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ABSTRACT Increasing emission concerns about greenhouse gases have led to an increasing tendency to
use renewable energy sources (RERs) in the power system. Nevertheless, the probabilistic nature of RERs
has led to an enhanced require to flexibility provision. Hence, it is necessary to implement a flexibility-based
generationmaintenance scheduling. For this purpose, it has used the flexibility index of the system in order to
evaluate the flexibility of the power system. In flexibility studies, modeling and predicting the variability of
renewable resources is important. In this paper, the uncertainties of wind are considered through forecasting
by deep learning method in Python. Gas-fired power plants are one of the most important suppliers of
flexibility in the supply-side. Therefore, the reliable operation of power system depends on the of natural
gas availability. Furthermore, gas demand is subject to various uncertainties, especially in cold seasons,
which will have significant effects on power system. in this paper, power-to-gas (P2G) technology as energy
storages is modeled tomitigate the impact of wind output and gas demand uncertainty.Meanwhile, integrated
natural gas and electricity demand response such as event-based and time-based model has been applied as a
flexibility provision from demand-side point of view. In this paper, the objectives of reducing emission and
costs, leveling the reserve margin and increasing flexibility are considered as the objectives of optimizing
generation maintenance scheduling. In order to solve the multi-objective problem, the augmented Epsilon
constraint method has been used. The proposed model has been implemented on a modified IEEE RTS
24 bus.

INDEX TERMS Flexible generation maintenance scheduling, natural gas uncertainty, P2G, energy storage,
integrated natural gas, electricity demand response.

NOMENCLATURE
A. INDICES AND SETS
I Index of generation units.
H Index of scheduling time [hour].
T Index of week.
Ut Unexpected event time occurrence.

B. PARAMETERS
ai,j Constant coefficient of generation cost

[$/h].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bin Zhou .

bi,j Linear coefficient of generation cost
[$/MWh].

ci,j Quadratic coefficient of generation cost
[$/MWh2].

Cst
G /C

P2G Operation cost of gas storages/ P2G
[$/MBTU].

EEh,h Price elasticity of electricity demand.
gmax
i Maximum capacity of generation unit i

[MW].
gmin
i Minimum power output of generation unit

i [MW].
GDt,h The gas flow (MBTU/hr).
GAevent Committed gas usage limit [MBTU].
GEh,h Price elasticity of gas demand.
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GPTOUt,h Natural gas price after TOU [$/MWh].
GP0h Natural gas price before TOU [$/MWh].
Lnt,h Net load [MW].
Mi Maintenance duration for generation

[week].
Ni Number of generating units.
NMN Maximum number of maintenance.
PR Rated power of wind turbine [MW].
Preal/forecastedw Generation of wind turbine for real

data/forecasted data [MW].
PAevent Limitation of committed power [MW].
Pnr DRP penetration rate.
PrTOUt,h Electricity price after TOU [$/MWh].
Pr0h Initial electricity price [$/MWh].
Rmin Minimum required reserve.
RDRE/G The incentive amount for electricity/gas

DR[$/MWh or MBTU].
vDLf Wind speed forecast through deep learning

[m/s].
vcin Cut-in speed of wind turbine [m/s].
vcout Cut-out speed of wind turbine [m/s].
vR Rated speed of wind turbine [m/s].
ηin/ηout Charge/Discharge efficiency of gas stor-

ages.
ηP2G P2G efficiency.

C. VARIABLES
Ca
(i,h,ut) Available capacity of unit i at time h [m/s].

CCL Customer participation rate in RTP.
drh Reduction of electricity supply.
Et,h Fuel energy level in gas storages.
gt,hi Power generation of unit i at hour-h [MWh].
mi Cost assigned to maintenance of generating

unit i [$/MW].
ngh Reduction of gas supply.
PDt,h Peak demand in week t , hour h [MW].
Rt,h Reserve capacity in week t , hour h [MW].
tC Maximum generation capacity time.
U in
t,h/U

out
t,h Charge/Discharge rate of gas storages.

UP2G
t,h Gas generation of P2G technology

[MMBTU].
ωti Maintenance initial status; 1 if the unit’s

check starts at the beginning of period t , oth-
erwise 0.

X ti Maintenance strategy of generation unit i in
week t (1 if the unit be on maintenance, oth-
erwise = 0).

I. INTRODUCTION
The penetration rate of renewable energy resources (RERs) is
rising in modern power systems due to their specific features
such as zero-emission as well as low operation cost. The
output of RERs and secure operation of power systems are
interdependent when the penetration rate of RERs is high [1].

On the other hand, variable atmospheric parameters affect the
output of RERs. Hence, flexibility analysis has become an
important research topic. In [2], energy storages as flexibility
supplier have been used as to handle the uncertainty of RERs.
In [3], integrated demand response programs are modeled to
provide flexibility in local energy systems. Incentive design
for flexibility provisions is presented by the local distribution
company that has been transformed residential demand to
residential energy hub (REH) in [4].

Fast start gas-fired unit as flexible resource is used to
mitigate variability of RERs. Secure operation of gas-fired
units is depended on natural gas availability. In power system,
one of a primary energy resources are the natural gas that
is dramatically increased recently. Hence, the uncertainty
of natural gas network such as gas demand is notable for
secure operation in power system. Lack of attention to the
penetration of various uncertainties and flexibility analysis in
the generation maintenance scheduling (GMS) problem will
lead to an insecure environment for power system operators
and developers. Hence, it is necessary that published research
in GMS is investigated.

In recent years, extensive research has been published on
GMS from different approaches such as emission reduction,
reliability improvement and minimizing cost in power sys-
tem. In [5], minimizing reliability index and operation cost
is considered as the primary objectives in GMS by bi-level
framework. A two-stage model based on non-cooperative
game strategy has been presented in [6] for GMS in a restruc-
tured environment. A multi-objective coordinated procedure
for GMShas been developed in [7] considering emission, reli-
ability, and economic objectives. The lexicographic method
has been employed to take into account the economic, emis-
sion, and reliability objectives in [8].

High speed, non-pollutant release and availability of
energy storages (ESs) and demand response resources (DRRs)
have led to their widespread utilize in modern power systems.
one of the possible solutions to mitigate the impacts of RERs
variability is utilize ESs and distributed energy resources
(DERs) [9]. Different and emerging technologies of ESs have
wide applications in the modern power system, which has
caused significant effects. In recent studies, the effects of
different types of ESs have been investigated. In [10], ES has
been considered to mitigate the uncertainty and variability of
RERs in flexible unit commitment. The water compressors
and electrolyzes have been used for investigation hydrogen
generation and storages from real PV/wind energy systems
in [11]. In [12], DC-bus stability in a micro grid has been
ensured with ESs. In [13], a hybrid energy storage system
such as battery and super capacitor is provided for energy
management in microgrid. In [14], a natural gas storage
model is presented to reduce the impact of wind uncertainty
in security-constrained unit commitment problem.

The authors in [15] have investigated the role of DRRs on
reducing the variability of RERs and enhancing flexibility
level of power system. In [16], an incentive-based DRRs
has been applied with reconfiguration method for optimal
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energy management in a microgrid. In [17], an incentive-
based DRRs has been implemented to reduce the emission
and cost of operation. In [18], the impact of ESs and DRPs
has been investigated on the effectiveness aspect of energy
efficiency.

According to recent studies in the field of flexibility, the
evaluation of flexibility in the field of short-term timescale is
more important than long-term. The main contribution of this
paper, a novel environmental techno-economic framework for
uncertain based flexible GMS considering integrated DRRs
(UFGMSIDRRs) has been presented. On the other hand, the
recent research demonstrates the emphasis of energy storage
such as natural gas storages. In recent years, the power to
gas (P2G) technologies as energy storages have been used to
handle the uncertainties of natural gas network and variability
of RERs. In this paper, the gas storage and P2G technologies
is considered in the UFGMSIDRRs as flexible provision
The electricity demand response (EDR) is another

approach of to mitigate the impact of power system uncer-
tainties, which have been used extensively. On the other hand,
the interdependencies between power systems, gas network,
requires integrated decisions-making for two networks. The
gas demand response (GDR) is the one of decision-making
in the gas network that can have a significant impact on
the power system. The lack of attention to integrating GDR
and EDR leads to loss of opportunities in the power sys-
tem. Another contribution of this paper, the integrated DRRs
(IDRRs) such as time of use (TOU) and event programs have
been applied to handle to variability of RERs and improved
flexibility. It should be noted that the forecasting wind speed
and gas demand have been conducted by deep learning
and autoregressive integrated moving average (ARIMA),
respectively.

The remaining parts of the paper are as follow. Section II
assigns to formulation of the proposed UFGMSIDRRs. The
simulation results and numerical analysis are presented in
Section III. Finally, Section IV concludes the paper.

II. MATHEMATICAL MODEL OF THE PROPOSED
UFGMSIDRRs

Figure 1 describes the framework of proposed UFGMSIDRRs

associated with natural gas storage and the P2G technology.
In Fig. 1 (a), the flexibility evaluation hierarchy is intro-
duced. The flexibility of the system, the reaction time (RT)
and maximum available capacity (MAC) are introduced for
the evaluation of system flexibility considering unexpected
events. The system flexibility index is obtained by aggregat-
ing MAC and RT. Then, two methods based upon time-series
models are used to predict wind and natural gas uncertainty in
Fig. 1(b). Here, the uncertainties of natural gas demand and
the output of wind resources are considered by ARIMA and
deep learning, respectively. In Fig. 1(c), the UFGMSIDRRs in
combination with IDRRs, natural gas storage and the P2G
technology is regarded as a multi-objective problem solving
for cost, emission, reliability and flexibility. Several methods
are deployed to handle multi-objective problems from the

perspective of the system decision-maker [19]. In this paper,
the augmented epsilon constraint is applied to solve multi-
objective UFGMSIDRRs problem.

A. ELECTRICITY AND GAS DEMAND RESPONSE MODEL
The electricity DR (EDR) have potential to offer special fea-
tures such as reliability improvement, reduction of operation
cost, emission reduction, flexibility improvement. Disregard-
ing to gas load is led to miss the chances of gas demand
responses (GDR) utilization. In proposed model, both GDRs
and EDRs have been implemented due to the maximum
utilization of these resources. The TOU and event programs
are considered in proposed UFGMSIDRRs. In event-based
electricity and gas DRRs, the customer receives incentive
for reducing its consumption. Notice of gas and electricity
curtailment event is supposed to be supervised in themoment.
The total incentive payment for electricity DR curtailment is
presented by equations (1) [20].

CEevent = min
{
0, drh RDR

(
PDt,h+1 − PAevent

)}
(1)

The total incentive payment for gas DR curtailment is
defined as given in Eq. (2) [19].

CGevent = min
{
0, ngh GRDR

(
GDt,h+1 − GAevent

)}
(2)

It should be noted, price-based DRRs depend profoundly
on price signal. Participation in TOU involves no payment
to the customers. However, customer is able to benefit from
the reduction of utility bills. In this paper, TOU programs
for gas and electricity customers are considered. In TOU
programs the electricity price changes in three different time
periods including valley, off-peak and peak in a daily horizon.
Electricity and gas TOU programs are defined with Eq. (3)
and Eq. (4), respectively [20], [21].

EDRTOU (h) = Lnt,h

(
EEt,t

(
PrTOUt,h −Pr0h

Pr0h

))
(3)

GDRTOU (h) = GDt,h

(
GEt,t

(
GPTOUt,h − GP

0
h

GP0h

))
(4)

B. UNCERTAINTY MODEL
The time-series analysis is an applicable approach for fore-
casting a continuous variable that is time-dependent [22].
In this paper, wind speed and gas demand are predicted
by deep learning (DL) and auto ARIMA, respectively. The
details of each forecasting method are given in the following.

• Forecasting natural gas demand by ARIMA
The ARIMA method is a type of statistical model that

could be used for analyzing and forecasting time series data.
It gives a simple and powerful solution for providing skilled
time series predictions by explicitly catering to a set of com-
mon structures in time series data [22]. It’s a more complex
version of the autoregressive moving average, with the addi-
tion of integration.
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FIGURE 1. Structure of the proposed UFGMSIDRRs.

The following are the parameters of the ARIMA model.
The p is the lag order which indicates the number of lag obser-
vations incorporated in the model. The degree of differencing
which refers to the number of times the raw observations
are differed is depicted by d . The order of MA is illustrated
by q which indicates the size of the MA window. In order
to remove the trends and seasonal structures that may have
negative impacts on regression model, the data is prepared by
a degree of differencing to make it stationary. More details
regarding this method could be found in [23]. The implemen-
tation of the ARIMAmodel in Python is illustrate in Fig. 1(b).

• Forecasting wind speed by DL method

DL is a kind of machine learning and artificial intelligence
that is designed to emulate how the human mind learns a
topic. One of the most essential aspects of data science,
which also encompasses statistics and predictive modeling,

is this form of learning. Deep learning, on the other hand,
is extremely effective for analyzing and understanding mas-
sive volumes of data, since it speeds up and simplifies the
process. The LSTM model is used in the DL method to
forecast wind speed for a year. The LSTM is a modified RNN
model that solves long-term challenges by overcoming the
limits of ordinary RNN. The gradient difficulties could be
removed through using an additional particular hidden layer
known as a memory unit. This unit has the ability to add
or remove new input. By managing the data flow, the three
control gates define the unit’s performance. The structure of
an LSTM unit is depicted in Fig. 2. More details about this
method have been expressed in [24]. The implementation of
DL in Python can be seen in Fig. 1(b).

The generation of wind units depends on a variety of
factors including wind speed, direction and location of the
wind farm. The output of wind farm is calculated based on
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FIGURE 2. The LSTM unit structure.

FIGURE 3. The weekly peak load.

FIGURE 4. The flexibility index for Case 1.

equation (5) [25].

Pw =


0 v ≤ vcin or v ≥ v

c
out(

v−vcin
vR−vcin

)
× PR vcin ≤ v ≤ vR

PR vR ≤ v ≤ vcout

(5)

C. FORMULATION OF PROPOSED UFGMSIDRRs

The GMS as a mid-term scheduling has been investigated
from distinct perspectives such as emission reduction, reli-
ability increment and minimizing cost as well as providing
flexibility. Conflict of some scheduling objectives with each
other complicates the GMS problem. In this section, each of
these objectives is formulated separately.
• Objective 1: Economic
The total system cost that must be minimized is modelled

through Eq. (6). The first term in the objective function is
conventional unit’s operating cost, the next two terms are the
incentive cost of IDRRs, the fourth term is gas storage cost,

FIGURE 5. The reliability index for Case 1.

FIGURE 6. The forecasted wind speed by DL.

the fifth term assigns to the P2G operating cost, and the last
term associates with the maintenance cost [8], [18].

Min
T∑
t=1

H∑
h=1

N∑
i=1

×

{ (
ai + bigti + cig

t2
i

) (
1− X ti

)
+ CEevent + CGevent

+Cst
G (U

out
t,h + U

in
t,h)+ C

P2GUP2G
t,h + mig

max
i X ti

}
(6)

The economic objective in (6) is subjected to the following
constraints.∑N

i=1
gt,hi + P

Real/forecasted
w +IDRRh

= PDt,h+lossh
IDRRh = EDRTOUh + GDRTOUh + EDReventh + GDReventh

(7)

gmin
i ≤ gt,hi ≤ g

max
i (8)∑T

t=1
X ti = Mi (9)

X ti − X
t−1
i = ωti (10)∑T

t=1
ωti = 1 (11)∑N

i=1
X ti ≤ NMN (12)

EDR
TOU

h ≤ Pnr Lh (13)

GDR
TOU

h ≤ Pnr GDh (14)

EDReventh ≤ Pnr Lh (15)

GDReventh ≤ Pnr GDh (16)

RDRmin
h ≤ RDRh ≤ RDRmax

h (17)
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FIGURE 7. The forecasted natural gas by ARIMA.

GRDRmin
h ≤ GRDRh ≤ GRDRmax

h (18)

0 ≤ Uout
t,h ≤ U

out
max (19)

0 ≤ U in
t,h ≤ U

in
max (20)

Et,h = Et,h−1 + ηinU in
t,h −

Uout
t,h

ηout
(21)

Emin
≤ Et,h ≤ Emax (22)

E0 = ENT (23)

UP2G
t,h =

PP2Gt,h η
P2G

HHV
(24)

The power balance in each period is satisfied through
Eq. (7) [26]. The limits for the output power of generation
units are given in Eq. (8) [26]. The maintenance period of
units is determined by Eq. (9). Eq. (10) covers consecutive
periods of maintenance. Limit once being maintained in the
planning horizon is guaranteed through Eq. (11). Eq. (12)
has determined the maximum number to be maintain over
a period of time. EDR and GDR participation have been
limited by (13)-(16). The incentive rate for the EDR andGDR
event in have been limited via (17) and (18), respectively. The
maximum level of gas injection and release for gas storages
are restricted via (19) and (20), respectively. The capacity of
energy in h period is determined by Eq. (21). The energy level
in storage is restricted via (22). The condition of initial has
been determined via (23). Eq. (24) is shown gas generation
of P2G technology.
• Objective 2: Emission
The emission released from electricity generation is for-

mulated as a quadratic function through Eq. (25) [7].

Min

(
T∑
t=1

H∑
h=1

N∑
i=1

(
αi + βigti + γig

t2
i

) (
1− X ti

))
(25)

The maintenance constraints mentioned in Eq. (7) to (12)
must be re-considered as previously explained.
• Objective 3: Reliability
Fluctuations in output of RERs lead that the power system

requires an appropriate level of reservation [27]. For reliabil-
ity evaluation, the UFGMSIDRRs criteria is taken into account

FIGURE 8. The flexibility results of Case 2.

in this paper with the aim of leveling the reserve margin [7].
The objective function could bemodelled as given in Eq. (26).

Min
T∑
t=1

H∑
h=1

N∑
i=1


{∑N

i=1 P
max
i,j

(
1− X ti,j

)
− PDt,h

}
PDt,h

2

(26)

The constraint (27) ensures that the scheduled reserve is
higher than a specified threshold for all periods.

Rt,h ≥ Rmin (27)

• Objective 4: Flexibility
In this section, two sub-indicators such as RT and MAC

have been applied to analyze flexibility. Hence, the RT and
MAChave been defined in Eq. (28) and Eq. (29), respectively.
Eventually, SFI is defined by combining RT and MAC to
achieve the flexibility [10].

RT =
1
TN

T∑
ut=1

N∑
i=1

(
tC(i,ut) − t(i,ut)

)
(28)

MAC =
1
TN

T−1∑
ut=1

1
T − ut

H∑
h=1

N∑
i=1

Ca
(i,h,ut)

gt,hi
(29)

SFI =
MAC
RT

=
1
TN

(
T−1∑
ut=1

1
T − ut

(
H∑
h=1

N∑
i=1

Ca
(i,h,ut)

(
1− X ti

)
gt,hi

(
tC(i,ut) − t(i,ut)

)))
(30)
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TABLE 1. Maintenance scheme results in Case 1.

TABLE 2. Maintenance scheme results in Case 2.

FIGURE 9. Result of IDRRs in UFGMS.

D. AUGMENTED EPSILON CONSTRAINT METHOD
The objectives of multi-objective problems (MOPs) may be
at odds with one another. In MOPs, there is not a solution
that could satisfy all goals simultaneously. Therefore, it is
crucial to choose a solution that provides a trade-off between
the objectives. The augmented epsilon constraint approach is
utilized to manage MOPs in this paper [28].

The UFGMSIDRRs problem is formulated via (31), as
shown at the bottom of the next page, follows.

III. NUMERICAL ANALYSIS
The UFGMSIDRRs is implemented on the modified IEEE
24-bus test system including wind resources with 300 MW
and 26 dispatchable units (U1-U26) that 300 MW of hydro
generation removed. All the economic and technical data of
generation units has been extracted from [8]. The weekly
peak load is illustrated in Fig. 3 and the peak load of system
is 2850 MW [29]. In this study, the eps and reserve criterion
are considered 10−6 and 20%, respectively [30]. The main-
tenance scheduling and flexibility evaluation horizons are

assumed 52-week and 8736 hours, respectively. The slopes
of emission function and the startup emission of conventional
generating units are the same as those for related unit fuel cost
curves, all multiplied by conversion factors of 0.2 and 0.5 for
SO2 and NOx emission, respectively [31]. The UFGMSIDRRs

problem is solved by BARON in GAMS software environ-
ment.

One of the main purposes of this paper is to evaluate the
effects of renewable RERs uncertainty on system flexibility.
Hence, various cases are conducted to reveal the effectiveness
of the proposed model. The flexibility of system has been
investigated disregarding to uncertainties of gas and wind as
well as without considering the participation of IDRRs in
Case 1. The flexibility of system has been evaluated with
considering uncertainties of gas demand and wind speed in
Case 2. In Case 3, the effectiveness of IDRRs and energy
storage on flexibility is evaluated eventually.

• Case 1: Flexibility analysis disregarding to uncer-
tainties of gas and wind as well as the participation
of IDRRs
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FIGURE 10. Comparison of flexibility index between all cases.

The UFGMSIDRRs model seeks to achieve a comprehen-
sivemaintenance schemewith the goals of reliability, flexibil-
ity, environmentally and economic. Hence, maintenance and
operation costs as the costs of system have been minimized.
In objective 4, the amount of obtained from the first objective,
238.39M$, assume as a limitation. The greenhouse gas emis-
sions and reservation criteria as the reliability objective are
minimized in objective 2 and objective 3, respectively. The
amount of greenhouse gas emissions and reserve level are
considered as constraints in objective 4. The SFI as objec-
tive 4 is maximized with considering pervious objectives
as constraints. In Table 1, the maintenance schemes of all
objectives are presented. In Fig. 4, reliability results of all
targets are shown. According to Fig. 5, the best level of
reliability is achieved by objective 3. The reserve of objective
4 could not attain reserve of objective 3, but it has reached
the acceptable level Note that the total emission of Case 1 is
123.435 Mlbs, which is a good level compared to the total
emission of objective 2 (120.221 Mlbs).

In Fig. 4, the SFI index for each week is illustrated.
The lowest flexibility occurs in weeks of 23-31 and 46-52.

According to Fig. 3, the peak demand is happened at these
weeks. Also, in the weeks when the peak load occurs, the fast
ramp units have not been maintained so as not to reduce the
flexibility of the system.
• Case 2: Flexibility analysis regarding to uncertainties
of gas and wind speed

The value of root mean square error (RMSE) and mean
absolute percentage error (MAPE) for the forecasted wind
power generation are 0.16% and 2.82%, respectively. Fore-
casted wind speed is depicted in Fig. 6. The climate data is
extracted from [32]. The forecasted natural gas demands by
ARIMA are illustrated in Fig. 7. The maximum capacity of
gas pipeline 1 is 7000 kcf/h that it is supplied four units (U4,
U5, U18 and U19) and the natural gas load a. The maximum
capacity of gas pipeline 2 is 6000 kcf/h that it is supplied three
units (U3, U16 and U17) and the natural gas load b. 1 kcf of
gas is assumed could produce 1 MBtu of energy [33].

In Table 2, themaintenance schemes of Case 2 are reported.
It should be noted that a maximum of 3 units in a week have
been maintained due to the limitations of the number of units
under repair in a week. Also, the schedules to repair fast ramp
units are distributed over a period of time so that they can
be accessed throughout the year. In Table 2, the maintenance
schemes of Case 2 are reported. It should be noted that a
maximum of 3 units in a week have been maintained due to
the limitations of the number of units under repair in a week.
Also, the schedules to repair fast ramp units are distributed
over a period of time so that they can be accessed throughout
the year. A comparison of the SFI between with and without
gas supply restriction is shown in Fig. 8, that The level of
flexibility decreases with limited gas supply, due to lack
of access to maximum gas-fired resources capacity. On the
other hand, the existing capacity of dispatchable sources has
decreased due to the variability of wind resources, which has

Max


1
TN

(
T−1∑
ut=1

1
T − ut

(
T∑
t=1

N∑
i=1

Ca
(i,t,ut).

(
1− X ti

)
gt,hi ×

(
tC(i,ut) − t(i,ut)

)))︸ ︷︷ ︸
Flexibility Objective

+eps× (s2 + s3 + s4)

 ,

s.t. :
T∑
t=1

H∑
h=1

N∑
i=1

{(
OC t,h

i

)
.
(
1− X ti

)
+ C t,h

IDRR

+inct,hDRP + mi.g
max
i .X ti

}
︸ ︷︷ ︸

Economic Objective

+s2 = e2.

T∑
t=1

H∑
h=1

N∑
i=1

(
αi + βigti + γi

(
gti
)2)

.
(
1− X ti

)
︸ ︷︷ ︸

Emission Objective

+s3 = e3.

T∑
t=1

H∑
h=1

N∑
i=1


{∑N

i=1 P
max
i,j

(
1− X ti,j

)
− PDt,h

}
PDt,h

2

︸ ︷︷ ︸
Reliability Objective

+s4 = e4. (31)
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FIGURE 11. Comparison of different objectives.

TABLE 3. Maintenance scheme results in Case 3.

TABLE 4. Comparison of optimization results for defined cases.

led to a decrease in system flexibility. It should be noted that
due to decrement in utilization of wind resources, system
costs and emission rates have increased.

• Case 3: Flexibility analysis considering IDRRs and
gas storage

In this Case, EDRs, GDRs and gas storage based on P2G
technology have been used to reduce the limitations of the
gas supply and the variability of wind resources. The results
of IDRRs in UFGMSIDRRs are illustrated in Fig. 9. The
participation of EDRs for all types is presented in Fig. 9-a.
As it is clear, the EDRs have been more participated during
peak load which leads to an improvement in the reliability
index (increasing the level of reservations) and reducing oper-
ating costs (due to the use of expensive power plants in the
peak load). According to the flexibility index figures for case
2 with gas limitation (Fig. 8), It can be seen that the flexibility
criteria has decreased significantly in the range of 20 to
30 weeks. In order to provide flexibility, flexible resources
have been used on the demand side. Fig. 9-b represents the
amount of the portfolio of GDRs consisting of Event based
and TOU. Performing the portfolio of GDRs is applied during
weeks with the lowest flexibility criteria due to gas limitation.
It is clear, Event based have been more involved than TOU.
According to Fig. 1, the portion of each DRPs in flexible gen-

eration maintenance scheduling has been identified, which
can be a roadmap for power system developers.

In Table 3, themaintenance schemes of Case 3 are reported.
It should be noted that a maximum of 3 units in a week have
been maintained due to the limitations of the number of units
under repair in a week. Also, the schedules to repair fast ramp
units are distributed over a period of time so that they can
be accessed throughout the year. A comparison of the SFI
among all cases is shown in Fig. 10, which reveals the level
of flexibility increases in Case 3. On the other hand, due to
the presence of fast response such as IRRs and energy storage,
it has improved system flexibility. In fact, the EDRs, GDRs
and gas storage based on P2G technology have led to mitigate
the gas supply limitation and variability of wind resources.

The flexibility, cost, reliability and emission objectives
in various cases are compared with each other as shown
in Table 4 and Fig. 11. The flexibility index in case 2 has
decreased by about 12.96% compared to case1. The flexibil-
ity index in case 3 has improved by about 22.32% compared
to case 3, due to the use of IDRRs (flexibility resources) and
P2G-based gas storage (reduction of gas supply limitation).
Emission level, reliability and cost in Case2 have the worst
and in Case 3 the best value. Due to the use of IDRRs, the level
of demand has decreased significantly and the production of
fossil fuel power plants has decreased. According to Fig. 1,
Case 3 has the best results compared to other cases due to the
presence of IDRRs and energy storage. It is clear, comparing
the total cost of the proposed model system with the results
of [8], it can be seen that about 12.35 m$ per year has been
saved.

IV. CONCLUSION
In recent years, the interdependence of gas and electricity sys-
tem has increased. Hence, the limitation of natural gas supply
is notable for secure operation in power system. On the other
hand, lack of attention to the penetration of RERs and flexibil-
ity analysis in the GMS will lead to an insecure environment
for power system operators and developers. In this paper,
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an environmental techno-economic framework for uncertain
based flexible GMS considering integrated DRRs has been
applied. In the proposed model, the EDRs, GDRs and gas
storage based on P2G technology have been used to mit-
igate the limitations of the gas supply and the variability
of wind resources. The obtained results revealed that higher
penetration of RERs decreases the SFI. It has been concluded
that the system flexibility and reliability have been improved
tangibly by considering the IDRRs and gas storage while
the total costs and emission over the horizon have not been
increased.
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