and then focus on the three improvements one
by one in much detail.

III. STBi-YOLO
There are four versions of YOLO-v5; they are YOLO-v5s,
YOLO-v5m, YOLO-v5l and YOLO-v5x, with the weights,
width, depth of each model being sequentially increased.
The STBi-YOLO model proposed in this paper is based on
YOLO-v5s algorithm, but makes significant improvements
from the following three aspects: we first use a spatial pyra-
mid pooling network that is based on the stochastic-pooling
method to modify the basic network structure of YOLO-v5;
then apply a bidirectional feature pyramid network for
multi-scale feature fusion; finally improve the loss function
of the YOLO-v5 and adopt the EIoU functiojn to optimize the
training model.

A. THE FRAMEWORK OF STBi-YOLO
The overall framework of STBi-YOLO is shown in
FIGURE 2. First an input image with flexible size enters the
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FIGURE 2. Overall structure of the algorithm.

Focusmodel after being unified to 640×640 through adaptive
scaling. Next, with the multi-convolutional operations, the
input image is processed and enters the stochastic-pooling-
based SPP-Net for image sub-sampling so as to reduce the
dimension and network parameters while increasing the local
receptive field of the convolutional kernel. After then, the
input image goes to the BiFPN structure for feature fusion
at different dimensions, in order to further reduce redundant
calculations and improve detection accuracy. At the final
stage, the EIoU loss function is applied to suppress noise,
speed up convergence and improve the robustness of the
model.

B. STOCHASTIC-POOLING-BASED SPP NETWORK
YOLO-v5 uses Max-Pooling in the SPP structure for calcula-
tions. The purpose of pooling is to compress the information
of a certain region, so as to receive the extraction and abstrac-
tion of information. The pooling can achieve the benefits
of data dimensionality reduction and feature compression,
as well as expand the receptive field and accomplish invari-
ances (including translation, rotation and scale invariances).
Therefore, when designing pooling operations, the loss of
information in the feature mapping should be minimized on
the basis of simplifying operations.

The most commonly used pooling methods are Average-
Pooling [36] and Max-Pooling [37]—the former can output
the mean value of feature values in a subregion and retain
more background information; the latter gives the maxi-
mum value of feature values in a subregion, emphasizing
the strongest part of the image. But for the case where the

difference is not obvious, the Average-Pooling and Max-
Pooling are easy to cause feature information loss.

To this end, we introduce the Stochastic-Pooling [38]
to balance Average-Pooling and Max-Pooling. The idea of
Stochastic-Pooling is to assign a probability value to each
pixel point according to its pixel value; A large value will
have a higher probability of being selected. Such a design
strategy is a compromise between Average-Pooling andMax-
Pooling—it is similar to Average-Pooling in average cases,
but still respects the rules ofMaximum-Pooling in local infor-
mation calculations [39], FIGURE 3 shows the definition
graph of the three types of pooling.

First, we calculate the statistical sum of the pooling
regions, i.e., ∑

k=Rj

ak

and then every feature value ai is divided by this statistical
sum to calculate the probability value

pi =
ai∑

k∈RJ
ak

of each feature. Afterwards, we apply Random-Sampling [40]
according to these probability values to achieve Stochastic-
Pooling, as in (1)

sj = al, l ∼ P(p1, . . . , p|RJ |) (1)

where the Rj is the window size for sampling; ai is
the feature value being sampled; l is the value randomly
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FIGURE 3. Definition graph of the algorithm.

chosen according to pi. The improved SPP structure is shown
in FIGURE 4.

C. IMPROVED FPN WITH BIFPN
Traditionally, YOLO algorithms use FPN (Feature Pyramid
Nework) and PAN (Path Aggregation Network) as the net-
work for multi-scale feature fusion. To improve the accu-
racy of object detection, in STBi-YOLO, we use BiFPN
(Bidirectional Feature Pyramid Network) [41] for multi-scale
feature fusion. BiFPN is an improved structure from PAN,
which combines two directions, top-down and bottom-up,
of the feature fusions together. We use the structures of FPN,
PAN and BiFPN, as illustrated in FIGURE 5, to show the
advantage of BiFPN.

FIGURE 5(a) shows the FPN structure, which establishes a
top-down pathway for feature fusion, followed by prediction
using the fused features with higher semantic information.
As this structure is limited by the one-way information flow,
Liu et al. [42] proposed the PAN structure, as shown in
FIGURE 5(b), which establishes a bottom-up pathway on
the basis of FPN to send the location information from the
bottom layer to the prediction feature layer, therefore
the prediction feature layer has both semantic information of
the top layer and location information of the bottom layer,
greatly improving the accuracy of target detection.

BiFPN is an improved structure from PAN, as shown
in FIGURE 5(c). For bidirectional cross-scale connections,
we first delete the node with only one input edge to simplify
bidirectional network, because it has little contribution to
feature fusion; then add an edge between the original input
and the output node in order to fuse more features with less
cost; finally, the top-down and bottom-up paths are fused into
a module so that they can be stacked repeatedly for higher
level feature fusion. For weighted feature fusion, BiFPN uses
the fast normalized fusion, which achieves normalization
directly by dividing the weight of each node into the sum
of every node value, such that all weights are normalized

FIGURE 4. Structure of stochastic-pooling SPP.

FIGURE 5. FPN, PANet and BiFPN structure.

to [0,1], increasing the computing speed, as in (2).

O =
∑

i

wi
ε +

∑
j wj
× Ii (2)

The activation function ReLU is applied to ensure each
wi ≥ 0. The values of wi are obtained from network training,
and Ii represent the input features. However, the values of
scalar weights may be infinite and lead to training instability,
we therefore apply softmax to proceed numerical normaliza-
tion. To perform cross-scale connection and weighted feature
fusion, BiFPN takes three different scales of features P3, P4
and P7, extracted from the backbone as the input of BiFPN.

Finally, 20 × 20, 40 × 40, and 80 × 80 are set as the pre-
diction branches of three different scaled feature resolutions.
Some of the weights are ([0.49998, 0.49998]), ([0.33332,
0.33332, 0.33332]), ([0.49998, 0.49998]), ([0.50000,
0.50000]), ([0.33325, 0.33325]), ([0.50000, 0.50000]). Tak-
ing the nodeP6 as an example, performing two fusion features
is shown as follows.

Ptd6 = Conv

[
w1 · P6 + w2 · Resize(Pin7 )

w1 + w2 + ε

]
(3)

Pout6 = Conv

[
w1′ · Pin6 + w2′ · Ptd6 + w3′ · Resize(Pout5 )

w1′ + w2′ + w3′ + ε

]
(4)
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FIGURE 6. Inclusion of prediction box and ground truth box.

where Ptd6 is the top-down middle feature (the middle blue
circle in FIGURE 5(c)); Pout6 is the bottom-up output feature
(the rightmost blue circle in FIGURE 5(c)); Resize is the
up-sampling or sub-sampling and Conv is the convolution
operation.

D. IMPROVEMENT OF LOSS FUNCTION
The loss function [43] can be used to calculate the knot
level of the model to the outcome prediction, and determine
whether there is a bias between the model and the actual data.
Therefore, the loss function is crucial in the process, choosing
a proper loss function is beneficial to get a better model and
faster convergence int the process of training.

The loss functions of YOLO-v5 include classification loss
(cls_loss), bounding box loss (box_loss), and objectness loss
(obj_loss). YOLO-v5 applies the BECLogits loss function
to calculate the loss of objectness score, BCEclsloss (binary
cross entropy loss function) to calculate class probability
loss, and GIoU [44] as the loss function of bounding box.
GIoU loss function is shown in (5).

LGIOU = 1−
|B ∩ Bi|
|B ∪ Bi|

+
|C − B ∪ Bi|
|C|

(5)

where C is the area of the smallest minimum bounding rect-
angle. Because of the introduction of the smallest minimum
bounding rectangle, the GIoU loss function can still find the
descent gradient when the prediction box and the ground truth
box do not intersect. Although the GIoU loss function can
solve such situation, when one box lies in another, the union
of the two boxes is equal to the area of one, then the GIoU
loss function is unable to determine the location between the
two frames and will occurs large inaccuracy. FIGURE 6 is the
situation where the prediction box (the green one) lies in
the ground truth box (the red one).

In this paper, we adopt the EIoU loss function [45] to
replace the GIoU loss function used by YOLO-v5. The EIoU
loss function removes the smallest minimum bounding rect-
angle added by the GIoU loss function. Moreover, it applies
the minimized scalar distance between the centroids of the
two boxes, which calculates the length and width of the object
box separately. The EIoU loss function is shown in (6).

LEIOU

= 1−
|B ∩ Bi|
|B ∪ Bi|

+
ρ2(b, bgt )

d2
+
ρ2(w,wgt )

C2
w

+
ρ2(h, hgt )

C2
h

(6)

TABLE 1. Model parameter settings.

In (6), b and bgt are the centroids of the prediction box
and ground truth box respectively, ρ is the euclidean distances
of the two centroids; d is the diagonal distance between the
prediction box and the smallest minimum bounding rectangle
of the ground truth box; w, wgt , h and hgt are the width and
length of the real box and ground truth box; Cw and Ch are
width and length of the minimum external rectangle covering
the two boxes.

Since the EIoU loss function calculates the length and
width of the object box separately, it solves the problem of
large calculation errors in the horizontal and vertical direc-
tions of the GIoU loss function, and improves the conver-
gence speed and the accuracy of regression.

IV. EXPERIMENTAL RESULTS
In this section we first introduce the experimental settings and
dataset, then conduct a set of experiments to compare with
other leading object detection models in terms of detection
speed, Recall, and mAP. After that, we analyze the experi-
mental results and draw some conclusions.

A. EXPERIMENTAL SETTINGS
The STBi-YOLO is based on Tensorflow deep learning net-
work and trained onNVIDIATesla K80 in order to save train-
ing time. The programming language of this model is Python;
GPU is accelerated using CUDAv11.0 and CuDNNv8.0. The
model parameter settings are shown in TABLE 1 below.

B. EXPERIMENTAL DATASET
We use LUNA16 as the experimental dataset. LUNA16 is a
high quality lung nodule CT image dataset launched in 2016.
It is the most authoritative and representative dataset among
the current lung nodule detection researches. This dataset
contains a total of 888 3D lung CT image, 1,186 lung nodules
and 36,378 annotated information by four professional radi-
ologists. The dataset consists of four main parts: the original
CT images, the annotation files of lung nodule locations,
the original CT lung regional segmentation files, and the
diagnosis result files.

We choose 70% of lung nodule samples in LUNA16 as
the training set, 15% as the test set and 15% as the val-
idation set. FIGURE 8 shows the analytical results of the
dataset, where (a) shows the distribution of lung nodules, and
(b) the distribution of nodule sizes. The horizontal and verti-
cal ordinates represent the width and height of lung nodules
respectively.
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FIGURE 7. Experimental dataset.

FIGURE 8. Dataset analysis.

TABLE 2. Ablation experimental data.

C. MODEL TRAINING
To compare with the YOLO algorithms, we apply the same
dataset and parameter settings to YOLO-v3, YOLO-v4,
YOLO-v5s, and STBi-YOLO respectively. According to the
log files saved during the training process, we plot the loss
comparison curves of the four models, as shown in II-B,
where (a) represents box bounding loss, (b) the classification
loss, and (c) the objectness loss. The horizontal and vertical
ordinates indicate the iterations and loss value respectively.
From the comparison curves, we see that the loss values of the
four models are large at the beginning and experience a sharp

FIGURE 9. Loss comparison.

decline before 50 epochs, gradually getting into a decreasing
convergence. During the training process, the loss value keeps
decreasing and the network keeps fitting. Compared with
YOLO-v5 algorithm, the STBi-YOLO is more stable in the
training process and the loss value fluctuates in a smaller
range. The loss value finally stops at about 0.2 with a better
convergence.

D. ABLATION EXPERIMENTS ON STBi-YOLO
To show the contributions of every proposed technique (See
the above Formula 1∼6) to the performance of STBi-YOLO,
we carried out the ablation experiments for each possible
combination of the three features (stochastic-pooling, BiFPN,
and EIoU). TABLE 2 gives the results of mAP, FPS for the
ablation experiments.

As shown in TABLE 2, compared with YOLO-v5s,
BiFPN single makes a great contribution to the improvement
of mAP; EIoU loss function plays a more important role in
increasing detection performance of 7.6FPS without mak-
ing markable impact on the detection accuracy; stochastic-
pooling-based SPP-Net increases the mAP by 2.5% together
with BiFPN. Utilizing the EIoU function increases the mAP
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FIGURE 10. Experimental results.

by about 3% in pair of stochastic-pooling-based SPP-Net.
The different combinations also positively optimize the over-
all performance of the STBi-YOLO; the combination of the
three improved features has the best effect on the promotion
of the detection accuracy and performance.

E. PERFORMANCE COMPARISON BETWEEN STBi-YOLO
AND OTHER DETECTION MODELS
To verify the effectiveness of the proposed model, we
compare it with other typical nodule detection approaches
published in recent years. TABLE 3 shows the results in
comparison with Faster R-CNN, Mask R-CNN, YOLO-v3,
YOLO-v4 and YOLO-v5s.

It can be concluded that, YOLO-v5s is considered as
a lightweight network model compared with the two-
staged Faster R-CNN, Mask R-CNN, and the one-staged
SSD, YOLO-v3 and YOLOv4. Although the proposed
STBi-YOLO model is 2FPS slower than YOLO-v5s in

FIGURE 11. PR curves of the four models.

detection speed, the average precision and recall are improved
by 5.1% and 5.6% compared with YOLO-v5s and are much
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TABLE 3. Model parameter settings.

higher than YOLO-v3, YOLO-v4, and SSD. Furthermore,
the weight of the STBi-YOLO is much lighter than Faster
R-CNN and Mask R-CNN without increasing too much
detection speed. The average precision and recall of the pro-
posed STBi-YOLO model are not much prominent, but the
detection time of each image is 164FPS faster than Faster
R-CNN, meeting the requirement of real-time detection.

V. CONCLUSION
In this study, we proposed an improved lung nodule detection
method based onYOLO-v5 algorithm to tackle the challenges
confronted when using deep learning methods for lung nod-
ule detection in CT images. We first improve the SPP-Net
with multi-convolutional layers based on Stochastic-Pooling
to optimize the feature extraction effect, highlighting strong
features while retain the less differentiated features. Second,
we use BiFPN structure for multi-scale feature fusion to
reduce redundant computation. Finally, the original loss func-
tion GIoU is replaced by the EIoU function, which speeds
up the convergence speed and improves the robustness. The
algorithm is able to meet the real-time requirements with low
computational cost, which improves the localization accuracy
of lung nodules. The detection method has been compared
with other deep learning detection methods in experiments
and obtained accuracy of 96.1% and recall of 93.3%, which
can effectively improve the detection performance of lung
nodules compared with the traditional YOLO-v5.

Our work still comes in its early stage. In the future, we can
try to compress the model, including channel pruning and
parameter quantization to reduce the number of parameters
and improve the detection speed. We consider to improve
the accuracy of the model on the premise of a small amount
of parameters and fast inference speed. Ultimately, we will
expand the scope of the study and improve the detection
model in order to meet the actual requirements of clini-
cal work and further improve the lung nodules detection
performance.
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